Apis: A Toolkit for Federated Power Management

Adam Prey, Jason O. Hallstrom, Jiannan Zhai, and Chancey Kelley

Institute for Sensing and Embedded Network Systems Engineering, Florida Atlantic University

aprey2016, jhallstrom, jzhai, ckelle22@fau.edu

ABSTRACT

Embedded systems and Internet of Things (IoT) devices
have been limited in application by constraints posed by bat-
teries. Batteries add size, weight, and upkeep costs, limiting
the lifetime of devices preferred to be small, lightweight,
and long lasting. We present Apis, a software and hardware
toolkit for federated power management in energy harvest-
ing applications. By replacing batteries with rapid charg-
ing storage capacitors, circuitry to control federated energy
storage, and software support to make this architecture ac-
cessible to developers, embedded devices can potentially run
indefinitely with limited maintenance. We present the Apis
hardware for controlling federated energy storage, support-
ing software, and experiments performed to validate the
Apis model. The system is named Apis, after the genus
for the Honey Bee, a creature dedicated to the harvesting
and federated storage of energy resources.

1. INTRODUCTION

These obstacles are inconsistent with most visions of the
future and are far from what is envisioned for ubiquitous
computing [?].

Fortunately, energy harvesting techniques continue to ad-
vance, as interest in alternative energy sources continues to
grow. Solar, wind, and hydroelectric energy harvesting have
been studied and improved upon for many years, as these
sources of power are widely available.

Lesser used methods for harvesting energy from the en-
vironment include vibrations, radio waves, magnetic fields,
and thermal sources. With the variety of options available,
having access to energy is less of a problem than it first
seems, but storing and using this energy efficiently remains
a challenge.

An alternative method for storing energy is the use of a
capacitor or super capacitor, which can rapidly store and dis-
charge energy without adding a significant amount of weight
or size to a device. Capacitors come in a variety of physical
sizes and construction, with different energy storage capa-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

bilities. A super capacitor can store more energy than other
capacitor types, and is also capable of rapidly charging and
discharging without damage, unlike a battery [?,4].

The trade-off is that a super capacitor has a lower voltage
limit than other capacitors. For many small electronics, this
trade-off is perfectly acceptable, as these systems tend to re-
quire only 5 volts or less to function. These qualities make
capacitors and super capacitors strong candidates for replac-
ing batteries, despite the inability to store energy for long
periods of time. This drawback may be manageable with the
support of intelligent software services that aid in charging,
discharging, and forecasting of energy use. This software
support can bring embedded systems one step closer to be-
coming independent from batteries.

Through intelligent control of capacitor charging and dis-
charging, in combination with energy harvesting and charge
state reporting, battery-less devices can become a reality.
Without the lifetime, size, weight, and maintenance limita-
tions imposed by batteries, we come closer to the ubiquitous
computing vision.

‘We present an energy measurement unit called a service
unit for management of available energy. Service units are
used to determine if enough energy is available to complete
a given task before attempting to run the task. An example
application would be determining how many times a radio
could transmit a data packet before available energy is de-
pleted, i.e., how many services are needed?

We present our hardware architecture for charging feder-
ated power systems, a software layer for hardware control
and service unit management, experimental results, and our
conclusions.

2. RELATED WORK

The work of Hester et al. [3] has greatly influenced our
own. They present UFoP , the United Federation of Pe-
ripherals system, which uses separate capacitors to store
energy for each peripheral, and a control circuit to allow
the use of the peripherals. By using a comparator to man-
age charging of capacitors, the circuit determines whether
to charge the capacitor for the microcontroller (MCU), or
to charge peripheral capacitors. Apis differs, in that we
use ADC readings to measure charge and make decisions in
software by converting these readings into service units. In-
stead of having to manage ADC values, voltage drops, or
other factors, developers only need to be concerned with the
number of service units available for each peripheral, pro-
viding greater runtime flexibility for the Apis system. UFoP
uses fixed comparators in the hardware layer to determine

aprey2016
jhallstrom
jzhai
ckelle22

what to charge, thereby limiting system dynamism. Apis
uses service units to determine when a capacitor needs to
be charged, instead of relying on the hardware comparator.
This difference enables Apis to make intelligent charging de-
cisions and reduces the affect noise may have on the system
when deciding when and what to charge.

