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Abstract. We carry out an asymptotic analysis of a variational problem relevant in the studies
of nematic liquid crystalline films when one elastic constant dominates over the others, namely,
inf Fe (u), where Ee(u) = %fg {e|Vul? + % (Jul? = 1)2 + L(divu)?} do. Here u : Q@ — R? is a
vector field, 0 < € < 1 is a small parameter, and L > 0 is a fixed constant, independent of €. We
identify a candidate for the I'-limit FEp, which is a sum of a bulk term penalizing divergence and
an Aviles-Giga-type wall energy involving the cube of the jump in the tangential component of the
S'-valued nematic director. We establish the lower bound and provide the recovery sequence for this
candidate within a restricted class. Then we consider a set of variational problems for Ey arising from
various choices of domain geometry and boundary conditions. We demonstrate that the criticality
conditions for Egy can be expressed as a pair of scalar conservation laws that share characteristics.
We use the method of characteristics to analytically construct critical points of Eg that we observe
numerically.
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1. Introduction. Describing the elastic energy in nematic liquid crystal models
involves making a choice of the elastic constants appearing as coefficients in front of
the various terms penalizing spatial variations. Whether in director theories such as
Oseen-Frank, where the unknown is a unit vector n € R? or R?, or within the Landau—
de Gennes Q-tensor model where @ is a symmetric, traceless 3 x 3 matrix [23, 26],
some studies pursue an isotropic, or equal constants, choice where the elastic energy
density is given simply by [Vn|? or [VQ|?. Others opt for more generality and consider,
for instance, three distinct coefficients multiplying the square of the divergence and
the squares of the components of the curl along and perpendicular to the director,
respectively. However, in response to numerous studies by materials scientists who
suggest that interesting morphologies in liquid crystals are related to disparities in the
values of the elastic constants [10, 27], here we consider a model variational problem
with extreme disparity in elastic constants and explore the implications of this choice
of elastic coefficients on the structure of minimizers.

We will focus our study on a problem in two dimensions with a thin nematic film
in mind, and so for a bounded, Lipschitz domain  C R? we consider the following
variational problem:

1 1
(1.1) inf E.(u), where E.(u):= 5/ {E |Vaul? + - (Jul* = 1)% + L(divu)Q} dx.
)
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Here u : Q — R? is a vector field, 0 < € < 1 is a small parameter, and L > 0 is
a fixed constant, independent of . In general, we will augment (1.1) with Dirichlet
boundary conditions u = g on 9N for given g : Q2 — S'. We point out that in light
of the two-dimensional identity

(divu)? + |eurlu|®* = [Vu|® + null Lagrangian

it suffices in this study to just penalize the divergence and not to include the curl as
well. As u is not a unit vector, (1.1) is not a director model per se but rather bears
more resemblance to the Ericksen model with variable degree of orientation [13]. Still
it maintains some essential features of both the Oseen—Frank and Landau—de Gennes
models that we wish to focus on in this investigation.

In order to orient the reader as to how this energy compares with other more
familiar models, we point out that when the positive parameter L is dropped, one is
left with precisely the simplified Ginzburg-Landau model

(BBH) %/Q {a |Vul* + é (Jul* — 1)2} dx

thoroughly examined in [7] under the scaling éEE. For ¢ <« 1, minimizers u. of
that problem are characterized by so-called Ginzburg-Landau vortices with u. ~
fe (r)(cos 0,4 sin 9) near a zero that carries degree +1. On the other hand, formally
passing to the limit L — oo in (1.1), one is led to a divergence-free constraint, in which
case, at least for simply connected domains €2, one can introduce a stream function
via V19 = u. Then E. transforms into

(AG) 5 | {2+ Laver - 2} @
Q 3

which is precisely the well-studied Aviles—Giga model; see, e.g., [5, 4, 8, 9, 17, 19, 22]
and the references therein. Singular structures for that model emerging in the e — 0
limit take the form of domain walls—generically, curves—across which the normal
component of V¢ jumps. Though we do not pursue it in this article, an interesting
direction would be to make a rigorous study of the limit L. — oo in relating our
problem to (AG). We should also mention that there are a multitude of models bearing
some resemblance to E. coming from the micromagnetics community, including, for
instance, the ones studied in [17, 3, 18, 24] where the L?-norm of the divergence is
replaced by an H~!-norm, which is then considered with a different scaling.

From this perspective then, our problem rests between the two models (BBH)
and (AG), and indeed we will find a rich array of singular structures playing a
role, including Ginzburg-Landau-type vortices, which in the scaling of (1.1) are rel-
atively expensive; domain walls which end up contributing O(1) to the energy F.;
and divergence-free vortices of the form f.(r) ey, where €y := (— sin @, cos 9), whose
asymptotic contribution to the energy is zero.

A natural goal is to identify a candidate for the I'-limit of the sequence {E.} as
€ — 0, and with this in mind, a first issue is to determine the appropriate space of
competitors for such a limit and to explore what kind of compactness properties hold
for sequences of H'(Q;R?) functions, say {w.}, satisfying a uniform energy bound
E.(w.) < C. One is naturally led to consider the Hilbert space Hg;, (Q2;R?) consisting
of L? vector fields having L2-divergence, and it is immediate that {w.} will be weakly
compact in this space, with an S'-valued limit. Such mappings can, in general, have
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tangential components that jump across curves, though their normal components
cannot jump. In Theorem 3.1 we note that through a minor modification of the
compactness result of [12] one may also show strong convergence, up to subsequences,
in LP(Q;R?) for any p < oo; see also [4] for an independent proof of compactness in
the Aviles—Giga setting.

From the standpoint of constructing energy-efficient sequences, and ultimately
recovery sequences for I'-convergence, the resolution of a jump in the tangential com-
ponents of an S'-valued map, say w, across a wall leads one to consider a Modica—
Mortola type of heteroclinic connection linking the tangential values +4/1 — (w - v/)?
across an interface having normal v. With these heuristics in mind, and denoting the
one-sided traces along such a jump set J,, by u4 and u_, one is led to a candidate for
the I'-limit of the form

(12) Eo(u) = g/

1 1
(divu)? d + f/ lu_ —uy|>dH' + f/ lupg — g|> dH*.
Q 6 o9

JunQ 6

We note that the cubic dependence on the jump across J,, is identical to that found in
the asymptotics for (AG). However, we also point out the presence of the boundary
integral in (1.2) measuring possible jumps in the tangential component along 99, a
feature of our model not typically found in the Aviles—Giga problem.

The form of Ejy suggests that the space of definition for the I'-limit must be a
subset of those vector fields in Hg;y (£2; S') having a rectifiable jump set with the cube
of the jump in the one-sided traces being integrable. The difficulty lies in the fact
that energy-bounded sequences may not have limits lying in the space of functions
of bounded variation, an effect first elucidated for (AG) in [4], so identification of a
natural space is nontrivial. In [4, 9] the authors identify what would appear to be the
right space for establishing I'-convergence for the Aviles—Giga functional, introducing
the notion of “entropy measures,” but to date the construction of a recovery sequence
remains an open problem for (AG). We do not pursue here the interesting question of
whether some analogue of the results in [9] on the structure of elements of this new
space holds for the energy E. in (1.1).

Instead we will present arguments for the I'-limit lower bound and for the recovery
sequence under the assumption of the limit lying in Hg;, (2;S') N BV(Q; S1). This
is the content of Theorem 3.2. We note that similar difficulties arise when partial I'-
convergence results are obtained in micromagnetic models such as [3]. Our technique
for proving lower-semicontinuity adapts the Jin—Kohn entropy [19] and is based upon
the corresponding result from [5]. For the recovery sequence we adopt the rather
ingenious and nontrivial construction of Conti and De Lellis for (AG) (cf. [8]), with
care taken to verify that the divergence term in F.—mnot present in (AG)—does not
contribute to the energy in a neighborhood of the jump set.

After presenting the arguments for I'-convergence within this special class, we
turn to the analysis of the behavior of minimizers of the presumed I'-limit Fy in
various geometries and under various boundary conditions g. That is, we want to
focus on the question of what kinds of morphologies one should expect to see for very
disparate elastic constants, and in the process we will develop new tools for carrying
out such an investigation.

We begin this pursuit by establishing various notions of criticality for Ey. In
Theorem 4.1 we show that in the bulk, that is, away from the jump set J,, criticality
of a vector field u implies that the gradient of divergence lies in the direction of .
When v is locally lifted to u = €9, this leads to a pair of conservation laws for the phase
0 and the divergence of u, both sharing the same characteristics; cf. Corollary 4.2.
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This makes for an interesting comparison with the presumed I-limit of (AG), where,
for example, the authors of [12] exploit the presence of a single conservation law for 6
writing V+u = €%, where u solves the eikonal equation. We also derive in (4.2) and
(4.3) a natural boundary condition holding along J,, relating the normal component
of u to the jump in the divergence across the wall, and in (4.3) a criticality condition
yielding stationarity of the wall itself that not surprisingly involves its curvature.
We use these conditions in the rest of the paper to build critical points for specific
examples.

In section 5 we specialize our study of minimizers of Ey to the case where (2
is either a disc or an annulus. Depending on the choice of the S'-valued boundary
condition g, we find that minimizers may or may not develop walls and tend to
follow €y as much as possible. In particular, for “hedgehog” boundary conditions
g9(0) = €. := (cosf,sinf) in the disc, we can establish an explicit formula for the
minimizer as a vector field that behaves like €4 near the origin and then unwinds to e,
to accommodate the boundary conditions; cf. Theorem 5.1. This result is reminiscent
of a similar observation made in [16] for the three-dimensional Oseen—Frank model in a
ball with hedgehog boundary conditions when divergence is penalized heavily. Perhaps
the most interesting case to us is for the disc under the choice g(6) = (cos 6, —sin 6).
Here our numerics reveal a rather dramatic dependence of the wall geometry and
location on the value of the parameter L, and through the three criticality conditions
and system of conservation laws derived in section 4 we are able to build a critical
point that appears to capture this complicated morphology, at least in a particular
parameter regime. We conclude this section with an example posed in an annulus
where our analysis suggests that in some parameter regime, a minimizer prefers to
have a wall that coincides with the boundary.

Finally, in section 6 we pose the problem of minimizing Ej in a rectangle subject to
constant Dirichlet data on the top and bottom of the form (£v1 — a?,a) for a € [0,1)
and periodic boundary conditions on the sides. What motivates our choice of periodic
boundary conditions is the wish to understand under what conditions the transition
from the top to the bottom involves a one-dimensional wall construction as opposed
to a more complicated two-dimensional cross-tie-type scenario as appears in various
micromagnetic studies such as [3, 11]. This question was raised and partially addressed
for the case of anisotropic elastic energy—though not “extreme anisotropic” elastic
energy in the sense of our present work—in the articles [6, 14].

Our focus at the beginning of this section is to revisit the question of compact-
ness and I'-convergence within the one-dimensional context where competitors only
vary with y. In Theorem 6.1 we show that energy bounded sequences do necessarily
have subsequential limits whose third power lies in BV (—H, H), where 2H is the
height of the rectangle. We then state the I'-convergence result in one dimension;
cf. Theorem 6.2.

After then giving a complete characterization of one-dimensional minimizers in
Theorem 6.4 we conclude with a two-dimensional construction of a critical point
with cross-ties, again utilizing the criticality conditions and conservation laws. The
energy of this critical point is then compared to the minimal one-dimensional energy to
reveal in Theorem 6.6 that there exists a finite interval (Lg, L) of L-values—bounded
away from zero—for which the one-dimensional minimizers from Theorem 6.4 do not
minimize the full two-dimensional Ey energy. Here we use a combination of analysis
and simple numerical integration to demonstrate that the Ey energy of our critical
point with cross-ties is below the energy of one-dimensional minimizers when L €
(Lo, L1). Additional numerical simulations of the gradient flow for the energy E. show
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that the (local) minimizers of E. have morphology and energy similar to our cross-
tie construction within the interval of L-values where the energy of this construction
is lower than that of the one-dimensional minimizers. In fact, these simulations also
suggest that a different cross-tie-type structure develops as L is increased further, and
this structure has energy that is still lower than that of the one-dimensional critical
point.

We begin our article with a section introducing notation and recalling key notions
regarding the function spaces Hgj, (Q2;R?) and BV (Q2; R?).

2. Preliminaries. Throughout the article, Q@ C R? will denote a bounded Lip-
schitz domain. We let vy denote the outward pointing unit normal along 9f2.

Two spaces of vector fields that will play a prominent role in our analysis are
BV (Q;R?), the space of vector fields of bounded variation taking values in R?, and
Hgiy (©;R?), the Hilbert space of L?(; R?) vector fields having weak L? divergence.
We will often be interested in vector fields that lie in the intersection of these spaces,
and are in addition S'-valued.

