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A GINZBURG--LANDAU-TYPE PROBLEM FOR HIGHLY
ANISOTROPIC NEMATIC LIQUID CRYSTALS\ast 

DMITRY GOLOVATY\dagger , PETER STERNBERG\ddagger , AND RAGHAVENDRA VENKATRAMAN\ddagger 

Abstract. We carry out an asymptotic analysis of a variational problem relevant in the studies
of nematic liquid crystalline films when one elastic constant dominates over the others, namely,
inf E\varepsilon (u), where E\varepsilon (u) := 1

2

\int 
\Omega 

\bigl\{ 
\varepsilon | \nabla u| 2 + 1

\varepsilon 
(| u| 2  - 1)2 + L (div u)2

\bigr\} 
dx. Here u : \Omega \rightarrow R2 is a

vector field, 0 < \varepsilon \ll 1 is a small parameter, and L > 0 is a fixed constant, independent of \varepsilon . We
identify a candidate for the \Gamma -limit E0, which is a sum of a bulk term penalizing divergence and
an Aviles–Giga-type wall energy involving the cube of the jump in the tangential component of the
S1-valued nematic director. We establish the lower bound and provide the recovery sequence for this
candidate within a restricted class. Then we consider a set of variational problems for E0 arising from
various choices of domain geometry and boundary conditions. We demonstrate that the criticality
conditions for E0 can be expressed as a pair of scalar conservation laws that share characteristics.
We use the method of characteristics to analytically construct critical points of E0 that we observe
numerically.

Key words. nematic liquid crystals, Oseen–Frank energy, Aviles–Giga energy, conservation
laws, \Gamma -convergence
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1. Introduction. Describing the elastic energy in nematic liquid crystal models
involves making a choice of the elastic constants appearing as coefficients in front of
the various terms penalizing spatial variations. Whether in director theories such as
Oseen--Frank, where the unknown is a unit vector n \in R2 or R3, or within the Landau--
de Gennes Q-tensor model where Q is a symmetric, traceless 3 \times 3 matrix [23, 26],
some studies pursue an isotropic, or equal constants, choice where the elastic energy
density is given simply by | \nabla n| 2 or | \nabla Q| 2. Others opt for more generality and consider,
for instance, three distinct coefficients multiplying the square of the divergence and
the squares of the components of the curl along and perpendicular to the director,
respectively. However, in response to numerous studies by materials scientists who
suggest that interesting morphologies in liquid crystals are related to disparities in the
values of the elastic constants [10, 27], here we consider a model variational problem
with extreme disparity in elastic constants and explore the implications of this choice
of elastic coefficients on the structure of minimizers.

We will focus our study on a problem in two dimensions with a thin nematic film
in mind, and so for a bounded, Lipschitz domain \Omega \subset R2 we consider the following
variational problem:

inf E\varepsilon (u), where E\varepsilon (u) :=
1

2

\int 
\Omega 

\biggl\{ 
\varepsilon | \nabla u| 2 + 1

\varepsilon 
(| u| 2  - 1)2 + L (div u)2

\biggr\} 
dx.(1.1)
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Here u : \Omega \rightarrow R2 is a vector field, 0 < \varepsilon \ll 1 is a small parameter, and L > 0 is
a fixed constant, independent of \varepsilon . In general, we will augment (1.1) with Dirichlet
boundary conditions u = g on \partial \Omega for given g : \partial \Omega \rightarrow S1. We point out that in light
of the two-dimensional identity

(div u)2 + | curlu| 2 = | \nabla u| 2 + null Lagrangian

it suffices in this study to just penalize the divergence and not to include the curl as
well. As u is not a unit vector, (1.1) is not a director model per se but rather bears
more resemblance to the Ericksen model with variable degree of orientation [13]. Still
it maintains some essential features of both the Oseen--Frank and Landau--de Gennes
models that we wish to focus on in this investigation.

In order to orient the reader as to how this energy compares with other more
familiar models, we point out that when the positive parameter L is dropped, one is
left with precisely the simplified Ginzburg--Landau model

1

2

\int 
\Omega 

\biggl\{ 
\varepsilon | \nabla u| 2 + 1

\varepsilon 
(| u| 2  - 1)2

\biggr\} 
dx(BBH)

thoroughly examined in [7] under the scaling 1
\varepsilon E\varepsilon . For \varepsilon \ll 1, minimizers u\varepsilon of

that problem are characterized by so-called Ginzburg--Landau vortices with u\varepsilon \approx 
f\varepsilon (r)

\bigl( 
cos \theta ,\pm sin \theta 

\bigr) 
near a zero that carries degree \pm 1. On the other hand, formally

passing to the limit L\rightarrow \infty in (1.1), one is led to a divergence-free constraint, in which
case, at least for simply connected domains \Omega , one can introduce a stream function \psi 
via \nabla \bot \psi = u. Then E\varepsilon transforms into

(AG)
1

2

\int 
\Omega 

\biggl\{ 
\varepsilon | D2\psi | 2 + 1

\varepsilon 
(| \nabla \psi | 2  - 1)2

\biggr\} 
dx,

which is precisely the well-studied Aviles--Giga model; see, e.g., [5, 4, 8, 9, 17, 19, 22]
and the references therein. Singular structures for that model emerging in the \varepsilon \rightarrow 0
limit take the form of domain walls---generically, curves---across which the normal
component of \nabla \psi jumps. Though we do not pursue it in this article, an interesting
direction would be to make a rigorous study of the limit L \rightarrow \infty in relating our
problem to (AG). We should also mention that there are a multitude of models bearing
some resemblance to E\varepsilon coming from the micromagnetics community, including, for
instance, the ones studied in [17, 3, 18, 24] where the L2-norm of the divergence is
replaced by an H - 1-norm, which is then considered with a different scaling.

From this perspective then, our problem rests between the two models (BBH)
and (AG), and indeed we will find a rich array of singular structures playing a
role, including Ginzburg--Landau-type vortices, which in the scaling of (1.1) are rel-
atively expensive; domain walls which end up contributing O(1) to the energy E\varepsilon ;
and divergence-free vortices of the form f\varepsilon (r) \widehat e\theta , where \widehat e\theta :=

\bigl( 
 - sin \theta , cos \theta 

\bigr) 
, whose

asymptotic contribution to the energy is zero.
A natural goal is to identify a candidate for the \Gamma -limit of the sequence \{ E\varepsilon \} as

\varepsilon \rightarrow 0, and with this in mind, a first issue is to determine the appropriate space of
competitors for such a limit and to explore what kind of compactness properties hold
for sequences of H1(\Omega ;R2) functions, say \{ w\varepsilon \} , satisfying a uniform energy bound
E\varepsilon (w\varepsilon ) < C. One is naturally led to consider the Hilbert space Hdiv (\Omega ;R2) consisting
of L2 vector fields having L2-divergence, and it is immediate that \{ w\varepsilon \} will be weakly
compact in this space, with an S1-valued limit. Such mappings can, in general, have

D
ow

nl
oa

de
d 

09
/1

7/
19

 to
 1

30
.1

01
.1

54
.9

3.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

278 D. GOLOVATY, P. STERNBERG, AND R. VENKATRAMAN

tangential components that jump across curves, though their normal components
cannot jump. In Theorem 3.1 we note that through a minor modification of the
compactness result of [12] one may also show strong convergence, up to subsequences,
in Lp(\Omega ;R2) for any p < \infty ; see also [4] for an independent proof of compactness in
the Aviles--Giga setting.

From the standpoint of constructing energy-efficient sequences, and ultimately
recovery sequences for \Gamma -convergence, the resolution of a jump in the tangential com-
ponents of an S1-valued map, say w, across a wall leads one to consider a Modica--
Mortola type of heteroclinic connection linking the tangential values \pm 

\sqrt{} 
1 - (w \cdot \nu )2

across an interface having normal \nu . With these heuristics in mind, and denoting the
one-sided traces along such a jump set Ju by u+ and u - , one is led to a candidate for
the \Gamma -limit of the form

(1.2) E0(u) :=
L

2

\int 
\Omega 

(div u)2 dx+
1

6

\int 
Ju\cap \Omega 

| u -  - u+| 3 d\scrH 1 +
1

6

\int 
\partial \Omega 

| u\partial \Omega  - g| 3 d\scrH 1.

We note that the cubic dependence on the jump across Ju is identical to that found in
the asymptotics for (AG). However, we also point out the presence of the boundary
integral in (1.2) measuring possible jumps in the tangential component along \partial \Omega , a
feature of our model not typically found in the Aviles--Giga problem.

The form of E0 suggests that the space of definition for the \Gamma -limit must be a
subset of those vector fields in Hdiv (\Omega ; S1) having a rectifiable jump set with the cube
of the jump in the one-sided traces being integrable. The difficulty lies in the fact
that energy-bounded sequences may not have limits lying in the space of functions
of bounded variation, an effect first elucidated for (AG) in [4], so identification of a
natural space is nontrivial. In [4, 9] the authors identify what would appear to be the
right space for establishing \Gamma -convergence for the Aviles--Giga functional, introducing
the notion of ``entropy measures,"" but to date the construction of a recovery sequence
remains an open problem for (AG). We do not pursue here the interesting question of
whether some analogue of the results in [9] on the structure of elements of this new
space holds for the energy E\varepsilon in (1.1).

Instead we will present arguments for the \Gamma -limit lower bound and for the recovery
sequence under the assumption of the limit lying in Hdiv (\Omega ; S1) \cap BV (\Omega ;S1). This
is the content of Theorem 3.2. We note that similar difficulties arise when partial \Gamma -
convergence results are obtained in micromagnetic models such as [3]. Our technique
for proving lower-semicontinuity adapts the Jin--Kohn entropy [19] and is based upon
the corresponding result from [5]. For the recovery sequence we adopt the rather
ingenious and nontrivial construction of Conti and De Lellis for (AG) (cf. [8]), with
care taken to verify that the divergence term in E\varepsilon ---not present in (AG)---does not
contribute to the energy in a neighborhood of the jump set.

After presenting the arguments for \Gamma -convergence within this special class, we
turn to the analysis of the behavior of minimizers of the presumed \Gamma -limit E0 in
various geometries and under various boundary conditions g. That is, we want to
focus on the question of what kinds of morphologies one should expect to see for very
disparate elastic constants, and in the process we will develop new tools for carrying
out such an investigation.

We begin this pursuit by establishing various notions of criticality for E0. In
Theorem 4.1 we show that in the bulk, that is, away from the jump set Ju, criticality
of a vector field u implies that the gradient of divergence lies in the direction of u.
When u is locally lifted to u = ei\theta , this leads to a pair of conservation laws for the phase
\theta and the divergence of u, both sharing the same characteristics; cf. Corollary 4.2.
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This makes for an interesting comparison with the presumed \Gamma -limit of (AG), where,
for example, the authors of [12] exploit the presence of a single conservation law for \theta 
writing \nabla \bot u = ei\theta , where u solves the eikonal equation. We also derive in (4.2) and
(4.3) a natural boundary condition holding along Ju relating the normal component
of u to the jump in the divergence across the wall, and in (4.3) a criticality condition
yielding stationarity of the wall itself that not surprisingly involves its curvature.
We use these conditions in the rest of the paper to build critical points for specific
examples.

In section 5 we specialize our study of minimizers of E0 to the case where \Omega 
is either a disc or an annulus. Depending on the choice of the S1-valued boundary
condition g, we find that minimizers may or may not develop walls and tend to
follow \widehat e\theta as much as possible. In particular, for ``hedgehog"" boundary conditions
g(\theta ) = \widehat er := (cos \theta , sin \theta ) in the disc, we can establish an explicit formula for the
minimizer as a vector field that behaves like \widehat e\theta near the origin and then unwinds to \widehat er
to accommodate the boundary conditions; cf. Theorem 5.1. This result is reminiscent
of a similar observation made in [16] for the three-dimensional Oseen--Frank model in a
ball with hedgehog boundary conditions when divergence is penalized heavily. Perhaps
the most interesting case to us is for the disc under the choice g(\theta ) = (cos \theta , - sin \theta ).
Here our numerics reveal a rather dramatic dependence of the wall geometry and
location on the value of the parameter L, and through the three criticality conditions
and system of conservation laws derived in section 4 we are able to build a critical
point that appears to capture this complicated morphology, at least in a particular
parameter regime. We conclude this section with an example posed in an annulus
where our analysis suggests that in some parameter regime, a minimizer prefers to
have a wall that coincides with the boundary.

Finally, in section 6 we pose the problem of minimizing E0 in a rectangle subject to
constant Dirichlet data on the top and bottom of the form (\pm 

\surd 
1 - a2, a) for a \in [0, 1)

and periodic boundary conditions on the sides. What motivates our choice of periodic
boundary conditions is the wish to understand under what conditions the transition
from the top to the bottom involves a one-dimensional wall construction as opposed
to a more complicated two-dimensional cross-tie-type scenario as appears in various
micromagnetic studies such as [3, 11]. This question was raised and partially addressed
for the case of anisotropic elastic energy---though not ``extreme anisotropic"" elastic
energy in the sense of our present work---in the articles [6, 14].

Our focus at the beginning of this section is to revisit the question of compact-
ness and \Gamma -convergence within the one-dimensional context where competitors only
vary with y. In Theorem 6.1 we show that energy bounded sequences do necessarily
have subsequential limits whose third power lies in BV ( - H,H), where 2H is the
height of the rectangle. We then state the \Gamma -convergence result in one dimension;
cf. Theorem 6.2.

After then giving a complete characterization of one-dimensional minimizers in
Theorem 6.4 we conclude with a two-dimensional construction of a critical point
with cross-ties, again utilizing the criticality conditions and conservation laws. The
energy of this critical point is then compared to the minimal one-dimensional energy to
reveal in Theorem 6.6 that there exists a finite interval (L0, L1) of L-values---bounded
away from zero---for which the one-dimensional minimizers from Theorem 6.4 do not
minimize the full two-dimensional E0 energy. Here we use a combination of analysis
and simple numerical integration to demonstrate that the E0 energy of our critical
point with cross-ties is below the energy of one-dimensional minimizers when L \in 
(L0, L1). Additional numerical simulations of the gradient flow for the energy E\varepsilon show
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that the (local) minimizers of E\varepsilon have morphology and energy similar to our cross-
tie construction within the interval of L-values where the energy of this construction
is lower than that of the one-dimensional minimizers. In fact, these simulations also
suggest that a different cross-tie-type structure develops as L is increased further, and
this structure has energy that is still lower than that of the one-dimensional critical
point.

We begin our article with a section introducing notation and recalling key notions
regarding the function spaces Hdiv (\Omega ;R2) and BV (\Omega ;R2).

2. Preliminaries. Throughout the article, \Omega \subset R2 will denote a bounded Lip-
schitz domain. We let \nu \partial \Omega denote the outward pointing unit normal along \partial \Omega .

Two spaces of vector fields that will play a prominent role in our analysis are
BV (\Omega ;R2), the space of vector fields of bounded variation taking values in R2, and
Hdiv (\Omega ;R2), the Hilbert space of L2(\Omega ;R2) vector fields having weak L2 divergence.
We will often be interested in vector fields that lie in the intersection of these spaces,
and are in addition S1-valued.

We recall that a map u \in BV (\Omega ,R2) is approximately continuous in \Omega \setminus Ju, where
Ju is the jump set of u and is countably 1-rectifiable. By rectifiability, we note that Ju
is contained in an at most countable union of C1 curves up to an \scrH 1 null set, where
\scrH 1 denotes a one-dimensional Hausdorff measure. We fix a regular orientation of
these C1 curves that contain almost all of Ju, and let (\tau u, \nu u) denote the approximate
unit tangent and unit normals to Ju that respect this orientation. Denoting the half
planes

H\pm 
\nu u(x)

:= \{ y \in R2 : (y  - x) \cdot \nu u(x) \geqslant 0, resp., \leqslant 0\} ,

u admits traces along Ju. That is, there exist two measurable functions u\pm on Ju such
that for \scrH 1-a.e. x \in Ju, we have

lim
r\downarrow 0

1

r2

\int 
Qr(x,\nu u(x))\cap H\pm 

\nu u(x)

| u(y) - u\pm (x)| dy = 0,

with Qr(x, \nu u(x)) denoting the square of side length r, centered at x, that has one
side parallel to \nu u(x).

Now, if u \in BV \cap Hdiv (\Omega ;R2), then along the jump set Ju, an application of
the Divergence Theorem shows that one must have u+(x) \cdot \nu u(x) = u - (x) \cdot \nu u(x) for
\scrH 1-a.e. x \in Ju. It follows that the jump in u along Ju is equal to the jump in the
tangential component of u across Ju.