Hibernus [1] is a software platform used for energy har-
vesting systems that saves the system state before power
failure and enters a sleep state. All volatile variables are
saved to FRAM when a voltage threshold is reached, and
the system state is restored from FRAM once the voltage
threshold for activation is reached. When the system en-
ters the sleep state, core registers are saved first, followed
by RAM contents, including the stack segment, local, and
global variables. Next, the general registers, stack pointer,
and program counter are stored and the system enters a
sleep state. Once an upper voltage threshold is reached,
a restore procedure copies the stored information from the
non-volatile memory back to the original memory locations.
Once the restore is complete, the system resumes operation.
Similar systems have been developed, including Mementos
[5] and HarvOS [2], which allow programmers to add check-
points in their code to restore the system to well defined
points in the event of power loss. When a checkpoint is
reached, a function stores the system state in non-volatile
memory, similar to Hibernus.

While Apis lacks a checkpointing system, such a system
can be added, though may not be needed. Apis allows the
MCU to prioritize itself over the peripherals to ensure that
it will have enough energy to keep the system active.

Other techniques involve using an energy-aware task sched-
uler, such as DEOS [6]. The Dynamic Energy-Oriented
Scheduler performs code optimizations to combine and sim-
plify subroutines to save power. Once optimized, DEOS
schedules tasks based on priority, energy availability, and
energy use. The system may require greater programming
effort and more intensive debugging to ensure that the pro-
gram is properly optimized, without introducing undesired
behaviors. Automated combining of subroutines may pro-
vide another vector to introduce unwanted behavior to a
system.

Apis currently lacks a scheduling algorithm and does not
provide automated code optimization. A scheduling algo-
rithm could prove to be a valuable addition, allowing the
system to make better decisions for task execution. Service
units can be readily integrated into many scheduling algo-
rithms.

Most similar to our work is Hester’s UFoP, as this system
uses federated energy storage and circuitry to manage capac-
itor charging. Apis differentiates itself from this work, as it
provides a support structure for energy harvesting. By inte-
grating hardware, software, and service unit translation for
developers, long-lasting, low-maintenance, battery-free sys-
tems become easier to create. Collecting real-value energy
measurements with an ADC, and converting these values
into service units; a measurement that corresponds directly
to task execution, developers will have greater flexibility in
designing battery-less systems.

3. SYSTEM ARCHITECTURE

The Apis architecture comprises hardware and software.
The hardware layer includes capacitors used for energy stor-
age, energy harvesters, power distribution circuitry, periph-

erals, and a microcontroller. The power distribution cir-
cuitry uses an off the shelf, ultra-low power, switch mode
power supply that has been configured as a voltage regula-
tor for the Apis application.

The software layer includes drivers for the various circuits,
as well as the charging algorithm used to control charge and
discharge of the capacitors, when energy is available. Service
units are a key aspect of the software, enabling Apis’ unique
decision-making strategy. The service unit drivers measure
voltage across each capacitor, and convert the voltages to
service units, while also allowing the capacitors to provide
power when needed.

3.1 Hardware Layer

The Apis circuit board shown in figure 2, with the circuit
schematic shown in figure 1, isolates a storage capacitor from
a voltage bus and prevents the capacitor from discharging
energy while isolated. The isolation is achieved by the three
MOSFETs in zone 1 of the schematic. The storage capacitor
is used to provide power to a TPS62737 switching regula-
tor (Zone 4). The output voltage of the capacitor can be
discharged to a minimum of 3.3 V through the switching
regulator. The output voltage can be adjusted for applica-
tion specific purposes. We chose 3.3 V, as it is a common
operating voltage for many microcontrollers and peripherals.
While other regulator choices are available, the TPS62737
is a high-efficiency switching regulator with a quiescent cur-
rent in the hundreds of nano-ampere range, with the ability
to achieve high efficiency with low current loads. With the
ultra-low leakage current of the MOSFETSs and low quies-
cent current of the switching regulator, the storage capacitor
is effectively isolated from the system unless needed.

The Apis power distrubtion circuit is designed for multiple
use cases. When the Apis circuit board is configured for
the MCU, it will always be in the power enable state. The
MCU running the Apis software will need consistent access
to power to prevent the system from shutting down. The
design difference is achieved with a solder jumper (JP2) in
Zone 1 of the schematic.