We recall that a map u € BV (£2,R?) is approximately continuous in 2\.J,,, where
Jy, is the jump set of u and is countably 1-rectifiable. By rectifiability, we note that J,,
is contained in an at most countable union of C' curves up to an H' null set, where
H! denotes a one-dimensional Hausdorff measure. We fix a regular orientation of
these C'! curves that contain almost all of .J,,, and let (7, 1,,) denote the approximate
unit tangent and unit normals to J, that respect this orientation. Denoting the half
planes

Hi(x) ={y € R?: (y — ) -vu(z) =0, resp., <0},

u admits traces along J,,. That is, there exist two measurable functions v+ on J, such
that for H'-a.e. x € J,, we have

. 1
lim — / fu(y) — us ()] dy = 0,
Qr(z,vy(z))NHE

v (@)

with @, (z,vy(x)) denoting the square of side length r, centered at x, that has one
side parallel to v, (x).

Now, if u € BV N Hg;y (2;R?), then along the jump set .J,, an application of
the Divergence Theorem shows that one must have uy () - v (2) = u_(z) - v, (x) for
H'-a.e. x € J,. It follows that the jump in v along .J, is equal to the jump in the
tangential component of u across J,.

Concerning the space Hgiy (€2;R?), we recall that elements of Hgiy (€2;R?) have
a well-defined normal trace on 0f2, viewed as a distribution in the Sobolev space
H='/2(0Q); cf. [25, Chap. 1]. This distribution is defined by the integration-by-parts
formula

(2.1) (e van). 0= [

Ve . udx + / (divu)® dz,
Q

Q
where ¢ € H'/2(99), and ® is an H'(Q) extension of ¢.

We will frequently be concerned with vector fields u € BV (€;S) N Hg;y (€2; SY)
satisfying |u(x)| = 1. For such vector fields, we in fact have that the distribution
u - v is induced by an L*°(99Q) = (Ll(aﬂ))* function. To see this, let ¢ € (2.1) be
an L'(09) function, and let ® € WH(2) denote an extension of ¢ to Q2. We again
define ((u - vaq), ¢) by the formula (2.1). While linearity of (u - v) is immediate, its
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continuity follows by applications of the Holder and Sobolev embedding inequalities.
It can be checked by an approximation argument that this definition is independent
of the extension ® of ¢.

For a given g € H'/?(Q; R?), we will also denote by H,(€;R?) the Sobolev space
of H' vector-valued functions having trace g on 9.

3. Compactness and partial I'-convergence on a general domain. We be-
gin our rigorous analysis with the following compactness theorem for energy bounded
sequences.

THEOREM 3.1 (compactness). Assume {v.} C H(Q;R?) satisfies the uniform
energy bound
sup E. (ve) < o0.
e>0
Then there exists a subsequence (still denoted here by v. ) and a function v € Haiy (€ S?)
such that

(3.1) ve = v in Hyy (Q;R?),
(3.2) ve — v in L2(Q;R?).

We will write v, 2 v when both (3.1) and (3.2) hold. Property (3.1) is immediate
in light of the uniform bound on the L2?-norm of the divergence, while (3.2) follows
from the proof of [12, Prop. 1.2]. The hypotheses of this proposition from [12] differ
from our setting in that their sequence is assumed to be divergence-free, whereas
ours has the weaker assumption of a uniform L? bound on the divergence. However, a
minor modification of their proof allows for accommodation of this weaker assumption.

Before proceeding, we wish to stress that a uniform energy bound does not allow
one to conclude that the limit lies in BV (€;S!); see the discussion on [4, pp. 338
340] or Remark 6.3 below. Our partial I'-convergence result in this section, how-
ever, is phrased with this extra assumption. To this end, we fix boundary data
g € HY?(05;S") for admissible functions in E.. We point out that for a sequence
{uc} € HY(Q;R?) satisfying u. - vaq = g - Vaq, under the topology u. Ay with
assumed to lie in BV (Q,S!) N Hg;y (2, SY), it follows that

(3.3) upe () - vaa(z) = g(x) - voq  for H'-a.e. 2 on ON.

Here we denote by usq its trace on 9. Indeed, for any ¢ € H*(Q2) the Divergence
Theorem yields

/ upq - Voo ¢dH (z) = [ Vé-udr+ [ divugdz

a0 Q Q

=lim [ {V¢-u.dx +divu. ¢} dz =/ g voq ¢ dH (x).
e—0 Q 90

Now for any u € BV (2, S') N Hg; (2, S) such that usq - vaq = g - van on 99 we
define our candidate Fy for the I'-limit of E. via

(3.4)  Eo(u) = £/(divu)2dx+1/ lu_ —uy |*dH! +1/ luaq — g|* dH .
2 Jq 6 6 Joo

u

We remark that if one introduces the measurable function X : J, — [0,7/2] by

1
X = 5min|@’
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so that X denotes the minimal half-angle between the unit vectors u4 and u_, then
the quantity |u_ — u | arising in the I'-limit can be equivalently expressed as 2sin X.
Similarly one can express |uga — g| as 2sin Xpq, where Xpq = %min |tm| of
course, for all x € 9Q such that ugg = g, the last integral in (3.4) vanishes, whereas
the condition that |ugn| = 1 along with (3.3) implies that whenever ugq(z) # g(x),
one necessarily has

luan(z) — g(2)| = 2y/1 — (9(2) - voa(2))2.

Similarly, another alternative to the expression |u_(z) — uy ()| is

u—(2) = uy (@) = 2v/1 — (ug () - va)? = 2V/1 = (u_(2) - )2,

where v, denotes the measure-theoretic normal to the jump set J,,.

The main result of this section is a I'-convergence type of result relating F. to Ey
under the assumption of BV (;S') competitors for Ej.

THEOREM 3.2. Let u € Hygjy (2; Sl) N BV(Q;Sl) with usq - Vaq = g * Vaq.

(i) If uc € Hg1 (2, R?) is a sequence of functions such that u. A u, then

(3.5) liminf E. (u.) = Eo(u).
e—0

(ii) There exists we. € H,(€;R?) with w, A satisfying

(3.6) limsup E. (w:) = Ep(u).
e—0

Proof. (i) We begin with the argument for lower-semicontinuity (3.5). We base
our argument on the corresponding result for the Aviles—Giga functional established
in [5]. For a more self-contained treatment, we refer the reader to [15], where we
pursue an approach more in the spirit of [3].

We suppose that u. = u for u € BV (Q) N Haiy (€ R2) with |u(z)| = 1 for a.e.
x € Q, and upq - vaq = g - Vaq along Q. We may also assume liminf. g E.(u:) < 0o,
since otherwise the claim is trivial.

We will use the following notation:

ec(v) = % <€VU|2 + %(|v|2 —1)2+ L(divv)2> .

Now we let J,, denote the jump set of the vector field u, and here, unlike in (3.4),
we also include in our definition of J, jumps on J) where the tangential component
of u is minus that of g. By the rectifiability of J, we can express J,, as

Ju = (G u) Uy,
k=1

where Ty, are C'! embedded curves of finite Hausdorff measure and H!(Tg) = 0.
We now fix a number § > 0, and since Fy(u) < oo, we can select an integer Nj
such that

N
1 1
(3.7) 6/ um —uy A < 6/ lu_ —uy [P dH" + 6.
Ju i1 O Tk
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We can always assume that Iy N\ T, = () for k # k’, and then we denote by S5 the
minimal separation given by

(3.8) Bs

= min dist (Fk,Fk/).
k,k'€{1,2,...,Ns}, k#k’

Then for each k € {1,2,..., N5} we introduce an open neighborhood J¥ of T, via

k_ L . Bs J
gy = {a:EQ. dist (z,T'g) <m1n{ 5 ’Hl(Fk)kz}}'

From (3.8) we see that these neighborhoods are disjoint, and we also note that |J5’ <
)
7= so that

Ns
(3.9) U 7k < cs,
k=1
where here |- | denotes Lebesgue measure.
Now
L . 9
(3.10) E (us) > — (divue)® + e (ue) de,
2 Jonue, U, Ik

and by convexity and the resulting lower-semicontinuity, it follows that

lim inf (divue)? de > / (divu)?.
=20 Jaus, gk AU, Ik

Hence, condition (3.5) will follow from (3.7) and (3.9) by letting J approach 0 once

we can establish that

N
(3.11) lim inf ec(ue)dx > Z é/ lu_ —up]®dH — O(6).
k=1~ L%

e—0 Ns gk
Uk:l‘]u

Inequality (3.11) follows readily from the lower-semicontinuity argument given for the
Aviles—Giga functional (AG) in [5, Thm. 3.2], once one accounts for the extra terms
present in our model due to nonzero divergence. More precisely, we wish to apply the
results in [5], where our vector fields u. play the role of (Vu.)* for the scalar-valued
functions u. in [5].

In the argument of [5], crucial use is made of the Jin—Kohn entropy = : R? — R?2
given by

1 1
Ev) = (37}5’ + vov? — v, gvi’ + v1v2 — v1> for v = (v1,v2),

along with all of its rotations; cf. [19]. The version of E given above is well suited
to the situation where the jump set is parallel to one of the coordinate axes. One
calculates that for any vector field v one has

(3.12) divE(v) = (Jv]* = 1)(0xv2 + 9yv1) + 201vadiv v.

It is the last term in this expression that drops in the setting of [5], and so in that
case the divergence of the Jin—Kohn entropy is seen to bound the Aviles—Giga energy
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(AG) from below after an application of the inequality a? + b? > 2ab. For our energy,
the same will be true once we apply this trivial inequality to both terms in (3.12),
leading to the following slight modification:

1 1 L 2
div E(U) < 5 (5(8301)2 + 8yvl)2 4 g(|U|2 — 1)2) + 5(le 1})2 4 EU%’Ug

1 1 L 2
< 3 (e |Vl + g(|v|2 - 1)2) + E(divv)2 + zvag + €0,v2 Oyn

2
=e.(v) + Z’U%U% —eJacv + €0,010,v2

2
(3.13) <ec(v) + Z’Ufl}% —eJacv + g(divv)Q,
where Jac v refers to the Jacobian det Dv.

Applying (3.13) with v = u. and using that u, Ay, along with (3.9), we integrate
over Up® J¥ and take liminf over ¢ to find that

lim inf ee(ue) dz
e—0 UNJ Jk
k=1u

2
> liminf / divE(ue) + eJacu. — ~uJu.s — E(div ue)? dx
Upl, Jk L 2

e—0

(3.14) >lim inf/ div Z(ue) dz — lim infs/ Jacu. dz — Co.
ups, gk ups, gk
k=1"u k=1"u

e—0 e—0

Here we have used the assumed uniform energy bound on {u.} to see that
lime o€ [ (div uz)?dr = 0. One shows that the term involving the Jacobian inte-
gral vanishes in the ¢ — 0 limit via an integration by parts precisely as in the proof of
[5, Thm. 3.2] (though in that setting it appears as a Hessian), and the liminf inequality
of the divergence of the Jin—Kohn entropy, namely,

N5
1
lim inf divE(u.) dx > - u_ —ug |2 dH,
mir /U;,Valﬂ; (u2) /,;16/“' N

follows exactly as in that proof as well. This yields (3.11) and completes the proof of
(3.5)

(ii) The proof of (3.6) follows the approach of [8] rather closely, and therefore
we present only an outline of the argument, highlighting the steps that are different
for our problem by focusing primarily on the treatment of the divergence term in
the energies. To facilitate comparison with [8], we adopt the notation of that proof
wherever possible.

(a) Preparation. We let ¢ : R? — [0,1] be a smooth radially symmetric bump
function with [ ¢ = 1 and spt(¢) C By. For any ¢ > 0, we denote as usual ¢.(-) :=
L ¢(2) and set ue = u* ¢..

We next introduce a class of step functions. For any zo € R?, v € S', and 0 € R,
we introduce the function

Sz0,0,0(2) 1= (cosO)v — sin 0H ((x — mo) - v)v ™,

where H(t) = 1 for ¢ > 0 and H(t) = —1 for t < 0. We then let S,, denote the
collection of all such step functions at xg.
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For u as in the statement of the theorem, we let zo € J, be a point at which
its approximate unit normal v, is defined, and we consider s,, € S;, such that
sfo = ug (z9) and v = v,,. We point out that this choice of s depends on the given
function u. To alleviate notation, therefore, we just denote one subscript rather than
all three.

Fixing now € > 0,7 >0, k > 1, and 6 > 0, we define “good points” on the jump
set J9(0,k,n,¢) to be those ¢ € J,, such that the following hold:

e The step function s,, associated to zg satisfies |sin 6| > sin @, and

(3.15) | Vul|(Bake (o)) = kesinf
and

1
(3.16) |t — Sz | d < .

