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Unfolding adsorption on metal nanoparticles:
Connecting stability with catalysis
James Dean, Michael G. Taylor, Giannis Mpourmpakis*

Metal nanoparticles have received substantial attention in the past decades for their applications in numerous
areas, including medicine, catalysis, energy, and the environment. Despite these applications, the fundamentals
of adsorption on nanoparticle surfaces as a function of nanoparticle size, shape, metal composition, and type of
adsorbate are yet to be found. Herein, we introduce the first universal adsorption model that accounts for
detailed nanoparticle structural characteristics, metal composition, and different adsorbates by combining first
principles calculations with machine learning. Our model fits a large number of data and accurately predicts
adsorption trends on nanoparticles (both monometallic and alloy) that have not been previously seen. In addition to
its application power, the model is simple and uses tabulated and rapidly calculated data for metals and adsorbates.
We connect adsorption with stability behavior of nanoparticles, thus advancing the design of optimal nanoparticles
for applications of interest, such as catalysis.
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INTRODUCTION
Metal nanoparticles (NPs) find tremendous applications in catalysis,
ranging fromproducing fuels and chemicals (1) to transforming solar to
chemical energy (2). However, the stability of theNPs and their catalytic
functionality commonly showopposite trends, with very active catalysts
typically dying after some cycles of operation and needing energy
input to regenerate. An example of nanocatalyst death is on structure-
sensitive reactions, such as the carbon monoxide (CO) oxidation on
Au (3–6), where low-coordinated sites on the surface of the NPs are
required, giving rise to activity at very small NP sizes (6). In these re-
actions, a sintering of the small NPs (7, 8) on the surface of the support
during catalytic operation (e.g., elevated temperatures) results to larger
average NP size, decreasing the number of low-coordinated sites on
the surface of the NPs, thus altering catalytic behavior. As a result,
the NPs grow in size, becomemore stable in terms of cohesive energy
(CE) (9) (increase the number of metal atoms and bonds per particle),
but lose catalytic activity.

A key feature determining to a large extent the catalytic functionality
of metals is the adsorption strength of the various species on the sur-
face of the catalyst. The Sabatier principle (10) postulated more than
100 years ago states that an active catalyst should bind the adsorbates
with a binding strength that is not very strong neither too weak. In
the first case, the strongly adsorbed species poison the catalyst surface,
whereas in the second case, the weakly bound reactants prefer to desorb
rather than reside on the catalyst surface. As a result, in an intermediate
case, the reactants meet each other and react on the catalyst surface.
Nowadays, with the great advances in computational power and in the-
oretical chemistrymethods, we can simulate catalytic behavior onmetal
catalysts with great accuracy and guide experiments (11–13), avoiding
trial and error experimentation in the laboratory. This is because the
adsorption energy of the species that participate (reactants or products)
often correlates with the activation energy of the reaction. These well-
known Bronsted-Evans-Polanyi relationships, developed more than
half a century ago, inherently connect thermodynamics with kinetics,
highlighting once again the importance of adsorption in catalysis (14, 15).
In addition, the adsorption behavior of a functional group (e.g., CH3)
on a specific site of the catalyst scales with the adsorption of a similar
chemical group (e.g., CH2) on the same site of the catalyst of different
metals (16). Together, one can create reactivity plots, so-called vol-
cano plots, relating catalytic activity with a single descriptor being
the binding energy (BE) of key intermediates (17, 18). As a result,
the computational efforts have vastly focused on screening different
metal catalysts for the discovery of the “magic” BE of chemical species
on the surface of the catalyst that will result to the design of very active
catalysts. To this end, the d-band model developed in the 1990s (19)
revealed that the adsorption behavior on the surface of a metal catalyst
depends on the average energy of the d-electron band of the catalyst.
This electronic descriptor of the catalyst rationalizes the energy shifts
in the adsorption strength of chemical species on the catalyst surface
that, in turn, can regulate catalytic behavior (17).