Zone 1 of the schematic shows the VIN and EN_IN pins of
the Apis circuit board. The solder jumper JP2 is used to set
the input MOSFETs as either default on or default off, for
use with an MCU or peripheral, respectively. These MOS-
FETS are configured to serve as a bi-directional load switch.
JP2 is connected to VIN and ground at either end, with R10
and the gate of MOSFET Q5 connected to the center pin of
the jumper. When R10 is connected to VIN, it serves as a
pull up resistor, resulting in the default state of the board
being on. Connecting the same resistor to ground provides a
pull down resistor, setting the default state of the MOSFETSs
to off. By configuring the board in the on state, MOSFET
Q3 (Zone 3) is removed from the circuit. As a result, the
ENT and EN2 pins of the of the TPS62737 regulator (Zone
5) are tied to ground and VIN, respectively. This configura-
tion defaults the regulator to the enabled state, and further
reduces the quiescent current of the board, as current is no
longer used to activate MOSFET Q3 to power the regulator.

Zone 2 of the schematic features the inputs for connecting
the bulk energy storage bank; any power source attached
to J5 will be the primary source of energy for the the Apis
circuit. Zone 3 includes the control pins that enable or dis-
able the switching regulator. Q3 and Q4 are used in the
event that the MCU GPIO pins are not able to provide suf-

Zone 2
Zone 4
JP1
Zone 3 in Zone 5
BND
L
E n l_f\’\’r‘\"_ J
Al g 232 J3
€3 /N " " N\ Ut 2
TageTeafi][5 B8 Jr B < L'
T » L22uF |@dup
GND = &6
I v 3L
wur_ser | T2
R = - UIN.OK a &hd Uout = 3.3v
;— o | IRy I T £ Uok_set = 2.8v
- - w
%_ \ .j PS&273X b1, I\Q
) RE
BND GND
N &6 :J“
RS
an GND

Figure 1:

P
fﬁ TPS6273x SMPS .
EAGER P Module

& i [
PAU Florida Atlantic Us

I-SENSE

Figure 2: The Apis Circuit Board

ficient voltage to activate the enable pins of the switching
regulator. R5 through R10 have high resistance values to
further reduce the quiescent current used when activating
the system, at the cost of an increased response time.

Zone 5 presents the switching regulator and associated
output circuitry. The regulator reduces input voltage from
the storage capacitor to a regulated 3.3 V. This output volt-
age can be changed to accommodate lower voltage devices
by adjusting the voltage divider ratio on the VOUT_SET
pin. The section allows the MCU to control the switching
regulator, allowing peripheral power control. The VIN_OK
pin of the regulator provides quasi-digital tracking of VIN for
the MCU until a minimum voltage threshold is met, where
tracking is turned off. When VIN_OK reaches a minimum

Schematic of the Apis Circuit Board

voltage threshold, set by VIN_OK_SET, the tracking will ac-
tivate. When VIN drops below the VIN_OK_SET threshold,
VIN_OK becomes a ground signal. These additional features
and circuitry enable the storage capacitors to be used effi-
ciently with the TPS62737 regulator’s excellent operating
efficiency.!

Capacitor selection is used to tune the Apis system for
specific applications. Selecting a large capacitor provides
greater energy storage, at the cost of charging speed. The
inverse is also true. The storage capacitors used for testing
were 470 pF. Individual application needs will vary, and it
is crucial for programmers to be aware of the selected capac-
itors, as features of the software layer require this informa-
tion. The need for this information is discussed in Section
3.2.3.

Apis software services are capable of working across a va-
riety of MCUs, enabling greater design flexibility. For devel-
opment and experimentation, the MSP430 and ATMega328
MCUs were used. These MCUs are common choices among
embedded developers.

3.2 Software Layer

We next describe the software layer and its constituent
components. The main features of the Apis software layer
include the software drivers for Apis circuit boards, service
unit monitoring services, check functions for service unit
availability, and a charging algorithm for storage capacitors.

1Zone 5 provides another jumper for the regulator. This
jumper connects the SW pin of the TPS62737 to ground,
as certain versions of this regulator require this connection,
while others do not.