‘327%' Bake(z0)

e For the finitely many balls B.(y) C Baye(7o) with y-v = zg-v and (y—mz)-v+ €
2¢Z, one has

(3.17) / [u]|® dH' > [2sin0]>2¢ — 7ne.
B (y)NJy,

We denote Q9 := {x € Q : dist(x, J9) < ke/2} and set Q) := {x € Q : dist(x, Q) >
e}

For any A C R? and w € H'(A), it is also convenient to introduce the notation
1
Fow; A] = / e[ Vwl? + (wf? - 1)2 da.
A 3
(b) Estimates away from Q9. In this step, we show

S — L
(3.18) Lim E.[ue; Q(E)\Qg] :=lim lim lim lim E_[uc; Q(s)\Qg] = — / (divu)? dz.
910 ktoo nl0 €l0 2 Jq

This statement is the analogue of [8, Prop. 1]. At its heart, the argument relies

on a scale-invariant Poincaré inequality, which asserts that for any ¢ > 0, denoting
V5 = v * ¢g5, we have

1/2
(3.19) </B |v — v5(0)|? dx) < ¢||Dv||(Bs)

for every v € BV (Bjs), where ¢ > 0 is independent of §. Immediate consequences of
the Poincaré inequality are the following linear and quadratic estimates: for every
k > 1, we have

(linear) F.[uc; By:] < C||Du||(Bage),

C (IDul|(Bare))?.

(quadratic) Flue; Bie| <
5

with the constant C' being independent of ¢, k. The proof of (3.18) proceeds by parti-
tioning the set Q()\Q9 according to how || Dul|(Bag. ()) scales in ke. On most of Q,
where the scaling is sublinear, one uses the quadratic estimate to show vanishing of
the F. energy, while away from the jump set where the scaling of the total variation
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measure ||Du/| is linear or superlinear, one uses the linear estimate, along with fine
properties of BV functions, to argue that once again the F; energy vanishes. We refer
the reader to [8, Prop. 1] for further details.

(c) Estimates within Q9. Having shown that the energy of the mollification u,
outside of the set Q9 is asymptotically just the bulk divergence, we simply set our
desired recovery sequence w. := u. on Q\Q9. We next define w. in Q9 in order to
capture the wall energies in the limit. To this end, let Fi= {ngs( N}yifor1 <j< N
be N families of disjoint balls with 2] € J9 and the By (x]) cover Q9. Here N is a
universal constant obtained from Besmowtch s covering theorem. For fixed k, let
1 € CX(By) denote a smooth cut-off function such that ) = 1 on By_;. For every
e >0, we deﬁne Y € C°(Bye) by the formula ¢°(z) := ().

Setting v" := u, we inductively define {v7};_; . n as follows. At the jth step, on
the family of balls 77, we define

i(z) = (1 —te(z — x{))vﬂ'*l(x) + 9o (x —al)s!(x) if © € Bye(x)) for some i,
A vj_l( ) otherwise.

Here s' is the simple function associated to u at xj Then set v := v" * ¢,.
For every 4,7 we define RJ to be the largest rectangle of the form a < (z — x])
Wit <b,|(x—a] v < \fs where a,b € R to be contained in the ball B;_z).(x])

without intersecting any ball By 4q.(x Z,' ) with j/ > j. Existence of such a rectangle

is immediate; for the proof of uniqueness of the rectangle R{ , we refer the reader
to the geometric argument in [8, Prop. 2]. The main estimates of the present step
correspond to [8, Prop. 2]:

L
(3.20) Lim E. |v,QO\( JR!| = 5/(divu)2d:v.

i 2

On each R} one has v = ¢. * s] and

1
(3.21) Lim = Z/ sTIPdHt < / luy —u_|>dH*.
]mJ 6 J

u

The proof of the assertions that v = ¢. * s/ on R} and of estimate (3.21) follows
exactly as in [8]. The key idea is of course to use the fact that each xf is a good point
on the jump set, so that we can invoke (3.17). For any ball Bfl of the type considered
n (3.17), one has the estimate

2¢|2sin ]® < / |[u]|® dH* + ne.
B”lﬂJu
Since the balls Bj are disjoint, and [ < 2k, we find using (3.15) that

Z/ \3cm1<z/ [wl? dH' + ) 2kne
RJmJ il Y BijNJu i

< / |3dH1+Z 4|Vu|| By (1)
QNJ,

2N
</ W an’ + 2Ll @)
QNJ. sin
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where once again N is the Besicovitch constant. The result (3.21) follows by applying
Lim. We now turn to the proof of (3.20). In light of our work in step (b) above, it
suffices to prove the estimates

(3.22) Lim Fe |v;| ) Bra)e(@)\B—2)e(al) | =0,
4,J
(3.23) Lim F. |v,| | Br—2):(z])\R! | =0,
4,J
and
(3.24) Lim (divw)?dx = 0.

Ui,_jB(k+1)s(mZ)

The proof of (3.22) is identical to the proof of [8, eqns. (4.3) and (4.4)] to which we
refer the reader. We prove (3.24). A basic estimate in the proof of (3.22) used in [8]
is the inequality

1

—_— ol = sl de < O,
|Bake| J o ()

(3.25)

holding for each fixed ¢, j and each J = 0, ..., N. This inequality is proved by induction
on J. By testing against arbitrary L? functions, it is easy to check that div s] =0 for

each i, j. Attributing each z in the union U;V:1 B(;Hl)g(xz) to the level j where v(x)
was last modified, i.e., to the largest j such that x € B(;H_l)s(xg) for some i in the jth
family, we find inductively that

1 / . 9
- (divo)® dx < / ‘
2 Uj,’j B(k+1)s Z Bke(mz)

]

+/ C(dived Ttk ¢ ) da
B(41)e(27)

2

Vipe(x — xf) (It - si) x ¢.| dx

. A 2
Vipe(z — ) - (vt — Sz)‘ dx

(Young’s inequality) < Z/

+/ (dive!™h)? da
Bet1ye(z7)

1 . .
(proceeding inductively) < N Z/ —2|v3_1 —slPde+ N [ (divu)?dz
i Bks(”{) € Qs

o 1 , ,
(since [v7],]s]| < 1) < 87NEK? Z / |vi =t — s!| d
i,j |BQk5‘ nge(mg)

+N [ (divu)?*dx
Q9

(by (3.25)) < 87NKk*n+ N [ (divu)?dz.
Q9

Since the foregoing estimates are uniform in e, we send € [ 0, n L 0, k 1 0o, and 6 | 0,
in that order, to arrive at (3.24), where for the second integral we have applied the
monotone convergence theorem.
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(d) Estimates within the rectangles. Finally, it remains to modify the construction
v from the preceding step within the boxes R?. This step relies on the following claim.

Claim. There is a smooth function w, such that w, = v outside Rg and
J Lo o3 1 —0Vk
(3.26) Felwe; R geijélQSlnw +Ce 5 + ke .

Here 0 is the angle of the step function sz and £;; = H(J,n N Rf) the length of the
rectangle. The proof of this claim follows by using a standard “Modica—Mortola” type
of heteroclinic within the rectangle along with a linear interpolant as in step (¢) to
match the boundary conditions. Control on the divergence term follows as in step (c),
and control of the remaining terms proceeds as in [8]. Briefly, within each rectangle,
we have, using (3.17),

. 1 . C —
F.lwe; R]] < 6'2 sin 0 H'(J, N RY) + 75 + Ceke 0VE

1 C -
So [ NP+ s ket G ok,
6 Js.nRi 0

In the above estimate we have used the fact that the rectangle R/ contains no more
than k disjoint balls of the type in (3.17), and that the sum of their diameters is at
least H'(J,~ N R}) — 4e. Summing over the rectangles R?, we find using (3.15) that

: 1
Fufwe; RY] < 7/

6 k

u

e+ 3 (S @+ e ™) 19ul (Base el

Taking Lim, we complete the requisite estimates, and the proof of the recovery se-
quence construction follows now by a diagonalization procedure. 0

4. Criticality conditions and solution via characteristics for the limiting
energy Ey. We begin this section by identifying the free boundary problem satisfied
by critical points of the limiting functional Ey; cf. (3.4). We will use the criticality
conditions derived below to later construct critical points for specific domains € and
with specific boundary data g.

THEOREM 4.1. Consider any u € BV (£, SY) N Haiy (2, SY) such that usq - vagq =
g - voq on 0N). Denote by J, its jump set. Then if the first variation of Ey evaluated
at u vanishes when taken with respect to perturbations compactly supported in 2\ J,,
one has the condition

(4.1) ut - Vdivu = 0 holding weakly on Q\J.,,
where ut = (—ug,uy).

Furthermore, if the first variation vanishes at uw when taken with respect to per-
turbations that fiz J,, and are supported within any ball centered at a smooth point of
Ju N Q, and if the traces divuy and divu_ are sufficiently smooth, then one has the
condition

1/2

(4.2) L{divu] —4(1 = (u-vy)?) " (u-1y) =0 on J, N,

where || = -4 — -_ represents the jump across J,,, and v, is the unit normal to J,
pointing from the + side of J, to the — side.
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Finally, a vanishing first variation of Ey, evaluated at w that allows for local
perturbations of the jump set J, N itself, leads to the condition

(4.3) (divuy)? — (divu_)? 4 (divuy +divu_) (ug - 7w — u_ - 7y)

= ?8)—;(1 —(u- Vu)Q)l/z(l +2(u-1y)%) on J,NQ,

whenever Jy, uy, and u_ are sufficiently smooth. Here k denotes the curvature of
Ju, and (divuy + div u,)/ refers to the tangential derivative along the jump set.

COROLLARY 4.2. Suppose u is smooth and critical for Ey in the sense of (4.1).
Then writing u locally in terms of a lifting as u(z,y) = e®Y) and defining the scalar
v :=divu, one has that (4.1) is equivalent to the following system for the two scalars

0 and v:

(4.4) —sin@ 6, + cosf 0, = v,
(4.5) —sinf v, + cosfvy = 0.
Consequently, starting from any initial curve in Q parametrized via s — (xo(s), yo(s))

along which 6 and v take values 0y(s) and vo(s), respectively, the characteristic curves,
say t — (x(s,t), y(s,t)), are given by

(4.6) x(s,t) = Uots) [cos (vo(s)t + o (s)) — cosbo(s)] + zo(s),
(4.7) y(s,t) = Uots) [sin (vo(s)t 4 0o(s)) — sinby(s)] + yo(s),

whenever vy(s) # 0. The corresponding solutions 0(s,t) and v(s,t) are given by
(4.8) 0(s,t) = vo(s)t+ 0o(s), wv(s,t) =uvp(s),

so that the characteristics are circular arcs of curvature vo(s) and carry constant
values of the divergence. In case the divergence vanishes somewhere along the initial
curve, i.e., vo(s) = 0, then the characteristic is a straight line.

Proof of Theorem 4.1. We consider u € BV (£2,S') N Hy;y (€2, S1) such that ugg -
Voo = g - Vaq on 0f). Then

(4.9)  Bolu + ou) — Folu) = g /

[(div u+ div éu)® — (div u)z} dx
Q

1 1
+ f/ (e + u) — (s + Suy) [PdH! — 7/ lu — [P A
Ju,-l—ziu 6 Ju
1
+ */ ‘an + dugn — g|3 dH?!
6 Joans, s

1 1
- f/ luga — g|* dH' + 7/ A (|u + 6ul? — |u\2) dz
6 oNJ,, 2 Q

for any du in BV (Q,R?) N Hg;, (2, R?). The Lagrange multiplier A in (4.9) enforces
the constraint u € S*.

We suppose first that the perturbation du is either supported away from J, or
else is supported in a ball containing only a smooth portion of J, N2 and leaves the
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jump set unaltered, i.e., Jy4s5, = Ju. We recall that the normal component of any

vector field w € Hg;y, (2, S!) is continuous across the jump set of w and |w_ — w, | =
2y/1 = (w - v,)?. We have from (4.9) that
(4.10)
0Ep(u) = L/ divudiviudr — 4 / (1—(u- Vu)2)1/2(u vy) (6w - vy) dHY
Q JunQ

+/)\(u-5u)=/ [—LVdivu + Au] - dude
Q Q

+/J . {L (divuy —dive_) —4(1 — (u- Vu)2)1/2(u ) Vu):| (Su - vy) dH.

From the consideration of perturbations du supported away from J, we conclude that
u satisfies the equation

(4.11) — LVdivu+ Au =0 in Q\J,,

which is equivalent to (4.1). Then allowing for perturbations that meet J, N but
that leave the jump set unaltered, we see that u is subject to the natural boundary
conditions (4.2).