Concerning the space Hdiv (\Omega ;R2), we recall that elements of Hdiv (\Omega ;R2) have
a well-defined normal trace on \partial \Omega , viewed as a distribution in the Sobolev space
H - 1/2(\partial \Omega ); cf. [25, Chap. 1]. This distribution is defined by the integration-by-parts
formula

\langle (u \cdot \nu \partial \Omega ), \phi \rangle :=
\int 
\Omega 

\nabla \Phi \cdot u dx+

\int 
\Omega 

(div u)\Phi dx,(2.1)

where \phi \in H1/2(\partial \Omega ), and \Phi is an H1(\Omega ) extension of \phi .
We will frequently be concerned with vector fields u \in BV (\Omega ; S1) \cap Hdiv(\Omega ; S1)

satisfying | u(x)| = 1. For such vector fields, we in fact have that the distribution
u \cdot \nu is induced by an L\infty (\partial \Omega ) =

\bigl( 
L1(\partial \Omega )

\bigr) \ast 
function. To see this, let \phi \in (2.1) be

an L1(\partial \Omega ) function, and let \Phi \in W 1,1(\Omega ) denote an extension of \phi to \Omega . We again
define \langle (u \cdot \nu \partial \Omega ), \phi \rangle by the formula (2.1). While linearity of (u \cdot \nu ) is immediate, its
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continuity follows by applications of the H\"older and Sobolev embedding inequalities.
It can be checked by an approximation argument that this definition is independent
of the extension \Phi of \phi .

For a given g \in H1/2(\Omega ;R2), we will also denote by H1
g (\Omega ;R2) the Sobolev space

of H1 vector-valued functions having trace g on \partial \Omega .

3. Compactness and partial \Gamma -convergence on a general domain. We be-
gin our rigorous analysis with the following compactness theorem for energy bounded
sequences.

Theorem 3.1 (compactness). Assume \{ v\varepsilon \} \subset H1(\Omega ;R2) satisfies the uniform
energy bound

sup
\varepsilon >0

E\varepsilon (v\varepsilon ) <\infty .

Then there exists a subsequence (still denoted here by v\varepsilon ) and a function v \in Hdiv (\Omega ; S1)
such that

v\varepsilon \rightharpoonup v in Hdiv (\Omega ;R2),(3.1)

v\varepsilon \rightarrow v in L2(\Omega ;R2).(3.2)

We will write v\varepsilon 
\wedge 
\rightharpoonup v when both (3.1) and (3.2) hold. Property (3.1) is immediate

in light of the uniform bound on the L2-norm of the divergence, while (3.2) follows
from the proof of [12, Prop. 1.2]. The hypotheses of this proposition from [12] differ
from our setting in that their sequence is assumed to be divergence-free, whereas
ours has the weaker assumption of a uniform L2 bound on the divergence. However, a
minor modification of their proof allows for accommodation of this weaker assumption.

Before proceeding, we wish to stress that a uniform energy bound does not allow
one to conclude that the limit lies in BV (\Omega ; S1); see the discussion on [4, pp. 338--
340] or Remark 6.3 below. Our partial \Gamma -convergence result in this section, how-
ever, is phrased with this extra assumption. To this end, we fix boundary data
g \in H1/2(\partial \Omega ; S1) for admissible functions in E\varepsilon . We point out that for a sequence

\{ u\varepsilon \} \subset H1(\Omega ;R2) satisfying u\varepsilon \cdot \nu \partial \Omega = g \cdot \nu \partial \Omega , under the topology u\varepsilon 
\wedge 
\rightharpoonup u with u

assumed to lie in BV (\Omega , S1) \cap Hdiv(\Omega , S1), it follows that

(3.3) u\partial \Omega (x) \cdot \nu \partial \Omega (x) = g(x) \cdot \nu \partial \Omega for \scrH 1-a.e. x on \partial \Omega .

Here we denote by u\partial \Omega its trace on \partial \Omega . Indeed, for any \phi \in H1(\Omega ) the Divergence
Theorem yields\int 

\partial \Omega 

u\partial \Omega \cdot \nu \partial \Omega \phi d\scrH 1(x) =

\int 
\Omega 

\nabla \phi \cdot u dx+

\int 
\Omega 

div u\phi dx

= lim
\varepsilon \rightarrow 0

\int 
\Omega 

\{ \nabla \phi \cdot u\varepsilon dx+ div u\varepsilon \phi \} dx =

\int 
\partial \Omega 

g \cdot \nu \partial \Omega \phi d\scrH 1(x).

Now for any u \in BV (\Omega , S1)\cap Hdiv(\Omega , S1) such that u\partial \Omega \cdot \nu \partial \Omega = g \cdot \nu \partial \Omega on \partial \Omega we
define our candidate E0 for the \Gamma -limit of E\varepsilon via

(3.4) E0(u) :=
L

2

\int 
\Omega 

(div u)2 dx+
1

6

\int 
Ju

| u -  - u+| 3 d\scrH 1 +
1

6

\int 
\partial \Omega 

| u\partial \Omega  - g| 3 d\scrH 1.

We remark that if one introduces the measurable function X : Ju \rightarrow [0, \pi /2] by

X :=
1

2
min

\bigm| \bigm| û\pm , u\mp \bigm| \bigm| D
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so that X denotes the minimal half-angle between the unit vectors u+ and u - , then
the quantity | u -  - u+| arising in the \Gamma -limit can be equivalently expressed as 2 sinX.
Similarly one can express | u\partial \Omega  - g| as 2 sinX\partial \Omega , where X\partial \Omega := 1

2 min
\bigm| \bigm| û\partial \Omega , g\bigm| \bigm| . Of

course, for all x \in \partial \Omega such that u\partial \Omega = g, the last integral in (3.4) vanishes, whereas
the condition that | u\partial \Omega | = 1 along with (3.3) implies that whenever u\partial \Omega (x) \not = g(x),
one necessarily has

| u\partial \Omega (x) - g(x)| = 2
\sqrt{} 
1 - (g(x) \cdot \nu \partial \Omega (x))2.

Similarly, another alternative to the expression | u - (x) - u+(x)| is

| u - (x) - u+(x)| = 2
\sqrt{} 
1 - (u+(x) \cdot \nu u)2 = 2

\sqrt{} 
1 - (u - (x) \cdot \nu u)2,

where \nu u denotes the measure-theoretic normal to the jump set Ju.
The main result of this section is a \Gamma -convergence type of result relating E\varepsilon to E0

under the assumption of BV (\Omega ; S1) competitors for E0.

Theorem 3.2. Let u \in Hdiv (\Omega ; S1) \cap BV (\Omega ; S1) with u\partial \Omega \cdot \nu \partial \Omega = g \cdot \nu \partial \Omega .
(i) If u\varepsilon \in H1

g (\Omega ,R2) is a sequence of functions such that u\varepsilon 
\wedge 
\rightharpoonup u, then

(3.5) lim inf
\varepsilon \rightarrow 0

E\varepsilon (u\varepsilon ) \geqslant E0(u).

(ii) There exists w\varepsilon \in H1
g (\Omega ;R2) with w\varepsilon 

\wedge 
\rightharpoonup u satisfying

lim sup
\varepsilon \rightarrow 0

E\varepsilon (w\varepsilon ) = E0(u).(3.6)

Proof. (i) We begin with the argument for lower-semicontinuity (3.5). We base
our argument on the corresponding result for the Aviles--Giga functional established
in [5]. For a more self-contained treatment, we refer the reader to [15], where we
pursue an approach more in the spirit of [3].

We suppose that u\varepsilon 
\wedge 
\rightharpoonup u for u \in BV (\Omega ) \cap Hdiv (\Omega ;R2) with | u(x)| = 1 for a.e.

x \in \Omega , and u\partial \Omega \cdot \nu \partial \Omega = g \cdot \nu \partial \Omega along \partial \Omega . We may also assume lim inf\varepsilon \rightarrow 0E\varepsilon (u\varepsilon ) <\infty ,
since otherwise the claim is trivial.

We will use the following notation:

e\varepsilon (v) :=
1

2

\biggl( 
\varepsilon | \nabla v| 2 + 1

\varepsilon 
(| v| 2  - 1)2 + L(div v)2

\biggr) 
.

Now we let Ju denote the jump set of the vector field u, and here, unlike in (3.4),
we also include in our definition of Ju jumps on \partial \Omega where the tangential component
of u is minus that of g. By the rectifiability of Ju we can express Ju as

Ju =

\Biggl( \infty \bigcup 
k=1

\Gamma k

\Biggr) 
\cup \Gamma 0,

where \Gamma k are C1 embedded curves of finite Hausdorff measure and \scrH 1(\Gamma 0) = 0.
We now fix a number \delta > 0, and since E0(u) < \infty , we can select an integer N\delta 

such that

(3.7)
1

6

\int 
Ju

| u -  - u+| 3 d\scrH 1 \leqslant 
N\delta \sum 
k=1

1

6

\int 
\Gamma k

| u -  - u+| 3 d\scrH 1 + \delta .
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We can always assume that \Gamma k \cap \Gamma k\prime = \emptyset for k \not = k\prime , and then we denote by \beta \delta the
minimal separation given by

(3.8) \beta \delta := min
k,k\prime \in \{ 1,2,...,N\delta \} , k \not =k\prime 

dist (\Gamma k,\Gamma k\prime ).

Then for each k \in \{ 1, 2, . . . , N\delta \} we introduce an open neighborhood Jk
u of \Gamma k via

Jk
u =

\biggl\{ 
x \in \Omega : dist (x,\Gamma k) < min

\biggl\{ 
\beta \delta 
2
,

\delta 

\scrH 1(\Gamma k)k2

\biggr\} \biggr\} 
.

From (3.8) we see that these neighborhoods are disjoint, and we also note that
\bigm| \bigm| Jk

u

\bigm| \bigm| \leqslant 
\delta 
k2 so that

(3.9)

\bigm| \bigm| \bigm| \bigm| \bigm| 
N\delta \bigcup 
k=1

Jk
u

\bigm| \bigm| \bigm| \bigm| \bigm| \leqslant C\delta ,

where here | \cdot | denotes Lebesgue measure.
Now

(3.10) E\varepsilon (u\varepsilon ) \geqslant 
L

2

\int 
\Omega \setminus \cup N\delta 

k=1J
k
u

(div u\varepsilon )
2 +

\int 
\cup N\delta 

k=1J
k
u

e\varepsilon (u\varepsilon ) dx,

and by convexity and the resulting lower-semicontinuity, it follows that

lim inf
\varepsilon \rightarrow 0

\int 
\Omega \setminus \cup N\delta 

k=1J
k
u

(div u\varepsilon )
2 dx \geqslant 

\int 
\Omega \setminus \cup N\delta 

k=1J
k
u

(div u)2.

Hence, condition (3.5) will follow from (3.7) and (3.9) by letting \delta approach 0 once
we can establish that

(3.11) lim inf
\varepsilon \rightarrow 0

\int 
\cup N\delta 

k=1J
k
u

e\varepsilon (u\varepsilon ) dx \geqslant 
N\delta \sum 
k=1

1

6

\int 
\Gamma k

| u -  - u+| 3 d\scrH 1  - O(\delta ).

Inequality (3.11) follows readily from the lower-semicontinuity argument given for the
Aviles--Giga functional (AG) in [5, Thm. 3.2], once one accounts for the extra terms
present in our model due to nonzero divergence. More precisely, we wish to apply the
results in [5], where our vector fields u\varepsilon play the role of (\nabla u\varepsilon )\bot for the scalar-valued
functions u\varepsilon in [5].

In the argument of [5], crucial use is made of the Jin--Kohn entropy \Xi : R2 \rightarrow R2

given by

\Xi (v) :=

\biggl( 
1

3
v32 + v2v

2
1  - v2,

1

3
v31 + v1v

2
2  - v1

\biggr) 
for v = (v1, v2),

along with all of its rotations; cf. [19]. The version of \Xi given above is well suited
to the situation where the jump set is parallel to one of the coordinate axes. One
calculates that for any vector field v one has

(3.12) div \Xi (v) = (| v| 2  - 1)(\partial xv2 + \partial yv1) + 2v1v2div v.

It is the last term in this expression that drops in the setting of [5], and so in that
case the divergence of the Jin--Kohn entropy is seen to bound the Aviles--Giga energy
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(AG) from below after an application of the inequality a2 + b2 \geqslant 2ab. For our energy,
the same will be true once we apply this trivial inequality to both terms in (3.12),
leading to the following slight modification:

div \Xi (v) \leqslant 
1

2

\biggl( 
\varepsilon (\partial xv2 + \partial yv1)

2 +
1

\varepsilon 
(| v| 2  - 1)2

\biggr) 
+
L

2
(div v)2 +

2

L
v21v

2
2

\leqslant 
1

2

\biggl( 
\varepsilon | \nabla v| 2 + 1

\varepsilon 
(| v| 2  - 1)2

\biggr) 
+
L

2
(div v)2 +

2

L
v21v

2
2 + \varepsilon \partial xv2 \partial yv1

= e\varepsilon (v) +
2

L
v21v

2
2  - \varepsilon Jac v + \varepsilon \partial xv1\partial yv2

\leqslant e\varepsilon (v) +
2

L
v21v

2
2  - \varepsilon Jac v +

\varepsilon 

2
(div v)2,(3.13)

where Jac v refers to the Jacobian detDv.
Applying (3.13) with v = u\varepsilon and using that u\varepsilon 

\wedge 
\rightharpoonup u, along with (3.9), we integrate

over \cup N\delta 

k=1J
k
u and take liminf over \varepsilon to find that

lim inf
\varepsilon \rightarrow 0

\int 
\cup N\delta 

k=1J
k
u

e\varepsilon (u\varepsilon ) dx

\geqslant lim inf
\varepsilon \rightarrow 0

\Biggl\{ \int 
\cup N\delta 

k=1J
k
u

div \Xi (u\varepsilon ) + \varepsilon Jacu\varepsilon  - 
2

L
u\varepsilon 

2
1u\varepsilon 

2
2  - 

\varepsilon 

2
(div u\varepsilon )

2 dx

\Biggr\} 

\geqslant lim inf
\varepsilon \rightarrow 0

\int 
\cup N\delta 

k=1J
k
u

div \Xi (u\varepsilon ) dx - lim inf
\varepsilon \rightarrow 0

\varepsilon 

\int 
\cup N\delta 

k=1J
k
u

Jacu\varepsilon dx - C\delta .(3.14)

Here we have used the assumed uniform energy bound on \{ u\varepsilon \} to see that
lime\rightarrow 0 \varepsilon 

\int 
\Omega 
(div u\varepsilon )

2 dx = 0. One shows that the term involving the Jacobian inte-
gral vanishes in the \varepsilon \rightarrow 0 limit via an integration by parts precisely as in the proof of
[5, Thm. 3.2] (though in that setting it appears as a Hessian), and the liminf inequality
of the divergence of the Jin--Kohn entropy, namely,

lim inf
\varepsilon \rightarrow 0

\int 
\cup N\delta 

k=1J
k
u

div \Xi (u\varepsilon ) dx \geqslant 
N\delta \sum 
k=1

1

6

\int 
\Gamma k

| u -  - u+| 3 d\scrH 1,

follows exactly as in that proof as well. This yields (3.11) and completes the proof of
(3.5)

(ii) The proof of (3.6) follows the approach of [8] rather closely, and therefore
we present only an outline of the argument, highlighting the steps that are different
for our problem by focusing primarily on the treatment of the divergence term in
the energies. To facilitate comparison with [8], we adopt the notation of that proof
wherever possible.

(a) Preparation. We let \phi : R2 \rightarrow [0, 1] be a smooth radially symmetric bump
function with

\int 
\phi = 1 and spt(\phi ) \subset B1. For any \varepsilon > 0, we denote as usual \phi \varepsilon (\cdot ) :=

1
\varepsilon 2\phi (

\cdot 
\varepsilon ) and set u\varepsilon := u \ast \phi \varepsilon .
We next introduce a class of step functions. For any x0 \in R2, \nu \in S1, and \theta \in R,

we introduce the function

sx0,\nu ,\theta (x) := (cos \theta )\nu  - sin \theta H
\bigl( 
(x - x0) \cdot \nu 

\bigr) 
\nu \bot ,

where H(t) = 1 for t > 0 and H(t) =  - 1 for t < 0. We then let \scrS x0
denote the

collection of all such step functions at x0.
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For u as in the statement of the theorem, we let x0 \in Ju be a point at which
its approximate unit normal \nu u is defined, and we consider sx0

\in \scrS x0
such that

s\pm x0
= u\pm (x0) and \nu = \nu u. We point out that this choice of s depends on the given

function u. To alleviate notation, therefore, we just denote one subscript rather than
all three.