For software developers, Apis provides an easy to use frame-
work to support the development of battery-less systems.

3.2.1 Service Units

The backbone of the software layer is a calculated value
known as a service unit. Service units represent the energy
cost to execute a single task. The use of service units can be
compared to a bank ledger for task execution. Each execu-
tion costs one service unit, and the software keeps the ledger
up-to-date. This ledger enables developers to be fully aware
of what functions can be executed. For instance, the service
unit balance for radio transmissions informs the developer
(or application) how many times a data packet can be trans-
mitted by the radio before transmissions are no longer avail-
able. As the service units are used, the ledger is updated,
and the system can determine if it is possible to run a task.

The number of available service units specifies how many
times a task can be executed before the associated storage
capacitor can no longer supply the required energy. Service
unit availability is the basis for most decisions within Apis.
The relationship between the service unit for a task and
the energy cost is the average voltage drop of the storage
capacitor when the task is run. For example, suppose the
radio used in the previous example causes voltage drops be-
tween 0.01V and 0.07V for each transmission. By collecting
enough data samples when transmitting, an average voltage
drop can be calculated for use as service unit’s costs Typi-
cally, the standard deviation across voltage drops is small to
be insignificant in determining service unit costs. A caveat,
is that this is only true when the parameters(e.g. power lev-
els, packet length) of a task’s execution are held constant.

The average voltage drop for each task must be deter-
mined experimentally. The relationship is used to build a
predictive model of available service unit availability based
on remaining storage capacitor voltage. The average voltage
drop of a task is then used to determine how much voltage
the service unit will cost a storage capacitor. The energy
costs remain consistent, despite being sourced from a capac-
itor due to the linear discharge from the switching regulator
used in the Apis circuit.

The experimental method used to determine the relation-
ships between service units and voltage drop requires several
trials of repeated task execution with the Apis circuit and
storage capacitors. The task is configured to be powered
only by the storage capacitor (not the harvester), which is
fully charged at the beginning of each trial. Tasks are run
until the storage capacitor discharges to 3.3 V, the cutoff
voltage of the switching regulator. Other thresholds may be
used if selecting a different switching regulator for the cir-
cuit. In some cases, a higher voltage threshold is needed to
prevent a peripheral from failing. Such circumstances can
arise when using a peripheral with a minimum voltage rating
higher than the selected regulator’s voltage threshold. Us-
ing the MCU’s ADC, the storage capacitor voltage is logged
before and after each task execution. The collected readings
are then used to calculate the energy cost. Thirty trials were
run for each task and averaged to calculate energy cost.

The following equation provides a simple model for service
unit availability for a given capacitor voltage.

SU — {CapVoltage — 3.3—‘

AverageV Cost

SU is the number of available service units, Cap Voltage is

the voltage of the storage capacitor, 3.3 is the voltage cut-
off for the regulator used, and AverageVCost is the average
ongoing cost voltage for the task. This average varies by
capacitance; an advanced model could be parameterized by
capacitance; however, this simplified approach suffices.

By subtracting the cutoff voltage of the regulator from the
storage capacitor’s voltage, we calculate the voltage avail-
able for use. Dividing by the average voltage drop from
a service unit and rounding up to the nearest whole num-
ber, an approximate number of available service units can
be found for a given voltage.

The equation below is a variation of the first, but subtracts
an offset.

CapVoltage — 3.3

SU = [AverageSUCost

Ooff set—‘

In some cases, it may be necessary to include the offset when
modeling service unit availability due to electrical noise or
other factors in the system. For example, if a peripheral has
a large difference between minimum and maximum voltage
drops, or a large standard deviation, the average may not be
accurate enough to be used by itself. The offset allows for
more tuning to ensure that predicted service unit availability
is never greater than actual service unit availability.

3.2.2 Peripheral Board Software Driver

The Apis software driver provides a set of functions to con-
trol the charging of storage capacitors and discharge to ex-
ternal peripherals. All that is required to control the board
is to send a high signal to enable, and a low signal to dis-
able ()EN_IN, EN1). The former, which enables charging
a capacitor, and the later for discharging of a capacitor.
To use the software driver, the developer must specify the
MCU pins connected to the enable and charge pins on each
peripheral board.

