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Abstract—As technologies develop for acquiring gaze
behavior in real world social settings, robust methods
are needed that minimize the time required for a trained
observer to code behaviors. We record gaze behavior from
a subject wearing eye-tracking glasses during a naturalistic
interaction with three other people, with multiple objects
that are referred to or manipulated during the interaction.
The resulting gaze-in-world video from each interaction
can be manually coded for different behaviors, but this is
extremely time-consuming and requires trained behavioral
coders. Instead, we use a neural network to detect objects,
and a Viola-Jones framework with feature tracking to
detect faces. The time sequence of gazes landing within
the object/face bounding boxes is processed for run lengths
to determine ‘“looks”, and we discuss optimization of run
length parameters. Algorithm performance is compared
against an expert holistic ground truth.

Index Terms—eye-tracking, gaze behavior, face detec-
tion, computer vision

I. INTRODUCTION

The emergence and refinement of social communica-
tive skills is a rich area of cognitive developmental
research, but one that is currently lacking in objective
assessments of real-world behavior that includes gaze,
speech, and gesture. Gaze behavior is especially im-
portant during development. Shared or joint attention
provides a means by which adults name objects in the
child’s field of view [1]. As such, joint attention is an
important aspect of language development, especially
word learning [2]-[4]. Gaze behavior in children with
autism spectrum disorder (ASD) is atypical in terms
of social looking behavior, joint attention to objects, as
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well as the basic timing and accuracy of each gaze shift
[5]. Recent studies report that 1 in 45 individuals is
diagnosed with ASD [6]. Disordered visual orienting is
among the earliest signs of ASD identified in prospective
studies of infant siblings [7] and it persists across the
lifespan [5]. Humans use gaze as one of the earliest ways
to learn about the world. Any deficit in this foundational
skill compounds, leading to functional difficulties in
learning as well as social domains. Difficulty shifting
gaze to detect and respond to these behaviors will lead to
a lower comprehension of the nuanced details available
in each social interaction. Although several different
therapies have been designed to address social interaction
[8]-[10], methods of assessing the success of these
therapies have been limited.

The outcomes of social communication therapies must
be evaluated objectively within and across individuals to
determine clinical efficacy. They are typically measured
by parent questionnaire or expert observation, both of
which provide valuable information, but both of which
are subjective, may be insensitive to small changes, and
are susceptible to responder bias and placebo effect.
Other outcome measures such as pencil and paper or
computer assessments of face or emotion recognition are
objective, but measure only a subset of the skills required
for real-world social communication. These measures are
also a poor proxy for actual social interaction. These
deficits impact both research and clinical practice.

The recent development of affordable glasses-based
eye trackers has facilitated the examination of gaze
behavior. The glasses worn by the subject contain two
cameras, an eye-tracking camera typically located below
the eye, and a world-view camera typically mounted
above the eyebrows on the glasses frame. The glasses
fuse a calibrated point of gaze, measured by the eye-
tracking camera, with the world view. For images dis-
played on computer screens, many studies have used
eye-tracking to examine what portions of the images
ASD children attend to [11]-[15]. Eye-tracking glasses
can be used during dynamic social interactions, instead
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of simply on computer screens. The quantification of
interactions during real-world activities remains chal-
lenging. Analysis of the resulting gaze-in-world video
can be done manually, but labeling and annotating all
the relevant events in a 30-minute video takes many
hours. Computer vision and machine learning tools can
provide fast and objective labels for use in quantifying
gaze behavior. In addition to the uses in ASD and other
social or communication-related disorders, quantification
of gaze for a seated subject in a social interaction
can be useful for evaluating a student’s engagement
with educational material or a consumer’s engagement
with an advertisement. This technology can also be
used for training in various kinds of occupations that
involve conversational interactions, such as instructors,
police interviewers, TSA agents, passport officers, and
psychologists.

Here, we report on a system that uses eye-tracking
glasses to record gaze behavior in real-world social
interactions. The system detects objects and faces in
the scene, and processes these sequences together with
the gaze position to determine “looks”. The results are
compared to the laborious manual coding. The closest
past work to ours is [16], [17], which also involves
social interactions and eye-tracking glasses. Their setup
is different, as in their work the investigator wears the
eye-tracking glasses rather than the subject, and can
avoid excessive motion blur and maintain both steady
depth and orientation (the child’s face does not go
into and out of the scene). They do not aim at object
detection, and have only one face to detect. Because
our naturalistic setup experiences a number of frame-
level detection failures, our algorithm compensates for
these using filtering to bridge gaps in detections. Also the
goal in [16], [17] is different, as they aim to detect eye
contact events rather than looks (extended inspections
of regions). Other related past work is [18], [19] which
combined automatic tracking of areas of interest [20]
with manual curation by human coders to ensure high
detection accuracy.