Fixing now \varepsilon > 0, \eta > 0, k \geqslant 1, and \theta > 0, we define ``good points"" on the jump
set Jg(\theta , k, \eta , \varepsilon ) to be those x0 \in Ju such that the following hold:

\bullet The step function sx0
associated to x0 satisfies | sin \theta | \geqslant sin \theta , and

\| \nabla u\| (B2k\varepsilon (x0)) \geqslant k\varepsilon sin \theta (3.15)

and

1

| B2k\varepsilon | 

\int 
B2k\varepsilon (x0)

| u - sx0
| dx \leqslant \eta .(3.16)

\bullet For the finitely many balls B\varepsilon (y) \subset B2k\varepsilon (x0) with y \cdot \nu = x0 \cdot \nu and (y - x0)\cdot \nu \bot \in 
2\varepsilon Z, one has \int 

B\varepsilon (y)\cap Ju

| [u]| 3 d\scrH 1 \geqslant | 2 sin \theta | 32\varepsilon  - \eta \varepsilon .(3.17)

We denote \Omega g := \{ x \in \Omega : dist(x, Jg) < k\varepsilon /2\} and set \Omega (\varepsilon ) := \{ x \in \Omega : dist(x, \partial \Omega ) >
\varepsilon \} .

For any A \subset R2 and w \in H1(A), it is also convenient to introduce the notation

F\varepsilon [w;A] :=

\int 
A

\varepsilon | \nabla w| 2 + 1

\varepsilon 
(| w| 2  - 1)2 dx.

(b) Estimates away from \Omega g. In this step, we show

Lim E\varepsilon [u\varepsilon ; \Omega 
(\varepsilon )\setminus \Omega g] := lim

\theta \downarrow 0
lim
k\uparrow \infty 

lim
\eta \downarrow 0

lim
\varepsilon \downarrow 0

E\varepsilon [u\varepsilon ; \Omega 
(\varepsilon )\setminus \Omega g] =

L

2

\int 
\Omega 

(div u)2 dx.(3.18)

This statement is the analogue of [8, Prop. 1]. At its heart, the argument relies
on a scale-invariant Poincar\'e inequality, which asserts that for any \delta > 0, denoting
v\delta := v \ast \phi \delta , we have \biggl( \int 

B\delta 

| v  - v\delta (0)| 2 dx
\biggr) 1/2

\leqslant c\| Dv\| (B\delta )(3.19)

for every v \in BV (B\delta ), where c > 0 is independent of \delta . Immediate consequences of
the Poincar\'e inequality are the following linear and quadratic estimates: for every
k \geqslant 1, we have

(linear) F\varepsilon [u\varepsilon ;Bk\varepsilon ] \leqslant C\| Du\| (B2k\varepsilon ),

(quadratic) F\varepsilon [u\varepsilon ;Bk\varepsilon ] \leqslant 
C

\varepsilon 
(\| Du\| (B2k\varepsilon ))

2
,

with the constant C being independent of \varepsilon , k. The proof of (3.18) proceeds by parti-
tioning the set \Omega (\varepsilon )\setminus \Omega g according to how \| Du\| (B2k\varepsilon (x)) scales in k\varepsilon . On most of \Omega ,
where the scaling is sublinear, one uses the quadratic estimate to show vanishing of
the F\varepsilon energy, while away from the jump set where the scaling of the total variation
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measure \| Du\| is linear or superlinear, one uses the linear estimate, along with fine
properties of BV functions, to argue that once again the F\varepsilon energy vanishes. We refer
the reader to [8, Prop. 1] for further details.

(c) Estimates within \Omega g. Having shown that the energy of the mollification u\varepsilon 
outside of the set \Omega g is asymptotically just the bulk divergence, we simply set our
desired recovery sequence w\varepsilon := u\varepsilon on \Omega \setminus \Omega g. We next define w\varepsilon in \Omega g in order to
capture the wall energies in the limit. To this end, let \scrF j = \{ B2k\varepsilon (x

j
i )\} i for 1 \leqslant j \leqslant N

be N families of disjoint balls with xji \in Jg and the Bk\varepsilon (x
j
i ) cover \Omega g. Here N is a

universal constant obtained from Besicovitch's covering theorem. For fixed k, let
\psi \in C\infty 

c (Bk) denote a smooth cut-off function such that \psi \equiv 1 on Bk - 1. For every
\varepsilon > 0, we define \psi \varepsilon \in C\infty 

c (Bk\varepsilon ) by the formula \psi \varepsilon (x) := \psi 
\bigl( 
x
\varepsilon 

\bigr) 
.

Setting v0 := u, we inductively define \{ vj\} j=1,...,N as follows. At the jth step, on
the family of balls \scrF j , we define

vj(x) :=

\biggl\{ \bigl( 
1 - \psi \varepsilon (x - xji )

\bigr) 
vj - 1(x) + \psi \varepsilon (x - xji )s

j
i (x) if x \in Bk\varepsilon (x

j
i ) for some i,

vj - 1(x) otherwise.

Here sji is the simple function associated to u at xji . Then set v := vN \ast \phi \varepsilon .
For every i, j we define Rj

i to be the largest rectangle of the form a < (x  - xji ) \cdot 
(\nu ij)

\bot < b, | (x - xji ) \cdot \nu | <
\surd 
k\varepsilon , where a, b \in R to be contained in the ball B(k - 2)\varepsilon (x

j
i )

without intersecting any ball B(k+1)\varepsilon (x
j\prime 

i\prime ) with j\prime > j. Existence of such a rectangle

is immediate; for the proof of uniqueness of the rectangle Rj
i , we refer the reader

to the geometric argument in [8, Prop. 2]. The main estimates of the present step
correspond to [8, Prop. 2]:

Lim E\varepsilon 

\left[  v,\Omega (\varepsilon )\setminus 
\bigcup 
i,j

Rj
i

\right]  =
L

2

\int 
\Omega 

(div u)2 dx.(3.20)

On each Rj
i one has v = \phi \varepsilon \ast sji and

Lim
1

6

\sum 
i,j

\int 
Rj

i\cap J
s
j
i

| [sji ]| 3 d\scrH 1 \leqslant 
1

6

\int 
Ju

| u+  - u - | 3 d\scrH 1.(3.21)

The proof of the assertions that v = \phi \varepsilon \ast sji on Rj
i and of estimate (3.21) follows

exactly as in [8]. The key idea is of course to use the fact that each xji is a good point

on the jump set, so that we can invoke (3.17). For any ball Bj
il of the type considered

in (3.17), one has the estimate

2\varepsilon | 2 sin \theta | 3 \leqslant 
\int 
Bijl\cap Ju

| [u]| 3 d\scrH 1 + \eta \varepsilon .

Since the balls Bj
il are disjoint, and l \leqslant 2k, we find using (3.15) that\sum 

i,j

\int 
Rj

i\cap J
s
j
i

| [sji ]| 3 d\scrH 1 \leqslant 
\sum 
ijl

\int 
Bl

ij\cap Ju

| [u]| 3 d\scrH 1 +
\sum 
i,j

2k\eta \varepsilon 

\leqslant 
\int 
\Omega \cap Ju

| [u]| 3 d\scrH 1 +
\sum 
ij

2\eta 

sin \theta 
\| \nabla u\| (B2k\varepsilon (x

j
i ))

\leqslant 
\int 
\Omega \cap Ju

| [u]| 3 d\scrH 1 +
2N\eta 

sin \theta 
\| \nabla u\| (\Omega ),
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where once again N is the Besicovitch constant. The result (3.21) follows by applying
Lim. We now turn to the proof of (3.20). In light of our work in step (b) above, it
suffices to prove the estimates

Lim F\varepsilon 

\left[  v;\bigcup 
i,j

B(k+1)\varepsilon (x
j
i )\setminus B(k - 2)\varepsilon (x

j
i )

\right]  = 0,(3.22)

Lim F\varepsilon 

\left[  v,\bigcup 
i,j

B(k - 2)\varepsilon (x
j
i )\setminus Rj

i

\right]  = 0,(3.23)

and

(3.24) Lim

\int 
\cup i,jB(k+1)\varepsilon (x

j
i )

(div v)2 dx = 0.

The proof of (3.22) is identical to the proof of [8, eqns. (4.3) and (4.4)] to which we
refer the reader. We prove (3.24). A basic estimate in the proof of (3.22) used in [8]
is the inequality

1

| B2k\varepsilon | 

\int 
B2k\varepsilon (x

j
i )

| vJ  - sji | dx \leqslant C\eta ,(3.25)

holding for each fixed i, j and each J = 0, . . . , N. This inequality is proved by induction
on J. By testing against arbitrary L2 functions, it is easy to check that div sji = 0 for

each i, j. Attributing each x in the union
\bigcup N

j=1B(k+1)\varepsilon (x
j
i ) to the level j where v(x)

was last modified, i.e., to the largest j such that x \in B(k+1)\varepsilon (x
j
i ) for some i in the jth

family, we find inductively that

1

2

\int 
\bigcup 

i,j B(k+1)\varepsilon 

(div v)2 dx \leqslant 
\sum 
i,j

\int 
Bk\varepsilon (x

j
i )

\bigm| \bigm| \bigm| \nabla \psi \varepsilon (x - xji ) \cdot (vj - 1  - sji ) \ast \phi \varepsilon 
\bigm| \bigm| \bigm| 2 dx

+

\int 
B(k+1)\varepsilon (x

j
i )

(div vj - 1 \ast \phi \varepsilon )2 dx

(Young's inequality) \leqslant 
\sum 
i,j

\int 
Bk\varepsilon (x

j
i )

\bigm| \bigm| \bigm| \nabla \psi \varepsilon (x - xji ) \cdot (vj - 1  - sji )
\bigm| \bigm| \bigm| 2 dx

+

\int 
B(k+1)\varepsilon (x

j
i )

(div vj - 1)2 dx

(proceeding inductively) \leqslant N
\sum 
i,j

\int 
Bk\varepsilon (x

j
i )

1

\varepsilon 2
| vj - 1  - sji | 2 dx+N

\int 
\Omega g

(div u)2 dx

(since | vj | , | sji | \leqslant 1) \leqslant 8\pi Nk2
\sum 
i,j

1

| B2k\varepsilon | 

\int 
B2k\varepsilon (x

j
i )

| vj - 1  - sji | dx

+N

\int 
\Omega g

(div u)2 dx

(by (3.25)) \leqslant 8\pi Nk2\eta +N

\int 
\Omega g

(div u)2 dx.

Since the foregoing estimates are uniform in \varepsilon , we send \varepsilon \downarrow 0, \eta \downarrow 0, k \uparrow \infty , and \theta \downarrow 0,
in that order, to arrive at (3.24), where for the second integral we have applied the
monotone convergence theorem.
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(d) Estimates within the rectangles. Finally, it remains to modify the construction
v from the preceding step within the boxes Rj

i . This step relies on the following claim.

Claim. There is a smooth function w\varepsilon such that w\varepsilon = v outside Rj
i and

F\varepsilon [w\varepsilon ;R
j
i ] \leqslant \ell ij

1

6
| 2 sin \theta | 3 + C\varepsilon 

\biggl( 
1

\theta 
+ ke - \theta 

\surd 
k

\biggr) 
.(3.26)

Here \theta is the angle of the step function sji and \ell ij = \scrH 1(JvN \cap Rj
i ) the length of the

rectangle. The proof of this claim follows by using a standard ``Modica--Mortola"" type
of heteroclinic within the rectangle along with a linear interpolant as in step (c) to
match the boundary conditions. Control on the divergence term follows as in step (c),
and control of the remaining terms proceeds as in [8]. Briefly, within each rectangle,
we have, using (3.17),

F\varepsilon [w\varepsilon ;R
j
i ] \leqslant 

1

6
| 2 sin \theta | 3\scrH 1(Ju \cap Rj

i ) +
C\varepsilon 

\theta 
+ C\varepsilon ke - \theta 

\surd 
k

\leqslant 
1

6

\int 
Ju\cap Rj

i

| [u]| 3 d\scrH 1 + C\varepsilon + k\varepsilon \eta +
C\varepsilon 

\theta 
+ C\varepsilon ke - \theta 

\surd 
k.

In the above estimate we have used the fact that the rectangle Rj
i contains no more

than k disjoint balls of the type in (3.17), and that the sum of their diameters is at
least \scrH 1(JvN \cap Rj

i ) - 4\varepsilon . Summing over the rectangles Rj
i , we find using (3.15) that

F\varepsilon [w\varepsilon ;R
j
i ] \leqslant 

1

6

\int 
Ju

| [u]| 3 d\scrH 1 +
\sum 
i,j

\biggl( 
C(\theta )

k
+ C(\theta )\eta + Ce - \theta 

\surd 
k

\biggr) 
\| \nabla u\| (B2k\varepsilon (x

j
i )).

Taking Lim, we complete the requisite estimates, and the proof of the recovery se-
quence construction follows now by a diagonalization procedure.

4. Criticality conditions and solution via characteristics for the limiting
energy \bfitE \bfzero . We begin this section by identifying the free boundary problem satisfied
by critical points of the limiting functional E0; cf. (3.4). We will use the criticality
conditions derived below to later construct critical points for specific domains \Omega and
with specific boundary data g.

Theorem 4.1. Consider any u \in BV (\Omega , S1) \cap Hdiv(\Omega , S1) such that u\partial \Omega \cdot \nu \partial \Omega =
g \cdot \nu \partial \Omega on \partial \Omega . Denote by Ju its jump set. Then if the first variation of E0 evaluated
at u vanishes when taken with respect to perturbations compactly supported in \Omega \setminus Ju,
one has the condition

(4.1) u\bot \cdot \nabla div u = 0 holding weakly on \Omega \setminus Ju,

where u\bot = ( - u2, u1).
Furthermore, if the first variation vanishes at u when taken with respect to per-

turbations that fix Ju and are supported within any ball centered at a smooth point of
Ju \cap \Omega , and if the traces div u+ and div u - are sufficiently smooth, then one has the
condition

(4.2) L [div u] - 4
\bigl( 
1 - (u \cdot \nu u)2

\bigr) 1/2
(u \cdot \nu u) = 0 on Ju \cap \Omega ,

where [\cdot ] = \cdot +  - \cdot  - represents the jump across Ju, and \nu u is the unit normal to Ju
pointing from the + side of Ju to the  - side.
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Finally, a vanishing first variation of E0, evaluated at u that allows for local
perturbations of the jump set Ju \cap \Omega itself, leads to the condition

(4.3) (div u+)
2  - (div u - )

2 + (div u+ + div u - )
\prime 
(u+ \cdot \tau u  - u - \cdot \tau u)

=
8\kappa 

3L

\bigl( 
1 - (u \cdot \nu u)2

\bigr) 1/2\bigl( 
1 + 2 (u \cdot \nu u)2

\bigr) 
on Ju \cap \Omega ,

whenever Ju, u+, and u - are sufficiently smooth. Here \kappa denotes the curvature of
Ju, and (div u+ + div u - )

\prime 
refers to the tangential derivative along the jump set.

Corollary 4.2. Suppose u is smooth and critical for E0 in the sense of (4.1).
Then writing u locally in terms of a lifting as u(x, y) = ei\theta (x,y) and defining the scalar
v := div u, one has that (4.1) is equivalent to the following system for the two scalars
\theta and v:

 - sin \theta \theta x + cos \theta \theta y = v,(4.4)

 - sin \theta vx + cos \theta vy = 0.(4.5)

Consequently, starting from any initial curve in \Omega parametrized via s \mapsto \rightarrow 
\bigl( 
x0(s), y0(s)

\bigr) 
along which \theta and v take values \theta 0(s) and v0(s), respectively, the characteristic curves,
say t \mapsto \rightarrow 

\bigl( 
x(s, t), y(s, t)

\bigr) 
, are given by

x(s, t) =
1

v0(s)

\bigl[ 
cos
\bigl( 
v0(s)t+ \theta 0(s)

\bigr) 
 - cos \theta 0(s)

\bigr] 
+ x0(s),(4.6)

y(s, t) =
1

v0(s)

\bigl[ 
sin
\bigl( 
v0(s)t+ \theta 0(s)

\bigr) 
 - sin \theta 0(s)

\bigr] 
+ y0(s),(4.7)

whenever v0(s) \not = 0. The corresponding solutions \theta (s, t) and v(s, t) are given by

(4.8) \theta (s, t) = v0(s)t+ \theta 0(s), v(s, t) = v0(s),

so that the characteristics are circular arcs of curvature v0(s) and carry constant
values of the divergence. In case the divergence vanishes somewhere along the initial
curve, i.e., v0(s) = 0, then the characteristic is a straight line.