Before deriving the last condition (4.3) of the theorem, we wish to reinterpret the
criticality condition (4.1) as a system of conservation laws. To this end, we suppose
an S'-valued vector field u is critical in the sense of (4.1) and that we locally write u in
terms of a lifting as u(x, y) = ¢?(®¥). Assuming u is sufficiently smooth, we introduce
the scalar v := divu and find that (4.1) is equivalent to the following system for the
two scalars 6 and v:

(4.12) —sinf 6, +cosf 0, = v,
(4.13) —sinf v, + cosfvy = 0.

Starting from any initial curve in Q parametrized via s — (2o(s),yo(s)) along which
6 and v take values 0y(s) and vg(s), respectively, one readily solves (4.12)—(4.13) to
obtain (4.6), (4.7), and (4.8). We will exploit this property of constant divergence
along these circular characteristics in a construction below.

Now we consider a competitor u that is critical in the sense of (4.1)—(4.2) and is
such that within some ball B C € centered on a point of smoothness of .J,, N2 one has
the following conditions: (i) div u is continuous on both sides of J, N B, and (ii) the
traces of div u on J,, are differentiable along J,,N B with integrable derivatives. We let
Jw be a small perturbation of J, N B, where a part of a smooth curve in J,, is replaced
by another smooth curve (Figure 4.1). We assume that the new curve maintains the
connectivity of J,, connects smoothly to J,, and lies on one side of the original curve.
Here, to fix ideas, we assume that J,, lies on the left side of .J,, corresponding to u. .
We construct the perturbation w of u as follows. Supposing that on the right side
of J, the function w coincides with u_, we use the characteristics on the right side
of J,, using u_ as initial values, to extend u_ into the interior of the region J,AJ,
thus defining w in that region (Figure 4.2). The characteristics extension of u_ into
JuwAJ, allows us to maintain control over divw_ — divu_ in that region.

We let Qf denote the region to the left of J,, in Figure 4.1 and denote by w_ the
trace of w on J,, as the boundary is approached from within the region int (J,AJ,).
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Fic. 4.2. Construction of the perturbed minimizer w. The circular arcs of the characteristics
defining w meet at the jump set Jy, (left). The characteristics on the right side of J,, are used to
extend u— into the interior of the region JuwAJy (right). In order to satisfy the continuity condition
on Jy for the normal component of w, a small perturbation is added to u on the left side of Ju (not
shown). The smallness of this perturbation is guaranteed by the continuity of w and its divergence
on both sides of Jy,.

In order to make sure that the function w is in Hgi, (2, S!), it must have the trace
(4.14) Wy = (2uy Quy — I w_

on Jy, as J, is approached from within the region Q. Indeed, as long as (4.14) holds,
we have wq - vy = w_ - vy and (Vy Q@ vy — [ wy = — (W Qv — [) w_.

We take advantage of the continuity of v and divu away from J,,, which ensures
that the difference between w. as defined in (4.14) and u on J,, is small. In particular,
if u = e to the left of J, and wy = e+ on Juw, then 60 = 0, —0,, is small on Jy,.
We introduce a small perturbation §6 compactly supported in . and such that the
trace of 66 on J,, is 66, . Then we set w = (%199 in O 50 that w € BV(Q,S') N
Hagiy (92, SY). Further, if we let du := w — u, then du € BV(Qw+,R2) N HdiV(Qw+7R2)
is a small, complex-valued perturbation compactly supported in the closure of Q.

Next, we suppose that J,, has the arc-length parametrization r,(s), where s € I.
We introduce the function h : I — R with small C'-norm such that h vanishes along
with its derivatives at the endpoints of I. We now assume that r,(s) = r,(s) +
h(s)vy(s) for s € I defines J,,. We let 7,(s) = 7/,(s) so that v,(s) = 7.-.

By our assumptions on divergence and using the characteristics construction of
uw and w, it follows that ||0ul/1,00 = O(||h]]1,00)- To simplify the notation, we assume
that all equivalences in the derivation of the criticality condition appearing below up
to (4.19) are true up to terms of order O (||h3 .)-
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Integrating by parts and using (4.11), we have

L
= {(divw)? = (divu)®} dz = L/ div u div du dz
2 Joy f

:—L/ (div ) 6u - vy, dH?,
Juw\Ju

where v, is the unit normal to J,, pointing into Qf (see Figure 4.1). The variation
of the energy is then given by

(4.15) Ep(w) — Ep(u) = £/ {(divw)? — (divu)?} dz
2 Jint(JuArdw)
: 1, 4 2\3/2 .1
—L (divu) du - vy dH™ + = (1 — (w - ) ) dH
T\ Ju 3

- = / (1—(u- I/u)2)3/2 dH'.
3 JrN\dw

We estimate the third term in (4.15) as follows. Because

ol = [(1 = he)Ty + Wy | = \/(1 —he)?+ (W) =1—hk

and
(1 =hK)v, —h'7y

Vy = =v, — h'1,

[(1 — hr)Ty + h'vy| o

we have

1 (w-v)? =1 — (w(ry) + hVw(ry) v) - (v, — h'))°

=1—(w(ry)  vu +hVw(ry) vy vy — W1y - w(ry))
=1— (w(ry) - vu)® = 2(w(ry) - va) (WVw(ry) vy - vy — W7y - w(ry))

2

on Jy,\J, so that

= 2 (1 @) v~ 2(r) ) (BT () v v~ ()

=5 (1~ (wlr) - m)?)

—4 (1 — (w(ry) - VU)Q)”2 (W(ry) - va) (WVW0(ry) va - va — W7 - w(r4))

_ % (1 - Vu>2)3/2

1/2
—4 (1 — (u- I/u)Q) (w-vy) (AVu_ vy - vy — W u_ - 7,)

3/2
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for s € I. With the help of (4.2), we conclude that

4 —(w-r)?)*? 1:é — (w-)?)*?(1 — hr) ds
(4.16) /J\J (1= o)t = 5 [ (1= )0

4
=3 / (1- (u-vu)2)3/2(1 — hk) dS+L/(diVU+ —divu_)Vu_ v, - v, hds
I 1

+ L/I {(divus) (ug - 7o) + (divu_) (u_ - 7,)} b ds,

because w(ry) - 7, = —Uy - Ty = U_ - T, o0 Jy,. Similarly,
(4.17) - L/ (div w) du - vy, dH?
Juw\J

= —L/I(div w(rw)) (W= (ry) - Vo — u(ry) - V) ds
= —L/I(divu+) (w(ry) + h Vw(ry) vy,
—uy —hVug ) (v, —h'n,) ds

= L/(divu+) (Vuy vy — Vu_wy,) - v, hds
I

- L/(divu+) (uy -7y —u_-71y) b ds,
I
since w(ry) - vy = u - vy on J,. Adding (4.16) and (4.17), we find

(4.18) —L/ (divu) bu - v dH + - / (1= (w- vy)2)** an?
Juw\J 3 Ju\J

:%/I(l—(u~yu)2)3/2(1—h/<;)ds

+ L/I{(divu+) Vuy vy vy — (divu_) Vu_ vy, - 1, } hds
—L/{(divu+) (uy - 7a) — (dive) (u_ - 7)) B ds.
I

Finally, changing the coordinates (z,y) = ry(s) + t hy(s) and using our continuity
assumptions, we have for the first integral in (4.15) that

(4.19)

M\h*—‘

{(divw)? = (divu)®} dz = = // {(divw)? = (divu)?} (1—h k) dt ds

int(Jyw AJy)

// { divu_)* — (divug) } dtds = — /{ (divu_ (divu+)2} hds.

Equation (4.15), along with (4.18) and (4.19), gives the following variation of the
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energy functional:
L . 2 . 2 4 21\3/2
. o(u) = = vu_)® — (divuy - = —(u- vy
(4.20) 6FEo(u) 5 {(divu_)* = (divuy)?} hds 3 (1= (u-vy)*)" " hrds
I I

+ L/I {(divuy) Vuy vy - vy — (divu_) Vu_ vy - v, } hds
- L/I ((divus) (g 7o) — (divu) (u_ - 7))} B ds.
Now, observe that the identities
Vuv, v, =divu — VuTt, - Ty
and

(u-70) =Vut, Ty +Ku- vy

hold separately for u_ and uy on J,. Substituting these expressions into (4.20) and
integrating by parts, we have

(4.21) SEo(u) = g/l{(divu+)2—(divu,)2} hds—% /I(l—(u-yu)Q)B/Qh/{ds

- L/{(div up)Vuy 1y - 7y — (divu_) Vu_ 7, - 7} hds
I

- L/I {(divuy) (uy - 7y) — (divu_) (u_-7,)} h'ds

= g/j [(divuy)? = (divu_)?] hds — % /1 (1 (u- yu)2)3/2 e ds

- L/{(divu+) ((ug 7)) —ku-vy) — (divu_) ((u— - 7,) — ku-vy)} hds
I
+ L/ {(divuy) (ug - 7y) — (divu_) (u_ - 7,)} hds
I
+ L/ {(divuy) (uy - ) — (divu_) (u_ ~Tu)l} hds
I

for any smooth, positive h with a compact support in I. The same expression can
be established for smooth, negative h with a compact support in I by considering
perturbations of the jump set that lie on the right side of J,,. From this we immediately
conclude that J,, is stationary whenever

(4.22) (divuy)? — (divu_)? + (divuy +dive_) (uy -7y —u_ - 7,)

— S%(l —(u- Vu)2)3/2 — 2k (divuy —divu_) (u-vy) on Jy.

With the help of (4.2), the condition (4.22) can also be expressed as in (4.3). d

5. Results for the special case of a disc or an annulus. Now we present
some examples where we take €2 to be a disc or an annulus. For the disc we will discuss
three choices of boundary data g : 9D — S'. Our focus is on optimizing the I'-limit
Ey where we recall the normal component of competitors u € Hy;, (D; SY)N BV (D; St)
is required to satisfy ugp - vop = gop - ¥ on JD. Our discussion on the annulus is a
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bit more formal, and we present examples that indicate situations where the wall is
potentially curved, possibly occurring along the boundary.
Throughout this section, €, := (z,y)//x% + y? denotes the unit radial vector

field, while
o = (—y,x)/Vx* +y?

denotes the unit angular vector field.

5.1. Tangential boundary conditions: g(x,y) = (—y, ). In this case, a
minimizer is clearly given by the divergence-free vector field

u(.’ﬂ,y) = gea

since for this choice of u one has Ey(u) = 0.

From the characteristics viewpoint laid out in the preceding section, this critical
point is composed of characteristics which are simply radii through the origin of D
to the boundary, corresponding to v = 0 on each of these characteristics. We point
out that for the Aviles—Giga energy, the authors in [18] classify zero energy states
of the Aviles—Giga energy. More recently, [22] provides a quantitative version of the
result in [18]. Another quantitative result with relevance to the Aviles—Giga energy
was obtained in [21].

5.2. Hedgehog boundary conditions: g(x,y) = (x,y). Here we can again
precisely determine the minimizers of Fy.

THEOREM 5.1. For Q =D and boundary data g = (x,y) the two functions uf =
re, £V'1 —12€y are the only minimizers of the problem

inf Egy(u)

taken over competitors u € Ha;y (D;SY) N BV (D;SY) satisfying usp - vop = g - vop = 1
on OD.

Proof. We note first that since u-v = 1 on 9D and |u| = 1, necessarily competitors
must have traces satisfying u = g(x,y) = (x,y) along OD.

Now given any competitor u, an application of the Cauchy—Schwarz and the
Divergence Theorem gives

L L1 2
(5.1) Eo(u) > 5/(divu)2 dx > 5 (/ diVUdl‘) =27L = Ey(ul).
D D

Hence u} are minimizers, and any other minimizing competitor would have to yield

equality in both of the inequalities above. Consequently, the only possible candidates
for minimizers u must satisfy J, = () so that u € W11(D) and divu = constant. The
Divergence Theorem and the boundary conditions then imply that in fact divu = 2
throughout D.

Now we expand the competitor u in a Fourier series as

u= Z Uy (1)

where u, (r) = fn(r) + ig,(r) is a sequence of complex-valued functions that satisfy
up(l) =1 and u, (1) =0 if n # 1. In order to compute the divergence of u written in
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the Fourier development, we write V,(r,6) := u,(r)e? and note that, written as a
vector field in R?, we have

fn(r) cosn® — g, (r)sinnb
gn(r)cosnb + f(r)sinnd |-

Va(r,0) = (
A calculation then yields that
nfn(r)

r

divV, = ( Fi(r) + ) cos(n —1)8 — <g;(r) + "9’;(”) sin(n — 1)0.