The rest of this paper is organized as follows. The
system operation including methods for detecting faces,
objects, and looks is described in Section II, while
creation of ground truth and calibration issues are in
Section III. We define evaluation metrics and provide
results in Section IV, and conclude in Section V.

II. DETECTING OBJECTS, FACES, AND LOOKS
A. System Overview and Data Collection

Figure 1 presents an overview. The Pupil Labs eye-
tracking glasses (Pupil Pro) produce video frames (24-bit
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color, 720 x 1280, 60Hz) from the world-view camera
and gaze position data at 120Hz from the eye camera.
Gaze data is downsampled to the video frame rate.
World-view frames are input to object and face detection
modules, whose outputs are sets of bounding boxes. The
binary sequence of “hits” and “misses” (corresponding
to gaze position inside/outside of the bounding box) is
runlength filtered to determine “looks” to an object or
face. The lighter gray rectangles depict the formation of
the two types of ground truth (GT). In one approach,
humans mark bounding boxes for each object/face in
each frame, without gaze position. Boxes and gaze posi-
tion are then runlength filtered to determine looks, called
GT-B looks. In the second approach (GT-E looks), an
expert neuroscientist directly labels looks by reviewing
the video with superimposed gaze position in a holistic
way that would be used in clinical practice.
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Fig. 1. Overview of the algorithm and GT formation. B-box stands
for a bounding box, GT-B and GT-E are the two types of ground
truth for looks, and TPR and FPR are true/false positive rates.

Data were collected to simulate a structured social
conversation in a small room with a table and chairs.
Each 2.5-3 minute interaction began with three under-
graduate women (two seated and one standing) across
from the participant wearing the gaze glasses. There
were five different participants who wore the glasses,
all female, and all neurotypical undergraduates, resulting
in five videos. After about 15 seconds, the standing
person leaves the room with the glasses wearer following
her departure. The remaining three women proceed to
play a card game (Taboo) intermixed with looking at
each object (frame, shark, top), and the two faces.
The conversation is natural, with laughter. There is a
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considerable amount of head turning and leaning forward
to play cards. Although the glasses wearer is instructed
to avoid large, abrupt movements and does not stand up
during the interaction, the conversation and interaction
proceed naturally otherwise. During the last 30 seconds,
the woman who had previously exited returns to stand
behind the two seated participants. The glasses wearer
is instructed to look at the person returning to the room.

B. Object and Face Detection

Object detection uses Faster R-CNN [21]. While there
are other convolutional neural net approaches to object
detection (e.g., [22]) Faster R-CNN is convenient and has
good performance. The three objects to be detected are
a photo, a top, and a toy shark (Fig. 2) Training images
were collected using world-view frames at different
distances and elevation and rotation angles, including
occlusions and deformations (for the squeezable shark).
In total, there were 15,000 training images. A minimum
enclosing rectangle (Fig. 3(a)) was manually placed
around each object to serve as the GT during training.
We make use of pre-trained weights from VGG-16 [23].
We trained each model with 50,000 iterations with a base
learning rate of 0.001 and momentum of 0.9. We fine-
tuned the models using additional world-view frames.
Performance was gauged by the intersection over union
(IoU) of the bounding boxes from human labelers and
Faster R-CNN outputs.
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Fig. 2. Objects to be detected: photo, top, shark (shown on turntable).

Fig. 3. (a) Minimum enclosing rectangle for a shark image, (b) Test
image with manual ground truth bounding boxes drawn

