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Abstract

We study numerical schemes for incompressible Navier—Stokes equations using IMEX temporal discretizations, finite element
spatial discretizations, and equipped with continuous data assimilation (a technique recently developed by Azouani et al. (2014)).
We analyze stability and accuracy of the proposed methods, and are able to prove well-posedness, long time stability, and long time
accuracy estimates, under restrictions of the time step size and data assimilation parameter. We give results for several numerical
tests that illustrate the theory, and show that, for good results, the choice of discretization parameter and element choices can be
critical.
© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Data assimilation (DA) refers to a wide class of schemes for incorporating observational data in simulations, in
order to increase the accuracy of solutions and to obtain better estimates of initial conditions. It is the subject of a
large body of work (see, e.g., [1-3], and the references therein). DA algorithms are widely used in weather modeling,
climate science, and hydrological and environmental forecasting [2]. Classically, these techniques are based on linear
quadratic estimation, also known as the Kalman Filter. The Kalman Filter, as well as variational methods such as
3D/4D Var, are described in detail in several textbooks, including [4,1-3], and the references therein.

Recently, a promising new approach to data assimilation was pioneered by Azouani, Olson, and Titi [5,6] (see
also [7-9] for early ideas in this direction). This new approach, which we call AOT Data Assimilation, AOT-DA,
or continuous data assimilation, adds a feedback control term at the partial differential equation (PDE) level that
nudges the computed solution towards the reference solution corresponding to the observed data. A similar approach
is taken by Blomker, Law, Stuart, and Zygalakis in [10] in the context of stochastic differential equations. While
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the AOT-DA method looks somewhat similar to the so-called nudging or Newtonian relaxation methods introduced
in [11,12], the specific use of interpolation in AOT-DA method is a crucial difference between the two methods,
with major effects in terms of both implementation and convergence. For an overview of nudging methods, see,
e.g., [13]. The AOT-DA algorithm is based on feedback control at the PDE level, described below. The first works
on it assumed noise-free observations, but [14] adapted the method to the case of noisy data, and [15] adapted to
the case in which measurements are obtained discretely in time and may be contaminated by systematic errors.
Computational experiments on the AOT algorithm and its variants were carried out in the cases of the 2D Navier—
Stokes equations [16], the 2D Bénard convection equations [17], and the 1D Kuramoto—Sivashinsky equations [18,19].
In [18], several nonlinear versions of this approach were proposed and studied. In addition to the results discussed
here, a large amount of recent literature has built upon this idea; see, e.g., [20-32]. Although extensive research has
been done on the theory of DA algorithms, there is currently little work on the numerical analysis of these algorithms,
save [33], which studied a continuous-in-time Galerkin approximation of the algorithm, and [34] which studied a
Galerkin in space, and explicit in time algorithm for the 2D Navier—Stokes equations (NSE).

In this paper, we propose and study discrete numerical algorithms of the NSE with an added data assimilation term
and grad-div term, in 2D or 3D, and under the assumption that sufficiently regular solutions exist. In particular, we
consider IMEX time stepping schemes and finite element spatial discretizations. We show that the particular element
choice and/or stabilization parameters can make a dramatic difference in the success of the AOT-DA algorithm, and
the time stepping algorithms also need careful consideration since time step restrictions can arise.

Briefly, the incompressible NSE are given by

u; +w-Vyu—vAu+Vp—yV(\V-u) = f, (1.1)
V.u=0, (1.2)

where u represents the velocity and p pressure. The viscosity is given by v > 0, and external forcing is f. Note that at
the continuous level, the grad-div term is zero. The corresponding data assimilation algorithm is given by the system,

v+ @-VYv+Vg—vAv+ puly(v —u) —yV(V-v) = f, (1.3)
V.v=0, (1.4)

where v is the approximate velocity and g the pressure of this approximate flow. The viscosity v > 0 and forcing
f are the same as the above. The scalar p is known as the nudging parameter, and /y is the interpolation operator,
where H is the resolution of a coarse spatial mesh. The added data assimilation term forces (or nudges) the coarse
spatial scales of the approximating solution v to the coarse spatial scales of the true solution u. The initial value of v
is arbitrary.

We note that in all computational studies discussed above, the equations have been handled with fully explicit
schemes (typically forward Euler). However, in explicit schemes, numerical instability is expected to arise from the
term uly(v — u) on the right-hand side of (1.3) for large values of w, and thus an implicit treatment of this term
has advantages. Thus, we study a BDF2 scheme for the data assimilation algorithm below. Fully implicit schemes
can be costly though, due to the need to solve nonlinear systems, which can require, e.g., expensive Newton solves
at every time step (Newton methods have other theoretical problems, discussed below). Therefore, we also study
implicit—explicit (IMEX) schemes, which handle the nonlinear term semi-implicitly, but the linear terms (in particular,
wlg(v — u)) implicitly.