These portion of the header uses #defines and structs
to assign pins and ADCs for Apis to control capacitor dis-
charge. The #defines provided allow developers to specify
what parts of the system to check on by passing their as-
signed values to an ADC read function. This provides flexi-
bility allowing for individual capacitors, the voltage bus, or
the entire system’s energy availability be read by the ADC
when needed. The driver functions include device enable
(for individual circuits), charging enable ()for individual cir-
cuits), charging enable for all boards and the respective dis-
able functions.

3.2.3 Charging Cycle

The Apis charging cycle uses one of MCU’s comparators
and as many ADCs as needed, to determine when to begin
charging, which capacitors need to be charged, and when to
stop charging. To begin the charging cycle, there must be
a voltage higher than the comparator’s voltage threshold on
the power bus. Once the threshold is met, the comparator
triggers an interrupt to wake the Apis system, and a flag is
set to check if charging can be done. Capacitor voltage is
converted to joules (Joules = 1+ Capacitance * Voltage?).

The conversion is used to determine if there is enough en-
ergy on the power bus to increase the energy stored in each
capacitor. To stabilize voltage coming from the harvester
to the power bus, a capacitor included between the har-
vester and ground. This added capacitance must be consid-
ered when determining if enough energy is available before

charging begins. In some cases, the power bus may have a
sufficiently large voltage to activate the charging cycle, but
not have enough energy capacity to charge any capacitors.

If the bulk charge on the power bus is greater than the
bulk charge of a given capacitor, the capacitor is added to
the charging cycle. If the bus does not have enough bulk
charge for a given capacitor, the capacitor will discharge it-
self until it is equal to the power bus. Developers must pro-
vide the total bulk capacitance of the power bus and storage
capacitors so the software can perform the necessary calcu-
lations and prevent unintended discharging of the storage
capacitors.

When ready to charge a capacitor, the corresponding de-
vice is disabled (except in the case of the MCU) to allow
faster charging. Charging then occurs until a usage defined
minimum service unit threshold is reached. The cycle then
switches to the next capacitor and repeats until all mini-
mum thresholds are met, or until bus energy is no longer
available. Next, the service unit threshold is increased by
a user-defined value, and the cycle repeats until all capaci-
tors are fully charged, or bus power is no longer usable. The
process continues iteratively. If no capacitor can be charged,
the charging cycle ends, and the system goes to sleep. Dur-
ing the charging cycle, a priority order is established in the
event of multiple capacitors needing charge. The MCU’s
storage capacitor always has the highest priority, and it is
recommended to have a higher minimum service unit thresh-
old to keep the system running. For other devices, charging
priority should be based off task priorities.

3.2.4 Service Unit Monitoring

When the the Apis software is not in low power mode,
continuous ADC readings are collected from the storage ca-
pacitors to track the number of available service units. This
allows Apis to track which tasks can be completed, and how
many times they can be completed before running out of
energy. These balances are regularly updated to account
for leakage current. While the Apis circuit is designed to
mitigate leakage current, some leakage is unavoidable.

4. EVALUATION

We validated our model by conducting a series of exper-
iments with the Apis system. The experiments focus on
calculating the actual energy costs of peripheral functions
compared to modeled costs. The purpose of the experimen-
tation is to demonstrate how service units can accurately
create a model for peripheral function costs.

4.1 Dummy Loads

The first series of tests used three simulated loads. Loads
consisting of LEDs and resistors were used in series to cre-
ate current draws of approximately 2mA, 4mA, and 6mA,
respectively. An MSP430 microcontroller was used. For
each experiment, the MSP430 was used to enable a LED
load through the Apis peripheral board for 250ms, and then
disable the LED load. This cycle repeats until the capacitor
reaches a threshold voltage of 3.3 V. The threshold is dic-
tated by the Apis board’s TPS62737 regulator, which has
a dropout voltage of 3.3 V. The test loads were connected
to the peripheral boards, which were in turn connected to
the MSP430. The MSP430’s ADC inputs were connected to
each capacitor, as required by the Apis architecture. The
capacitors were 470 pF each and the energy source a bench

24 -2 m
22 H

ot 6 mA
18 -
16 -
14
12
10 -

Service Units

[SIFN
T

L T L
3233343536373839 4 41424344454
Voltage

I I
.6 47 48 49 5

o

Figure 3: Measured Service Units / Voltage

24 F[2mA —— b
22 H 4 mA —x<—
6 mA

Service Units

1
3.2 33343536373839 4 4142434445 4647 4849 5
Voltage

Figure 4: Estimated Service Units / Voltage

power supply set to 5 V. Charging was controlled manually
by connecting the power supply to the power rail, and dis-
connecting once all capacitors were charged. Each trial was
run 30 times; measurements were averaged.