Face detection and tracking (Fig. 4), executes Viola-
Jones face detection [24] once for each video frame,
followed by the main function block (which consists of
Shi-Tomasi corner detection, eigenfeature tracking with
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optical flow, tracking points averaging, and adjustment
and reinitialization upon failure). The main function
block is executed M times for each frame, where M
(determined manually) is the number of faces appear-
ing in the video. The Viola-Jones output is a set of
bounding boxes that may contain faces. At the start (and
again on tracking failure) the Viola-Jones output requires
human intervention to select and label a bounding box
containing a face. After selection, the corner detection
module is triggered, and the tracking loop is engaged.
We expect in future work to use a neural net approach
such as [25], [26] to face detection, although unlike the
object detection which deploys the same objects during
each test session, the face detection algorithm may have
different faces in the room in different test sessions.
The Shi-Tomasi corner detector extracts features and
scores them [27] using eigenvalues of a characteristic
matrix based on image derivatives. The optical flow of
each extracted eigenfeature is calculated to track it [28].
The average position of all the trackers is checked against
Viola-Jones face boxes for the next frame. If at least 30%
of the tracked points are not lost, and if the average
tracker position is inside a face boxes, that is considered
a tracking success and the face box is output; the algo-
rithm then continues the tracking loop to the next frame
(or moves to a different face if there is another face being
tracked). Trackers will continue to function even without
a valid detected area and will select the first detected
area when available. If 70% of the feature points are
lost, or if the average tracker position is not inside any
detected face boxes, it is considered a tracking failure.
The system then requires human intervention to re-locate
the face locations, and the algorithm automatically re-
initializes the trackers. In a 3-minute video consisting
of approximately 10,000 frames, there are typically 20-
30 re-initializations required (person has to click on the
correct face box). The re-initialization typically happens
because the subject turns her head and the face exits
the field of view, needing re-initialization when it comes
back into view, or because the face in the view gets
temporarily occluded (e.g., by a hand or object).

C. Definition and determination of a “look”

Human gaze behavior is typically composed of steady
intervals of fixation interposed with fast re-orienting
movements called saccades. When examined coarsely
(granularity of about 2 degrees of visual angle for the
viewer), the periods of steady fixation can last between
about 200ms and several seconds depending on the task
and level of detail of the object being fixated. At a finer
scale, gaze behavior shows a similar pattern of steady
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Fig. 4. Block diagram of the face detection module.

fixation and interposed micro-saccades, typically defined
as fast orienting movements of less than 1 degree of
visual angle. Upon even closer inspection the periods
of apparently steady fixation are composed of ocular
drift and ocular tremor. Essentially, the eye is constantly
moving, as a completely stabilized retinal image fades
quickly. The visual system is built to respond to contrast,
not stasis. For these reasons, the usual terms associated
with the physiology of gaze behavior are not terribly
helpful for describing the more cognitive concept of
an extended inspection of an object or region. Such an
inspection typically involves an aggregated series of fix-
ations and small re-orienting saccades or microsaccades.
We call this a look; it is defined not in physiological
terms, but instead with reference to the object or region
under examination. For example, we might usefully
describe a look to a face, but might employ a finer
scale look to the right eye, when that level of analysis
is appropriate.

The object and face detection modules produce bound-
ing boxes around objects and faces in the video frames.
For any single object (or face), if the algorithm produces
a bounding box in frame 7 for that object, and if the
gaze position is within that bounding box, that frame
is considered a “hit” for that object. Otherwise, it is
a “miss”. The hit sequences for each object/face are
runlength filtered to determine looks. A run of at least 73
hits is needed to declare a look, and the first hit position
is the start of the look. With a run of 75 misses in a
row, the look is considered terminated, and the last hit
position is the end frame of the look. The choice of T}
and T5 is discussed in Subsection III-C and Section IV.

III. GROUND TRUTH

GT represents a determination of the true presence of
faces and objects and the number and length of looks. GT
serves as the basis for evaluating the algorithm results.

A. Ground truth for bounding boxes

GT for face and object bounding boxes was estab-
lished by manually placing tight axis-aligned enclosing
rectangles around each face and object in the image. The
protocol for drawing a face box was that the right and
left limits should include the ears if visible, while the
upper limit is at the person’s hairline and the lower limit
is at the bottom of the chin. An example of manual GT
bounding boxes is in Figure 3(b). A face is not boxed if
the face is turned more than 90 degrees away from the
camera. A small number of faces were not boxed in the
manual GT because the subject wearing the eye-tracking
glasses turned his or her head rapidly, so the world-view
frames had excessive motion blur (e.g, Fig. 5(a)). It is
possible, however, for the algorithm to detect a face even
though it is turned more than 90 degrees or is blurry;
such cases would count as false positives since they
are not marked in the GT. So the results are slightly
conservative on false positives.

For drawing bounding boxes for the top and photo,
the box contains all of the object in the picture, and is
drawn only if 50% or more of the object is judged to be
present. For the shark object, a box was drawn if 50%
or more is present and both eyes are present.