In [35], it is argued (in the context of determining modes) that no higher-order Runge—Kutta-type methods or (fully)
implicit methods of order greater than one can be constructed which satisfy the criteria of having the same discrete
dynamics for # and v, and which use only the information of 7y (u) (as opposed to u) in the computation of v. This
is the reason why we use backward-differentiation methods, although Adams—Bashforth/Adams—Moulton would also
be suitable choices. We remark that, in the case of implicit methods, such methods do not make sense to use directly
as one would need knowledge of the future; namely, Iy (u"*"). However, by interpreting our simulations as being run
“one time-step in the past”, so that Iy (u™*1) is taken to be the most recent data, not future data that is unmeasured.
The algorithms we propose in this work are consistent with the requirement stated in [35] that the right-hand side of
the assimilated system not be evaluated more than once per time step. This is because the algorithms proposed here
are only semi-implicit, and therefore do not require repeated solves due to the use of, e.g., Newton methods. We also
note that typically multi-step methods require initializing the first few steps via another method, such as a higher-order
Runge—Kutta method. However, we prove that for any initialization of the first few steps, the solutions generated by
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the algorithm converge to the true solution. For example, the first few steps could all be initialized to zero. Thus,
algorithms we present below have the advantage of needing no special scheme for the common problem of initializing
a multi-step method.

This paper is organized as follows. In Section 2, we introduce the necessary notation and preliminary results
needed in the proceeding sections. Section 3 introduces a second order AOT-DA scheme for the NSE, and proves
stability, well-posedness, and long time accuracy, under typical regularity assumptions of the NSE solution. Section 4
contains three numerical tests that illustrate the convergence of the AOT-DA method, and issues that arise in numerical
implementation that one may not see from the analysis.

2. Notation and preliminaries

We consider a bounded open domain 2 ¢ R? with d=2 or 3. The L?(§2) norm and inner product will be denoted
by || - || and (-, -), respectively, while all other norms will be labeled with subscripts.
Denote the natural function spaces for velocity and pressure, respectively, by

X = Hy(2)*
0 = L}(9).
In X, we have the Poincaré inequality: there exists a constant Cp depending only on {2 such that for any ¢ € X,
ol < CrliVell.
The dual norm of X will be denoted by || - || ;.
We denote the trilinear form b : X x X x X — R, which is defined on smooth functions u, v, w by
1 1
b(u, v, w) = E(u -V, w) — E(M -Vw, v).
An equivalent form of » on X x X x X can be constructed on smooth functions via
1
b(u,v, w)=(u-Vv, w)+ E((V S UV, w).
An important property of the b operator is that b(u, v, v) = 0 foru, v € X.
We will utilize the following bounds on b.
Lemma 2.1. There exists a constant M > 0 dependent only on {2 satisfying
1b(u, v, w)| = M{IVullIVv[[IVw],
1b(u, v, w)| < Mlul|(IVvll3 + vl Vw]],
forallu,v, w € X for which the norms on the right hand sides are finite.

Remark 2.2. Here and throughout, sharper estimates are possible if we restrict to 2D. However, for simplicity and
generality, we do not make this restriction.

Proof. These well known bounds follow from Holder’s inequality, Sobolev inequalities, and the Poincaré
inequality. [J

2.1. Discretization preliminaries

Denote by t;, a regular, conforming triangulation of the domain (2, and let X;, C X, Q;, C Q be an inf-sup stable
pair of discrete velocity—pressure spaces. For simplicity, we will take X, = X N P, and Q, = Q N Py_; Taylor—Hood
or Scott—Vogelius elements however our results in the following sections are extendable to most other inf—sup stable
element choices.

We assume the mesh is sufficiently regular for the inverse inequality to hold: there exists a constant C such that for
all v, € Xy,

IVl < Ch™"uall.
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Define the discretely divergence free subspace by
Vi :={vn € Xp | (V-vn,qn) =0V gs € OQn}.
For a given H > 0, we denote by Iy : X — X a linear operator satisfying
111 () — @1l < CIH||IV, (2.3)
a2 ()] = Clill, (2.4)

for some C > 1, and for all ¢ € X. For example, /g could be an appropriate interpolation operator such as a nodal
interpolant on X N Py(ty) with k > 1, or an appropriate projection operator such as the L? projection onto Py(tx) [36].
Here, H is a characteristic point spacing, and will satisfy h < H, H = ch. The spacing H corresponds in practice to
points where (true solution) measurements are taken, so H should be as large as possible but still satisfying (2.3)—(2.4).

Throughout this paper, we make the assumption on the mesh width £ that it satisfies the data dependent restriction

2v
h< |[— .
C?C(data, u)

This will allow for choosing nudging parameters w in the interval (C(data, u), %C,_Zh‘z).
We also define the quantity

o=V — ZMC%hz,
and will assume that @ > 0. Note that p will also have a data dependent lower bound in our analysis, but choosing &
small enough will allow an appropriate u to be chosen.
2.2. Additional preliminaries

Several results in this paper utilize the following inequality for sequences.