Using Plancherel and arguing as in (5.1), we find
Eo(u) = £Z/(divv )? dw > £/(olivvfdgg > orL
0 9 . D n = 9 b 0 = s

and so u = Vp = ug with necessarily divVy = fj + % = 2. Solving this ODE with
the boundary condition fy(1) =1, we find fo(r) = r, and since |u| = 1, it follows that
go(r) = £v1 — 12 so that u = uf or u™. 0

5.3. Degree —1 boundary conditions: g(z,y) = (x/R,—y/R). In this
section, we develop a solution of the Euler-Lagrange boundary value problem (4.1)—
(4.2) with the symmetries hinted at by a numerical solution of the relaxed problem.
Although we do not claim that our construction yields a minimizer of the limiting
functional, the minimizing property of our solution seems plausible given its close
resemblance to the numerics, at least for a certain range of parameters of the problem.

We used the COMSOL Multiphysics finite elements software [1] to solve the Euler—
Lagrange equation associated with the energy functional (1.1) in the circle of the
radius R = 0.6, subject to the boundary conditions ¢(z,y) = (z/R,—y/R). The
(local) minimizers in COMSOL were found by simulating the gradient flow for E. on
time intervals that were sufficiently large for a solution to reach an equilibrium. The
results for L = 0.5 and € = 0.005 are shown in Figures 5.1-5.2.

First, we observe that (i) the jump set of the solution in Figure 5.1 consists
of two straight lines inclined at 45° to the horizontal axis, and (ii) the solution is
symmetric with respect to reflections about both these lines, as well as the vertical
and horizontal axes. Along the lines of the jump set, the symmetry is such that
the normal components from either side are equal, while the tangential components
are equal in absolute value and opposite in sign. Further, (iii) on both axes, the
solution vector is parallel to the axis itself, and (iv) Figure 5.2 indicates that the sum
of the traces of the divergence of u on both sides of the jump set equals zero. The
last observation is consistent with the required criticality condition (4.3) since the
curvature of the jump set is zero. Thus, it would be sufficient to look for the solution
of (4.1)—(4.2) in one-eighth of a circle of radius R, and then extend the construction
to the rest of the circle via symmetry.

Let Q be a sector of the circle of radius R, as depicted in Figure 5.3. We seek a
solution u of (4.1)-(4.2) in the form (4.6)—(4.8), where

Ju = {(x,y) eER?*:y=zx2¢c (O,R/\/ﬁ)},
subject to the Dirichlet boundary conditions

(5.2) u=(1,0) wheny =0 and wu= (z/R,—y/R) when 22 +y* = R?.
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-0.1r 11105
-0.2+ 4
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041 | Mo.3
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Fic. 5.1. A solution u of the FEuler—Lagrange equation associated with the energy functional
(1.1) 4n the circle of the radius R = 0.6, subject to the boundary conditions g(z,y) = (x/R,—y/R).
Both u and |u| are shown.

0.7t
0.6f 1.76 2.84
0.5} 1.53 2.53
| 1.31 2.21

0.4 1.08 1.9
oal 0.86 127
0.2 0.64 0.96
0.1+ 0.41 064
- 0 0.19 - 0.33
0.1+ -0.04 ?6032

-0.26 :
0.2+ -0.61
-0.49 0.93
0.3t -
-0.71 -1.24
-0.4r -0.93 -1.56
-0.5¢ -1.16 -;-?;
-0.6F -1.38 | 21
0.7} 1N R 0.7} N EX
-1.83 -3.13
-0.5 0 0.5 -0.5 0 0.5
X

Fic. 5.2. Level curves for the divergence of u (left) and for the angle 6 (right), where u =
(cos@,sin0) is depicted in Figure 5.1.

By our symmetry assumptions, the jump of divu on J, is equal to —2divu_, and
hence (4.2) takes the form

1/2

(5.3) Ldivu—2 (1= (u-vy)?) " (u-vy) =0on Jy,

where we dropped the subscript “—" for notational convenience. Our last assumption
is based on the behavior of the numerical solution in Figure 5.1. Considering the
solution in the part of the disc corresponding to €2 in Figure 5.1 and recalling that
u = (cos8,sinf), in what follows we work with € instead of u and assume that

(5.4) 0:Q— [-7/4,0].
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/4

R
>
x

(V2-1R R

Fic. 5.3. Regions corresponding to different characteristics families.

We begin by identifying two distinct families of characteristics that originate on
the z-axis and recover the solution of the limiting problem in regions I and I in
Figure 5.3.

Step 1. First, taking into account (5.2), we construct a characteristic

(z(s,t),y(s,t),0(s,t),v(s,t))

with the initial data

(2(s,0),y(s,0),0(s,0),v(s,0)) = (s,0,0,v9(s)) for s € [sg, R],
which terminates at some point

(@ (5,t7(s5)) ,y (5,8°(s))) = R (cos (¢ (5,27 (s))),sin (¢ (s,27(s))))

on the circular component of 9 so that

(5:5)  (w(s,t7(s5)),y (5,87(s)), 0 (5,87 (s)) ;v (5,7 (s)))
= (Rcos (¢ (s,17(s))), Rsin (¢ (5,87(s))), = (5,87 (s)) , v (5,87°(s)))

for all s € [sg, R]. Here v represents the polar angle for a vector (x,y), while the

parameter so > 0 and the functions vy and ¢* are all to be determined in the course

of solving the problem. Note that, as a consequence of (4.12), the characteristics and

the field u are mutually perpendicular at all points in 2, and hence a characteristic

intersecting the x-axis must be perpendicular to this axis at all points of intersection.
From (4.6)—(4.8), we conclude that

(5.6) z(s,t) =

() [cos (B(s,t)) — 1] +¢,
1

(5.7) y(s,t) = vo(s)

(5-8) 0(s, t) = vo(s)t,
(5.9) v(s,t) = vo(s)
)

for all s € [sg, R]. Substituting ¢*(s) into these equations and using (5.5) gives

Recos (v (5, 1*(s))) = Uots) [cos (4 (s, °(s)) ) — 1] + ¢

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/17/19 to 130.101.154.93. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

GINZBURG-LANDAU PROBLEM FOR ANISOTROPIC NEMATICS 299

1

vo(s)

(5.10) Rsin (¢ (s,t*(s))) = — sin (¢ (s, *(s)) ),

¥ (5,1°(s)) = —vo(s)t"(s)
for all s € [sg, R]. It follows from (5.10) that

Vo = R
on [so, R]; that is, all characteristic curves that intersect both the x-axis and the
circular part of the boundary are themselves arcs of circles of radius R, centered on
the x-axis. These curves clearly foliate a region in ) labeled by I in Figure 5.3 and
bounded from the left by the mirror image of the boundary arc with respect to the
line # = R/v/2. The corresponding leftmost characteristic curve in family I will be
denoted by @,.. It intersects the z-axis at z = (v/2 — 1)R and is given by

(5.11) z-(t) = V2R — Recos (t/R),
(5.12) yr(t) = Rsin (t/R),
(5.13) 0,(t) = —t/R

for all t € [0,7R/4].

Step 2. Next, we turn our attention to the region labeled IIT in Figure 5.3. This
region is foliated by the characteristic curves intersecting both the z-axis and jump
set J, = {(z,y) : y = x}. Because they originate on the x-axis, these characteristics
are given for s € [0, so] by the same equations as in (5.6)—(5.9). For the remainder of
this construction, we assume that s € [0, sg]. Suppose that intersection with the line
y = x occurs at some point (x (s,t*(s)),y (s,t*(s))) . Then

(5.14) (5,67 (s)) =y (s,t7(s)),
(5.15) Lug(t) + cos? 0 (s,t*(s)) — sin? 0 (s,t*(s)) = 0.

Here the second equation is the natural boundary condition (5.3) recast into a simpler
form using trigonometric identities. Equation (5.15) along with (5.4) implies that

(5.16) vo(s) < 0.
From (5.6), (5.7), and (5.14), we obtain
(5.17) cosf (s,t"(s)) —sinf (s,t*(s)) = 1 — svp(s).

Then (5.15) and (5.17) allow us to conclude that

cosf (s,t™(s)) + sin b (s,1"(s)) = _%
and

2con0 6,0 = 1 () - UL

24 5, () = 1+ ) - 2
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F1c. 5.4. Characteristics construction in the intermediate region I1.

Hence
(1 — svg(s))* = 2(1 — svo(s))” + L2v3(s) = 0
and
(5.18) (1 —svo(s))” = 14 4/1 — L202(s).
Here the sign in front of the square root follows from (5.16). Now let
F(p) = (1 tp)? — VT— L% — 1.
Clearly, F is continuous on [—1/L, 0] for every s € [0, so] and

S

— nd —*1 - 2—
F(0) = 0 a F = —+ >0

Thus, there exists —1 < vo(s) < 0 such that (5.18) holds. Furthermore, by (5.18),

we have the bound 1 — svg(s) < v/2, so that vo(s) > —(v/2 —1)/s, and, in particular,
1
(5.19) vo((V2—1)R) > -5

Note that the rightmost characteristic @; in the family 11 originates from the same
point ((v/2 — 1)R,0) on the z-axis as the characteristic «,. in the family I, and both
x; and x, are tangent to each other at ((v/2—1)R,0). Inequality (5.19) demonstrates
that the radius of x, is smaller than the radius of x; and so there is a wedge-shaped
region in 2, labeled I7 in Figure 5.4, which is covered neither by the characteristics
from the family I nor by the characteristics from the family I771. In Step 3 below, we
construct the third family of characteristics that extends the solution to region I1.

We conclude this part of the construction by showing that the characteristics of
the family 7717 indeed foliate region I71. We take the derivative of both sides of (5.18)
with respect to s and solve for v((s) to obtain

L2vg(s) '

2(1 — svo(s))y/1 — L2vd(s)

vy(s) = —vo(s) |s — > 0.
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It follows that the characteristic curves in region III are the circular arcs having
curvature that increases with s. Since these curves also cross the z-axis at 90°, they
completely cover region III without intersecting one another. We also note that
lims_o vo(s) = —%, and so the divergence of our solution in region III remains
bounded.

Step 3. Finally, we use characteristics to extend the solution to region II. The
procedure is illustrated in Figure 5.4. We use the curve (5.11)—(5.13) as the initial
data for the new family of characteristics. For the remainder of this section, we will
assume that s € (0,7R/4). Let

zo(s) = V2R — Rcos (s/R),
yo(s) = Rsin (S/R)7
Oo(s) = —s/R.

Then, from (4.6)—(4.8), we have that

(5.20) x(s,t) = Uots) [cos (6(s,t)) — cos (s/R)] + V2R — Rcos (s/R),
(5.21) y(s,t) = Uots) [sin (6(s, 1)) + sin (s/R)] + Rsin (s/R),

0(s,t) = vo(s)t — s/R,

v(s,t) = wvg(s).

The new characteristic curves are still assumed to terminate on the jump set y = =,
and hence they must satisfy conditions (5.14)—(5.15). Setting 0*(s) = (s, t*(s)) and
simplifying, these conditions take the form

(5.22) cos 0% (s) — sin 0% (s) = A(s),
(5.23) c08 0% (5) + sin 0" (s) = — LZ?S) ,

where

(5.24) A(s) := V2 [(Ruo(s) + 1)sin (s/R + 7/4) — Rug(s)] .

The assumption (5.4) implies that
(5.25) vo(s) <0 and A(s) > 0.

Following the same procedure as in Step 2, we find that vg(s) satisfies

(5.26) A?%(s) = 14 4/1 — L203(s),

and hence

(5.27) uo(s)>—% and  A(s) < V2.

The second inequality in (5.27) is equivalent to

1
vo(s) = &
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and, combining this inequality with the first inequality in (5.25) and the first inequality
in (5.27), we have

. [1 1
(5.28) — min {R’ L} < wo(s) 0.
Now, let

F(p) :=2[(Rp+1)sin (s/R+7/4) — Rp]® — /T — L2p? — 1

. 1 1
= min —_, — .
q R'L

Clearly, F' is continuous on [—g, 0] for every s € (0,7R/4) and

and

F(0) = —2cos® (s/R+7/4) <0,
while

b 2[(1 - R/L)sin (s/R+n/4) + R/L]>—1>0, L>R,
(o) = 1—/1—(L/R)> >0, L<R

This implies that there exists vo(s) € (—¢,0) such that (5.26) holds and, therefore,
(i) v is uniformly bounded in region I, (ii) the inequality in (5.28) can be considered
to be strict, and (iii) v experiences a jump on x,. Note that, at the same time,  is
continuous across «, by construction.

It remains to show that the characteristic curves cover the entire region 11, with-
out intersecting each other. We begin by proving the following.

LEMMA 5.1. The functions vy and 0* are, respectively, strictly increasing and
strictly decreasing on (0,7R/4).