Figure 3 presents the measured results of the dummy loads
with 470 uF capacitors. The horizontal axis represents volt-
age, and the vertical axis represents measured available ser-
vice units.

Average voltage drops of 0.08 V, 0.12 V, and 0.19 V were
observed for the 2mA, 4ma, and 6ma loads, respectively.
Using these averages, we are able to plot the graph shown
in figure 4 using the service unit model. The horizontal axis
represents voltage, and vertical axis represents estimated
service units.

Figure 5 compares the measured and estimated service
unit graphs. The horizontal axis represents voltage, and
vertical axis represents service units. Apis provides an ac-
curate model of service unit availability. It should be noted
that at certain voltages the estimated service units do not
increase, resulting in a plateau. This is due to rounding.
The service unit model can be tuned to more precisely re-
flect the measured service unit values, however this creates
the risk of overextending the model. When this occurs, pos-
sible system failures become more likely due to Apis mak-
ing decisions with service units that are not available. By
allowing greater deviation between measured service units
and modeled service units, a buffer is formed that prevents
the system from over expending available resources.

4.2 CC1101 Radio Module

2mAI, measulred — : : ' '
22 | 2mA, calculated —<—
20 || 4mA, measured i
4mA, calculated
18 || 6mA, measured 1
6mA, calculated —65—
16
2
c 14
=}
_g 12
g 10
(%]
8k
6
4l
2 |
0 I I I I I I I I
3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

Voltage

Figure 5: Measured and Estimated Service Units

The next experiment focused on a real peripheral device
to further test and validate the model. An ATMega328 mi-
crocontroller was used for these experiments. As wireless
communication is a key aspect of many embedded platforms,
the CC1101 radio module was selected as the test device.

The experimental setup is analogous to the dummy load
experiments. The power bus was again connected to a bench
power supply set to 5 V. The SPI pins of the MCU are
only enabled before a radio transmission to prevent parasitic
power.

In this experiment, the software initializes the ADC and
the CC1101, and then turns off the C1101. The test pro-
gram transmits messages with a single byte, 125 bytes, and
254 bytes, respectively, to examine the effects of message
size at each of the CC1101’s transmit power settings. The
power settings used range from -30dBm to 7dBm. The re-
sult is 42 sets of measured voltage drops. The service unit
formula is implicitly parametrized by device settings, such
as transmission power and packet size.

The software runs 30 trials for each power setting and
message length configuration. During each trial, the soft-
ware enables capacitor charging until an ADC reading of 5
V is reached. Charging is then disabled. Next, the CC1101
is enabled. Once ready to send a message, the MCU en-
ables SPI and a message is transmitted. Once transmitted,
SPI and power are disabled. ADC readings of capacitor
voltage are logged via UART. The process repeats until the
ADC reads a voltage below 3.4V, the observed cutoff for the
CC1101.

The data samples from each set of trials were averaged
and processed in the same manner as before. The results
are presented in figures 6, 7, and 8. Each plot covers the
three packet lengths, with the seven different transmission
power levels. The horizontal axis represents voltage, and the
vertical axis represents measured service units. Similar to
the dummy load case, linear discharge across the capacitor
is observed.