Lemma 2.5. Suppose constants r and B satisfy r > 1, B > 0. Then if the sequence of real numbers {a,} satisfies

rap+1 < an + B, (2.6)

we have that

1 n+1 B
ant1 < aol| — + .
r r—1

Proof. The inequality (2.6) can be written as

ay B
Ap+1 S - + .
r r

Recursively, we obtain

1 /a,-, B B
apy] = — —+ =)+ —

r r r r

any—1 B 1
=—+—(1+-
r r r

ap B 1 1
+—1+=-++=).
r r r

<
— rn+1

Now the resulting finite geometric series is bounded as

B 1 1 B 1—(1/ry"*" B 1 B

_ 1_|_;_|_..._|_ - _ . "7 <.

r

-

which gives the result. [J
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The analysis in Section 3 uses a BDF2 approximation to the time derivative term will use the G-norm, which is
commonly used in BDF2 analysis, see e.g. [37,38]. Define the matrix

T2 -1
G_[—l 5/2]’

and note that G induces the norm ||x |IZG := (x, Gx), which is equivalent to the (L?)? norm:
Cilixllg = llxll = Cullxlc

where C; = 3 — 242 and C, =3+ 24/2. The following property is well-known [37]. Set x| = [v"1 "7, if
vl e L2(12),i = n — 1, n, we have

1 —_ n n n 1 n n n—
<§<3v”“ — 4" 0" “) 5(lx G = g + ik o 2v" )R 2.7)

3. A second order IMEX FEM scheme and its analysis

We consider now an efficient fully discretized scheme for (1.3)—(1.4). We use the second order BDF2 temporal
discretization, and the scheme is linearized at each time step by extrapolating part of the convective term from previous
time solutions. The spatial discretization is the finite element method, and we assume the velocity—pressure finite
element spaces (X, Q) = (P, Pr—1) for simplicity, although extension to any Ladyzhenskaya—Babuska—Brezzi
(LBB)-stable pair can be done without significant difficulty. We also utilize grad-div stabilization, with parameter
y > 0, and assume y = O(1). For most common element choices, grad-div stabilization is known to improve
mass conservation and reduce the effect of the pressure on the velocity error [39]; a similar effect is observed in the
convergence result for this AOT-DA scheme, as well as in the numerical tests. In this section, we prove well-posedness,
and global-in-time stability and convergence for a wide range of possible values for the nudging parameter the time
step size. We note that analogous results can be proven for the case of backward Euler time stepping, using similar
analysis. The second order IMEX-FEM AOT-DA algorithm is defined as follows.

Algorithm 3.1. Given any initial conditions v), v} € Vj, forcing f € L*(0, 0o; L%(£2)), true solution u €
L>®(0, oo; L*({2)), grad-div parameter y > 0, Iy satisfying (2.3)=(2.4), and nudging parameter x> 0, find
(v”“, qZH) € (Xp, Qp) forn = 1,2, ..., satisfying

n+1 n n—1 n—1 _ n+l n+1
2A¢ Bupt =4y + o ) + by — v 0 ) — (@ V)

+y (Voo V) + (Vo Vo) + nUa @ = uh, ) = (7w, 3.1
(Vv =0, (3.2)

for all (xp, rn) € Xp X Qp.
Remark 3.3. We show below that under some regularity assumptions on the true solution u, the AOT-DA algorithm

converges to u as t — 0o, independent of the initial conditions. Thus, the initial conditions can be chosen arbitrarily,
although more accurate initial conditions may reduce the time to convergence to the true solution.

Well-posedness and long time stability of this algorithm are achieved by using G-stability theory on the time
derivative terms. We state and prove this result now.

VI v
civ2 2c§h2
globally in time, and solutions are nonlinearly long-time stable: for any n > 1,

a At
( AN +||v,':||2)+T||Vv,'1+‘||2 par "“||2>

Lemma 3.4. Assume h satisfies 0 < h < and 0 < p < Then for any At > 0, Algorithm 3.1 is well-posed

At wAt 1 e
<( 2t o2 L 42l g2 12 Ca-v F2 4 Com uU?.
_( v+ v 7 + 1 IV, I~ + 1 llv, T A + v + 2

,LLCI aCp Cl

where A = min{—- L2471, U = Nl Loo0.00:12) @nd F = || f | Loo(0.00: 1)
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Proof. Choose x;, = vZ’Ll in (3.1) and use (2.7) to obtain the bound

(||[v"+1 vlIE) + vVt + wa )t vpth

(v v " TE) + 1A v )+ T @, v,

2

1
- 2At
noting that we dropped the non-negative terms y ||V - v, and ;7 A -

and that the nonlinear term and pressure term drop due to the choice of test function. We next add and subtract v},
in the first component of the nudging term so that the above bound becomes

ot — 207 + v~ 1|2 from the left hand side,
n+1

(||[v"+1 vlIE) + vVt R + wllopt)?

1 — n n n n n n n
< o (Ntvps v " TE) + 1 v )+ wlgop ™ = o oY)+ T @, opthI. 3.5)

The first term on the right hand side is bounded using the dual norm of X and Young’s inequality, which yields

—1
1 n+l 1 +1 v 12 +1
I oD I - Ve < TIIf"Jr 1= + IIV /i

The second right hand side term is bounded using Cauchy—SchwarZ, interpolation property (2.3), and Young’s
inequality, after which we have that

wl(Iy vn+1 U;thl n+1)| < ully vn+1 n+1 I ”anrl I
< MC1h2||VUZH|| + vaz“ 7.
Finally, the last right hand side term will be bounded with these same inequalities, and property (2.4), to obtain
ugu™ vt < ! ||||v"+1 I
< Culu™'?+ 7 |I il

Now majorize the right hand side of (3.5) with these computed bounds, multiply both sides by 2A¢, and then reduce
to obtain

It v 1% + a At Vot 12 4 wAe ot 12 < v vp 1G4+ At F2 4+ CrU?).