Despite all these advances in computational catalysis, still the in silico
design of catalytically active materials is far from being realized. One of
the reasons is that the catalyst design efforts often neglect the stabil-
ity of the catalyst, leading to predictions of materials that are either
difficult to be synthesized or unstable under catalytic operation (e.g.,
catalyst reconstruction under a chemically reactive environment). An-
other reason is that NPs are catalysts with a high degree of site heter-
ogeneity on their surface exhibiting different planes (e.g., 111, 100
etc.), corners, and edges, which lead to a heterogeneity on their surface
properties, such as adsorption and catalysis. In an effort to capture this
site-specific adsorption response, adsorptionmodels have beendeveloped
in literature relating the BE of the adsorbates with surface character-
istics of the NPs, such as the coordination numbers (CNs) (6, 20–22).
One common feature of these models is that just the CN of the site
cannot adequately describe the BE variation, and secondary descriptors
are needed, such as the curvature (20), the electronic properties [orbital
information (22)], and the neighbors of the adsorption site [generalized
CNs (GCNs) (21)].

In this work, we apply density functional theory (DFT) andmachine
learning techniques to derive a simple physics-based model that can
accurately capture the variation of the adsorption energy as a function
of the local adsorption site environment on the NP surface and the type
of metal NP. The power of this model is that, although it captures
catalyst properties, it is based solely on structural information of the
catalyst and tabulated values of metals, avoiding any calculations of its
electronic structure. Therefore, it is general and applicable on anymetal
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nanostructure. This model enables a direct relation between the ad-
sorption behavior on the NP catalyst and the stability of the catalyst. As
a result, we demonstrate the efficient screening of NP morphologies of
different metals based on their adsorption response and thermody-
namic stability. The screening ofmaterials for their adsorption response
is important not only to the design of catalysts but also to the numerous
fields and applications, which depend on adsorption phenomena, such
as sensors, separations and purifications, mineral extraction, corrosion
prevention, printing, cosmetics, andmedicine (23). Hence, although we
focus on species that are most relevant to the catalyst design, the devel-
opment of a physics-based, generalizable model to predict adsorption
has the potential for wide-ranging impact.
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RESULTS
We expect several factors to contribute to the adsorption interaction
between a site on a monometallic NP and an adsorbate based on prior
literature (6, 20).We hypothesize that themost important factors are (i)
the stability of the adsorbate in the gas phase (24), (ii) the tendency of
the metal and adsorbate to interact and form chemical bonds, (iii) the
stability of the bare NP (6), and (iv) the stability of the binding site (20).
We use stability here to express the thermodynamic strength of the
bonds that are on NPs of different sizes, shapes, and composition or
of adsorbates at different metals and sites on the NPs. As a result, we
refer to energy differences (thermodynamics) arising from different
bond formations (e.g., metal-metal andmetal-adsorbate). The rationale
behind our hypothesis can be found in the energetic terms used in the
calculation of a BE in DFT, which is the difference between the
electronic energy of the adsorbate-metal complex (EAds-M) and that of
the adsorbate (EAds) and the metal NP or surface (EM). For instance,
EAds is related to the stability of the adsorbate, ENP to the stability of
the NP, and EAds-M to the strength of adsorbate-metal interactions
and the local energy landscape of the adsorption site, i.e., the stability
of the site. Using these physical descriptors, we generally represent the
BE as

Ebinding;true ¼ f̂ ðStabAds; StabNP; IntAds�M; StabSiteÞ þ D ð1Þ

where Ebinding,true refers to the true BE of the adsorbate to a specific site
on an NP. In this work, we take the true binding interaction to be the
DFT BE (Eq. 5). StabAds, StabNP, and Stabsite refer to the stability de-
scriptors for the adsorbate, NP, and adsorption site, respectively. Last,
IntAds-M refers to a descriptor for the strength of adsorbate-metal inter-
actions. Because it is unreasonable to expect a simple linear model to
capture all the physics of adsorption, we acknowledge this limitation
with an irreducible error term, D. In this work, we consider our chosen
physical descriptors (Stabads, StabNP, IntAds-M, and Stabsite) to all be in
units of energy, thus forming a first-order polynomial relation with the
BE (Ebinding, true). As a consequence, we do not investigate cross-terms
between these descriptors.