B. Ground truth for looks

In one GT approach, an eye-tracking expert deter-
mined the GT for looks based on her experience with
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clinical gaze data, by directly viewing the world-view
video with the gaze position dot superimposed on the
scene (Fig. 5(b)). The dot consists of a central red
dot (indicating the best position estimate from the eye-
tracking glasses) surrounded by a larger green dot (indi-
cating the glasses’ estimate of gaze position uncertainty).
The expert does not use explicit bounding boxes, but
determines holistically, as in clinical or experimental
practice, what the subject is looking at. This approach is
inherently inferential, and therefore subject to a number
of biases. For example, the user may consider that a set
of frames corresponds to a single look to a face, despite
a short temporal gap in the presence of the gaze dot
on the face that may be due to the subject blinking, the
subject shifting their head position and producing motion
blur, or a reduction in calibration accuracy because of
the glasses being jiggled on the subject’s head. Indeed,
it may happen in practice that the expert notices a
calibration error because the gaze dot is consistently
slightly low, and so marks a section as a look to an object
because they know the subject “intended to look at the
object” even though the gaze dot is off. Our videos were
calibrated, so this level of subjectivity was not present in
the expert GT (called GT-E), but some level of subjective
expert judgment is inherent in this process. It is useful
to include this type of GT since it is what is actually
used currently in analyzing social gaze behavior.

"

Fig. 5.
bounding boxes, (b) test image with the gaze dot superimposed on
the world view.

(a) Example of a motion-blurred image that is not given

The other type of GT for looks, referred to as
GT-B, uses the manual bounding boxes. As shown
in Figure 1, GT-B is established by putting the gaze
position and manually-derived bounding boxes for ob-
jects/faces through the same runlength filtering used on
the automatically-derived bounding boxes.

C. Entry and exit parameters

One approach to choosing entry and exit parameters
Ty and T» is based on physiology and eye behavior.
At 60 fps, 5 frames represents 83 ms, a reasonable
lower bound duration of a single fixation (period of
gaze stability between the fast orienting saccadic eye
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movements). Typically, a fixation duration is about 200-
300 ms in standard experimental studies with controlled
target appearance and standard screen refresh rates [29].
However, we are measuring gaze behavior in the real
world. Human observers typically plan sequences of
saccades, especially when scanning a complex object
[30] and for those sequences, the fixation duration can
be quite short. Depending on task demands and the
subject’s level of focus, fixations can also be quite long,
approaching 2 s. Physiologically speaking, the fixation
need only be long enough for the visual system to
extract relevant information in high resolution detail
before moving to a new spot to examine. Data from
visual psychophysics demonstrates that image detail can
be resolved with a presentation of only 50 ms, followed
by an immediate mask to prevent the use of after images
[5]. Given this approximate lower bound, the 77 value
could be even lower than 5 frames, however in practice,
we do not typically see fixations this brief. From the eye
physiology point of view, the T5 exit parameter needs to
be long enough to bridge a blink.

The selection of 77 and 75 based solely on eye
physiology does not connect to our definition of looks as
extended inspections, and also ignores the fact that the
detection problem is difficult due to occlusions, object
deformability, rapid turning of the subject’s head and
other reasons. A second approach to choosing these
parameters is based on making the algorithm mimic
the behavior of the expert neuroscientist, which is the
approach we present in Section IV.

D. Camera calibration and accuracy issues

Calibration ensures that the gaze position in the world-
view scene corresponds to what the subject is looking
at. The calibration markers were bullseye-style markers
about 3 inches in diameter. The subject wears the glasses
and looks steadily at the target. The markers are detected
by the Pupil Capture calibration code (using the Manual
Marker Calibration method in Pupil Capture) and were
moved sequentially through at least 9 points in the
calibration plane (approximately at the seated position
of the experimenters, 1m from the subject). The 9 points
were placed at 3 vertical levels and 3 horizontal positions
to approximate a grid. This method was used so that we
can calibrate a large space in which agents and objects
that are part of the social conversation could be reliably
detected. Once the calibration routine is completed, we
validate it by asking the subject to look at different parts
in the scene and confirm that the gaze point represented
in Pupil Capture is where the subject reports looking.

Accuracy issues: The world view camera mounted on
the glasses captures the world in the direction the head is
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facing. Typically, the eyes look forward, and so the gaze
position is rarely at the extreme edges of the world view
scene. Gaze location data show that the eyes spend less
than 5% of the time looking at the area that is within
20% of the edge of the field of view. Furthermore, when
the eyes do shift to the side, the glasses have greater
gaze position uncertainty. The confidence score for gaze
location reported by the Pupil Pro is 98.6% for gazes to
the central 10% of the world-view scene, and this sinks to
89.8% confidence for gazes to the outer 10% portion of
the scene. For these reasons, bounding boxes that touch
the scene border (meaning the object is cut off by the
border) are ignored in the performance evaluation. That
is, if the GT bounding box coincides with one generated
by the algorithm, the performance evaluation does not
count this as a true positive. If the algorithm does not
output a bounding box for and object at the border, it is
not penalized as a false negative.