Next, adding ”A’ v, 1> + "‘A’ =V I?> to both sides and rearranging gives
(Il[v”“, "]I|G+—|I vpt? + 22 IIV [ans )
n+1 n 2 A n+12 np2 n+1 n+1
(II I? + llvy )+T(||Vvh I+ Vo 1%) + || [ p— IIV &

n n— /'LAt n OlAt n —
< (n[vh; vy G + == il + Tanhnz) + At ‘F2 +CuU?),

which reduces using Poincaré’s inequality and G-norm equivalence to

(n[v”*‘, h]||G+—|| g2+ 22 ||v ”“nz)
+”’AtC’ vyt vl + M||[ i ]||G+—|| vpt? +‘)‘—At||w;1“||2
< (n[vh,vh ]||G+—|| )2 +—||v ,,||2) + At F? 4 CpU?).
Thus there exists A = min{—*- ke wc’i i i} such that
<1+mt>(||[v"+‘, ,,J||G+—||V o2+ 22 || "+‘||2)

n. . n- adr o MA -
< (n[vh;vh 1]||QG+T||W;,||2+ R ,,||2>+Ar<v 'F?+ CuU?),
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and so by Lemma 2.5,

(n[ fRRE v,,]||G+—||v ot 4 B2 || "+‘||2)

a At wAt ! "
< <||[v,'1; vg]IIZG + e ||Vv;1||2 + 4 ||v;11||2> (1 +AAt)

+ CA T W P 4 wU?).

Applying the G-norm equivalence completes the proof of stability.
Since the scheme is linear and finite dimensional at each time step, this uniform in n stability result gives existence
and uniqueness of the algorithm at every time step. [J

Corollary 3.6. For the case of Iy chosen as the L? projection onto piecewise constants Py(ty), long time L? stability

(and well-posedness) holds for any u < oo.

Proof. Following the same analysis as above except for the nudging term which can be handled in this case as
p(PR@ =, v = (P S =, PR

P 12 P 12 r_ 1412
= 2 (1P P = 1P P 4+ 1P S = hIR)
Weobtain

(||[v"“, opllE) + vIVO P + PR P+ PR — P
1 n— n - n
< 7 (U0 w71 10G) + el PR 2w P2,
From here, similar analysis as above will prove a long time L? stability result similar to that in the theorem above. [
We now prove that solutions to Algorithm 3.1 converge to the true NSE solution at a rate of Ar> + h¥, globally

in time, provided restrictions on Az and p are satisfied. The time derivative term will again be handled with the
G-stability theory in a manner similar to the stability proof.

Theorem 3.7. Let u, p solve the NSE (1.1)- (1.2) with given f € L0, 00; L*(2)) and uy € L*(£2), with
u € L®(0, 00; H**1(2)), p € L0, 00; H*(2)) (k > 1), u,, € L>®(0, 0o0; L2(2)), and u,, € L>(0, 00; H'({2)).
Denote U = |u| 000, 00; gk +1) and P = | p| 000, o0: k). Assume the time step size satisfies

_ _ -1
At < CMPVT (BP0 + IV + e )

and the parameter | satisfies

- - 2v
CM*y l<h2k 3U? 4+ ||VM"+1||i3 + ||u”+1||ioo> <p< _C12h2'

Then the error in solutions to Algorithm 3.1 satisfies, for any n,

o =P = (o) o — o +
=T\ aar) O T

where R = Cv='(1+ M?) Ar* + Ch* (y_le +W+y+Mv 4 MR U? 4 UC,Z)U2> and ). = 2C*aC,>.

Remark 3.8. The restrictions on / and p are sufficient conditions under which convergence of the algorithm will be
guaranteed, and with the error estimate given above. It is entirely possible that convergence of the AOT-DA algorithm
can happen for u chosen outside of this range (and if so, potentially with a different error estimate), and our numerical
experiments suggest this might be true, in particular for the case of large . Proving such a result would seemingly
require a different approach to the analysis than we take in the proof below.
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Remark 3.9. For the case of Taylor—Hood (P,, P;) or Scott—Vogelius (P,, Pl‘ﬁ“) elements and O initial condition in
the AOT-DA algorithm, the result of this theorem reduces to

1 n/2
n_ " < C At2 h2 ,
" — vl = ((—1 —|—AAt> lluoll + + )

where C depends on problem data and the true solution, but not At or 4.

Remark 3.10. The time step restriction is a consequence of the IMEX time stepping. If we instead consider the fully
nonlinear scheme, i.e. with b(2v} — v} ="', v/™!, x,) replaced by b(v) ™, vi™, x,), then no At restriction is required
for a similar result to hold. However, in thls case a time step restriction seemingly becomes necessary for solution

uniqueness of the nonlinear scheme.