Defining a local CE
Intimately related to the stability of the metal and the strength of
metal-metal bonds is the CE of the bulk metal, which is defined as the
amount of energy required for the atoms in the system to achieve infi-
nite separation. CE is captured in NPs by the bond-centric (BC) model
of Yan et al. (9), which asserts CE as the sum of everymetal-metal bond
energy in the NP. In this work, we apply the same concept to describe
Dean et al., Sci. Adv. 2019;5 : eaax5101 13 September 2019
the stability of binding sites, with the justification that chemically un-
saturated sites (i.e., less stable because of having fewer metal-metal
bonds) tend to bind adsorbates stronger. To this end, we introduce
the local CE descriptor, CElocal, defined by applying the BC model only
to the metal atom participating directly in the binding interaction. In
other words, we take the summation of BCmodel–approximated bond
energies connecting with the metal atom in the binding site, which is
defined as

Stabsite ≈ CElocal ¼ ∑CN
i¼1Ebond A�Bi

¼ ∑CN
i¼1

gACEbulk;A
CNA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNA

CNbulk;A

s
þ gBi

CEbulk;Bi

CNBi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNBi

CNbulk;Bi

s !
ð2Þ

In Eq. 2, A-Bi refers to the atoms in the neighborhood of the binding
site. AtomA refers to the metal atom directly participating in the top-
site adsorption. Atom Bi is one of the metal atoms directly bound to
atom A. The summation index i refers to the bonds between atom
A and atoms Bi and ranges between 1 and the CN of atom A. As an
example, an adsorbate bonding to a site with CN 6 would have six
bonds, meaning the summation would have six terms (bonds A-B1,
A-B2,…, A-B6). Each bond energy Ebond can be approximated with
the BC model, which we directly substitute inside the summation
parentheses in Eq. 2. The other terms in the equation can be described
as follows: CEbulk,X is the bulk CE of atom X, CNX is the CN of atom X,
CNbulk,X is the bulk CN of atom X, and gX is the BCmodel g coefficient
of atom X (9). This definition of Stabsite (Eq. 2) allows us to capture not
only the CN and metal identity of the atom directly bound to the ad-
sorbate but also the electronic effects that come from the geometry of
the local site, such as stronger bonds resulting from undercoordinated
atoms adjacent to the binding atom. This formulation of CElocal addi-
tionally differentiates between atoms of the same CN and different
metal types.

Using this description of the local geometry, we can focus on its
ability to describe the binding of a single adsorbate-metal pair. In Fig. 1A,
we plot the DFT-calculated top-site BE of CO to a 172-atomAu cube
and a 147-atom Au cuboctahedron/icosahedron. We note a strongly
inverse relationship between CElocal and BE. In addition, we visualize
both the BE (Fig. 1, A to D) and CElocal (Fig. 1, E to G) that the dif-
ferent surface sites on the NPs exhibit. Overall, Fig. 1 demonstrates
that the strongest adsorption sites are the ones exhibiting the weakest
local cohesion.

Additional adsorption descriptors
Other descriptors chosen for the NP binding were (i) the CE of the en-
tire NP, (ii) the metal atom binding to the adsorbate, and (iii) a term
involving the ionization potential (IP) and electron affinity (EA) of the
adsorbate. The total NP CE was chosen because we expect the stability
(or lack thereof) of a givenNP to play cumulatively a role in its ability to
bind a molecule (25). The gas-phase BE between a single metal atom
and the adsorbate was chosen because we expect to provide a good
(and fast to calculate) descriptor of the tendency of the adsorbate to bind
a specific metal. Last, the negative average of the IP and EA, which we
call “IPEA,” was specifically chosen because it has been shown to be a
first-order finite difference approximation of the adsorbate’s chemical
potential within hard-soft acid base theory (26). In addition to this, it is
also the negative of Mulliken’s definition of electronegativity (26). The
values of each of these descriptors can be found in tables S1 to S3, along
withmore detailed justifications. Notably, the adsorbate-metal atomBE
2 of 10
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is the only DFT calculation required to parameterize the model (once it
is trained), which is computationally inexpensive to perform. Further-
more, all other quantities (CElocal, CENP, and IPEA) can be rapidly
determined through a combination of simple algebra and tabulated
physical properties.