Proof of Theorem 4.1. We consider u \in BV (\Omega , S1) \cap Hdiv(\Omega , S1) such that u\partial \Omega \cdot 
\nu \partial \Omega = g \cdot \nu \partial \Omega on \partial \Omega . Then

(4.9) E0(u+ \delta u) - E0(u) =
L

2

\int 
\Omega 

\Bigl[ 
(div u+ div \delta u)

2  - (div u)2
\Bigr] 
dx

+
1

6

\int 
Ju+\delta u

| (u - + \delta u - ) - (u+ + \delta u+) | 3 d\scrH 1  - 1

6

\int 
Ju

| u -  - u+| 3 d\scrH 1

+
1

6

\int 
\partial \Omega \cap Ju+\delta u

| u\partial \Omega + \delta u\partial \Omega  - g| 3 d\scrH 1

 - 1

6

\int 
\partial \Omega \cap Ju

| u\partial \Omega  - g| 3 d\scrH 1 +
1

2

\int 
\Omega 

\lambda 
\Bigl( 
| u+ \delta u| 2  - | u| 2

\Bigr) 
dx

for any \delta u in BV (\Omega ,R2) \cap Hdiv(\Omega ,R2). The Lagrange multiplier \lambda in (4.9) enforces
the constraint u \in S1.

We suppose first that the perturbation \delta u is either supported away from Ju or
else is supported in a ball containing only a smooth portion of Ju \cap \Omega and leaves the
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jump set unaltered, i.e., Ju+\delta u = Ju. We recall that the normal component of any
vector field w \in Hdiv(\Omega , S1) is continuous across the jump set of w and | w -  - w+| =
2
\sqrt{} 
1 - (w \cdot \nu u)2. We have from (4.9) that

(4.10)

\delta E0(u) = L

\int 
\Omega 

div u div \delta u dx - 4

\int 
Ju\cap \Omega 

\bigl( 
1 - (u \cdot \nu u)2

\bigr) 1/2
(u \cdot \nu u)(\delta u \cdot \nu u) d\scrH 1

+

\int 
\Omega 

\lambda (u \cdot \delta u) =
\int 
\Omega 

[ - L\nabla div u+ \lambda u] \cdot \delta u dx

+

\int 
Ju\cap \Omega 

\Bigl[ 
L (div u+  - div u - ) - 4

\bigl( 
1 - (u \cdot \nu u)2

\bigr) 1/2
(u \cdot \nu u)

\Bigr] 
(\delta u \cdot \nu u) d\scrH 1.

From the consideration of perturbations \delta u supported away from Ju we conclude that
u satisfies the equation

(4.11)  - L\nabla div u+ \lambda u = 0 in \Omega \setminus Ju,

which is equivalent to (4.1). Then allowing for perturbations that meet Ju \cap \Omega but
that leave the jump set unaltered, we see that u is subject to the natural boundary
conditions (4.2).

Before deriving the last condition (4.3) of the theorem, we wish to reinterpret the
criticality condition (4.1) as a system of conservation laws. To this end, we suppose
an S1-valued vector field u is critical in the sense of (4.1) and that we locally write u in
terms of a lifting as u(x, y) = ei\theta (x,y). Assuming u is sufficiently smooth, we introduce
the scalar v := div u and find that (4.1) is equivalent to the following system for the
two scalars \theta and v:

 - sin \theta \theta x + cos \theta \theta y = v,(4.12)

 - sin \theta vx + cos \theta vy = 0.(4.13)

Starting from any initial curve in \Omega parametrized via s \mapsto \rightarrow 
\bigl( 
x0(s), y0(s)

\bigr) 
along which

\theta and v take values \theta 0(s) and v0(s), respectively, one readily solves (4.12)--(4.13) to
obtain (4.6), (4.7), and (4.8). We will exploit this property of constant divergence
along these circular characteristics in a construction below.

Now we consider a competitor u that is critical in the sense of (4.1)--(4.2) and is
such that within some ball B \subset \Omega centered on a point of smoothness of Ju\cap \Omega one has
the following conditions: (i) div u is continuous on both sides of Ju \cap B, and (ii) the
traces of div u on Ju are differentiable along Ju\cap B with integrable derivatives. We let
Jw be a small perturbation of Ju\cap B, where a part of a smooth curve in Ju is replaced
by another smooth curve (Figure 4.1). We assume that the new curve maintains the
connectivity of Ju, connects smoothly to Ju, and lies on one side of the original curve.
Here, to fix ideas, we assume that Jw lies on the left side of Ju corresponding to u+.
We construct the perturbation w of u as follows. Supposing that on the right side
of Ju the function w coincides with u - , we use the characteristics on the right side
of Ju, using u - as initial values, to extend u - into the interior of the region Jw\bigtriangleup Ju
thus defining w in that region (Figure 4.2). The characteristics extension of u - into
Jw\bigtriangleup Ju allows us to maintain control over divw -  - div u - in that region.

We let \Omega +
w denote the region to the left of Jw in Figure 4.1 and denote by w - the

trace of w on Jw as the boundary is approached from within the region int (Jw\bigtriangleup Ju).
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νw Jw

νu

Ju

u−u+

w+ w−

Fig. 4.1. Perturbation of the jump set.

uu
+

J
u

J
u

−

w
J

Fig. 4.2. Construction of the perturbed minimizer w. The circular arcs of the characteristics
defining u meet at the jump set Ju (left). The characteristics on the right side of Ju are used to
extend u - into the interior of the region Jw\bigtriangleup Ju (right). In order to satisfy the continuity condition
on Jw for the normal component of w, a small perturbation is added to u on the left side of Jw (not
shown). The smallness of this perturbation is guaranteed by the continuity of u and its divergence
on both sides of Ju.

In order to make sure that the function w is in Hdiv(\Omega , S1), it must have the trace

(4.14) w+ = (2\nu w \otimes \nu w  - I)w - 

on Jw as Jw is approached from within the region \Omega +
w . Indeed, as long as (4.14) holds,

we have w+ \cdot \nu w = w - \cdot \nu w and (\nu w \otimes \nu w  - I)w+ =  - (\nu w \otimes \nu w  - I)w - .
We take advantage of the continuity of u and div u away from Ju, which ensures

that the difference between w+ as defined in (4.14) and u on Jw is small. In particular,
if u = ei\theta u to the left of Ju and w+ = ei\theta w+ on Jw, then \delta \theta + = \theta u - \theta w+

is small on Jw.
We introduce a small perturbation \delta \theta compactly supported in \Omega +

w and such that the
trace of \delta \theta on Jw is \delta \theta +. Then we set w = ei(\theta u+\delta \theta ) in \Omega +

w so that w \in BV (\Omega , S1) \cap 
Hdiv(\Omega , S1). Further, if we let \delta u := w  - u, then \delta u \in BV (\Omega w+ ,R2) \cap Hdiv(\Omega w+ ,R2)
is a small, complex-valued perturbation compactly supported in the closure of \Omega +

w .
Next, we suppose that Ju has the arc-length parametrization ru(s), where s \in I.

We introduce the function h : I \rightarrow R with small C1-norm such that h vanishes along
with its derivatives at the endpoints of I. We now assume that rw(s) = ru(s) +
h(s)\nu u(s) for s \in I defines Jw. We let \tau u(s) = r\prime u(s) so that \nu u(s) = \tau \bot u .

By our assumptions on divergence and using the characteristics construction of
u and w, it follows that \| \delta u\| 1,\infty = O(\| h\| 1,\infty ). To simplify the notation, we assume
that all equivalences in the derivation of the criticality condition appearing below up
to (4.19) are true up to terms of order O

\bigl( 
\| h\| 21,\infty 

\bigr) 
.
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Integrating by parts and using (4.11), we have

L

2

\int 
\Omega +

w

\bigl\{ 
(divw)2  - (div u)2

\bigr\} 
dx = L

\int 
\Omega +

w

div u div \delta u dx

=  - L
\int 
Jw\setminus Ju

(div u) \delta u \cdot \nu w d\scrH 1,

where \nu w is the unit normal to Jw pointing into \Omega +
w (see Figure 4.1). The variation

of the energy is then given by

(4.15) E0(w) - E0(u) =
L

2

\int 
int(Jw\bigtriangleup Ju)

\bigl\{ 
(divw)2  - (div u)2

\bigr\} 
dx

 - L

\int 
Jw\setminus Ju

(div u) \delta u \cdot \nu w d\scrH 1 +
4

3

\int 
Jw\setminus Ju

\bigl( 
1 - (w \cdot \nu w)2

\bigr) 3/2
d\scrH 1

 - 4

3

\int 
Ju\setminus Jw

\bigl( 
1 - (u \cdot \nu u)2

\bigr) 3/2
d\scrH 1.

We estimate the third term in (4.15) as follows. Because

| r\prime w| = | (1 - h\kappa )\tau u + h\prime \nu u| =
\sqrt{} 
(1 - h\kappa )

2
+ (h\prime )

2
= 1 - h\kappa 

and

\nu w =
(1 - h\kappa ) \nu u  - h\prime \tau u
| (1 - h\kappa )\tau u + h\prime \nu u| 

= \nu u  - h\prime \tau u,

we have

1 - (w \cdot \nu w)2 = 1 - (w(ru) + h\nabla w(ru) \nu u) \cdot (\nu u  - h\prime \tau u))
2

= 1 - (w(ru) \cdot \nu u + h\nabla w(ru) \nu u \cdot \nu u  - h\prime \tau u \cdot w(ru))2

= 1 - (w(ru) \cdot \nu u)2  - 2 (w(ru) \cdot \nu u) (h\nabla w(ru) \nu u \cdot \nu u  - h\prime \tau u \cdot w(ru))

on Jw\setminus Ju so that

4

3

\bigl( 
1 - (w \cdot \nu w)2

\bigr) 3/2\bigm| \bigm| \bigm| \bigm| 
Jw\setminus Ju

=
4

3

\Bigl( 
1 - (w(ru) \cdot \nu u)2  - 2 (w(ru) \cdot \nu u) (h\nabla w(ru) \nu u \cdot \nu u  - h\prime \tau u \cdot w(ru))

\Bigr) 3/2
=

4

3

\Bigl( 
1 - (w(ru) \cdot \nu u)2

\Bigr) 3/2
 - 4

\Bigl( 
1 - (w(ru) \cdot \nu u)2

\Bigr) 1/2
(w(ru) \cdot \nu u) (h\nabla w(ru) \nu u \cdot \nu u  - h\prime \tau u \cdot w(ru))

=
4

3

\Bigl( 
1 - (u \cdot \nu u)2

\Bigr) 3/2
 - 4

\Bigl( 
1 - (u \cdot \nu u)2

\Bigr) 1/2
(u \cdot \nu u) (h\nabla u - \nu u \cdot \nu u  - h\prime u - \cdot \tau u)
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for s \in I. With the help of (4.2), we conclude that

(4.16)
4

3

\int 
Jw\setminus Ju

\bigl( 
1 - (w \cdot \nu w)2

\bigr) 3/2
d\scrH 1 =

4

3

\int 
I

\bigl( 
1 - (w \cdot \nu w)2

\bigr) 3/2
(1 - h\kappa ) ds

=
4

3

\int 
I

\bigl( 
1 - (u \cdot \nu u)2

\bigr) 3/2
(1 - h\kappa ) ds+ L

\int 
I

(div u+  - div u - )\nabla u - \nu u \cdot \nu u h ds

+ L

\int 
I

\{ (div u+) (u+ \cdot \tau u) + (div u - ) (u - \cdot \tau u)\} h\prime ds,

because w(ru) \cdot \tau u =  - u+ \cdot \tau u = u - \cdot \tau u on Ju. Similarly,

(4.17)  - L

\int 
Jw\setminus Ju

(div u) \delta u \cdot \nu w d\scrH 1

=  - L
\int 
I

(div u(rw)) (w - (rw) \cdot \nu w  - u(rw) \cdot \nu w) ds

=  - L
\int 
I

(div u+) (w(ru) + h\nabla w(ru) \nu u

 - u+  - h\nabla u+ \nu u) \cdot (\nu u  - h\prime \tau u) ds

= L

\int 
I

(div u+) (\nabla u+ \nu u  - \nabla u - \nu u) \cdot \nu u h ds

 - L

\int 
I

(div u+) (u+ \cdot \tau u  - u - \cdot \tau u) h\prime ds,

since w(ru) \cdot \nu u = u \cdot \nu u on Ju. Adding (4.16) and (4.17), we find

(4.18)  - L

\int 
Jw\setminus Ju

(div u) \delta u \cdot \nu w d\scrH 1 +
4

3

\int 
Jw\setminus Ju

\bigl( 
1 - (w \cdot \nu w)2

\bigr) 3/2
d\scrH 1

=
4

3

\int 
I

\bigl( 
1 - (u \cdot \nu u)2

\bigr) 3/2
(1 - h\kappa ) ds

+ L

\int 
I

\{ (div u+)\nabla u+ \nu u \cdot \nu u  - (div u - )\nabla u - \nu u \cdot \nu u\} h ds

 - L

\int 
I

\{ (div u+) (u+ \cdot \tau u) - (div u - ) (u - \cdot \tau u)\} h\prime ds.

Finally, changing the coordinates (x, y) = ru(s) + t h \nu u(s) and using our continuity
assumptions, we have for the first integral in (4.15) that

(4.19)

L

2

\int 
int(Jw\bigtriangleup Ju)

\bigl\{ 
(divw)2  - (div u)2

\bigr\} 
dx =

L

2

\int 
I

\int h

0

\bigl\{ 
(divw)2  - (div u)2

\bigr\} 
(1 - h\kappa ) dt ds

=
L

2

\int 
I

\int h

0

\bigl\{ 
(div u - )

2  - (div u+)
2
\bigr\} 
dt ds =

L

2

\int 
I

\bigl\{ 
(div u - )

2  - (div u+)
2
\bigr\} 
h ds.

Equation (4.15), along with (4.18) and (4.19), gives the following variation of the
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energy functional:

(4.20) \delta E0(u) =
L

2

\int 
I

\bigl\{ 
(div u - )

2  - (div u+)
2
\bigr\} 
h ds - 4

3

\int 
I

\bigl( 
1 - (u \cdot \nu u)2

\bigr) 3/2
h\kappa ds

+ L

\int 
I

\{ (div u+)\nabla u+ \nu u \cdot \nu u  - (div u - )\nabla u - \nu u \cdot \nu u\} h ds

 - L

\int 
I

\{ (div u+) (u+ \cdot \tau u) - (div u - ) (u - \cdot \tau u)\} h\prime ds.

Now, observe that the identities

\nabla u \nu u \cdot \nu u = div u - \nabla u \tau u \cdot \tau u

and
(u \cdot \tau u)\prime = \nabla u \tau u \cdot \tau u + \kappa u \cdot \nu u

hold separately for u - and u+ on Ju. Substituting these expressions into (4.20) and
integrating by parts, we have

(4.21) \delta E0(u) =
L

2

\int 
I

\bigl\{ 
(div u+)

2  - (div u - )
2
\bigr\} 
h ds - 4

3

\int 
I

\bigl( 
1 - (u \cdot \nu u)2

\bigr) 3/2
h\kappa ds

 - L

\int 
I

\{ (div u+)\nabla u+ \tau u \cdot \tau u  - (div u - )\nabla u - \tau u \cdot \tau u\} h ds

 - L

\int 
I

\{ (div u+) (u+ \cdot \tau u) - (div u - ) (u - \cdot \tau u)\} h\prime ds

=
L

2

\int 
I

\bigl[ 
(div u+)

2  - (div u - )
2
\bigr] 
h ds - 4

3

\int 
I

\bigl( 
1 - (u \cdot \nu u)2

\bigr) 3/2
h\kappa ds

 - L

\int 
I

\{ (div u+) ((u+ \cdot \tau u)\prime  - \kappa u \cdot \nu u)  - (div u - ) ((u - \cdot \tau u)\prime  - \kappa u \cdot \nu u)\} h ds

+ L

\int 
I

\{ (div u+)\prime (u+ \cdot \tau u) - (div u - )
\prime (u - \cdot \tau u)\} h ds

+ L

\int 
I

\bigl\{ 
(div u+) (u+ \cdot \tau u)\prime  - (div u - ) (u - \cdot \tau u)\prime 

\bigr\} 
h ds

for any smooth, positive h with a compact support in I. The same expression can
be established for smooth, negative h with a compact support in I by considering
perturbations of the jump set that lie on the right side of Ju. From this we immediately
conclude that Ju is stationary whenever

(4.22) (div u+)
2  - (div u - )

2 + (div u+ + div u - )
\prime 
(u+ \cdot \tau u  - u - \cdot \tau u)

=
8\kappa 

3L

\bigl( 
1 - (u \cdot \nu u)2

\bigr) 3/2  - 2\kappa (div u+  - div u - ) (u \cdot \nu u) on Ju.

With the help of (4.2), the condition (4.22) can also be expressed as in (4.3).