Remark 3.11. Similar to the case of NSE-FEM without AOT-DA, grad-div stabilization reduces the effect of
the pressure on the L2(£2) AOT-DA solution error. With grad-div, the contribution of the pressure to the error is
R*y 12| pl 10,00 1K)» DUt Without it, the y ~'/2 is be replaced by a v='/2. If divergence-free elements were used, then
this term completely vanishes, since in the proof below in (3.17) we would obtain (p"*' —r,, V - ¢>”+l) = 0 and thus
no pressure terms would appear in the final estimate.

Proof. Throughout this proof, the constant C will denote a generic constant, possibly changing from line to line, that
is independent of &, u, and At.
Using Taylor’s theorem, the NSE (true) solution satisfies, for all x;, € X,

A Gu"™ —du" + u" )+ bQU" — u" W ) — (P V) + (V- u"T LV x)
2

At
+v(Vu" Vi) = (F" ) + = (), ) + AP (17%), u"™ x4, (3.12)

where t*,1** e [t"7!, t"T!]. Subtracting (3.1) from (3.12) yields the following difference equation, with ¢" :=
u" — v

1
74, Ge "t —dem 4+ " xi) + v(Ve ™, Vi) + n(g ("), xn) + y(V - e"TL V- x)
Atz * 2 s,k n+l1 n+1 n—1 n+l
= (), 000 + AL () - VU ) = (P V) + b — o e o)
+bQ2e" — " Uty

Wezdecompose the error into a piece inside the discrete space V}, and one outside of it by adding and subtracting
P&h (u™). Denote n" = u" — PL (u") and ¢} = PL (u") — vjl. Then " = n" + ¢]! with ¢} € V}, and we choose
Xn = (pZH Using identity (2.7) w1th Vg = (¢, ’H’I)T the difference equation becomes

[IIW+]||(;—III/f£||2]+—II¢"+I 207 + ¢ 1P+ VIV + wllgl 1P+ v IV - g

At?
= —(uma ). 8D + AP () - Vit gt — ("L Vgt

+b(2¢h n 17 un+1 n+1) +b(277 _ nn 17 un+1 ¢n+1) +b(2vh _ UZ 17 nn-&-l’ Z+1)

_ V(Vn"+] V¢n+1) _ M(1H¢n+l ¢I‘l+1 ¢n+1) M(IHnn+1 ¢n+1)

—y(V "tV gpth, (3.13)
where we have added and subtracted ¢>”+1 in the interpolation term on the left hand side. We can now bound the right
hand side of (3.13). Many of these terms are bounded in a similar manner as in the case of BDF2 FEM for NSE,
for example as in [40-42]. We will use these techniques (which mainly consist of carefully constructed Young and
Cauchy—-Schwarz inequalities and Lemma 2.1) to bound all terms except the nonlinear and nudging terms. For the
first nonlinear term in (3.13), we add and subtract ¢”+l in the first argument to obtain

b(2¢h ¢ , n+l ¢n+l) b(d)"ﬂ,unﬂ, n+1) b(¢n+1 2¢h+¢n l7 n+1 ¢Z+1)' (314)
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We bound the two resulting terms using Lemma 2.1 and Young’s inequality, via
b w @ = CMYTAVT I + e Ol + o ||v¢"+1 I,
and
b(¢n+1 _ 2¢h+¢ i n+l ¢Z+1)
= CHVT VU 2+ e g =207 + 977 1P+ T IV I
The second nonlinear term in (3.13) is bounded with this same technique:
bQy" — "t gt

< CHAT IV I + e 120" = 1+ IV I

The last nonlinear term in (3.13) requires a bit more work, and we start by adding and subtracting 2u” — u"~! in the
first component, which yields

b(2v}’,’ _ Uh ; n+1 ¢n+1) _ b(zun _ un—l’ nn-‘rl ¢n+1) 4 b(2e” —e" !, nn-‘rl ¢n+1)
— b(zun —u" , nn+] ¢n+1) 4 b(2¢g _ th , n+1 ¢n+1)
+bQy" ="t . (3.15)

The first and third terms on the right hand side of (3.15) are bounded in the same way, using Lemma 2.1 and Young’s
inequality, we find

bu" —u"L " gt < CvT M|V Q" — u"HIPIVE I 4 2 ||V¢"“|| ,

bn" ="t "L gt < CoTIMB IV " = DRIV + S ||V¢>"+‘ 7.