Adsorption on monometallic NPs and slabs
Following our choice of chemical descriptors, we conducted linear re-
gression using the Caret package (27) as implemented in R (28),
performing ordinary least squares (OLS) regression in conjunctionwith
10-fold cross-validation for Eq. 3 (which is the first-order polynomial
equation we define in our discussion of Eq. 1)

Ebind;model ¼ aþ b� CElocal þ c� CENP þ d � IPEAþ e
�MADs ð3Þ

where Ebind,model is the model’s predicted BE and a, b, c, d, and e are
constants. CElocal is the local site’s cohesion. CENP is the CE of thewhole
NP. IPEA is the negative average of the IP and EA. MADs is the Metal-
ADsorbate BE.

Using this model, we perform an OLS regression using as a training
set the top-site adsorption of three different adsorbates [i.e. methyl
radical (CH3), CO, and hydroxyl radical (OH)] onto three different
metals (Cu,Ag, andAu)with five differentNPmorphologies (172-atom
cube, 55- and 147-atom icosahedron, and 55- and 147-atom cub-
octahedron), as shown in Fig. 2A. Although we only focus on adsorp-
tion on top sites (fig. S4, F to I), we note that previous work (16) has
shown that the top-site BE of various adsorbates (including CH3 and
OH) correlates with other surface site BEs (e.g., bridge and hollow sites)
over differentmetals (including Cu/Ag/Au). Regression statistics can be
found on Table 1 [case (i)].

In the final functional form of the model, the coefficients regressed
make excellent physical sense (Table 1). A negative sign on the CElocal
coefficient suggests that as the cohesion of the local site increases
(becomes more negative), its binding affinity to the adsorbates de-
creases. Similarly, a positive sign on IPEA, which is related to the
adsorbate’s chemical potential, denotes that a less stable adsorbate
Dean et al., Sci. Adv. 2019;5 : eaax5101 13 September 2019
(higher chemical potential) will have a higher tendency to bind to a
metal. Last, the direct correlation with MADs, the BE between the ad-
sorbate and a single metal atom in the gas phase, is also very intuitive as
it describes the intrinsic tendency of the metal to bind the adsorbate,
with a more negative MADs indicating a stronger binding interaction.

For thismodel [Table 1, case (i)], we observed a cross-validatedR2 of
0.936 and a cross-validated rootmean square error (RMSE) of 0.179 eV.
Notably, here is the high P value and error associated with the CE of the
NP. As a result, we conducted a second regression where we did not
include CENP, but instead we only included the remaining three regres-
sors and an intercept. This model is plotted in Fig. 2B, and its regression
information can be found in the middle of Table 1. We see that the
model [Table 1, case (ii)] fits nearly as well, with an overall model R2

of 0.933 and a cross-validated RMSE of 0.179 eV. If we additionally plot
the BE as a function of NP cohesion (fig. S1), then we can see that, at
least in the case of our chosen adsorbate-NP combinations, it does not
provide an adequate descriptor for the binding interaction. Because the
inclusion of the NP CE offers no improvement over a less complex
model, we decide to ignore this term and use the form outlined in
Eq. 4 for the remainder of our investigation