5. Results for the special case of a disc or an annulus. Now we present
some examples where we take \Omega to be a disc or an annulus. For the disc we will discuss
three choices of boundary data g : \partial D \rightarrow S1. Our focus is on optimizing the \Gamma -limit
E0 where we recall the normal component of competitors u \in Hdiv(D; S1)\cap BV (D; S1)
is required to satisfy u\partial D \cdot \nu \partial D = g\partial D \cdot \nu on \partial D. Our discussion on the annulus is a
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bit more formal, and we present examples that indicate situations where the wall is
potentially curved, possibly occurring along the boundary.

Throughout this section, \widehat er := (x, y)/
\sqrt{} 
x2 + y2 denotes the unit radial vector

field, while \widehat e\theta := ( - y, x)/
\sqrt{} 
x2 + y2

denotes the unit angular vector field.

5.1. Tangential boundary conditions: \bfitg (\bfitx , \bfity ) = ( - \bfity , \bfitx ). In this case, a
minimizer is clearly given by the divergence-free vector field

u(x, y) = \widehat e\theta ,
since for this choice of u one has E0(u) = 0.

From the characteristics viewpoint laid out in the preceding section, this critical
point is composed of characteristics which are simply radii through the origin of D
to the boundary, corresponding to v \equiv 0 on each of these characteristics. We point
out that for the Aviles--Giga energy, the authors in [18] classify zero energy states
of the Aviles--Giga energy. More recently, [22] provides a quantitative version of the
result in [18]. Another quantitative result with relevance to the Aviles--Giga energy
was obtained in [21].

5.2. Hedgehog boundary conditions: \bfitg (\bfitx , \bfity ) = (\bfitx , \bfity ). Here we can again
precisely determine the minimizers of E0.

Theorem 5.1. For \Omega = D and boundary data g = (x, y) the two functions u\pm \ast :=
r\widehat er \pm \surd 

1 - r2\widehat e\theta are the only minimizers of the problem

inf E0(u)

taken over competitors u \in Hdiv(D; S1) \cap BV (D; S1) satisfying u\partial D \cdot \nu \partial D = g \cdot \nu \partial D = 1
on \partial D.

Proof. We note first that since u\cdot \nu \equiv 1 on \partial D and | u| = 1, necessarily competitors
must have traces satisfying u = g(x, y) = (x, y) along \partial D.

Now given any competitor u, an application of the Cauchy--Schwarz and the
Divergence Theorem gives

(5.1) E0(u) \geqslant 
L

2

\int 
D
(div u)2 dx \geqslant 

L

2

1

\pi 

\biggl( \int 
D
div u dx

\biggr) 2

= 2\pi L = E0(u
\pm 
\ast ).

Hence u\pm \ast are minimizers, and any other minimizing competitor would have to yield
equality in both of the inequalities above. Consequently, the only possible candidates
for minimizers u must satisfy Ju = \emptyset so that u \in W 1,1(D) and div u \equiv constant. The
Divergence Theorem and the boundary conditions then imply that in fact div u \equiv 2
throughout D.

Now we expand the competitor u in a Fourier series as

u =
\sum 
n\in Z

un(r)e
in\theta ,

where un(r) = fn(r) + ign(r) is a sequence of complex-valued functions that satisfy
u0(1) = 1 and un(1) = 0 if n \not = 1. In order to compute the divergence of u written in
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the Fourier development, we write Vn(r, \theta ) := un(r)e
in\theta and note that, written as a

vector field in R2, we have

Vn(r, \theta ) =

\biggl( 
fn(r) cosn\theta  - gn(r) sinn\theta 
gn(r) cosn\theta + fn(r) sinn\theta 

\biggr) 
.

A calculation then yields that

div Vn =

\biggl( 
f \prime n(r) +

nfn(r)

r

\biggr) 
cos(n - 1)\theta  - 

\biggl( 
g\prime n(r) +

ngn(r)

r

\biggr) 
sin(n - 1)\theta .

Using Plancherel and arguing as in (5.1), we find

E0(u) =
L

2

\sum 
n

\int 
D
(div Vn)

2 dx \geqslant 
L

2

\int 
D
(div V0)

2 dx \geqslant 2\pi L,

and so u = V0 = u0 with necessarily div V0 = f \prime 0 +
f0
r \equiv 2. Solving this ODE with

the boundary condition f0(1) = 1, we find f0(r) = r, and since | u| = 1, it follows that
g0(r) = \pm 

\surd 
1 - r2 so that u = u+\ast or u+ - .

5.3. Degree  - 1 boundary conditions: \bfitg (\bfitx , \bfity ) = (\bfitx /\bfitR , - \bfity /\bfitR ). In this
section, we develop a solution of the Euler--Lagrange boundary value problem (4.1)--
(4.2) with the symmetries hinted at by a numerical solution of the relaxed problem.
Although we do not claim that our construction yields a minimizer of the limiting
functional, the minimizing property of our solution seems plausible given its close
resemblance to the numerics, at least for a certain range of parameters of the problem.

We used the COMSOLMultiphysics finite elements software [1] to solve the Euler--
Lagrange equation associated with the energy functional (1.1) in the circle of the
radius R = 0.6, subject to the boundary conditions g(x, y) = (x/R, - y/R). The
(local) minimizers in COMSOL were found by simulating the gradient flow for E\varepsilon on
time intervals that were sufficiently large for a solution to reach an equilibrium. The
results for L = 0.5 and \varepsilon = 0.005 are shown in Figures 5.1--5.2.

First, we observe that (i) the jump set of the solution in Figure 5.1 consists
of two straight lines inclined at 45\circ to the horizontal axis, and (ii) the solution is
symmetric with respect to reflections about both these lines, as well as the vertical
and horizontal axes. Along the lines of the jump set, the symmetry is such that
the normal components from either side are equal, while the tangential components
are equal in absolute value and opposite in sign. Further, (iii) on both axes, the
solution vector is parallel to the axis itself, and (iv) Figure 5.2 indicates that the sum
of the traces of the divergence of u on both sides of the jump set equals zero. The
last observation is consistent with the required criticality condition (4.3) since the
curvature of the jump set is zero. Thus, it would be sufficient to look for the solution
of (4.1)--(4.2) in one-eighth of a circle of radius R, and then extend the construction
to the rest of the circle via symmetry.

Let \Omega be a sector of the circle of radius R, as depicted in Figure 5.3. We seek a
solution u of (4.1)--(4.2) in the form (4.6)--(4.8), where

Ju =
\Bigl\{ 
(x, y) \in R2 : y = x, x \in 

\Bigl( 
0, R/

\surd 
2
\Bigr) \Bigr\} 

,

subject to the Dirichlet boundary conditions

(5.2) u = (1, 0) when y = 0 and u = (x/R, - y/R) when x2 + y2 = R2.
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Fig. 5.1. A solution u of the Euler--Lagrange equation associated with the energy functional
(1.1) in the circle of the radius R = 0.6, subject to the boundary conditions g(x, y) = (x/R, - y/R).
Both u and | u| are shown.

Fig. 5.2. Level curves for the divergence of u (left) and for the angle \theta (right), where u =
(cos \theta , sin \theta ) is depicted in Figure 5.1.

By our symmetry assumptions, the jump of div u on Ju is equal to  - 2 div u - , and
hence (4.2) takes the form

(5.3) L div u - 2
\bigl( 
1 - (u \cdot \nu u)2

\bigr) 1/2
(u \cdot \nu u) = 0 on Ju,

where we dropped the subscript `` - "" for notational convenience. Our last assumption
is based on the behavior of the numerical solution in Figure 5.1. Considering the
solution in the part of the disc corresponding to \Omega in Figure 5.1 and recalling that
u = (cos \theta , sin \theta ), in what follows we work with \theta instead of u and assume that

(5.4) \theta : \=\Omega \rightarrow [ - \pi /4, 0] .
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III

I

II

y

π/4

x(
√
2− 1)R R

Fig. 5.3. Regions corresponding to different characteristics families.

We begin by identifying two distinct families of characteristics that originate on
the x-axis and recover the solution of the limiting problem in regions I and III in
Figure 5.3.

Step 1. First, taking into account (5.2), we construct a characteristic

(x(s, t), y(s, t), \theta (s, t), v(s, t))

with the initial data

(x(s, 0), y(s, 0), \theta (s, 0), v(s, 0)) = (s, 0, 0, v0(s)) for s \in [s0, R],

which terminates at some point

(x (s, t\ast (s)) , y (s, t\ast (s))) = R (cos (\psi (s, t\ast (s))), sin (\psi (s, t\ast (s))))

on the circular component of \partial \Omega so that

(5.5) (x (s, t\ast (s)) , y (s, t\ast (s)) , \theta (s, t\ast (s)) , v (s, t\ast (s)))

= (R cos (\psi (s, t\ast (s))), R sin (\psi (s, t\ast (s))), - \psi (s, t\ast (s)) , v (s, t\ast (s)))

for all s \in [s0, R]. Here \psi represents the polar angle for a vector (x, y), while the
parameter s0 > 0 and the functions v0 and t\ast are all to be determined in the course
of solving the problem. Note that, as a consequence of (4.12), the characteristics and
the field u are mutually perpendicular at all points in \Omega , and hence a characteristic
intersecting the x-axis must be perpendicular to this axis at all points of intersection.

From (4.6)--(4.8), we conclude that

x(s, t) =
1

v0(s)

\bigl[ 
cos
\bigl( 
\theta (s, t)

\bigr) 
 - 1
\bigr] 
+ t,(5.6)

y(s, t) =
1

v0(s)
sin
\bigl( 
\theta (s, t)

\bigr) 
,(5.7)

\theta (s, t) = v0(s)t,(5.8)

v(s, t) = v0(s)(5.9)

for all s \in [s0, R]. Substituting t
\ast (s) into these equations and using (5.5) gives

R cos (\psi (s, t\ast (s))) =
1

v0(s)

\bigl[ 
cos
\bigl( 
\psi (s, t\ast (s))

\bigr) 
 - 1
\bigr] 
+ t,
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R sin (\psi (s, t\ast (s))) =  - 1

v0(s)
sin
\bigl( 
\psi (s, t\ast (s))

\bigr) 
,(5.10)

\psi (s, t\ast (s)) =  - v0(s)t\ast (s)

for all s \in [s0, R]. It follows from (5.10) that

v0 \equiv  - 1

R

on [s0, R]; that is, all characteristic curves that intersect both the x-axis and the
circular part of the boundary are themselves arcs of circles of radius R, centered on
the x-axis. These curves clearly foliate a region in \Omega labeled by I in Figure 5.3 and
bounded from the left by the mirror image of the boundary arc with respect to the
line x = R/

\surd 
2. The corresponding leftmost characteristic curve in family I will be

denoted by x r. It intersects the x-axis at x = (
\surd 
2 - 1)R and is given by

xr(t) =
\surd 
2R - R cos

\bigl( 
t/R

\bigr) 
,(5.11)

yr(t) = R sin
\bigl( 
t/R

\bigr) 
,(5.12)

\theta r(t) =  - t/R(5.13)

for all t \in [0, \pi R/4].
Step 2. Next, we turn our attention to the region labeled III in Figure 5.3. This

region is foliated by the characteristic curves intersecting both the x-axis and jump
set Ju = \{ (x, y) : y = x\} . Because they originate on the x-axis, these characteristics
are given for s \in [0, s0] by the same equations as in (5.6)--(5.9). For the remainder of
this construction, we assume that s \in [0, s0]. Suppose that intersection with the line
y = x occurs at some point (x (s, t\ast (s)) , y (s, t\ast (s))) . Then

x (s, t\ast (s)) = y (s, t\ast (s)) ,(5.14)

Lv0(t) + cos2 \theta (s, t\ast (s)) - sin2 \theta (s, t\ast (s)) = 0.(5.15)

Here the second equation is the natural boundary condition (5.3) recast into a simpler
form using trigonometric identities. Equation (5.15) along with (5.4) implies that

(5.16) v0(s) \leqslant 0.

From (5.6), (5.7), and (5.14), we obtain

(5.17) cos \theta (s, t\ast (s)) - sin \theta (s, t\ast (s)) = 1 - sv0(s).

Then (5.15) and (5.17) allow us to conclude that

cos \theta (s, t\ast (s)) + sin \theta (s, t\ast (s)) =  - Lv0(s)

1 - sv0(s)

and

2 cos \theta (s, t\ast (s)) = 1 - tv0(s) - 
Lv0(s)

1 - sv0(s)
,

2 sin \theta (s, t\ast (s)) =  - 1 + tv0(s) - 
Lv0(s)

1 - sv0(s)
.
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(s,0)

xr (s)

xl (s)

(s,t)x

x

Fig. 5.4. Characteristics construction in the intermediate region II.

Hence

(1 - sv0(s))
4  - 2(1 - sv0(s))

2
+ L2v20(s) = 0

and

(5.18) (1 - sv0(s))
2
= 1 +

\sqrt{} 
1 - L2v20(s).

Here the sign in front of the square root follows from (5.16). Now let

F (p) := (1 - tp)
2  - 

\sqrt{} 
1 - L2p2  - 1.

Clearly, F is continuous on [ - 1/L, 0] for every s \in [0, s0] and

F (0) =  - 1 < 0 and F

\biggl( 
 - 1

L

\biggr) 
=
\Bigl( 
1 +

s

L

\Bigr) 2
 - 1 \geqslant 0.

Thus, there exists  - 1
L \leqslant v0(s) < 0 such that (5.18) holds. Furthermore, by (5.18),

we have the bound 1 - sv0(s) <
\surd 
2, so that v0(s) >  - (

\surd 
2 - 1)/s, and, in particular,

(5.19) v0((
\surd 
2 - 1)R) >  - 1

R
.

Note that the rightmost characteristic x l in the family III originates from the same
point ((

\surd 
2 - 1)R, 0) on the x-axis as the characteristic x r in the family I, and both

x l and x r are tangent to each other at ((
\surd 
2 - 1)R, 0). Inequality (5.19) demonstrates

that the radius of x r is smaller than the radius of x l and so there is a wedge-shaped
region in \Omega , labeled II in Figure 5.4, which is covered neither by the characteristics
from the family I nor by the characteristics from the family III. In Step 3 below, we
construct the third family of characteristics that extends the solution to region II.

We conclude this part of the construction by showing that the characteristics of
the family III indeed foliate region III. We take the derivative of both sides of (5.18)
with respect to s and solve for v\prime 0(s) to obtain

v\prime 0(s) =  - v0(s)
\Biggl[ 
s - L2v0(s)

2(1 - sv0(s))
\sqrt{} 
1 - L2v20(s)

\Biggr]  - 1

> 0.
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It follows that the characteristic curves in region III are the circular arcs having
curvature that increases with s. Since these curves also cross the x-axis at 90\circ , they
completely cover region III without intersecting one another. We also note that
lims\rightarrow 0 v0(s) =  - 1

L , and so the divergence of our solution in region III remains
bounded.

Step 3. Finally, we use characteristics to extend the solution to region II. The
procedure is illustrated in Figure 5.4. We use the curve (5.11)--(5.13) as the initial
data for the new family of characteristics. For the remainder of this section, we will
assume that s \in (0, \pi R/4). Let

x0(s) =
\surd 
2R - R cos

\bigl( 
s/R

\bigr) 
,

y0(s) = R sin
\bigl( 
s/R

\bigr) 
,

\theta 0(s) =  - s/R.

Then, from (4.6)--(4.8), we have that

x(s, t) =
1

v0(s)

\bigl[ 
cos
\bigl( 
\theta (s, t)

\bigr) 
 - cos

\bigl( 
s/R

\bigr) \bigr] 
+

\surd 
2R - R cos

\bigl( 
s/R

\bigr) 
,(5.20)

y(s, t) =
1

v0(s)

\bigl[ 
sin
\bigl( 
\theta (s, t)

\bigr) 
+ sin

\bigl( 
s/R

\bigr) \bigr] 
+R sin

\bigl( 
s/R

\bigr) 
,(5.21)

\theta (s, t) = v0(s)t - s/R,

v(s, t) = v0(s).

The new characteristic curves are still assumed to terminate on the jump set y = x,
and hence they must satisfy conditions (5.14)--(5.15). Setting \theta \ast (s) = \theta (s, t\ast (s)) and
simplifying, these conditions take the form

cos \theta \ast (s) - sin \theta \ast (s) = A(s),(5.22)

cos \theta \ast (s) + sin \theta \ast (s) =  - Lv0(s)
A(s)

,(5.23)

where

(5.24) A(s) :=
\surd 
2
\bigl[ 
(Rv0(s) + 1) sin

\bigl( 
s/R+ \pi /4

\bigr) 
 - Rv0(s)

\bigr] 
.

The assumption (5.4) implies that

(5.25) v0(s) \leqslant 0 and A(s) > 0.

Following the same procedure as in Step 2, we find that v0(s) satisfies

(5.26) A2(s) = 1 +
\sqrt{} 
1 - L2v20(s),

and hence

(5.27) v0(s) \geqslant  - 1

L
and A(s) \leqslant 

\surd 
2.