IV. RESULTS

For a given face or object (e.g, the shark) we first
evaluate bounding boxes. We compute for each frame the
area of intersection divided by the area of union (IoU)
of the algorithmic and manual bounding boxes for that
object. The IoU values are averaged over frames, and
over five videos, and reported in Table I (last column).

Evaluating the algorithm above the level of bounding
boxes, one must choose runlength parameters for the
filtering. To do this, we examine the accuracy between
the algorithm results and GT-E as a function of runlength
entry and exit parameters 77 and 75.

Frame ¢ represents a true positive event for a look to
face 1 if frame ¢ is part of a look to that face according
to GT and frame i is also part of a look to that face in
the algorithm output. Recall that for frame ¢ to be part of
a look to a face does not require that the gaze is within
the face bounding box for frame ¢, or even that the face
was detected in that frame. If the face was detected and
the gaze was inside its bounding box for earlier and later
frames, and frame ¢ is part of a sufficiently short gap,
then frame ¢ can still be considered part of the look.

A standard definition of accuracy is A = (TP +
TN)/(TP+ FP+TN + FN) where TP is number of
true positive events, F'P is the number of false positive
events, F'N is the number of false negative events (when
a frame is part of a look according to ground truth but
the algorithm does not mark it) and 7'V represents the
number of true negative events (where neither ground
truth nor the algorithm considers a look to be occurring
in a given frame). False Positive Rate and False Negative
Rate are defined as FPR = FP/(FP + TP) and
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FNR = FN/(TP + FN). Since the subject is often
not looking at any of the objects or faces, T'N is large,
and including it in both the numerator and denominator
obscures trends. So we use the definition of accuracy:

A=TP/(TP+ FP+ FN) (1)

Figure 6 shows heat maps in which the color shows
the accuracy of results relative to GT-E when using
runlength entry and exit parameters given by the values
on the x and y axes. The top heat map is for the accuracy
between GT-E and GT-B. The highest accuracy achieved
is 71.2% when (11,13) = (1,17). From Figure 6(a),
we see that the accuracy is generally high for small
values of the entry parameter and relatively large values
of the exit parameter (e.g., 16, 17, 18). The second
heatmap in Figure 6 shows the accuracy between GT-E
and the algorithm (with automatic object/face detection
and runlength filtering). Here the highest accuracy is
65.1% which occurs when 17 = 1, and 15 = 16.
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To understand the heatmap result, consider first the
exit parameter 75. Suppose the expert neuroscientist
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observes that the subject gazes at a face, and the face
turns away momentarily, and turns back. The expert
judges the gaze remains on the face the entire time,
a look that spans 100 frames. The algorithm gets 30
frames but loses track when the face turns. The face gets
re-acquired by the Viola-Jones detection module after a
gap of 16 frames. With small values of 15 < 16, this
would be considered by the algorithm as two distinct
looks with a gap in between. A large value of 75 = 16
bridges the gap; the entire set of frames, including the
gap frames, constitute one long look, making for good
agreement (many true positives) with GT-E. In short,
choosing 75 somewhat larger than the physiologic causes
(e.g., blinks) alone would suggest allows the runlength
filtering to compensate both for blinks, motion blur, and
other deficiencies in the detection modules.

For the entry parameter 77, the value which maximizes
the accuracy is 1, meaning a single hit frame should
be considered the start of a look. This is smaller than
fixation data would suggest. When the algorithm finds
a single frame that has a gaze dot in the bounding box,
if there are no further hit frames within a distance of
T5, then this is very unlikely to correspond to a look
in GT-E. Yet the accuracy penalty from calling this a
look is small, since it is a single false positive frame.
On the other hand, if there are other hit frames within
a distance of 75 then the algorithm with 77 = 1 will
declare the start of the look and will bridge the gap to
the later frames, so all those frames get declared to be
part of the look. If this look was marked by the expert in
GT-E, then many frames become true positives. In other
words, taking small values of 77 = 1 will cause more
frames overall to be declared part of looks, increasing
both false positives and true positives. In general, the
false positive frames will incur little accuracy penalty
because they will occur as individual frames, but the
true positive frames will usually be part of a larger look
event, thereby producing an overall increase in accuracy.