Ebind;model ¼ aþ b� CElocal þ c� IPEAþ d �MADs ð4Þ

The P value, cross-validated RMSE, and cross-validated R2 all indi-
cate that ourmodel is generalizable to othermetal-adsorbate systems. In
addition, the remaining degrees of freedom (DOF), calculated as the
dimensionality of the datasetminus the dimensionality of the regression
equation, for every model in Table 1, are large, indicating that over-
fitting is unlikely. Overall, this shows that our model’s predictions
correlate well with theDFT-calculated values. This is important because
we ultimately wish to provide a computationally efficient framework for
predicting DFT adsorption energies. The error metrics, RMSE, mean
absolute error (MAE), and R2 offer a picture of how likely the model
is to fail or succeed compared to DFT. The cross-validated RMSE
and MAE have values of 0.179 and 0.144 eV, respectively, which indi-
cates that, on average, the model can be expected to be within 0.144 to
0.179 eV of the true DFT-calculated value. Last, the good R2 values of
Fig. 1. Demonstration of CElocal as a descriptor for adsorption energy. (A) The BE of CO on various sites of Au NPs as a function of CElocal: 172-atom cube (rec-
tangles), 147-atom icosahedron (hexagons), and 147-atom cuboctahedron (rhombus). Heat map of different sites on the NPs with respect to their BE of CO (B to D) and
to their CElocal (E to G). The color scheme follows the range of strongest CO binding to weakest CElocal (violet) and of weakest binding to strongest CElocal (red).
3 of 10
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0.933 and 0.936 indicate that our model is strongly correlated with the
actual DFT predictions.

We tested our model’s generalizability by splitting our data into
training and test sets based on adsorbate, metal identity, and morphol-
ogy. In these series of “leave-one-in” tests, we restrict the training set to
only a single morphology, adsorbate, or metal and then test the devel-
oped model on the data that were left out. The results of these tests can
be found in table S4 and fig. S2. Overall, they provide strong evidence
that our model is capturing the underlying physics of the binding in-
teraction: When we train on a single metal or morphology, we still
capture the other metals or morphologies with good accuracy. In the
case of training on a single adsorbate, we see that, although the model
fits are worse, they still capture the trends of the binding interactions
(e.g., the adsorbates that were not tested are off parity by a constant
amount). This is because themodel has only a single possible value in
the case of the IPEA term. Therefore, it reduces to a model that has
only three terms, which are the intercept, CElocal, and MADs. How-
ever, this indicates that our model is highly robust. Even when the ad-
Dean et al., Sci. Adv. 2019;5 : eaax5101 13 September 2019
sorbate descriptor is missing, the model captures trends in the binding
interactions. Therefore, our CElocal and MADs descriptors may be ap-
plicable to a wide array of adsorbates and NPs.

In addition to nonperiodicNP systems, we also investigated periodic
(slab) systems. Recently, Roling and Abild-Pedersen (29) developed
several scaling relations for adsorption on metal slabs and, alongside
these relations, reported a large body of DFT calculations describing
the adsorption of CH3, CO, and OH on the surface of several metal
slabs of Ag, Au, Cu, Ir, Ni, Pd, Pt, and Rh. Using the scaling relations,
they derive amodel that describesmetal-adsorbate BEs to a high degree
of accuracy but is parameterized by several DFT calculations. In their
model, the metal-adsorbate BE is asserted as a function of the DFT-
calculated BE of the metal atom to the surface and of the gas-phase
BE of an adsorbate to a metal atom (which we call MADs in this work).
Although the gas-phase metal-adsorbate BE needs only to be parame-
terized once per metal-adsorbate system, calculating the metal’s BE to
its surface needs to be done once for every potential binding site, which
requires a DFT optimization for the slab both with and without the
Fig. 2. Parity plot of the model-predicted BE of adsorbates (OH, CO, and CH3) on various metal systems versus the DFT BE (eV). (A) The model both trained and
tested on PBE DFT data for NPs (Au/Ag/Cu, 55 to 172 atoms), which includes the CENP term. This model corresponds to case (i) of Table 1. (B) The model both trained
and tested on PBE DFT data for NPs (Au/Ag/Cu, 55 to 172 atoms), which does not include the CENP term. This model corresponds to case (ii) of Table 1. (C) The model
trained on PBE DFT data for NPs (Au/Ag/Cu, 55 to 172 atoms) and tested against RPBE DFT data for top-site adsorptions on metal surfaces (Au/Ag/Cu) from the literature
slab dataset (29). This model corresponds to case (ii) of Table 1. (D) The model both trained and tested on RPBE DFT data for top-site adsorptions on metal surfaces (Au/
Ag/Cu) from the slab dataset. This model corresponds to case (iii) of Table 1. In all cases, error bars are determined from the 10-fold cross-validated RMSE on the training
set. Our DFT-calculated BEs of the different adsorbates on the various sites of the metal NPs are shown in table S6.
4 of 10
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metal atom. In scenarios where adsorption energies across many differ-
ent sites are to be investigated, the metal-surface BE term becomes a
limiting step and may prove impossible for larger NPs (or slabs) that
are infeasible to be calculated with DFT. Hence, our model, which does
not need to be reparameterized for every binding site, allows for signif-
icantly higher throughput.