The second inequality in (5.27) is equivalent to

v0(s) \geqslant  - 1

R
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and, combining this inequality with the first inequality in (5.25) and the first inequality
in (5.27), we have

(5.28)  - min

\biggl\{ 
1

R
,
1

L

\biggr\} 
\leqslant v0(s) \leqslant 0.

Now, let

F (p) := 2
\bigl[ 
(Rp+ 1) sin

\bigl( 
s/R+ \pi /4

\bigr) 
 - Rp

\bigr] 2  - \sqrt{} 1 - L2p2  - 1

and

q = min

\biggl\{ 
1

R
,
1

L

\biggr\} 
.

Clearly, F is continuous on [ - q, 0] for every s \in (0, \pi R/4) and

F (0) =  - 2 cos2
\bigl( 
s/R+ \pi /4

\bigr) 
< 0,

while

F ( - q) =
\Biggl\{ 

2
\bigl[ 
(1 - R/L) sin

\bigl( 
s/R+ \pi /4

\bigr) 
+R/L

\bigr] 2  - 1 > 0, L \geqslant R,

1 - 
\sqrt{} 
1 - (L/R)

2
> 0, L < R.

This implies that there exists v0(s) \in ( - q, 0) such that (5.26) holds and, therefore,
(i) v is uniformly bounded in region II, (ii) the inequality in (5.28) can be considered
to be strict, and (iii) v experiences a jump on x r. Note that, at the same time, \theta is
continuous across x r by construction.

It remains to show that the characteristic curves cover the entire region II, with-
out intersecting each other. We begin by proving the following.

Lemma 5.1. The functions v0 and \theta \ast are, respectively, strictly increasing and
strictly decreasing on (0, \pi R/4).

Proof. Taking the derivative of both sides of (5.26) with respect to s, solving
for v\prime 0(s), and using (5.28), we determine that v\prime 0(s) > 0 for all s \in (0, \pi R/4). This
establishes monotonicity of v0. Likewise, solving (5.22)--(5.23) for cos \theta \ast , taking the
derivative with respect to s, and using the just established fact that the v\prime 0 > 0 on
(0, \pi R/4), along with (5.24) and (5.28), proves that \theta \ast \prime < 0 on (0, \pi R/4).

To demonstrate that no two characteristic curves can intersect, we suppose, by
contradiction, that a circular arc of a characteristic C1 intersects another circular
arc of a characteristic C2 before reaching y = x, where C1 corresponds to s = s1,
whereas C2 corresponds to s = s2 with s1 < s2. Using (5.20), (5.21), and the
monotonicity of v0, we know that the curvature of C1 is greater than the curvature
of C2. Since C1 starts out (i.e., at t = 0) to the left of C2, this intersection could not
be merely tangential since a circle of larger curvature can't sit outside of a circle of
smaller curvature. Thus, the intersection is transversal. Now the angle between an
incoming characteristic and the line y = x is the nonnegative angle \theta \ast +\pi /4, and if the
intersection is transversal, then necessarily \theta \ast (s1)+\pi /4 < \theta \ast (s2)+\pi /4, contradicting
Lemma 5.1.

We end this section by plotting the analytical counterparts of Figure 5.2 obtained
in MATLAB using the characteristics solutions constructed above.

Figure 5.5 should be compared to the solution in the sector in Figure 5.2, corre-
sponding to the polar angle ranging between 0\circ and 45\circ . Regions I and II are clearly

D
ow

nl
oa

de
d 

09
/1

7/
19

 to
 1

30
.1

01
.1

54
.9

3.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GINZBURG–LANDAU PROBLEM FOR ANISOTROPIC NEMATICS 303

0 0.1 0.2 0.3 0.4 0.5 0.6
x

0

0.1

0.2

0.3

0.4

y

-1.5

-1

-0.5

0

0 0.1 0.2 0.3 0.4 0.5 0.6
x

0

0.1

0.2

0.3

0.4

y

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Fig. 5.5. Level curves for the divergence of u (left) and for the angle \theta (right), where u =
(cos \theta , sin \theta ) is a solution obtained using characteristics. The divergence is constant in the empty
region.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
L

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

E

Numerical
Analytical

Fig. 5.6. Energy of the critical point as a function of L.

visible in Figure 5.2, and there is a good match between Figures 5.5 and 5.2 in these
regions. The discrepancy between the solutions in region III can be attributed to the
qualitative differences between minimizers of the \varepsilon -level and \Gamma -limit problems. The
energies of the characteristics and numerical solutions are depicted in Figure 5.6 for
a small range of L values. The plots demonstrate that both the numerical solution
and the solution constructed using characteristics have energy increasing with L on
L \in [0.1, 0.7]. The systematic difference between the graphs can once again be ex-
plained by the fact that the corresponding functions are critical points of the different
energy functionals.

5.4. An example in an annulus: Curved walls. In this section we briefly
outline an example where our analysis suggests that the jump set can occur along a
portion of the boundary with a jump set, and might in general not be a straight line
segment. For details of the calculations in this section, we refer the reader to [15].

We fix a number R > 1 and let \Omega denote an annulus described in polar coordinates
by \Omega := \{ 1 < r < R\} . For the boundary conditions g defined by g(1, \theta ) =  - \widehat e\theta ,
g(R, \theta ) = \widehat e\theta , we study the problem of minimizing the E0 energy among competitors
u\partial \Omega \cdot \nu \partial \Omega = g \cdot \nu \partial \Omega = 0. It is reasonable to expect that a minimizer is radial, so we
work within the ansatz

u(r, \theta ) = p(r)\widehat er + q(r)\widehat e\theta ,(5.29)
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Fig. 5.7. Energy minimizers in an annulus for L = 0.2 (left) and L = 2 (right). Here \varepsilon = 0.03
and the color represents | u| .

where p2 + q2 \equiv 1, p(1) = 0 = p(R). Within this ansatz, div u = 1
r (rp(r))r, and

the jump set is composed of a union of circles, possibly occurring at the boundary of
\Omega . Away from jumps, criticality of

\int 
(div u)2 dx within this ansatz requires that p(r)

satisfies the ODE \partial 
\partial r

\bigl( 
1
r

\partial 
\partial r (rp(r))

\bigr) 
= 0, so that p(r) takes the form p(r) = Cr+ D

r for
constants C,D. In the absence of a jump circle in \Omega , the boundary conditions on p
would force p(r) \equiv 0, and then either q(r) \equiv 1 or q(r) \equiv  - 1. This results in boundary
walls, either along the circle \rho = 1 or along \rho = R, respectively, carrying energies
E0(\^e\theta ) =

8\pi 
3 or E0( - \^e\theta ) =

8\pi R
3 .

Elementary calculations, detailed in [15], demonstrate that for any R > 1, for an

interval of L-values of the form (0, L\ast (R)), where L\ast (R) <
8
3
R2 - 1
R2+1

\bigl( 
1 - 

\surd 
2R\surd 

R2+1

\bigl( 
3
4

\bigr) 3/2\bigr) 
,

the energy E0 within the ansatz (5.29) has an internal wall with energy strictly smaller
than 8\pi 

3 , which is the energy associated to a boundary wall.
At the other extreme, we also show in [15] that for any fixed R > 1 and L suffi-

ciently large depending on R, the minimizer of E0 with these ``mismatched"" boundary
conditions and the radial ansatz (5.29) necessarily has its wall at the inner boundary
\rho = 1. The associated energy is E0(\^e\theta ) =

8\pi 
3 .

In Figure 5.7, we illustrate observations made in this section by presenting the
results of gradient flow simulations for the functional E\varepsilon for two different values of
L. For the smaller value of L = 0.2, the (local) minimizer has a shallower circular
wall in the interior of the domain, while the minimizer for L = 2 has a deeper wall
that coincides with the inner boundary of the annulus. Note that the simulations
were done without assuming that competitors are radially symmetric---the apparent
symmetry of minimizers suggests that it might be reasonable to consider the ansatz
(5.29).

6. Results for the special case of a rectangle. In this section we pose the
problem on a rectangle, taking \Omega = ( - T, T )\times ( - H,H) for positive constants T and
H. Furthermore, we specialize the boundary conditions on competitors u : \Omega \rightarrow R2

to be given by

(6.1) u(x,\pm H) =
\bigl( 
\pm 
\sqrt{} 
1 - a2, a

\bigr) 
for | x| \leqslant T, u is 2T -periodic in x,

for some constant a \in [0, 1). The rationale for considering E\varepsilon and the \Gamma -limit E0

in this rather special setting is to focus on the structure of wall transitions in as
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simple a situation as possible. A primary focus will be on examining the relative
favorability of one-dimensional---that is, purely y-dependent structures---versus two-
dimensional structures such as cross-ties that one associates with related models in
micromagnetics; cf., e.g., [3]. Other goals we have in mind concerning this special
case include better understanding the relative weights given to jump energy versus
divergence for minimizers, as well as the possible emergence of periodic structures on
a scale smaller than the fixed rectangle width 2T .

6.1. Study of the problem in a rectangle within a one-dimensional
ansatz. We begin our analysis of E\varepsilon and E0 on the rectangle subject to the bound-
ary conditions (6.1) by first studying the variational problem among one-dimensional
competitors, i.e., functions of y alone. More specifically, for 0 \leqslant | a| < 1 we consider
the space of admissible functions

\scrA 1(a) := \{ u = u(y) \in H1(( - H,H);R2), u(\pm H) =
\bigl( 
\pm 
\sqrt{} 
1 - a2, a

\bigr) 
\} 

and consider the variational problem

(6.2) min
u\in \scrA 1(\alpha )

E1D
\varepsilon (u),

where

E1D
\varepsilon (u) :=

1

2

\int H

 - H

\varepsilon | u\prime | 2 + 1

\varepsilon 
(| u| 2  - 1)2 + L(u\prime 2)

2 dy.(6.3)

The corresponding \Gamma -limit E1D
0 is now defined over the class

(6.4)
\scrA 0 := \{ u = (u1, u2) : u

3
1 \in BV

\bigl( 
( - H,H)

\bigr) 
, u2 \in H1

\bigl( 
( - H,H)

\bigr) 
,

u(2)(\pm H) = a, | u| = 1 a.e. y\} ,

where the boundary conditions on u2 come from (3.3). Then E0 from (3.4) takes the
form

(6.5) E1D
0 (u) =:

L

2

\int H

 - H

(u\prime 2)
2 dy + 4/3

\sum 
yj\in Ju1

\bigl( 
1 - u22(yj)

\bigr) 3/2
+

1

6

\bigm| \bigm| \bigm| u1( - H) +
\sqrt{} 
1 - a2

\bigm| \bigm| \bigm| 3 + 1

6

\bigm| \bigm| \bigm| u1(H) - 
\sqrt{} 

1 - a2
\bigm| \bigm| \bigm| 3 .

Not surprisingly, in this one-dimensional setting we can prove a much stronger
compactness statement than is possible in the two-dimensional setting of Theorem 3.1.
Here we establish the following theorem.

Theorem 6.1. Let u\varepsilon = (u
(1)
\varepsilon , u

(2)
\varepsilon ) \in \scrA 1(a) with E1D

\varepsilon (u\varepsilon ) \leqslant C. Then, up to

extraction of subsequences, one has u
(1)
\varepsilon \rightarrow u1 in L

3( - H,H) for some function u1 such

that u31 \in BV ( - H,H) and one has u
(2)
\varepsilon \rightarrow u2 in C0,\gamma for all \gamma < 1/2. Furthermore,

| (u1, u2)| = 1 a.e.

Proof. Precompactness of \{ u(2)\varepsilon \} in C0,\gamma ( - H,H) for \gamma < 1/2 is clear from the
uniform H1 bound and Sobolev imbedding. The thrust of the rest of the proof will

be to prove the statement about \{ u(1)\varepsilon \} . To this end, we define

\psi \varepsilon (y) :=

\int u(1)
\varepsilon 

 - u
(1)
\varepsilon 

\bigl( 
1 - s2  - (u(2)\varepsilon )2

\bigr) 
ds = 2u(1)\varepsilon  - 2u(1)\varepsilon (u(2)\varepsilon )2  - 2

3
(u(1)\varepsilon )3.
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Since we have a uniform L4 bound on u
(1)
\varepsilon from the energy bound E1D

\varepsilon (u\varepsilon ) \leqslant C it
readily follows that \psi \varepsilon is uniformly bounded in L1( - H,H). Now we estimate the total
variation of \psi \varepsilon . We have\int H

 - H

| \psi \prime 
\varepsilon | dy \leqslant 2

\int H

 - H

\bigm| \bigm| \bigm| 1 - | u\varepsilon | 2
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| u(1)\varepsilon 

\prime 
\bigm| \bigm| \bigm| dy + 4

\int H

 - H

\bigm| \bigm| \bigm| u(1)\varepsilon u(2)\varepsilon 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| u(2)\varepsilon 
\prime 
\bigm| \bigm| \bigm| dy

\leqslant 
1

\varepsilon 

\int H

 - H

\Bigl( 
1 - | u\varepsilon | 2

\Bigr) 2
dy + \varepsilon 

\int H

 - H

\bigm| \bigm| \bigm| u(1)\varepsilon 
\prime 
\bigm| \bigm| \bigm| 2 dy + \int H

 - H

\Bigl( 
(u(1)\varepsilon )4 + (u(2)\varepsilon )4

\Bigr) 
dy

+ 2

\int H

 - H

(u(2)\varepsilon 
\prime )2 dy < C.

Concluding the desired compactness of \{ u(1)\varepsilon \} relies on an algebraic identity. Using
the BV bound on \{ \psi \varepsilon \} , and passing to subsequences that we do not denote explicitly,

we know that \psi \varepsilon converges in L1. We now show that \{ u(1)\varepsilon \} \varepsilon >0 is a Cauchy sequence
in L3. For any 0 < \varepsilon < \delta , we have

4

3

\bigl( 
(u(1)\varepsilon )3  - (u1\delta )

3
\bigr) 
=
\Bigl( 
\psi \varepsilon  - \psi \delta 

\Bigr) 
 - 2(1 - | u\varepsilon | 2)u(1)\varepsilon + 2(1 - | u\delta | 2)u(1)\delta .

Hence, using Cauchy--Schwarz we obtain

4

3

\int H

 - H

\bigm| \bigm| (u(1)\varepsilon )3  - (u
(1)
\delta )3

\bigm| \bigm| dy
\leqslant 
\int H

 - H

| \psi \varepsilon  - \psi \delta | dy + \varepsilon 1/3
\int H

 - H

| u(1)\varepsilon | 2 dy + 1

\varepsilon 1/3

\int H

 - H

(1 - | u\varepsilon | 2)2 dy

+ \delta 1/3
\int H

 - H

| u(1)\delta | 2 dy + 1

\delta 1/3

\int H

 - H

(1 - | u\delta | 2)2 dy.

Since \{ u(1)\varepsilon \} is uniformly bounded in L4 by the energy bound, we can invoke the
L1-convergence of \{ \psi \varepsilon \} to find that\int H

 - H

\bigm| \bigm| (u(1)\varepsilon )3  - (u
(1)
\delta )3

\bigm| \bigm| \leqslant o(1),(6.6)

as \delta \rightarrow 0. Since | a  - b| 3 \leqslant 4| a3  - b3| , it follows that \{ u(1)\varepsilon \} is Cauchy in L3, and has

a limit in this space, denoted u1. Denoting the limit of u
(2)
\varepsilon by u2, it follows from the

energy bound that u21 + u22 = 1 a.e. in ( - H,H). Consequently, the limit of the \psi \varepsilon 

satisfies

\psi \varepsilon \rightarrow 
4

3
(u1)

3(6.7)

in L1. By lower-semicontinuity of the BV norm under L1-convergence, we conclude
that

(u1)
3 \in BV ( - H,H).

It follows that one-sided limits of (u1)
3 exist at all y \in ( - H,H). Combined with u2

being continuous on the same interval, this implies that | u1, u2| = 1 everywhere on
( - H,H).
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In light of the preceding compactness result, Theorem 6.1, one can establish a full
\Gamma -convergence result in this one-dimensional setting without an assumption on the
limiting functions lying in BV . We have the following.

Theorem 6.2. Let u \in \scrA 0. Then
(i) for any sequence u\varepsilon \in \scrA 1(a) satisfying u\varepsilon 

\wedge 
\rightharpoonup u, we have

(6.8) lim inf
\varepsilon \rightarrow 0

E1D
\varepsilon (u\varepsilon ) \geqslant E1D

0 (u);

(ii) there exists a sequence w\varepsilon \in \scrA 1(a) with w\varepsilon 
\wedge 
\rightharpoonup u and

lim
\varepsilon \rightarrow 0

E1D
\varepsilon (w\varepsilon ) = E1D

0 (u).(6.9)

A proof of this particular case of Theorem 3.2 is significantly simpler and more
transparent in the key elements of the argument [15].