Based on the second heatmap, we choose to use 7}
= 5 and T3 = 17, as these values give nearly the same
accuracy (65.0%) as the best parameter set, and using
T = 5 rather than 1 is close to what would be selected
based on physiologic considerations for a fixation. In
general, the parameters could be selected based on the
application and the need to prioritize either FPR or FNR.
It is significant that both the algorithm and the student
ground truth GT-B have similar filtering parameters for
maximizing accuracy relative to GT-E, and that the
accuracy of 71.2% for GT-B is not vastly higher than
the best accuracy of 65.1% for the algorithm. This means
that even the manual bounding boxes of GT-B often fail
to capture the decisions arising in the holistic expert
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Acc. FPR FNR Den IoU
facel | 85.24 | 9.58 6.3 2825 | 79.55
face2 | 77.06 | 8.22 17.23 | 2363 | 64.72
face3 | 83.23 | 6.56 11.6 3506 | 80.77
photo | 68.88 | 21.74 3.6 4753 | 77.16
shark | 81.43 8.18 10.21 3576 | 78.27
top 7191 | 18.53 | 14.04 1431 69.32
total 77.83 12.0 9.92 18454 | 76.04
TABLE 1

AVERAGE RESULTS ACROSS FIVE VIDEOS COMPARING THE
ALGORITHM AGAINST GT-B, WHERE BOTH USE T} =5,T> = 17.
DEN = NUMBER OF FRAMES IN THE DENOMINATOR OF EQUATION
(1) ENTERING INTO THE ACCURACY COMPUTATION FOR EACH
FACE AND OBJECT.

Acc. | FPR | FNR Den
facel | 7034 | 3.27 | 27.94 | 3662
face2 | 61.01 | 11.90 | 33.51 | 2865
face3 | 65.42 | 836 | 30.43 | 4375
photo | 52.75 | 24.75 | 16.41 | 5221
shark | 79.21 | 13.20 | 6.96 3444
top 68.32 | 17.34 | 20.24 | 1528
total 65.00 | 13.34 | 23.23 | 21095

TABLE II

AVERAGE RESULTS ACROSS FIVE VIDEOS, FOR THE COMPARISON
OF THE ALGORITHM AND GT-E, WHERE THE ALGORITHM USES
PARAMETERS 77 =5 AND 15 = 17.

ground truth GT-E, and further improvements will be
needed in processing above the level of individual frames
or small groups of frames.

Using (171,T5) = (5,17) for the algorithm and for GT-
B, the values for algorithm accuracy, FPR, and FNR for
each object/face, averaged across videos, are in Table
1 (relative to GT-B) and in Table 2 (relative to GT-E).
Sample results for faces in one video appear in Fig. 7,
and for objects are in Fig. 8.

A. Discussion

The faces are labeled 1,2,3 from left to right, and
the middle face (face 2) is usually farther back in the
scene. We see that the average IoU values for faces 1
and 3 are very similar (79.55 and 80.77) but the average
IoU is worse for face2. The Accuracy results for looks
to faces 1 and 3 are also better than those for face 2.
The face 2 participant is the one who leaves the room
and returns later, and the glasses-wearer is instructed to
look at the person returning to the room. The accuracy
is lower for face 2 both because of the movement of
the participant returning to the room and the changing
distance from the glasses-wearer, which means the gaze
position calibration is not as accurate for this person.

Among the three objects, the average IoU values are
similar for the shark and the photo (78.27 and 77.16) and
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— facc 1
GT-E face 2
— face 3
1
Algorithm
0.5
GT-B
0 | | | |
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10000 11000

Fig. 7. Example of algorithm results and both GTs for three faces in one video. The x-axis shows the frame number. The y-axis shows,

from top to bottom, GT-E, algorithm looks, and GT-B for faces.

1.5
GT-E
1
Algorithm
0.5
GT-B
0 | | | |
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 8. Example of algorithm results and both GTs for objects in one video. The x-axis shows the frame number. The y-axis shows, from

top to bottom, GT-E, Algorithm results, and GT-B for objects.

the value is lower for the top (69.32) likely because the
top is a much smaller object. Of the objects, the photo
has a high FPR. This is driven by the fact that the photo
framing colors (red, black, white) are common clothing
colors worn by the participants, and the photo itself
shows faces, causing non-photo items to be detected as
photos, or causing the algorithm’s photo bounding box
to be drawn too large. With the exception of the photo,
the Accuracy rates for looks are all higher than the IoU
measures of bounding box accuracy, suggesting that lack
of precision in the bounding boxes can to some degree
be compensated for by the runlength filtering.