Here, we use the revised Perdew-Burke-Ernzerhof (RPBE)–
calculated top-site adsorption energies on slabs reported by Roling
andAbild-Pedersen (29) and focus on the Cu, Ag, and Au slabs adsorb-
ing CH3, CO, and OH.We choose this particular dataset because it is a
recent study encompassing a variety of face-centered cubic metal slabs
from the d-block (including those we investigate from our own NP
calculations) using the same adsorbates present in our calculations. It is
also a large dataset, which allows us to have amore accurate assessment
of our model’s generalizability to these systems. We take our model,
which has been fit to only our PBE DFT NP data, and use their data
as a test set. In Fig. 2C, we plot the DFT-calculated BEs of the slabs
Dean et al., Sci. Adv. 2019;5 : eaax5101 13 September 2019
and compare them with the predictions of our model. We see that,
although there is some deviation from parity, we still capture the overall
trends of the binding interaction. This deviation is most likely because
our training set used the PBE functional with a Gaussian planewave
basis set and our model was trained entirely on NPs (no slabs were in-
cluded in the training set). The slab dataset was produced from calcula-
tionswith the RPBE functional and a planewave basis set. This results to
the important observation that, although the adsorption data are with
different functional, basis set, and adsorption environment (a slab not
an NP), we are still able to predict the DFT BE to a high degree of ac-
curacy based on our developed model. This is further evidence that our
model is capturing the underlying physical trends of the systems. We
note, however, that RPBE tends to produce more accurate CO adsorp-
tion energies than PBE, which overbinds CO relative to experiments
(30). We observe this overbinding behavior in Fig. 2C, where the
PBE-trained model predicts CO adsorption energies to be more nega-
tive relative to the RPBE DFT data. Last, to prove that our introduced
descriptors and developed model are universal and applicable to peri-
odic systems, we plot in Fig. 2D the model’s behavior when it is both
trained and tested on the slab dataset. In Fig. 2D, we immediately note
that the discrepancy with CO moves back to parity. As expected, this
indicates that, when the model is parameterized using the same func-
tional used to calculate benchmark BEs, the results are more accurate.
As it can be seen, all the data impressively fall on the parity line. Overall,
this result combined with our leave-one-in tests (table S4 and fig. S2)
shows that ourmodel only needs to be fed a small subset of the possible
morphologies that an NP or slab may take on and can then predict
binding to othermorphologies. The implication is that computationally
inexpensive systems can be used to parameterize themodel viaDFTand
then it can extend to much larger systems, which would otherwise be
computationally intractable to investigate.

Extension to bimetallics
So far, our analysis has been entirely based on monometallic systems.
Althoughmonometallic systems are important to understand, a much
larger and challenging chemical space can be found in the realm of
bimetallics. For example, although there are 40 d-block metals (includ-
ing La and Ac), there are 40

2�40
2 ¼ 780 possible unique bimetallic alloys,

without considering the additional materials space dimensions of NP
size, shape, chemical ordering, etc. If we additionally consider chemical
ordering in a bimetallic 55-atomNP (a computationally tractable metal
NP size with DFT) of a single arbitrary morphology, there are a max-
imumof 255 differentways bywhich both elements could be arranged in
the NP. This number is already very large and further grows when dif-
ferent morphologies are considered. Therefore, fast and accurate de-
scriptions of bimetallic alloys are a necessity if we are to explore even
a fraction of these systems.