Proof. Taking the derivative of both sides of (5.26) with respect to s, solving
for v{(s), and using (5.28), we determine that v{(s) > 0 for all s € (0,7R/4). This
establishes monotonicity of vy. Likewise, solving (5.22)—(5.23) for cos #*, taking the
derivative with respect to s, and using the just established fact that the v} > 0 on
(0,mR/4), along with (5.24) and (5.28), proves that 8* < 0 on (0,7R/4). |

To demonstrate that no two characteristic curves can intersect, we suppose, by
contradiction, that a circular arc of a characteristic C intersects another circular
arc of a characteristic Cs before reaching y = x, where C; corresponds to s = s,
whereas Cy corresponds to s = sy with s; < sg. Using (5.20), (5.21), and the
monotonicity of vy, we know that the curvature of C; is greater than the curvature
of Cy. Since C; starts out (i.e., at ¢ = 0) to the left of Cs, this intersection could not
be merely tangential since a circle of larger curvature can’t sit outside of a circle of
smaller curvature. Thus, the intersection is transversal. Now the angle between an
incoming characteristic and the line y = x is the nonnegative angle 6* + /4, and if the
intersection is transversal, then necessarily 0*(s1) +m/4 < 0*(s2) + /4, contradicting
Lemma 5.1.

We end this section by plotting the analytical counterparts of Figure 5.2 obtained
in MATLAB using the characteristics solutions constructed above.

Figure 5.5 should be compared to the solution in the sector in Figure 5.2, corre-
sponding to the polar angle ranging between 0° and 45°. Regions I and IT are clearly

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/17/19 to 130.101.154.93. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

GINZBURG-LANDAU PROBLEM FOR ANISOTROPIC NEMATICS 303

0 T T T - - 0

04 1
0.1

/
05 — -
03 0.2
-0.3
1 >0.2 0.4
-0.5
—

15 0.1 = = i 06

] \
-0.7

0 : ‘ : : :
0 0.1 02 03 04 05 06
X X

Fi1G. 5.5. Level curves for the divergence of w (left) and for the angle 6 (right), where u =
(cosB,sin0) is a solution obtained using characteristics. The divergence is constant in the empty
region.
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Fic. 5.6. Energy of the critical point as a function of L.

visible in Figure 5.2, and there is a good match between Figures 5.5 and 5.2 in these
regions. The discrepancy between the solutions in region /17 can be attributed to the
qualitative differences between minimizers of the e-level and I'-limit problems. The
energies of the characteristics and numerical solutions are depicted in Figure 5.6 for
a small range of L values. The plots demonstrate that both the numerical solution
and the solution constructed using characteristics have energy increasing with L on
L € [0.1,0.7]. The systematic difference between the graphs can once again be ex-
plained by the fact that the corresponding functions are critical points of the different
energy functionals.

5.4. An example in an annulus: Curved walls. In this section we briefly
outline an example where our analysis suggests that the jump set can occur along a
portion of the boundary with a jump set, and might in general not be a straight line
segment. For details of the calculations in this section, we refer the reader to [15].

We fix a number R > 1 and let 2 denote an annulus described in polar coordinates
by ©Q := {1 < r < R}. For the boundary conditions g defined by ¢(1,0) = —ey,
g(R,0) = ey, we study the problem of minimizing the Ey energy among competitors
ugq * Voo = g - Voq = 0. It is reasonable to expect that a minimizer is radial, so we
work within the ansatz

(5.29) u(r,0) = p(r)e; + q(r)eo,
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F1G. 5.7. Energy minimizers in an annulus for L = 0.2 (left) and L = 2 (right). Here ¢ = 0.03
and the color represents |ul.

where p? + ¢*> = 1, p(1) = 0 = p(R). Within this ansatz, divu = 1(rp(r)),, and
the jump set is composed of a union of circles, possibly occurring at the boundary of
Q. Away from jumps, criticality of [(divu)? dz within this ansatz requires that p(r)
satisfies the ODE & (-2 (rp(r))) = 0, so that p(r) takes the form p(r) = Cr + £ for
constants C, D. In the absence of a jump circle in €2, the boundary conditions on p
would force p(r) = 0, and then either g(r) = 1 or g¢(r) = —1. This results in boundary
walls, either along the circle p = 1 or along p = R, respectively, carrying energies
Eo(ég) = & or Eo(—ég) = 22,

Elementary calculations, detailed in [15], demonstrate that for any R > 1, for an

interval of L-values of the form (0, L.(R)), where L,(R) %gzﬁ (1- xl/glj_l (%)3/2)’
the energy Fy within the ansatz (5.29) has an internal wall with energy strictly smaller
than %”, which is the energy associated to a boundary wall.

At the other extreme, we also show in [15] that for any fixed R > 1 and L suffi-
ciently large depending on R, the minimizer of Ey with these “mismatched” boundary
conditions and the radial ansatz (5.29) necessarily has its wall at the inner boundary
p = 1. The associated energy is Fy(ég) = 5.

In Figure 5.7, we illustrate observations made in this section by presenting the
results of gradient flow simulations for the functional E. for two different values of
L. For the smaller value of L = 0.2, the (local) minimizer has a shallower circular
wall in the interior of the domain, while the minimizer for L = 2 has a deeper wall
that coincides with the inner boundary of the annulus. Note that the simulations
were done without assuming that competitors are radially symmetric—the apparent
symmetry of minimizers suggests that it might be reasonable to consider the ansatz

(5.29).

6. Results for the special case of a rectangle. In this section we pose the
problem on a rectangle, taking Q = (=T,T) x (—H, H) for positive constants T and
H. Furthermore, we specialize the boundary conditions on competitors u :  — R?
to be given by

(6.1) u(z,£H) = (£ V1 —a?a) for [z| <T, wis2T-periodic in z,

for some constant a € [0,1). The rationale for considering E. and the T-limit Fy
in this rather special setting is to focus on the structure of wall transitions in as
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simple a situation as possible. A primary focus will be on examining the relative
favorability of one-dimensional—that is, purely y-dependent structures—versus two-
dimensional structures such as cross-ties that one associates with related models in
micromagnetics; cf., e.g., [3]. Other goals we have in mind concerning this special
case include better understanding the relative weights given to jump energy versus
divergence for minimizers, as well as the possible emergence of periodic structures on
a scale smaller than the fixed rectangle width 27'.

6.1. Study of the problem in a rectangle within a one-dimensional
ansatz. We begin our analysis of E. and Ejy on the rectangle subject to the bound-
ary conditions (6.1) by first studying the variational problem among one-dimensional
competitors, i.e., functions of y alone. More specifically, for 0 < |a| < 1 we consider
the space of admissible functions

Al(a) == {u=u(y) € H'((-H,H);R?),u(+H) = (£ V1 —a2,a)}

and consider the variational problem

(6.2) 2B EP (u),
where

1D I 2, Lo 2 1\2
(6.3) E-P(u) := 3 Ha|u |“+ g(\u| —1)% + L(uj)” dy.

The corresponding I'-limit ELP is now defined over the class
A% = {u = (ui,u2) : u§ € BV((—H,H)), uz € H'((—H, H)),

6.4
(64) uP(+H) = a, [u| =1 a.e. y},

where the boundary conditions on us come from (3.3). Then FEy from (3.4) takes the
form

©5) B =5 [ @l Y (1 -ude)”

Y €Juy
1 3 1 3
+ 8 ’ul(—H)—i— \/1—@2‘ +6‘u1(H) -1 —aQ‘

Not surprisingly, in this one-dimensional setting we can prove a much stronger
compactness statement than is possible in the two-dimensional setting of Theorem 3.1.
Here we establish the following theorem.

THEOREM 6.1. Let u, = (uél),u?)) € Al(a) with EXP(u.) < C. Then, up to
extraction of subsequences, one has ugl) — uy in L3(—H, H) for some function u; such

that u3 € BV(—H, H) and one has u® = uy in CO for all v < 1/2. Furthermore,
|(U1,UQ)| =1 a.e

Proof. Precompactness of {ug)} in C°Y(—H,H) for v < 1/2 is clear from the
uniform H' bound and Sobolev imbedding. The thrust of the rest of the proof will
be to prove the statement about {ugl)}. To this end, we define

e

vl = [ (1= = )7) ds = 202~ 2D -

—ulD

2

3 (ugl))?’_

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/17/19 to 130.101.154.93. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

306 D. GOLOVATY, P. STERNBERG, AND R. VENKATRAMAN

Since we have a uniform L* bound on u{" from the energy bound E!P(u.) < C it
readily follows that 1. is uniformly bounded in L*(—H, H). Now we estimate the total
variation of 1.. We have

H H ) H
[owtiarsz [ -l [0 dy+a [ uu®)| ] ay
_H _H T

Ugl) /

1 H 2 H 2 H
< —/ (1—|us|2) dy+s/ dy+/ ((ué”)“ﬂ@)“) dy
EJ_g —H —H

H
+ 2/ (u® ") dy < C.
-H

Concluding the desired compactness of {ugl)} relies on an algebraic identity. Using
the BV bound on {#.}, and passing to subsequences that we do not denote explicitly,

we know that 1. converges in L'. We now show that {ugl)}oo is a Cauchy sequence
in L3. For any 0 < € < §, we have

4

5 () = )?) = (e =) =200 = fue )l +2(1 — fus ?)uf?.

Hence, using Cauchy—Schwarz we obtain

4 (1)\3 (33| 4
3 )l =) ay
H H H
1
< [ vy [Py [y
—H —H € —H
oo 1 H
+51/3/ |us |2dy+ 51/3 / (1- |U5|2)2 dy.
—-H —-H

Since {ugl)} is uniformly bounded in L* by the energy bound, we can invoke the
L!-convergence of {1} to find that

H
(6.6) [waﬁf@%ﬂ<mm

as & — 0. Since |a — b|> < 4]a® — b?|, it follows that {ugl)} is Cauchy in L?, and has
a limit in this space, denoted u;. Denoting the limit of u§2) by wug, it follows from the
energy bound that u? + u3 = 1 a.e. in (—H, H). Consequently, the limit of the .

satisfies
4 3
(6.7) e = ()

in L'. By lower-semicontinuity of the BV norm under L'-convergence, we conclude
that
(u1)® € BV(—H, H).

It follows that one-sided limits of (u;)® exist at all y € (—H, H). Combined with us
being continuous on the same interval, this implies that |uy,us| = 1 everywhere on
(—H, H). O
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In light of the preceding compactness result, Theorem 6.1, one can establish a full
I'-convergence result in this one-dimensional setting without an assumption on the
limiting functions lying in BV. We have the following.

THEOREM 6.2. Let u € A°. Then
(i) for any sequence u. € A'(a) satisfying u. A u, we have

(6.8) lim inf B1° (uc) > By (u);

(i) there exists a sequence w. € A'(a) with we 2 u and
(6.9) lim B2 (w.) = E}P (u).
e—0

A proof of this particular case of Theorem 3.2 is significantly simpler and more
transparent in the key elements of the argument [15].

Remark 6.3. We recall that in Theorem 3.2 we made the assumption v € BV.
That this is not quite the optimal space can already be seen in this simpler one-
dimensional setting where one can construct a limiting vector field u = (u1,uz) with
u; having a countable collection of jumps of size (%)keN. Such a construction can
be arranged to have finite Ejy energy, but necessarily has infinite BV norm. The
preceding theorem, however, guarantees the existence of a recovery sequence for such
a competitor.

This phenomenon is well known for Aviles—Giga; see the discussion in [4, pp. 338
340]. The counterexample there is very similar in spirit, but is understandably a bit
more involved due to the constraint imposed by the eikonal equation.

Next we pursue an understanding of minimizers of the one-dimensional I'-limit
ELP.
THEOREM 6.4. For any a € (0,1) the problem
: 1D
ljllof Ey" (u)

has a unique solution u* = (uf,u}), where ui has exactly one jump located at y = 0
and u} is linear on the subintervals [—H,0] and [0, H]. More precisely, the components
are given by the formulas

M—a .
(6.10) u;(y):{ a+“gty+H), ye(-H,0],

a+ M,;“(H—y), y € (0,H),

,m fO’I‘yE[fHaO]a

17(“;)2 foryE(O,H],
where the constant M = M(L, H,a) € (a,1) is the minimizer of the problem

(6.11) ui(y) = {

. L 2, 4 23
Zm— (1 — /2
i g — @) g (= m)

In case a = 0, the nature of the minimizer depends on the ratio L/H. If L/H < 2,
then the minimizer is again unique and has the one-jump structure given by (6.10)—
(6.11) and the infimum is % — %% If L/H > 2, then the minimizer is any step
function of the form

(6.12)

U(y) — { (7130) fOTy € (7Hay*]7

(1,0)  forye (y*, H),
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where yx € [—H, H] is arbitrary and the infimum is 4/3. If L/H = 2, the family of
step functions and the solution given by (6.10)—(6.11) are all minimizers.