Comparing results between Tables 1 and 2, we see that
FPR values are generally similar, whereas FNR values
are generally 2 to 4 times higher in Table 2 than in Table
1. Table 1 compares the algorithm (automatic frame-level
detection) against GT-B (manual frame-level bounding

boxes) where they both use the same runlength filtering.
By contrast, Table 2 compares the algorithm against
the holistic expert ground truth. The fact that there are
higher FNR values in Table 2 means that the expert,
in declaring looks, is able to ignore many gaps which
come from occlusions, motion blur, blinking and the like,
where both the algorithm and GT-B miss frames. The
discrepancy is largest for the photo, possibly because it
hangs on the back wall so is the farthest away of all the
faces/objects in the scene.

Accuracy results differed substantially among the 5
participants, with overall accuracy ranging from 46% to
81%. The differences are driven by large differences in
the amount of time individual participants chose to look
at particular faces and objects. For example, one subject
spends about the same amount of time looking at face
1 as at face 2 (notwithstanding the fact that face 1 is in
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the room the entire time, whereas the face 2 participant
leaves and comes back), whereas another subject spends
more than four times as much time looking at face
1 as at face 2. Face 2 has lower detection accuracy
overall because it is usually farther back in the scene,
so the amount of time spent looking at face 2 matters
to the overall accuracy of a participant. Similar large
differences were found in the time spent looking at
specific objects. This points to the need to restrict the
set of test objects involved in the interaction to ones that
have similar high detection rates, so that the amount of
time the subject chooses to look at one compared to
another will not have a dramatic effect on the overall
accuracy.

A different approach to computing algorithm accuracy
could use whole look events, rather than frames within
looks, as the basis for correctness. Consider the case
where GT-E reports a single long look of 50 frames
in the first 100 frames. Suppose the algorithm detects
that same look exactly, and also three isolated single
frames as being looks. In a frame-based approach to
counting correctness, the false positive rate is 3 / (50 +
3) = 5.7%, whereas in a look-based approach to counting
correctness, the false positive rate would be 3 / (1 + 3)
= 75%. In examining the results in Figure 7, we see that
the photo has 5 entire “look events” in the GT but 6 in
the algorithm, leading to a FPR of 0.17 if one counts
entire look events. However the FPR is different if one
counts at the frame level, since several of the look events
have extra FP frames at the leading edge of the event.
Whether or not it is desirable to count FP and FN events
at the level of entire look events or at the level of frames,
or indeed whether some completely different metrics are
needed, will depend on the application. The best choice
of parameters 77 and 75 will depend on whether one is
optimizing a frame-based accuracy or is using a whole-
look-based approach.

B. Comparison with Order Statistic Filters

For comparison with runlength filtering, we imple-
mented order statistic filters of various lengths. When
filtering the jth element in a sequence with an order
statistic filter of (odd) length n, the jth element along
with the (n—1)/2 preceding elements and the (n—1)/2
subsequent elements are arranged in ascending order of
magnitude: X(;) < Xy < --- < X(,), and the filter
output X ;) is called the ith-order statistic. Order statistic
filters include the min (i = 1), max (¢ = n), and median
(i = (n+ 1)/2) filters. For binary data, order statistic
filters essentially set a threshold for the number of “hits”
needed in the filter window in order to declare the
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output a “hit.” Figure 9 shows a heatmap of the accuracy
from Eqn. (1) between GT-E and the algorithm (where
algorithm detections are filtered with the order statistic
filter). The x-axis represents filter length (odd values)
and the y-axis shows the order. The highest accuracy is
60.5%, achieved with filter length 13 and order 8. (Note
that (length,order) = (13,7) is a median filter.) This best
filter is slightly biased towards converting a O (miss) into
a 1 (hit). In general, the heatmap shows a band of bright
yellow positions (highest accuracy values) which tend to
be the median filters or filters with orders slightly higher
than the median filters. The highest accuracy is 60.5%,
which is lower than the best of the runlength filters.
The better performance of runlength filtering is likely
due to detection “misses” tending to occur in runs (from
blinking, head movement, etc.) and “hits” also tending
to occur in runs (due to periods of fixation with little
movement).

0.6

order

5 10 15 20 25
range

Fig. 9. Heat map showing accuracy, as a function of filter parameters,
between GT-E and the algorithm where detection results are filtered
with various order statistic filters. Filter length is on the x-axis (odd
values only) and order is on the y-axis.

C. Consideration of Different Applications

There are research, educational, and clinical applica-
tions for which it would be useful to have a system that
can automatically identify looks to faces and objects as
part of a real-world interaction. These applications vary
in their spatial and temporal demands in terms of what
constitutes a look, which has a bearing on the values of
T1 and 75 and on other aspects of the system.