Remark 6.3. We recall that in Theorem 3.2 we made the assumption u \in BV.
That this is not quite the optimal space can already be seen in this simpler one-
dimensional setting where one can construct a limiting vector field u = (u1, u2) with
u1 having a countable collection of jumps of size ( 1k )k\in N. Such a construction can
be arranged to have finite E0 energy, but necessarily has infinite BV norm. The
preceding theorem, however, guarantees the existence of a recovery sequence for such
a competitor.

This phenomenon is well known for Aviles--Giga; see the discussion in [4, pp. 338--
340]. The counterexample there is very similar in spirit, but is understandably a bit
more involved due to the constraint imposed by the eikonal equation.

Next we pursue an understanding of minimizers of the one-dimensional \Gamma -limit
E1D

0 .

Theorem 6.4. For any a \in (0, 1) the problem

inf
\scrA 0
E1D

0 (u)

has a unique solution u\ast = (u\ast 1, u
\ast 
2), where u

\ast 
1 has exactly one jump located at y = 0

and u\ast 2 is linear on the subintervals [ - H, 0] and [0, H]. More precisely, the components
are given by the formulas

(6.10) u\ast 2(y) =

\Biggl\{ 
a+ M - a

H (y +H), y \in ( - H, 0],
a+ M - a

H (H  - y), y \in (0, H),

(6.11) u\ast 1(y) =

\Biggl\{ 
 - 
\sqrt{} 

1 - (u\ast 2)
2 for y \in [ - H, 0],\sqrt{} 

1 - (u\ast 2)
2 for y \in (0, H],

where the constant M =M(L,H, a) \in (a, 1) is the minimizer of the problem

(6.12) min
m\in [ - 1,1]

L

H
(m - a)2 +

4

3
(1 - m2)3/2.

In case a = 0, the nature of the minimizer depends on the ratio L/H. If L/H < 2,
then the minimizer is again unique and has the one-jump structure given by (6.10)--

(6.11) and the infimum is L
H  - 1

12
L3

H3 . If L/H > 2, then the minimizer is any step
function of the form

u(y) =

\biggl\{ 
( - 1, 0) for y \in ( - H, y\ast ],
(1, 0) for y \in (y\ast , H),
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where y\ast \in [ - H,H ] is arbitrary and the infimum is 4/3. If L/H = 2, the family of
step functions and the solution given by (6.10)--(6.11) are all minimizers.

Proof. Let u = (u1, u2) be any competitor in \scrA 0. We denote by Ju the jump set
of u, which in the present one-dimensional setting corresponds simply to the jump
set of u1, combined with either  - H or H, or both if either u1( - H) \not =  - 

\surd 
1 - a2 or

u1(H) \not =
\surd 
1 - a2. We will write \=Ju for the closure of Ju and define the number Mu

via

Mu :=

\biggl\{ 
maxy\in \=Ju

u2(y) if \=Ju \not = \emptyset ,
maxy\in [ - H,H] u2(y) if \=Ju = \emptyset .

In light of the continuity of u2 and the compactness of \=Ju we note that this maximum
will always be achieved at at least one point \=y \in [ - H,H ]. We now proceed with three
cases.

Case 1. \=Ju \not = \emptyset and Mu is achieved at \=y \in ( - H,H). We note that this case
includes the possibility that \=y \not \in Ju but is simply a limit point of a sequence of points
\{ yj\} in the jump set. In this case | u - (yj) - u+(yj)| \rightarrow 0, meaning that the difference
between the left and right traces of u1 approaches zero. Since these traces are also
opposites of each other, necessarily u1(\=y) = 0, forcing u2(\=y) = 1 =Mu.

Whether or not this subcase of Case 1 occurs, we now consider the competitor
\=u = (\=u1, \=u2), whose second component is given by

(6.13) \=u2 =

\Biggl\{ 
a+ Mu - a

\=y+H (y +H) for y \in [ - H, \=y],
a+ Mu - a

\=y - H (y  - H) for y \in (\=y,H],

and whose first component is given by

(6.14) \=u1 =

\Biggl\{ 
 - 
\sqrt{} 
1 - \=u22 for y \in [ - H, \=y],\sqrt{} 

1 - \=u22 for y \in (\=y,H].

We calculate that
(6.15)

E1D
0 (u) \geqslant 

L

2

\int \=y

 - H

(u\prime 2)
2 dy +

L

2

\int H

\=y

(u\prime 2)
2 dy +

4

3
(1 - M2

u)
3/2

\geqslant 
L

2(\=y +H)

\biggl( \int \=y

 - H

u\prime 2 dy

\biggr) 2

+
L

2(H  - \=y)

\Biggl( \int H

\=y

u\prime 2 dy

\Biggr) 2

+
4

3
(1 - M2

u)
3/2

=
L(Mu  - a)2

2(\=y +H)
+
L(Mu  - a)2

2(H  - \=y)
+

4

3
(1 - M2

u)
3/2

=
L

2

\int \=y

 - H

(\=u\prime 2)
2 dy +

L

2

\int H

\=y

(\=u\prime 2)
2 dy +

4

3
(1 - \=u2(\=y)

2)3/2 = E1D
0 (\=u),

by the Cauchy--Schwarz inequality, with the inequality being strict unless u2 is linear
on the subintervals ( - H, \=y) and (\=y,H). Furthermore, among competitors of the form
(6.13)--(6.14), the second-to-last line of (6.15) reveals that the optimal choice is to
have \=y = 0 yielding a minimal energy within this class of competitors of the form

(6.16) E1D
0 (\=u) =

L

H
(Mu  - a)2 +

4

3
(1 - M2

u)
3/2.

Case 2. Suppose \=Ju = \emptyset . In this case u1 is continuous with u1(\pm H) = \pm 
\surd 
1 - a2.

Hence there exists a point y \in ( - H,H) such that u1(y) = 0, meaning that u2(y) = 1.
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Therefore in this case, Mu = u2(\=y) = 1 for some \=y \in ( - H,H). Then consider the
competitor \=u = (\=u1, \=u2) given by (6.13)--(6.14) with Mu = 1, so that now u1 is
continuous as well. The calculation leading to (6.15), absent the jump term, implies
in this case that

E1D
0 (u) \geqslant E1D

0 (\=u)

with the minimal value

(6.17) E1D
0 (\=u) =

L

H
(1 - a)2.

Case 3. Suppose \=Ju \not = \emptyset and either Mu = u2( - H) or Mu = u2(H). In the first
case, we have

(6.18)
\sqrt{} 
1 - a2E1D

0 (u) \geqslant 
1

6
(u1( - H) +

\sqrt{} 
1 - a2)3 =

4

3
(1 - a2)3/2 = E1D

0 (\=u),

where \=u \equiv (
\surd 
1 - a2, a), while in the second case we have

(6.19) E1D
0 (u) \geqslant 

1

6
(u1(H) - 

\sqrt{} 
1 - a2)3 =

4

3
(1 - a2)3/2 = E1D

0 (\=u),

where \=u \equiv ( - 
\surd 
1 - a2, a). Again the inequalities are sharp unless u \equiv \=u.

Having exhausted all possibilities, we next observe that the optimal formula (6.17)
from Case 2 corresponds to (6.16) with Mu = 1, and the optimal formulas (6.18)
and (6.19) from Case 3 correspond to (6.16) with Mu = a. Hence, the minimal
energy corresponds to the minimization (6.12). Clearly this minimum must occur for
m \in [0, 1], and since for a \in (0, 1) the function

f(m) :=
L

H
(m - a)2 +

4

3
(1 - m2)3/2

satisfies the conditions f \prime (0) < 0 and f \prime (1) > 0, the minimum occurs on (0, 1). The
conclusion of the theorem for this case then follows. When a = 0, one finds that
f \prime (0) = 0, and some elementary calculus yields the stated dichotomy depending on
the ratio L/H. When a \not = 0, it can be checked by elementary arguments that the
interior minimum is unique.

Remark 6.5. The proof of Theorem 3.2 reveals that resolving the internal struc-
ture of walls for the E0 energy at the \varepsilon > 0 level using a one-dimensional construction
is asymptotically optimal. However, it is possible to also have two-dimensional recov-
ery sequences with the same energy asymptotics. To see this, set S := \{ | x| < 1/2\} 
and define the map u : R2 \rightarrow R2, which is 1-periodic in the x-direction, by

u(x, y) = u(r cos \theta , r sin \theta ) :=

\left\{                 

\bigl( 
1\surd 
2
, - 1\surd 

2

\bigr) 
, S \cap \{ 0 \leqslant \theta \leqslant \pi 

4 \} ,
(sin \theta , - cos \theta ), S \cap \{ \pi 

4 \leqslant \theta \leqslant 3\pi 
4 \} ,\bigl( 

1\surd 
2
, 1\surd 

2

\bigr) 
, S \cap \{ 3\pi 

4 \leqslant \theta \leqslant \pi \} ,\bigl( 
 - 1\surd 

2
, 1\surd 

2

\bigr) 
, S \cap \{ \pi \leqslant \theta \leqslant 5\pi 

4 \} ,
(sin \theta , - cos \theta ), S \cap \{ 5\pi 

4 \leqslant \theta \leqslant 7\pi 
4 \} ,\bigl( 

 - 1\surd 
2
, - 1\surd 

2

\bigr) 
, S \cap \{ 7\pi 

4 \leqslant \theta < 2\pi \} ,

extended to all of R by u(x+1, y) = u(x, y) for all x \in R. We compute the E0 energy
per unit length of the cross-tie map u, which is divergence-free. Across the walls
\{ | x| \leqslant 1/2, y = 0\} , the jump angle is \pi /4. Similarly, along the walls \{ | y| \leqslant 1/2, x =

D
ow

nl
oa

de
d 

09
/1

7/
19

 to
 1

30
.1

01
.1

54
.9

3.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

310 D. GOLOVATY, P. STERNBERG, AND R. VENKATRAMAN

1/2\} the jump angle is \pi /4. Finally there are walls \{ | y| > 1/2, x = 1/2\} , along which
the angle varies with y and is in fact equal to arctan

\bigl( 
1
2y

\bigr) 
at height y. Adding up these

various jump energies yields the energy per unit length,

E0(u;S) =
4

3

\Biggl[ 
2

\biggl( 
1\surd 
2

\biggr) 3

+ 2

\int \infty 

1/2

1

(1 + 4y2)3/2
dy

\Biggr] 

=
4

3

\biggl[ 
1\surd 
2
+ 1 - 1\surd 

2

\biggr] 
=

4

3
.

This construction can be scaled down to fit into walls replacing a heteroclinic con-
necting (1, 0) and ( - 1, 0). This observation is reported without details in [20] based
on a private communication with S. Serfaty.

6.2. A two-dimensional construction with cross-ties. In this section we
construct a critical point to E0 by solving the free boundary problem (4.1)--(4.3). Here
our particular interest is to find parameter regimes within which the one-dimensional
minimizer from Theorem 6.4 fails to minimize the full two-dimensional problem (3.4).
The main result of this section is as follows.

Theorem 6.6. Consider the minimization problem for E0 in the rectangle \Omega =
( - T, T ) \times ( - H,H), subject to the boundary conditions (6.1) with a = 0. There exist
constants L0 \approx 1.27 and L1 \approx 2.14 such that whenever L/H \in (L0, L1) and T =
H \~T (L/H), where \~T (L/H) solves (6.30), we have

(6.20) inf E0(u) < 2T inf
\scrA 0
E1D

0 (u).

Here the infimum on the left is taken over all u \in Hdiv (\Omega ; S1) \cap BV (\Omega ; S1) such that
u \cdot \nu = 0 on the top and on the bottom y = \pm H and u is 2T -periodic in x.

Remark 6.7. Given the energy functional (3.4) and the rectangular domain \Omega in
the statement of Theorem 6.6, it is easy to see that by setting

\~x =
x

H
, \~y =

y

H
, \~E0 =

E0

H

the rescaled variational problem for \~E0 contains two independent parameters: the
aspect ratio \~T = T/H and the scaled elastic constant L/H. Then setting \~u(\~x, \~y) =
u (H\~x,H \~y) for any admissible u \in Hdiv (\Omega ; S1) \cap BV (\Omega ; S1), assuming that \~T =
\~T (L/H), and writing explicitly the dependence of the energy on L and H, we find
that

(6.21)
1

2T
E0(u, L,H) =

1

2 \~T
\~E0(\~u, L/H).

In other words, the energy per unit length along the x-axis is a function of the scaled
elastic constant L/H only.

The proof of Theorem 6.6 relies on a construction of a two-dimensional critical
point of E0 that resembles cross-tie walls well known in micromagnetics research
([17, 3]; see also Remark 6.5). Our construction is motivated by the numerics, which
we will now describe.

To find two-dimensional critical points of E0, we used the finite element software
COMSOL [1] to determine the solutions of the Euler--Lagrange equation for E\varepsilon nu-
merically. Here the (local) minimizers were found by simulating the gradient flow for
E\varepsilon on time intervals that were sufficiently large for a solution to reach an equilibrium.
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Fig. 6.1. A solution u of the Euler--Lagrange equation associated with the energy functional
(1.1) in the rectangle [ - T, T ] \times [ - 1/2, 1/2] subject to periodic boundary conditions on \{  - T, T\} \times 
[ - 1/2, 1/2] and assuming that u(\cdot ,\pm 1/2) = (\pm 1, 0). Here L = 1/2 and T = \~T (1)/2 \approx 0.3. Both u
and | u| are shown.

Fig. 6.2. Level curves for the divergence of u (left) and the angle \theta (right), where u =
(cos \theta , sin \theta ) is depicted in Figure 6.1.

In our numerics, we fixed H = 1/2 and allowed L to vary. Then, for a given
L > 0, we determined T = \~T (2L)/2 by solving (6.30). The reason for this choice
of T will be explained below. The Euler--Lagrange equation for E\varepsilon was then solved
on the rectangle ( - T, T ) \times ( - 1/2, 1/2), subject to periodic boundary conditions on
\{  - T, T\} \times [ - 1/2, 1/2] and assuming that u(\cdot ,\pm 1/2) = (\pm 1, 0).

Our numerical studies allowed us to identify three different regimes. When L
is small, the one-dimensional solution (not shown) is recovered as the result of sim-
ulations. For intermediate values of L, a single-wall cross-tie configuration appears
(Figures 6.1--6.2). An analytical solution corresponding to this configuration will be
constructed below using the conservation laws approach of Corollary 4.2. To this end,
we observe that (i) this configuration has both vertical and horizontal jump sets coin-
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312 D. GOLOVATY, P. STERNBERG, AND R. VENKATRAMAN

Fig. 6.3. A solution u of the Euler--Lagrange equation associated with the energy functional
(1.1) in the rectangle [ - T, T ] \times [ - 1/2, 1/2] subject to periodic boundary conditions on \{  - T, T\} \times 
[ - 1/2, 1/2] and assuming that u(\cdot ,\pm 1/2) = (\pm 1, 0). Here L = 3/2 and T = \~T (3)/2 \approx 0.25. Both u
and | u| are shown.

ciding with the coordinate axes as well as a pair of defects of degrees \pm 1 at (0, T ) and
(0, 0), respectively; (ii) the solution is symmetric with respect to reflections about the
coordinate axes, and the divergence is antisymmetric with respect to these reflections;
and (iii) the level curves for divergence in the first quadrant can be categorized into
three different regions, as in Figure 6.5.

We conjecture that this configuration corresponds to the cross-tie construction
that we develop in this section. Indeed, when the solution resulting from this con-
struction is plotted (Figure 6.6), it closely resembles those in Figure 6.2.

Before proceeding with the analytical construction of a cross-tie configuration
resembling Figure 6.1, we continue with further remarks about our E\varepsilon numerics for
larger values of L. When L is increased further, it appears that 2T = \~T (2L), as
determined by (6.30), is no longer the period of the optimal construction, as two
cross-tie structures appear on the interval [ - T, T ] in Figures 6.3--6.4. We call this
a type-II cross-tie configuration. A close examination of Figure 6.3 shows that the
level curves for divergence that originate on the y-axis appear to terminate on the line
y = 1/2, as opposed to those in Figures 6.1--6.2. Pursuing an analytical construction
of this solution is beyond the scope of the present paper. However, it follows that we
can identify at least three families of critical points that may minimize the limiting
energy functional E0 for different values of L.

Analytical construction of a cross-tie configuration and the proof of
Theorem 6.6. We now use the observations made concerning the numerics of a
single cross-tie to construct a critical point of E0. Although numerics were carried out
fixing H = 1/2, we will carry out our construction for any H and work on a single
period cell \Omega = (0, 2T ) \times ( - H,H). We will further assume T < H, a choice that is
consistent with the choice made in the numerics.