Proof. Let u = (u1,uz) be any competitor in A°. We denote by .J,, the jump set
of u, which in the present one-dimensional setting corresponds simply to the jump
set of uy, combined with either —H or H, or both if either uj(—H) # —v1 —a? or
uy(H) # v/1—a2. We will write J,, for the closure of .J, and define the number M,
via

M, = { maxye j, uz(y) if J_u # 0,
“ maxye—p g u2(y) if J, = 0.

In light of the continuity of uy and the compactness of .J, we note that this maximum
will always be achieved at at least one point § € [—H, H]. We now proceed with three
cases.

Case 1. J, # 0 and M, is achieved at §j € (—H, H). We note that this case
includes the possibility that § & J,, but is simply a limit point of a sequence of points
{y;} in the jump set. In this case |u_(y;) — u4(y;)| — 0, meaning that the difference
between the left and right traces of u; approaches zero. Since these traces are also
opposites of each other, necessarily u;(g) = 0, forcing us(y) = 1 = M,,.

Whether or not this subcase of Case 1 occurs, we now consider the competitor
u = (11, u2), whose second component is given by

b ot ST H) forye[-H),
a+ Tegfly—H) fory e (3, H],

(6.13)

and whose first component is given by

- { —y/1—u% forye|[—H,y,
Uy =

(6.14)
1—a3 forye (y,H|.

We calculate that
(6.15)

1D L (" L7 4 213/2
EyP(u) 2 5 | (wp)"dy+5 | (uz)"dy+ 3(1 - M;)
7

? L H * oy
u’d) + / uh d +71—M53/2
Ty 2 ay Z(H*y) 7 o Ay 3( )
L(M, —a)®> L(M,—a)?® 4

A\
[\&)
-
1=
=z
VRS
~

= + + (1= M)
2(y + H) oy sl M
L (v, L7 4. _
=5 [ @2y [ @rays 50 -wm**? - B @,
—H g

by the Cauchy—Schwarz inequality, with the inequality being strict unless uso is linear
on the subintervals (—H, §) and (g, H). Furthermore, among competitors of the form
(6.13)—(6.14), the second-to-last line of (6.15) reveals that the optimal choice is to
have § = 0 yielding a minimal energy within this class of competitors of the form

L

(6.16) EP(a) = E(Mu —a)® + %(1 — M?2)3/2,

Case 2. Suppose J,, = (). In this case u; is continuous with uy(£H) = +v/1 — a2.
Hence there exists a point y € (—H, H) such that uy (y) = 0, meaning that us(y) = 1.
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Therefore in this case, M,, = uz(y) = 1 for some § € (—H, H). Then consider the
competitor 4 = (i1, dz2) given by (6.13)-(6.14) with M, = 1, so that now wu; is
continuous as well. The calculation leading to (6.15), absent the jump term, implies

in this case that
EyP (u) > EyP (w)

with the minimal value
1D/~ L 2
(6.17) Ey“(a) = E(l —a)”.

Case 3. Suppose J, # O and either M, = us(—H) or M, = uy(H). In the first

case, we have

(6.18)  /1—a2EP(u) >

where @ = (V1 — a2, a), while in the second case we have

(wa () + V1= ) = 51— )2 = BP(w),

S| =

619) B> Sl (H) - V- )= S(1 - )2 = BP(a),

where @ = (—v1 — a?,a). Again the inequalities are sharp unless u = 4.

Having exhausted all possibilities, we next observe that the optimal formula (6.17)
from Case 2 corresponds to (6.16) with M, = 1, and the optimal formulas (6.18)
and (6.19) from Case 3 correspond to (6.16) with M, = a. Hence, the minimal
energy corresponds to the minimization (6.12). Clearly this minimum must occur for
m € [0,1], and since for a € (0,1) the function

_ L 2 4 213/2
fm) i= 52 (m — a)? + 5 (1= m?)
satisfies the conditions f/(0) < 0 and f’(1) > 0, the minimum occurs on (0,1). The
conclusion of the theorem for this case then follows. When a = 0, one finds that
f'(0) = 0, and some elementary calculus yields the stated dichotomy depending on
the ratio L/H. When a # 0, it can be checked by elementary arguments that the
interior minimum is unique. O

Remark 6.5. The proof of Theorem 3.2 reveals that resolving the internal struc-
ture of walls for the Ej energy at the £ > 0 level using a one-dimensional construction
is asymptotically optimal. However, it is possible to also have two-dimensional recov-
ery sequences with the same energy asymptotics. To see this, set S := {|z| < 1/2}
and define the map u : R? — R2, which is 1-periodic in the z-direction, by

(5—25),  Sn{o<o<iy,
(sind, — cos 0), Sm{ﬂgeg%ﬂ}’
(\% %) SN{F <0<},

u(z,y) = u(rcosd,rsinf) := i
7 SN {ﬂ' < ST ,
{_

(sin
(-

extended to all of R by u(x+1,y) = u(x,y) for all x € R. We compute the Fy energy
per unit length of the cross-tie map u, which is divergence-free. Across the walls
{Jz| < 1/2,y = 0}, the jump angle is 7r/4 Similarly, along the walls {|y| < 1/2,z =

7)
9) Sm{5ﬂ<9<7ﬂ
) Sm{7ﬂ<9<27r}
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1/2} the jump angle is /4. Finally there are walls {|y| > 1/2,2 = 1/2}, along which
the angle varies with y and is in fact equal to arctan (%) at height y. Adding up these
various jump energies yields the energy per unit length,

Eo(u:8) = o |2 & 3+2/001d
AR V2 172 (14 4y?)3/2 Y

(
A3

This construction can be scaled down to fit into walls replacing a heteroclinic con-
necting (1,0) and (—1,0). This observation is reported without details in [20] based
on a private communication with S. Serfaty.

6.2. A two-dimensional construction with cross-ties. In this section we
construct a critical point to Ey by solving the free boundary problem (4.1)—(4.3). Here
our particular interest is to find parameter regimes within which the one-dimensional
minimizer from Theorem 6.4 fails to minimize the full two-dimensional problem (3.4).
The main result of this section is as follows.

THEOREM 6.6. Consider the minimization problem for FEy in the rectangle ) =
(=T,T) x (—H, H), subject to the boundary conditions (6.1) with a = 0. There exist
constants Ly ~ 1.27 and L, ~ 2.14 such that whenever L/H € (Lo,L1) and T =
HT(L/H), where T(L/H) solves (6.30), we have

(6.20) inf Eo(u) < 2T inf B3P (u).

Here the infimum on the left is taken over all u € Hayy (Q;S') N BV (Q;SY) such that
u-v =0 on the top and on the bottom y = £H and u s 2T -periodic in x.

Remark 6.7. Given the energy functional (3.4) and the rectangular domain Q in
the statement of Theorem 6.6, it is easy to see that by setting
y = _ Eo

x
T = — y = — E = —

xz H7 Yy Ha 0

the rescaled variational problem for FE, contains two independent parameters: the
aspect ratio T' = T'/H and the scaled elastic constant L/H. Then setting a(Z,§) =
u(HZz,Hy) for any admissible u € Haiy (€;S') N BV(Q;S'), assuming that T =
T(L/H), and writing explicitly the dependence of the energy on L and H, we find
that

1 1 -
6.21 —Fo(u, L,H) = —Fy(u, L/H).
( ) 2T O(Ua ) ) oT 0(”7 / )
In other words, the energy per unit length along the z-axis is a function of the scaled
elastic constant L/H only.

The proof of Theorem 6.6 relies on a construction of a two-dimensional critical
point of Ej that resembles cross-tie walls well known in micromagnetics research
([17, 3]; see also Remark 6.5). Our construction is motivated by the numerics, which
we will now describe.

To find two-dimensional critical points of Fy, we used the finite element software
COMSOL [1] to determine the solutions of the Euler-Lagrange equation for E. nu-
merically. Here the (local) minimizers were found by simulating the gradient flow for
E. on time intervals that were sufficiently large for a solution to reach an equilibrium.
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Fi1c. 6.1. A solution u of the Fuler—Lagrange equation associated with the energy functional
(1.1) in the rectangle [—T,T] x [—1/2,1/2] subject to periodic boundary conditions on {—T,T} x
[-1/2,1/2] and assuming that u(-, £1/2) = (£1,0). Here L = 1/2 and T = T(1)/2 ~ 0.3. Both u
and |u| are shown.

0.5 0.5
1.8
0.4f 0.4r 1.43
1.57 1.27
0.3+ 1.34 0.3} 1.12
1.11 0.96
0.2t 0.2t 08
o
0.1t ' 0.1} 0.49
0.42 0.33
> ot 0.19 - oh 0.17
-0.04 0.02
-0.1f _ 0.1l -0.14
8'27 01 0.3
0.2} -0. 0o -0.46
0.2 073 0.2 0.61
0.3} -0.96 0.3} -0.77
03 1,19 03 -0.93
| : -1.08
-0.4 -1.42 -0.41 -1.24
-1.65 ~ 1.4
0.5 -1.87 -0.51 ] H-1.55
04 -02 0 0.2 0.4 0.4  -0.2 0 0.2 0.4
X X

Fic. 6.2. Level curves for the divergence of u (left) and the angle 0 (right), where u =
(cos 0,sin0) is depicted in Figure 6.1.

In our numerics, we fixed H = 1/2 and allowed L to vary. Then, for a given
L > 0, we determined T = T(2L)/2 by solving (6.30). The reason for this choice
of T will be explained below. The Euler-Lagrange equation for E. was then solved
on the rectangle (—7,7T) x (—1/2,1/2), subject to periodic boundary conditions on
{-T,T} x [-1/2,1/2] and assuming that u(-, £1/2) = (£1,0).

Our numerical studies allowed us to identify three different regimes. When L
is small, the one-dimensional solution (not shown) is recovered as the result of sim-
ulations. For intermediate values of L, a single-wall cross-tie configuration appears
(Figures 6.1-6.2). An analytical solution corresponding to this configuration will be
constructed below using the conservation laws approach of Corollary 4.2. To this end,
we observe that (i) this configuration has both vertical and horizontal jump sets coin-
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Fic. 6.3. A solution u of the Euler—Lagrange equation associated with the energy functional
(1.1) in the rectangle [—T,T] x [—1/2,1/2] subject to periodic boundary conditions on {—T,T} x
[-1/2,1/2] and assuming that u(-,£1/2) = (£1,0). Here L = 3/2 and T = T(3)/2 ~ 0.25. Both u
and |u| are shown.

ciding with the coordinate axes as well as a pair of defects of degrees +1 at (0,7") and
(0,0), respectively; (ii) the solution is symmetric with respect to reflections about the
coordinate axes, and the divergence is antisymmetric with respect to these reflections;
and (iii) the level curves for divergence in the first quadrant can be categorized into
three different regions, as in Figure 6.5.

We conjecture that this configuration corresponds to the cross-tie construction
that we develop in this section. Indeed, when the solution resulting from this con-
struction is plotted (Figure 6.6), it closely resembles those in Figure 6.2.

Before proceeding with the analytical construction of a cross-tie configuration
resembling Figure 6.1, we continue with further remarks about our E. numerics for
larger values of L. When L is increased further, it appears that 27T = T(2L), as
determined by (6.30), is no longer the period of the optimal construction, as two
cross-tie structures appear on the interval [T, 7] in Figures 6.3-6.4. We call this
a type-II cross-tie configuration. A close examination of Figure 6.3 shows that the
level curves for divergence that originate on the y-axis appear to terminate on the line
y = 1/2, as opposed to those in Figures 6.1-6.2. Pursuing an analytical construction
of this solution is beyond the scope of the present paper. However, it follows that we
can identify at least three families of critical points that may minimize the limiting
energy functional Ey for different values of L.

Analytical construction of a cross-tie configuration and the proof of
Theorem 6.6. We now use the observations made concerning the numerics of a
single cross-tie to construct a critical point of Ejy. Although numerics were carried out
fixing H = 1/2, we will carry out our construction for any H and work on a single
period cell Q = (0,2T) x (—H, H). We will further assume 7' < H, a choice that is
consistent with the choice made in the numerics.

A single period cell of this solution is composed of a dipole, i.e., a pair of +1 and
—1 vortices, along with walls connecting them. The above observations (i)—(iii) from
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Fic. 6.4. Level curves for the divergence of u (left) and the angle 0 (right), where u =
(cosB,sin ) is a type-II cross-tie depicted in Figure 6.3.