The estimated service unit plots for the CC1101 are pre-
sented in figures 9, 10, and 11. The horizontal axis again
represents voltage, and the vertical axis represents the es-
timated service units. Using conservative offset values for
each setting, the estimated number of service units accu-
rately reflects the number of measured service units. The
data demonstrates the validity of the service unit model and
is explored in greater depth in the Quantitative Summary

Service Units

Service Units

Service Units

550
500
450
400
350
300
250
200
150
100

50

Power 1 —+—

Power 2 —>— 3
Power 3 X//X/_
Power 4 ~

Power 5 Y%

Power 6 —S—
Power 7 —@—

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

400

350

300

250

200

150

100

50

350

300

250

200

150

100

50

Voltage

Figure 6: Measured Single Byte TX

Power 1 —+—
Power 2 —x<—
Power 3
Power 4
Power 5
Power 6 —S—
Power 7 —@—

3.6 3.8 4 4.2 4.4 4.6 4.8 5
Voltage

Figure 7: Measured 125 Byte TX

T
Power 1 —+—
Power 2 —x—
Power 3
Power 4
Power 5

Power 6 —5—
Power 7 —@—

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

Voltage

Figure 8: Measured 254 Byte TX

Service Units

0 524 I i I I I
3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

Voltage

Figure 9: Estimated Single Byte TX

400

T
Power 1 —+—
350 |-| Power2 —x—
Power 3
Power 4
Power 5
Power 6 —S—
250 || Power 7 —@—

300

200 |

Service Units

150 -

100

50

it L
3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
Voltage

Figure 10: Estimated 125 Byte TX

300

Power 1 —+—
Power 2 —<—
Power 3
Power 4
Power 5
Power 6 —S—
Power 7 —@—

250

200

150

Service Units

100

Voltage

Figure 11: Estimated 254 Byte TX

section of this paper.

An interesting note is that certain configurations of the
CC1101 result in intersecting service unit availability curves.
This can be used in system optimization decisions, highlight-
ing where trade-offs in packet length and transmission power
can be made. The importance of collecting experimental
data for the service unit model can not be overstated for

developing Apis applications.

5. CONCLUSION

Our work focuses on the development of a battery free ar-
chitecture for use in embedded system and IoT applications.
We presented the following contributions, (1) first, the hard-
ware architecture for controlling charge and discharge in fed-
erated power systems. (2) Second, a software layer for hard-
ware control and service unit management. (3) Third, our
experimental results for the accuracy of service unit avail-
ability report. (4) Finally, the conclusions and plans for
future work, based from what has been achieved through
this work.

This work brings us closer to a battery-free future for the
Internet of Things, in line with the ubiquitous computing
vision, where billions of smart devices are seamlessly inter-
connected, enhancing our lives. By overcoming the limi-
tations imposed by batteries, IoT can expand to more ap-
plication domains, solving even more challenging problems.
With expanded IoT capabilities, the vision for the future of
computing becomes clearer, and closer to actualization.

6. ACKNOWLEDGMENT

This work was supported by funding from NSF award
number CNS-1644789.

7. REFERENCES

[1] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M.
Al-Hashimi, D. Brunelli, and L. Benini. Hibernus:
Sustaining computation during intermittent supply for
energy-harvesting systems. IEEE Embedded Systems
Letters, 7(1):15-18, March 2015.

[2] N. A. Bhatti and L. Mottola. Harvos: Efficient code

instrumentation for transiently-powered embedded

sensing. In 2017 16th ACM/IEEE International

Conference on Information Processing in Sensor

Networks (IPSN), pages 209-220, April 2017.

Josiah Hester and Jacob Sorber. The future of sensing

is batteryless, intermittent, and awesome. In

Proceedings of the 15th ACM Conference on Embedded

Network Sensor Systems, SenSys ’17, pages 21:1-21:6,

New York, NY, USA, 2017. ACM.

[4] Paul Horowitz and Winfield Hill. The Art of
Electronics. Cambridge University Press, 2015.

[5] Benjamin Ransford, Jacob Sorber, and Kevin Fu.
Mementos: System support for long-running
computation on rfid-scale devices. SIGARCH Comput.
Archit. News, 39(1):159-170, March 2011.

[6] T. Zhu, A. Mohaisen, Yi Ping, and D. Towsley. Deos:
Dynamic energy-oriented scheduling for sustainable
wireless sensor networks. In 2012 Proceedings IEEE
INFOCOM, pages 2363-2371, March 2012.

3

	Introduction
	Related Work
	System Architecture
	Hardware Layer
	Software Layer
	Service Units
	Peripheral Board Software Driver
	Charging Cycle
	Service Unit Monitoring

	Evaluation
	Dummy Loads
	CC1101 Radio Module

	Conclusion
	Acknowledgment
	References