Consider a child reading a middle school science
textbook. One might want to identify when the student
is reading the columns of text, approximately at what
point in that text the student jumps to a figure box, how
long the student spends in the figure box and where the
student’s gaze goes after the box (ideally back to the
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point in the text where she left off). Since the primary
interest is in mapping gaze onto the textbook, we would
want to optimize the spatial accuracy of looks within the
book (and not worry about the background). We would
not be as concerned about temporal precision in this case.
It is useful to know that the child spent about 3.2 seconds
reviewing the figure, but it is not necessary to know that
she entered it on frame 80 and left on frame 272. In a
clinical example, an adolescent with ASD might wear the
gaze glasses and engage in a conversation and a game
with two other people. We could identify all looks to
faces and quickly calculate the proportion of time spent
looking at faces during the interaction as a whole, a
potentially useful measure in a social evaluation. For
cases such as these where overall time spent looking
at a face or object is important but not the number or
precise onset of looks, the 77 and 75 parameters can be
set to the values which optimize the accuracy with GT-E
for that task.

It may also be useful to know the number of separate
looks. If the child looks back and forth ten times between
the text and the figure box, it may be a sign that the
figure is confusing or has insufficient labeling. When
counting the number of looks is the primary goal, the
choice of T} and 75 using GT-E would use the count as
the optimization goal.

Taking the clinical example further, the adolescent and
two research assistants might all wear gaze glasses and
the data streams are synchronized. One might like to
know how quickly after one assistant turns to the other
does the adolescent also turn to look at the assistant.
The latency to orient to a social cue is a useful part of a
social evaluation since slow orienting behavior can result
in missed information. However, whenever we intend to
calculate latency, the temporal precision in the onset and
offset of a look matters a great deal.

These various applications with various requirements
suggest that the algorithm parameters can usefully be tai-
lored for different scenarios. For cases where the spatial
precision is important, a restricted region of interest (e.g.,
the textbook) can be precisely calibrated. Also, allowing
some padding region outside the algorithm bounding
box for where the gaze location counts as a “hit”, or
conversely, tightening up the region which counts as
a ’hit” might allow for greater accuracy optimization
between the algorithm and GT-E.

V. CONCLUSIONS

This project brings together multiple different tech-
nologies to enhance our understanding of gaze behav-
ior in real-world situations. Currently, the use of real-
world eye-tracking is limited because the first-to-market
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glasses-based eye-trackers were expensive, and the re-
sulting gaze-in-world data was difficult to analyze in
any automated or semi-automated way. The open source
model offered by Pupil Labs has made glasses-based eye-
tracking both affordable and customizable. The system
developments described here allow us to automate the
count and duration estimate of looks to faces and objects
during a social interaction. Because of the prevalence
of ASD and its social interaction challenges, together
with the subjectivity and difficulty in current methods
for assessing the success of therapeutic efforts, investing
in objective and quantitative social outcome measures
can be useful to measure efficacy of social therapies.

One contribution of this work is the system integra-
tion involving both face and object detection in the
context of naturalistic social interactions with varied
motion of the subject and other participants. But the
main contribution is the approach to determining looks,
involving a runlength algorithm whose parameters are set
by optimizing a suitable definition of agreement between
the algorithm looks and an expert ground truth. The
definition of agreement can be modified depending on
the application. The detection accuracy of our modules is
already sufficiently high for many clinical or educational
evaluation purposes, and superior detection algorithms
could be substituted in a modular way for the current
methods, retaining the optimized runlength approach to
determining looks as a postprocessing method after any
detection algorithm.

Our long-term goal is to develop a system using
gaze glasses and analytic software to assess change
in social and communicative behavior in individuals
at a range of ages and levels of function. We plan to
improve the accuracy of the system through a series
of practical changes: switching to objects that are
more easily distinguishable, comparing neural net face
detection approaches against the current Viola-Jones-
based approach, and using glasses that track both eyes.
Extending functionality, we plan to include methods for
automated sound and voice detection as well as gesture
detection. Steps include identifying instances in time
(trigger points) from which one might want to calculate
latencies. Audio triggers might include a knock on
the door, the onset of speech in general, or when
a participant’s name is spoken. Visually identifiable
trigger points include pointing movements, head turns
and other gestures.

Acknowledgments: We thank Ms. Sarah Hacker who
helped with data collection. An early version of this work
will appear at ISBI 2018. The current paper extends
that by adding expert ground truth GT-E, algorithm
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parameter optimization, new results, comparison with
order statistics filters, as well as Section IV.C.
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