For the second term in (3.15) we first add ¢”+' to the first argument to obtain
by — ¢~ 0" gyt = b =200 + @ "L gD+ b(g " gt
and then bound each resulting term using Lemma 2.1 and Young’s inequality:

by gt < P A e + IV T DN + ¢ ||V¢"+‘||2,

b(¢n+1 — 20 +¢271, n+1 ¢n+1)
= CMM T (I Ml + IV DI = 200 + 657 1P + o ||V¢"“|| :
For the first nudging term in (3.13), we apply Cauchy—Schwarz and Young’s inequalities and (2.3) to obtain
1| U@y = o @] < wlllu(@ ™) — @i lg
< uCih|Ve | ||<z>"+1 [
< wCIR* IV IP + ||<z>"+1 [

Finally, for the last nudging term in (3.13), we employ Cauchy—SchwarZ and Young inequalities, along with (2.4), to
obtain

w(g("™), ¢t < unIH(n"*‘)nnas"“n
< Culln™™P+ = ||¢”+‘||.
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Collecting the above bounds, we reduce (3.13) to
—[W+l 1% — 193121+ —||V¢>”+1 P+ yIV - gyt

1 _ 7
+ <H — M2 " e + IV 15 4 e 7o + V") )>||¢"+‘ — 20, + I

+ <M CMA " e + IV s 4 e e 4+ 1V )>|I¢"+III

< CAP ugye || oot et 1219 T+ ALy () - Vi gD+ ((p™ ' =1, V- |

+ [V, V¢"+‘>|+u|<lﬂ¢"“ P o O+ g™t ot

+ Cv' MV QU = "DV +CU*1M2||V(2n — " OV P

+ OV IV 4 e 20" = 0P 4 v (V- n"“ Vil (3.16)

where r;, € Qy, is chosen arbitrarily, see e.g. [43]. Now using interpolation estimates (and implicitly also the inverse
inequality) along with regularity assumptions, we obtain

A R 2 R Al

1 — n n n n n—
+ (H — CM2T WU + [ e + 1V +‘||Lz>)||<¢> 2+ ¢p

+ (M CM* ' (302 + w2 + ||W"+‘||L3>)||¢"“||

< CAP g | oot i1 12877 1+ AL e () - V"L, g

M = VD VIV V) + Ly — 61 )

F ol O] + CMP T R U+ W2 U2) + p|(V - nn+1 Vgrth. (3.17)
Next we use the assumptions on Ar and u, and apply bounds to the remaining right hand side terms similar to NSE

convergence analyses in [41] to find

[||1/f"“||c—||wg||2 1+al Ve 1+ 21V - g2

IA

Cv '+ MH A + ch* <y1P2 +W+y+ My MR U? 4 vc;z)zﬁ)
= R. (3.18)
This implies, with Poincaré’s inequality that
1y G +2CF AtaCR g 1P < v lig + AtR.
From here, we can proceed just as in to the BDF2 long time stability proof above to obtain

1 n+1 R
n+1 < 02 o
st < ||1/f¢||G<—1+Mt) + o

where A = 2C,2a C;z. Now the triangle inequality and G-norm equivalence complete the proof. [

4. Numerical experiments

We now present results of three numerical tests that illustrate the theory above, and also show the importance of a
careful choice of discretization. That is, while the AOT-DA theory at the PDE level is critical, in a discretization there
are additional considerations and restrictions that can make the difference of a simulation succeeding or failing. All
of our tests use Algorithm 3.1, i.e. the BDF2 IMEX-FEM algorithm studied above.

Remark 4.1. The theorems in previous sections give explicit bounds for the parameters u, H, etc. which guarantee
convergence. However, these bounds only provide sufficient conditions for convergence, and it may be the case that
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Table 1
Velocity convergence rates of Algorithm 3.1 to the true solution with decreasing & and fixed At (left), fix & and decreasing At (middle), and also
decreasing & and Ar at the same rate with At = 4h (right).

h o — u@™)|| Rate At o — u@™)|| Rate h At o — u@™)|| Rate
1/4 4.12E-3 - 1 2.60E—3 - 1/4 1 4.69E—3 -

1/8 5.16E—4 3.00 12 3.63E—4 2.84 18 12 5.79E—4 3.02
1/16 5.91E—5 3.13 1/4 6.84E—5 2.41 1/16 1/4 9.16E—5 2.66
1/32 8.71IE—6 2.76 1/8 1.52E—5 2.17 1/32 1/8 1.83E—5 2.32
1/64 1.92E—6 2.18 1/16 3.76E—6 2.02 1/64 1/16 4.38E—6 2.06
1/128 4.75E—7 2.02 1/32 1.09E—6 1.78 1/128 1/32 1.09E—6 2.00

convergence still happens when the bounds are not satisfied. It may very well be that the bounds are not sharp, or
perhaps, even if the bounds are sharp, they take into account all possible initial conditions and parameters, including
very extreme cases that may be unlikely to arise in typical simulations and experiments. Indeed, in practice, one finds
that one has significantly more freedom to choose p and H in simulations than is suggested by the bounds. This
phenomenon was first observed in [16], where convergence was observed when H — the largest distance between
observation points — was chosen several orders of magnitude larger than the sufficient conditions given by the bounds.
Therefore, in the computational experiments below, it is not surprising that convergence is seen even when the
parameters do not satisfy the bound given above. Of course, the bounds are still useful, as they indicate certain scaling
relations. Moreover, the existence of the bounds show that convergence is possible with finite positive parameters,
implying that the algorithm is in principle possible to run on a finite machine. The experiments below show that, at
least in the test cases we consider, it is also practical to do so.

4.1. Numerical Experiment 1: Convergence to an analytical solution

For our first experiment, we illustrate the convergence theory for Algorithm 3.1 for the chosen analytical solution
on 2 = (0, 1)?,

u(x, y, 1) = (cos(y + 1), sin(x — )7,
p(x, y,t) = sin2a(x + 1)).