A single period cell of this solution is composed of a dipole, i.e., a pair of +1 and
 - 1 vortices, along with walls connecting them. The above observations (i)--(iii) from
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Fig. 6.4. Level curves for the divergence of u (left) and the angle \theta (right), where u =
(cos \theta , sin \theta ) is a type-II cross-tie depicted in Figure 6.3.

H

T

T x

y

I

II

III

Fig. 6.5. Regions corresponding to different characteristics families. Typical characteristics for
each region are indicated by dashed lines.

the numerics motivate us to construct the critical point u = (cos \theta , sin \theta ) on a quarter
of the period cell, say \omega := (0, T ) \times (0, H), and define u elsewhere by appropriate
reflections. A quarter period cell is displayed in Figure 6.5. By comparison with
Figure 6.1, the line x = 0, 0 \leqslant y \leqslant H denotes a vertical wall, and the x-axis denotes
a horizontal wall. Upon reflection and periodic extension, the point (0, 0) is to house
a degree  - 1 vortex, while at the point (T, 0) we will have constructed a +1 vortex
resembling the \widehat e\theta vector.

We construct solutions to the system of conservation laws given in Corollary 4.2
using the method of characteristics. Within the quarter period cell \omega under con-
sideration, we seek u = (cos \theta , sin \theta ) with \theta \in [0, \pi 2 ]. We impose Dirichlet boundary
conditions \theta = 0 along the top and right boundaries of \omega . The condition on the right
boundary is a result of the symmetry observation (ii) above. The natural boundary
condition (4.2) is to be satisfied along the left boundary and the x-axis since these
represent walls.

Building on observation (iii), the characteristics solution in \omega consists of three
families of circular arcs, labeled regions I through III in Figure 6.5 and described
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in Steps 1--3 below. In each of the regions I, II, and III above, we will denote the
arc-length and characteristic variables by s1, s2, s3 and t1, t2, t3, respectively. The
dependent variables x = x(s, t), y = y(s, t), \theta = \theta (s, t), and v = v(s, t) will also be
denoted using appropriate subscripts.

Step 1. In this step, we construct characteristics foliating region I in Figure 6.5.
First, starting from the top boundary \{ (s1, H) : 0 \leqslant s1 \leqslant T\} , we issue characteristics
that meet at the point (T, 0). Indeed, along the top boundary, we have the boundary
condition \theta 1 = 0, since a = 0. By the characteristic equations, characteristics ema-
nating from (s1, H) for any 0 \leqslant s1 \leqslant T leave the top boundary orthogonally. For
such fixed s1, there is a unique circle orthogonal to the top boundary at (s1, H) that
passes through the point (T, 0). A geometric argument shows that the center of this

circle is given by
\bigl( 
T+s1

2 + H2

2(T - s1)
, H
\bigr) 
, while the radius is given by

R(s1) =
T  - s1

2
+

H2

2(T  - s1)
.(6.22)

It follows that R(s1) \geqslant H. Integrating the characteristics starting at the top boundary,
the circles constructed are characteristics, and along the circle starting at (s1, H), we
have v1(s1, t1) \equiv v1(s1) :=

1
R(s1)

and \theta 1(s1, t1) = v1(s1)t1.

It is clear that the foregoing yields characteristics that only meet at (T, 0) and
not before. Furthermore, the right boundary of \omega , along which \theta 1 = 0, is itself a
characteristic and belongs to the above family corresponding to infinite radius, as can
be observed by setting s1 = T in (6.22). Furthermore, it is clear that the divergence
is bounded for this family, i.e., v1(s1) \in [0, H].

The characteristic emanating out of (0, H) satisfies v1(0) =
1

R(0) = 2T
T 2+H2 =: \alpha .

For later use, we record the equation of this characteristic as being given by

x1(t1) =  - 1

\alpha 

\bigl( 
cos
\bigl( 
\alpha t1
\bigr) 
 - 1
\bigr) 
, y1(t1) = H  - 1

\alpha 
sin
\bigl( 
\alpha t1
\bigr) 
.(6.23)

We will refer to this characteristic as the terminal characteristic of the first family and
denote it by \Gamma . If we let t\ast 1 denote the time of arrival of this characteristic at (T, 0),
then we have the relation

H

sin
\bigl( 
\alpha t\ast 1
\bigr) =

T

1 - cos
\bigl( 
\alpha t\ast 1
\bigr) ,(6.24)

which we can also write as

(6.25) tan

\biggl( 
\alpha t\ast 1
2

\biggr) 
=
T

H
.

Step 2. In this step, we construct a family of characteristics that foliate region
III of Figure 6.5. This family of characteristics consists of circular arcs emanating
from (s3, 0) and terminating on the vertical wall at (0, y3(t

\ast 
3(s3))) for s3 \in (0, T ).

The symmetry assumptions from observations (ii)--(iii) along with (4.2) yield Lv3 +
sin 2\theta 3 = 0 along both the left and bottom walls. Since the divergence v3 is constant
along characteristics, we find that sin 2\theta 3(s3, 0) = sin 2\theta 3(s3, t

\ast 
3(s3)), yielding

\theta 3(s3, t
\ast 
3(s3)) =

\pi 

2
 - \theta 3(s3, 0).(6.26)
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Writing down the condition that (x3(s3, t
\ast 
3(s3)), y3(s3, t

\ast 
3(s3))) lies on the left wall,

i.e. x3(s3, t
\ast 
3(s3)) = 0, along with (4.2) along this wall, yields upon some elementary

computations that

sin 2\theta 3(s3, 0) =
 - 1 + (1 + 2\lambda )1/2

\lambda 
, \lambda =

2s23
L2

.(6.27)

It can be checked that the right-hand side of the last equation defining sin 2\theta 3(s3, 0)
indeed belongs to the interval (0, 1). Integrating the characteristic equations, we find
that the circular arcs of the family foliating region III are characteristics along which

we have v3(s3, t3) := v3(s3) =  - sin 2\theta 3(s3,0)
L . It can also be easily checked that the

particular characteristic of this family originating at (T, 0) satisfies

y3(T, t
\ast 
3(T )) = T.(6.28)

We will refer to this characteristic as the terminal characteristic of the family foliating
region III.

For reasons that will be clear in the next step, we require that the terminal
characteristic of the families foliating regions I and III, respectively, are tangent at
(T, 0). This condition can be rewritten, using (6.24) and (6.27), as

L2

T 2

\Biggl( \sqrt{} 
1 + 4

T 2

L2
 - 1

\Biggr) 
=

8TH

T 2 +H2

H2  - T 2

H2 + T 2
.(6.29)

Before continuing, we remark about relation (6.29). The left-hand side is a function
of L/T , while the right-hand side is a function of H/T alone, which we are assuming
to be greater than one. We claim that for any x := H/T > 1, there exists a unique

L/T such that (6.29) holds. Indeed, setting \zeta = 2x
x2+1

x2 - 1
x2+1 < 1 and \Lambda = 4T 2

L2 , we are
required to solve

\surd 
1 + \Lambda = 1 + \zeta \Lambda .

We obtain that \Lambda = 1 - 2\zeta 
\zeta 2 , which is positive, provided \zeta < 1/2, or equivalently,

provided 2x(x2  - 1) < 1
2 (x

2 + 1)2. This is clear since

1

2
(x2 + 1)2  - 2x(x2  - 1) =

\biggl( 
1\surd 
2
(x2  - 1) - 

\surd 
2x

\biggr) 2

.

Introducing the rescaling \~T = T/H, we denote by \~T (L/H) the unique solution of

L/H

\biggl( \sqrt{} 
(L/H)2 + 4 \~T 2  - L/H

\biggr) 
 - 

8 \~T 3
\Bigl( 
1 - \~T 2

\Bigr) 
\Bigl( 
\~T 2 + 1

\Bigr) 2 = 0(6.30)

for a given value of L/H. In what follows, we set T = H \~T (L/H).
We conclude this part with the following observation. Equation (6.25) can now

be written as

\~T = tan

\biggl( 
\alpha t\ast 1
2

\biggr) 
,

D
ow

nl
oa

de
d 

09
/1

7/
19

 to
 1

30
.1

01
.1

54
.9

3.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

316 D. GOLOVATY, P. STERNBERG, AND R. VENKATRAMAN

and testing (6.30) with \alpha t\ast 1 = \pi 
4 and \alpha t\ast 1 = \pi 

2 , we observe that the left-hand side is
negative and positive, respectively. By the intermediate value theorem, it then follows
that \alpha t\ast 1 \in 

\bigl[ 
\pi 
4 ,

\pi 
2

\bigr] 
for all L > 0. With the help of (6.26) we can now conclude that

(6.31) \theta 3(T, t
\ast 
3(T )) \in 

\Bigl[ 
0,
\pi 

4

\Bigr] 
.

Step 3. We finally foliate region II by characteristics to define our critical point in
this region. Since H > T by assumption, it remains to fill the gap between the circles
of the first two families. In brief, we issue secondary characteristics that emanate
from the s = 0 characteristic \Gamma of the first family tangentially, to meet the left wall.
The divergence v has a jump discontinuity along \Gamma , while the tangential departure of
the secondary characteristics from \Gamma renders \theta continuous across \Gamma .

In more detail, we write the initial curve \Gamma using s as the arc-length parameter
(cf. Step 1) to get

x0(s2) =
1

\alpha 

\bigl( 
1 - cos(\alpha s2)

\bigr) 
, y0(s2) = H  - 1

\alpha 
sin(\alpha s2),

and the initial condition on \theta is given by \theta 0(s2) = \alpha s, where s2 \in [0, t\ast 1] and t
\ast 
1 is as in

(6.24). We do not set an initial condition on the divergence v2, but instead determine
v2 by enforcing (4.2) at the left wall. Integrating the characteristic equations, we find

v2(s2, t2) = v2(s2), \theta 2(s2, t2) = \theta 0(s2) + v2(s2)t2,(6.32)

x2(s2, t2) =
1

\alpha 

\bigl( 
1 - cos(\alpha s2)

\bigr) 
+

1

v2(s2)
(cos \theta 2(s2, t2) - cos\alpha s2)) ,(6.33)

y2(s2, t2) = H  - 1

\alpha 
sin(\alpha s2) +

1

v2(s2)
(sin \theta 2(s2, t2) - sin\alpha s2) .

Again, defining t\ast 2(s2) to be the time of arrival of the characteristic originating at
(x0(s2), y0(s2)) to the y-axis, we obtain, using (6.32), (6.33), and (4.2) and denoting
\theta \ast 2(s2) := \theta 2(s2, t

\ast 
2(s2)),

1

\alpha 

\bigl( 
1 - cos(\alpha s2)

\bigr) 
+

1

v2(s2)
(cos \theta \ast 2(s2) - cos\alpha s2) = 0,

Lv2(s2) + sin 2\theta \ast 2(s2) = 0.(6.34)

If we define a function f = f(\beta , s2) via the formula

f(\beta , s2) := (1 - cos(\alpha s2)) sin 2\beta  - L\alpha (cos\beta  - cos(\alpha s2)),(6.35)

then substituting the second of the equations in (6.34) into the first, we find that
\theta \ast 2 must satisfy the condition f(\theta \ast 2(s2), s2) = 0. We note that f(0, s2) < 0 for any
s2 > 0. Now with an eye towards applying the intermediate value theorem, we define
\beta \ast = \beta \ast (s2) via

sin\beta \ast =

\Biggl\{ 
L\alpha 

2
\bigl( 
1 - cos(\alpha s2)

\bigr) if L\alpha \leqslant 2
\bigl( 
1 - cos(\alpha s2)

\bigr) 
,

1 otherwise.

One easily checks that f(\beta \ast (s2), s2) > 0 for s2 > 0. Hence, the desired terminal angle
\theta \ast 2(s2) exists for all s2.
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Furthermore, differentiating (6.35), and setting \beta = \theta \ast 2(s2), with respect to s2,
we find that

d\theta \ast 2
ds2

=
(L\alpha  - sin 2\theta \ast 2)\alpha sin(\alpha s2)

2(1 - cos(\alpha s2)) cos 2\theta \ast 2 + L\alpha sin \theta \ast 2
.

Our goal is to show that
d\theta \ast 

2

ds2
> 0. We start first by showing that the denominator

of the fraction defining this derivative is positive. For each fixed s2, the function D
prescribed by

D(sin\beta , s2) := 2(1 - cos(\alpha s2))(1 - 2 sin2 \beta ) + L\alpha sin\beta 

defines a downward-facing quadratic in sin \beta .We note that D(0, s2) = 2(1 - cos(\alpha s2))
> 0, and an easy calculation shows that D(sin\beta \ast , s2) > 0. It follows easily that

D(sin \theta \ast (s2), s2) > 0, which is precisely the denominator of the fraction defining
d\theta \ast 

2

ds2
.

We must show that the numerator of this fraction is also positive. This is imme-
diate when L\alpha \geqslant 1, and therefore we must provide an argument for when L\alpha < 1.
Define the number \beta  - \in [0, \pi /4] using the formula sin 2\beta  - = L\alpha . Then note that
f(\beta  - , s2) > 0. Therefore, when L\alpha \leqslant 1, we have that in fact \theta \ast 2(s2) < min(\beta  - , \beta 

\ast ) \leqslant 
\pi /4. Consequently, for such L\alpha values, we have that L\alpha  - sin 2\theta \ast 2 > L\alpha  - sin 2\beta  - = 0.

This completes the proof of the claim that \theta \ast is increasing as a function of s.
Combining this fact with the constraint (6.31), we have

\theta \ast 2(T ) = \theta 3(T, t
\ast 
3(T )) \in 

\Bigl[ 
0,
\pi 

4

\Bigr] 
,

and hence
\theta \ast 2(s2) \in 

\Bigl[ 
0,
\pi 

4

\Bigr] 
for all s2 \in [0, T ].

Equation (6.34) can now be used to show that v2 is both negative and decreasing. The
proof that the characteristics foliate region II then proceeds exactly as in Lemma 5.1,
completing the construction of our cross-tie critical point.

Having completed the construction of the critical point u of E0 on all of \Omega by
appropriate reflections, towards proving Theorem 6.6, it remains to compute E0(u)
and compare it with that of the one-dimensional minimizer from Theorem 6.4. The
energies per period for the different competitors are compared in Figure 6.7. Recall
that, by Remark 6.7, the energy density per period is a function of the scaled elastic
constant L/H. The solid and dashed lines in Figure 6.7 represent the energies of
the one-dimensional and the two-dimensional characteristics cross-tie constructions,
respectively. Here the energy of a one-dimensional competitor is given in the state-
ment of Theorem 6.4, and the energy of the two-dimensional construction is obtained
by computing an appropriate Jacobian and numerically integrating in MATLAB [2]
(or by using the coarea formula). Comparing these energies for L/H \in (L0, L1),
Theorem 6.6 now follows.

Further numerical observations are in order. When the solution resulting from
the characteristics construction is plotted (Figure 6.6), it closely resembles those in
Figure 6.2. The markers in Figure 6.7 represent the energies of the numerically com-
puted solutions to the Euler--Lagrange equations for E\varepsilon , where the shape of the marker
distinguishes the type of the energy-minimizing solution obtained in the simulations.
We can observe a close correspondence between the numerics and analytical solutions
as the squares and circles track well the one- and two-dimensional constructions,
respectively. While the two-dimensional cross-tie construction discussed above has
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Fig. 6.6. Level curves for the divergence of u (left) and the angle \theta (right), where u =
(cos \theta , sin \theta ) is a solution obtained using characteristics. Here L = 1.
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Fig. 6.7. Energy per unit length.

a smaller energy (both theoretically and numerically) on a short interval of L val-
ues, it is then superseded by the two-dimensional cross-tie type-II configurations of
Figures 6.3--6.4. Indeed, this configuration still has a smaller energy than the one-
dimensional construction. The difference between the energies of the one-dimensional
and the two-dimensional cross-tie type-II constructions is small, however, and appears
to decrease with an increasing L.

We conclude with a few conjectures suggested by numerics.

Conjecture 1. For 0 < L/H < L0, the one-dimensional minimizer from Theo-
rem 6.4 is a unique minimizer of E0 among all two-dimensional competitors.

Conjecture 2. For L/H \in (L0, L1), the critical point constructed in the proof of
Theorem 6.6 is a minimizer of E0.

Conjecture 3. For L/H \geqslant L1, there exists a two-dimensional minimizer uL with
E0[uL] that is lower than the minimum energy achieved over one-dimensional com-
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petitors. The difference in energies, however, vanishes in the L\rightarrow \infty limit. Moreover,
the unique cluster point of uL in Hdiv(\Omega ; S1) \cap BV (\Omega ; S1) is given by the piecewise
constant vector field, which equals (1, 0) for y > 0 and equals ( - 1, 0) for y < 0.
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