X

F1G. 6.5. Regions corresponding to different characteristics families. Typical characteristics for
each region are indicated by dashed lines.

the numerics motivate us to construct the critical point u = (cos #,sin#) on a quarter
of the period cell, say w := (0,T) x (0, H), and define u elsewhere by appropriate
reflections. A quarter period cell is displayed in Figure 6.5. By comparison with
Figure 6.1, the line x = 0, 0 < y < H denotes a vertical wall, and the z-axis denotes
a horizontal wall. Upon reflection and periodic extension, the point (0,0) is to house
a degree —1 vortex, while at the point (7',0) we will have constructed a +1 vortex
resembling the ey vector.

We construct solutions to the system of conservation laws given in Corollary 4.2
using the method of characteristics. Within the quarter period cell w under con-
sideration, we seek u = (cos#,sinf) with 6 € [0, 5]. We impose Dirichlet boundary
conditions = 0 along the top and right boundaries of w. The condition on the right
boundary is a result of the symmetry observation (ii) above. The natural boundary
condition (4.2) is to be satisfied along the left boundary and the x-axis since these
represent walls.

Building on observation (iii), the characteristics solution in w consists of three
families of circular arcs, labeled regions I through I17 in Figure 6.5 and described
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in Steps 1-3 below. In each of the regions I, II, and 111 above, we will denote the
arc-length and characteristic variables by si1, s, 83 and t1,t2,t3, respectively. The
dependent variables z = z(s,t), y = y(s,t), 0 = 0(s,t), and v = v(s,t) will also be
denoted using appropriate subscripts.

Step 1. In this step, we construct characteristics foliating region I in Figure 6.5.
First, starting from the top boundary {(s1, H) : 0 < s1 < T'}, we issue characteristics
that meet at the point (7',0). Indeed, along the top boundary, we have the boundary
condition #; = 0, since a = 0. By the characteristic equations, characteristics ema-
nating from (s1, H) for any 0 < s; < T leave the top boundary orthogonally. For
such fixed s, there is a unique circle orthogonal to the top boundary at (s1, H) that

passes through the point (7),0). A geometric argument shows that the center of this

T+s; H?
7+ 2(T—s1)°

circle is given by ( H ), while the radius is given by

It follows that R(s1) > H. Integrating the characteristics starting at the top boundary,
the circles constructed are characteristics, and along the circle starting at (s1, H), we
have v1(s1,t1) = v1(s1) := % and 01 (s1,t1) = v1(s1)ty.

It is clear that the foregoing yields characteristics that only meet at (7,0) and
not before. Furthermore, the right boundary of w, along which 6, = 0, is itself a
characteristic and belongs to the above family corresponding to infinite radius, as can
be observed by setting sy = T in (6.22). Furthermore, it is clear that the divergence
is bounded for this family, i.e., vi(s1) € [0, H].

The characteristic emanating out of (0, H) satisfies v1(0) = % = % =: a.
For later use, we record the equation of this characteristic as being given by

(6.23) z1(t1) = —é (cos (aty) — 1), yi1(t1) =H — ésin (aty).

We will refer to this characteristic as the terminal characteristic of the first family and
denote it by I'. If we let ¢} denote the time of arrival of this characteristic at (7, 0),
then we have the relation

H T

.24 =
(6.24) sin (at’{) 1 —cos (at’{) ’

which we can also write as

atiy T
(6.25) tan( 5 ) =5

Step 2. In this step, we construct a family of characteristics that foliate region
IIT of Figure 6.5. This family of characteristics consists of circular arcs emanating
from (s3,0) and terminating on the vertical wall at (0,ys(t5(s3))) for s3 € (0,T).
The symmetry assumptions from observations (ii)—(iii) along with (4.2) yield Lvs 4+
sin 203 = 0 along both the left and bottom walls. Since the divergence vs is constant
along characteristics, we find that sin 203(ss,0) = sin 2603(ss, t5(s3)), yielding

(6.26) O3 (53, t4(s3)) = g — 05(s3,0).
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Writing down the condition that (z3(ss,t5(s3)), ys(ss,t5(s3))) lies on the left wall,
ie. x3(ss,ti(s3)) =0, along with (4.2) along this wall, yields upon some elementary
computations that

—1+ (142012
(6.27) Sin 265 (55, 0) = —L ¢ ; i A

_ 253
=2

It can be checked that the right-hand side of the last equation defining sin 2605(ss, 0)
indeed belongs to the interval (0, 1). Integrating the characteristic equations, we find
that the circular arcs of the family foliating region 11 are characteristics along which
we have vs(s3,t3) := vs(s3) = —w. It can also be easily checked that the
particular characteristic of this family originating at (7', 0) satisfies

(6.28) ya(T.85(T)) = T

We will refer to this characteristic as the terminal characteristic of the family foliating
region I11.

For reasons that will be clear in the next step, we require that the terminal
characteristic of the families foliating regions I and II1, respectively, are tangent at
(T,0). This condition can be rewritten, using (6.24) and (6.27), as

L2 T2 8TH H?—T?
(6.29) = < 144— — 1)

72 L2 T T4 H?HZ T2

Before continuing, we remark about relation (6.29). The left-hand side is a function
of L/T, while the right-hand side is a function of H/T alone, which we are assuming
to be greater than one. We claim that for any x := H/T > 1, there exists a unique
L/T such that (6.29) holds. Indeed, setting ¢ = ﬁj_l iz;} <land A = %, we are
required to solve

VIFA=1+CA.

We obtain that A = IEQZC, which is positive, provided ¢ < 1/2, or equivalently,
provided 2z(z* — 1) < (2% 4+ 1)%. This is clear since

2
%(f +1)2 —2z(2? — 1) = (\2(&9 -1) - \/iv) .

Introducing the rescaling T = T'/H, we denote by T'(L/H) the unique solution of
879 (1 72)

for a given value of L/H. In what follows, we set T = HT(L/H).
We conclude this part with the following observation. Equation (6.25) can now

be written as
~ at]
T=tan | — ),
(%)

(6.30) L/H < (L/H)? +4T2 — L/H) — =0
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and testing (6.30) with at] = 7 and at] = 7, we observe that the left-hand side is
negative and positive, respectively. By the intermediate value theorem, it then follows
that at; € [Z,Z] for all L > 0. With the help of (6.26) we can now conclude that

(6.31) 03(T,5(T)) € [0, ﬂ .

Step 3. We finally foliate region I'1 by characteristics to define our critical point in
this region. Since H > T by assumption, it remains to fill the gap between the circles
of the first two families. In brief, we issue secondary characteristics that emanate
from the s = 0 characteristic I" of the first family tangentially, to meet the left wall.
The divergence v has a jump discontinuity along I', while the tangential departure of
the secondary characteristics from I' renders 6 continuous across I

In more detail, we write the initial curve I' using s as the arc-length parameter
(cf. Step 1) to get

1 1.
xo(s2) = 5(1 — cos(asz)), yo(s2) = H — o sin(asz),
and the initial condition on 6 is given by 6y(s2) = as, where so € [0,¢7] and ¢] is as in
(6.24). We do not set an initial condition on the divergence vy, but instead determine
vy by enforcing (4.2) at the left wall. Integrating the characteristic equations, we find

(632) ’1)2(82, tg) = ’UQ(SQ), 92(82, tg) = 90(82) + UQ(SQ)tQ,
1
(6.33) To(s0,tp) = a(1 — cos(as2)) + o) (cos O (s2,t2) — cosasa)),
1 1
ya(sa,ta) = H — =~ sin(asg) + (52 (sin Oa(s2,t2) — sinass) .

Again, defining t5(s2) to be the time of arrival of the characteristic originating at
(zo(s2),y0(s2)) to the y-axis, we obtain, using (6.32), (6.33), and (4.2) and denoting
05(s2) := O2(s2,15(s2)),

1
E(l — cos(ass)) + —— (cosb3(s2) — cosasz) =0,

2(s2)
(6.34) Lus(s2) + sin 2605 (s2) = 0.

If we define a function f = f(8, s2) via the formula
(6.35) f(B,s2) == (1 —cos(asz))sin 28 — La(cos f — cos(asz)),

then substituting the second of the equations in (6.34) into the first, we find that
0% must satisfy the condition f(63(s2),s2) = 0. We note that f(0,s2) < 0 for any
s9 > 0. Now with an eye towards applying the intermediate value theorem, we define

B* = p*(s2) via

Lo . _
Sinﬂ* = {2(1cos(a52)) if Lo < 2(1 COS(O(SQ))’
1 otherwise.

One easily checks that f(8*(s2),s2) > 0 for so > 0. Hence, the desired terminal angle
03 (s2) exists for all sg.
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Furthermore, differentiating (6.35), and setting 8 = 65(s2), with respect to sa,
we find that
dos (Lo — sin 263)acsin(asa)

dsy  2(1 — cos(asg)) cos 205 + Lasin 05

Our goal is to show that % > 0. We start first by showing that the denominator

of the fraction defining this derivative is positive. For each fixed so, the function D
prescribed by

D(sin 3, s5) := 2(1 — cos(as))(1 — 2sin? 8) + Lasin 8

defines a downward-facing quadratic in sin 8. We note that D(0, s2) = 2(1 — cos(as3))
> 0, and an easy calculation shows that D(sin3*,s2) > 0. It follows easily that
D(sin 0*(s3), s2) > 0, which is precisely the denominator of the fraction defining %.

We must show that the numerator of this fraction is also positive. This is imme-
diate when La > 1, and therefore we must provide an argument for when La < 1.
Define the number S_ € [0,7/4] using the formula sin25_ = La. Then note that
f(B—,s2) > 0. Therefore, when La < 1, we have that in fact 65(s2) < min(f8_, 5*) <
m /4. Consequently, for such La values, we have that La —sin 205 > La—sin25_ = 0.

This completes the proof of the claim that 6* is increasing as a function of s.
Combining this fact with the constraint (6.31), we have

* * m
03(T) = 05(T, t5(T) € [0, 7],
and hence -
03 (s2) € [0, ﬂ for all s, € [0, 7.

Equation (6.34) can now be used to show that v is both negative and decreasing. The
proof that the characteristics foliate region I then proceeds exactly as in Lemma 5.1,
completing the construction of our cross-tie critical point.

Having completed the construction of the critical point v of Fy on all of € by
appropriate reflections, towards proving Theorem 6.6, it remains to compute Fo(u)
and compare it with that of the one-dimensional minimizer from Theorem 6.4. The
energies per period for the different competitors are compared in Figure 6.7. Recall
that, by Remark 6.7, the energy density per period is a function of the scaled elastic
constant L/H. The solid and dashed lines in Figure 6.7 represent the energies of
the one-dimensional and the two-dimensional characteristics cross-tie constructions,
respectively. Here the energy of a one-dimensional competitor is given in the state-
ment of Theorem 6.4, and the energy of the two-dimensional construction is obtained
by computing an appropriate Jacobian and numerically integrating in MATLAB [2]
(or by using the coarea formula). Comparing these energies for L/H € (Lo, L),
Theorem 6.6 now follows.

Further numerical observations are in order. When the solution resulting from
the characteristics construction is plotted (Figure 6.6), it closely resembles those in
Figure 6.2. The markers in Figure 6.7 represent the energies of the numerically com-
puted solutions to the Euler—Lagrange equations for E., where the shape of the marker
distinguishes the type of the energy-minimizing solution obtained in the simulations.
We can observe a close correspondence between the numerics and analytical solutions
as the squares and circles track well the one- and two-dimensional constructions,
respectively. While the two-dimensional cross-tie construction discussed above has
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F1G. 6.6. Level curves for the divergence of u (left) and the angle 6 (right), where u =
(cosB,sin0) is a solution obtained using characteristics. Here L = 1.
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Fi1G. 6.7. Energy per unit length.

a smaller energy (both theoretically and numerically) on a short interval of L val-
ues, it is then superseded by the two-dimensional cross-tie type-II configurations of
Figures 6.3-6.4. Indeed, this configuration still has a smaller energy than the one-
dimensional construction. The difference between the energies of the one-dimensional
and the two-dimensional cross-tie type-II constructions is small, however, and appears
to decrease with an increasing L.

We conclude with a few conjectures suggested by numerics.

Congecture 1. For 0 < L/H < Lo, the one-dimensional minimizer from Theo-
rem 6.4 is a unique minimizer of Ey among all two-dimensional competitors.

Congecture 2. For L/H € (Lo, Ly), the critical point constructed in the proof of
Theorem 6.6 is a minimizer of Fj.

Conjecture 3. For L/H > Ly, there exists a two-dimensional minimizer u;, with
Ep[ur] that is lower than the minimum energy achieved over one-dimensional com-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/17/19 to 130.101.154.93. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

GINZBURG-LANDAU PROBLEM FOR ANISOTROPIC NEMATICS 319

petitors. The difference in energies, however, vanishes in the L — co limit. Moreover,
the unique cluster point of uy in Hg;y (;SY) N BV (€;S!) is given by the piecewise
constant vector field, which equals (1,0) for y > 0 and equals (—1,0) for y < 0.
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