We take v = 0.01, and calculate the forcing function f using the continuous NSE, v, and the solution. Our
computations use this time dependent f, nodally enforce Dirichlet boundary conditions on all sides to be equal to
the true solution, and we use the initial conditions vj) = v} = 0. The operator /5 uses the same mesh used for velocity
and pressure, and is defined to be the L? projection onto piecewise constants on this mesh. This is known to satisfy
our requirements for Iy in the theory (see e.g. Proposition 1.135 in [36]).

We first illustrate the theory with respect to convergence in & and At. For these calculations, we take © = 10,
y = 1, and run to an end time of 7 = 4.0 on a uniform mesh using Taylor—-Hood elements. When observing the
spatial convergence rates, we fix At = 0.001 and vary %, while for the temporal error we fix & = 6l4 and vary Ar. We
also test spatial and temporal convergence together, by reducing 4 and Az, but keeping the ratio 4h = At. In all cases
we observe second order convergence for spatial and temporal error, which is consistent with our analysis.

Table 1 displays the velocity convergence rates of Algorithm 3.1 solutions to the true solution; error is calculated
using the L?(£2) norm at the final time.

We also test convergence with respect to p. Our theory gives a sufficient condition for bounds on p that will
guarantee convergence. To test this, we compute on a 4 = 1/32 uniform mesh with Taylor-Hood elements and a
time step size of At = 0.01, up to T = 5, and with varying 1. Results are shown in Fig. 1 as the L?({2) difference
between the AOT-DA computed solution and the true solution versus time. For clarity we show results for © < 10
on the left and u > 10 on the right. We observe that all choices of u provide convergence to the true solution, up to
discretization error. Larger values of © converge faster, and convergence is monotonic until the level of discretization
error is reached. It is interesting that convergence is achieved for all choices of w, no matter how large or small. This
does not contradict our theory, which provides a sufficient condition on bounds for p that guarantee convergence;
we conjecture for this problem that the use of time-dependent Dirichlet boundary condition enforcement and true
forcing function f provide additional nudging of the AOT-DA solution towards the true solution, which may aid in
convergence even when p is very small or very large.
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Fig. 1. Shown above are log-linear plots of convergence of the AOT-DA computed solutions to the true solution with increasing time ¢, for varying
choices of the nudging parameter w. On the left is convergence for u < 10, and on the right is convergence for © > 10.

4.2. Numerical Experiment 2: The no-flow test and pressure-robustness

For our second test, we show how the choice of finite elements can have a dramatic impact on the AOT-DA
solution. The test problem we consider is the so-called ‘no-flow test’, where the forcing function of the NSE is given
by Ra(0, y)", where Ra > 0 is a dimensionless constant (the Rayleigh number), and with Pr > 0 denoting the
dimensionless Prandtl number:

1 T
Pr (u, +u-Vu)+Vp — Au = Ra(0, y)", 4.2)
,
V.u=0, (4.3)
ulgo =0. 4.4)

This test problem corresponds to the physical situation of temperature driven flow (i.e. the Boussinesq system), with
the temperature 6 profile specified to be stratified, i.e. f = Rafe; with 6 = y. Linear stratification is a natural steady
state temperature profile. Since the forcing is potential, the solution to the system (4.2)—(4.4) with uy = 0 initial
condition is given by

Ra ,

u:O,p:Ty,

for any Pr > 0, hence the name no-flow.

We consider the no-flow test with Pr = 1 and Ra = 10’ (although this may seem like a large choice of a constant,
for Boussinesq problems of practical interest, this choice of Ra is actually quite small). We use both Scott—Vogelius
(SV) elements and Taylor—Hood (TH) elements, on a barycenter refined uniform discretization of the unit square
with h = 31—2 With TH elements, we use y = 0, 1, 10. We take Iy to be the X, nodal interpolant (which satisfies
the requirements of our theory since we are using X, = P, N X, see Theorem 1.103 in [36]). Since v, € X} and
u(t") = 0 € Xy, the Iy operator acts simply as the identity operator. The time step size is chosen to be Ar = 0.025,
and solutions are computed up to end time T = 0.8, using the X,, interpolant of (x cos y, —sin y)” for v;ol, and v} is
calculated from taking one step of the backward Euler AOT-DA scheme. The test is repeated for varying u.

Results of the simulations are displayed in Fig. 2, as L?({2) velocity error versus time. We observe a dramatic
difference between SV and TH solutions. For £ = 1 and . = 10, all methods convergence, but the TH simulations
only converge up to about 10~ while the SV simulations converge to 10~°. This is precisely due to error in the
SV solution not depending on pressure (see Remark 3.11), which is large in this test problem. For u© = 0.1, the SV
solution converges just as in the cases of larger u, but the TH solutions converge only up to 10!, although it is unclear
if this is simply failure to converge since this i is not large enough to satisfy the bounds on p in the theorem (in either
case, SV gives a much better solution).
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Fig. 2. Shown above is error in AOT-DA solutions for the no-flow solution, with SV element and TH elements (with varying y), with
n = 0.1, 1.0, 10.0 from left to right.

2.2

0 10.1 0.41

0.2

Fig. 3. Shown above is the domain for the flow past a cylinder test problem.

4.3. Numerical Experiment 3: 2D channel flow past a cylinder

For our last experiment, we consider Algorithm 3.1 applied to the common benchmark problem of 2D channel
flow past a cylinder with Reynolds number 100 [44]. The domain is a 2.2 x 0.41 rectangular channel with a cylinder
of radius 0.05 centered at (0.2, 0.2), see Fig. 3. There is no external forcing, the kinematic viscosity is taken to be
v = 0.001, no-slip boundary conditions are prescribed for the walls and the cylinder, while the inflow and outflow
profiles are given by

6
u1(0,y, 1) =u1(2.2, y,1) = m)’(0~41 -y,

u(0, y,t) =ur(2.2,y,t) =0.

Since we do not have access to a true solution for this problem, we instead use a computed solution. It is obtained
using the same BDF2-IMEX-FEM scheme as in Algorithm 3.1 but without nudging (i.e. u© = 0), using (Ps, Pf“”) NY%
elements on a barycenter refined Delaunay mesh that provides 8658 elements and 60,994 total degrees of freedom, a
time step of At = 0.002, and with the simulation starting from rest (u2 = u;l = 0). We will refer to this solution
as the DNS solution. Lift and drag calculations were performed for the computed solution and compared to the
literature [44,45], which verified the accuracy of the DNS.

For the lift and drag calculations, we used the formulas

< auts(t) >
ca(t) = 20/ v——-n, — p(t)n, | dS,
Ky on

at) = 20/ <v8ut5(t)nx - p(t)ny> ds,
N

on

where p(t) is the pressure, u;, the tangential velocity S the cylinder, and n = (n,, n,) the outward unit normal to the
domain. For calculations, we use the global integral formula from [46].

For the AOT-DA algorithm, we start from v, = v2 = 0, use the same spatial and temporal discretization parameters
as the DNS, and start assimilation with the t+ = 5 DNS solution (i.e., time 0 for AOT-DA corresponds to t = 5 for
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Fig. 5. Shown above is the difference between the AOT-DA (i« = 10 and H = 0.012) and DNS versus time, as difference in lift coefficients (top)
and difference in drag coefficients (bottom).

the DNS). We define Ij; to be the L? projection onto constant functions on coarser meshes, and we compute with
3 different coarse meshes: the Delaunay mesh without the barycenter refinement which provided 2886 elements,
and further coarsening to a 181 element mesh and a 15 element mesh. The average mesh width for these meshes is
H = 0.012, 0.046, 0.162. The simulation is run on [0,5] (so the corresponding times for the DNS would be [5,10]),
with varying u for each case of Iy.

Results are shown in Figs. 4-6. Fig. 4 shows the L? error with time in each simulation. We observe that for each H,
if u < 1 the AOT-DA solution does not sufficiently converge to the DNS solution by t = 5, and does not show signs of
converging in any time soon after. For i > 10, convergence of the AOT-DA solution to the DNS solution is observed
for each H. However, we also observe the AOT-DA solution still converges to the DNS solution even for very large
W, in fact there seems to be no negative impact on the convergence when taking & = 10% in the simulations. This does

not contradict our theory, which guarantees convergence under the sufficient condition C(data, ) < p < sz‘;lz, but
I

does suggest an alternative convergence analysis may be possible for u outside this range.

Fig. 5 shows convergence of the lift and drag coefficients, for the simulation using H = 0.012 and . = 10.
The lift coefficient converges fairly rapidly, with the AOT-DA and DNS plots matching closely by t = 1.5. The drag
coefficients are not in synch until about t = 3. For this same simulation, we also show the convergence of the AOT-DA
solution to the DNS solution in the speed contour plots in Fig. 6. Here, at # = 0 there is a major difference, since the
AOT-DA simulation starts from rest. The accuracy of AOT-DA is seen to increase by t = 0.5 and further by t = 1, and
finally by r = 2 there is only very slight differences observable between AOT-DA and DNS plots. By t = 5, there is
no visual difference between AOT-DA and DNS solutions.

5. Conclusions and future directions

We have analyzed and tested a BDF2 IMEX-FEM scheme for NSE with data assimilation. Under assumptions on
the discretization parameters and regularity of the NSE solution, we proved long time stability and accuracy of the
method. Moreover, the long time accuracy included exponential convergence in time of the AOT-DA solution to the
true solution, up to discretization error. Several numerical tests were given to show the effectiveness of the scheme,
and in particular we found that the element choice can make a dramatic difference in accuracy on certain problems.
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Fig. 6. Contour plots of AOT-DA and DNS velocity magnitudes at times 0, 0.5, 1, 2, and 5.

There are several future directions for research that arise from this work. First, our numerical tests showed the
AOT-DA method tends to work for a much wider range of x than our theory requires. Thus there may be an improved
analysis possible, in particular if one assumes a particular interpolation operator this might allow for an improved
analysis. Other directions are to consider the AOT-DA approach for related coupled systems numerically, and also to
consider long time accuracy in higher order norms.
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