All evidence so far indicates that our model is physically sound, and
therefore, we hypothesize that it should be extendable to bimetallic
systems.Moreover, because CElocal is a direct extension of the BCmodel
aswe describe in Eq. 2 and takes into account the atomic identity of both
themetal atom involved directly in the adsorption and everymetal atom
that has formed bonds with (first neighbors), this descriptor extends
naturally to bimetallic systems. In addition, IPEA has no dependence
on binding site, and MADs is only dependent on the atom directly
bound to the adsorbate and does not require modification to capture
top-site binding in bimetallic systems. Therefore, we continue using
the identical physics-based descriptors for bimetallic NPs and slabs (as
were used with monometallic systems), investigating top-site adsorption
Table 1. OLS regression information for (i) four-descriptor model that
includes CElocal, IPEA, MADs, and CENP; (ii) three-descriptor model
that excludes CENP; and (iii) equivalent three-descriptor model using
the slab dataset found in the literature. All cases are trained using
datasets where CH3, CO, or OH adsorb to Cu, Ag, or, Au (29). The maxi-
mum error corresponds to the largest deviation of a single data point.
MAE, mean absolute error; RMSE, root mean square error; DOF, degrees of
freedom.
(i) Trained on NPs (four-descriptor model)
(RMSE: 0.179 eV, MAE: 0.145 eV, R2: 0.936, maximum error: 0.619 eV,

and remaining DOF: 157)
Coefficient estimate
 SE
 P value
Intercept
 1.51477
 0.15876
 <2 × 10−16
CElocal
 −0.1450
 0.01663
 3.85 × 10−15
IPEA
 0.33171
 0.01280
 <2 × 10−16
MADs
 0.67858
 0.01522
 <2 × 10−16
CENP
 −0.0002
 0.05388
 0.998
(ii) Trained on NPs (three-descriptor model)
(RMSE: 0.179 eV, MAE: 0.144 eV, R2: 0.933, maximum error: 0.619 eV,

and remaining DOF: 158)
Coefficient estimate
 SE
 P value
Intercept
 1.51509
 0.12148
 <2 × 10−16
CElocal
 −0.14502
 0.01410
 <2 × 10−16
IPEA
 0.33171
 0.01274
 <2 × 10−16
MADs
 0.67857
 0.01501
 <2 × 10−16
(iii) Trained on slab dataset (three-descriptor model)
(RMSE: 0.122 eV, MAE: 0.102 eV, R2: 0.979, maximum error: 0.259 eV,

and remaining DOF: 113)
Coefficient estimate
 SE
 P value
Intercept
 1.67677
 0.09220
 <2 × 10−16
CElocal
 −0.14590
 0.01079
 <2 × 10−16
IPEA
 0.28743
 0.01005
 <2 × 10−16
MADs
 0.79516
 0.01187
 <2 × 10−16
5 of 10
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energetics. In Fig. 3, we plot the BE of the CH3, CO, and the OH as
predicted by our model when trained only on monometallic NPs
against theDFT-calculated binding on several sites of the icosahedral
55-atom NPs (Cu31Ag24 and Cu22Ag33).

We can immediately see that the model very accurately captures
trends in adsorption on the bimetallic Cu/Ag NPs. This further points
toward the physical basis of ourmodel because themodel is only trained
onmonometallic systems and can still accurately capture the binding of
the adsorbates on bimetallic NPs, which the model has never seen
before. Furthermore, this demonstrates that our model is generalizable
and applicable to both monometallic and bimetallic NPs. In addition,
this is also indicative of the good performance of the CElocal descriptor.
Other descriptors such as the CN and GCN (31) either do not have
obvious extensions to systems of different metals or require extensive
modification to capture multimetallic environments (32). The BC
model (9) fromwhich we derive CElocal, however, is deliberately formu-
lated to describe bond strength between different metals and has been
shown to perform very well on bimetallic alloys.We note, however, that
Cu and Ag have similar electronegativities (33). Therefore, the tested
Cu55−xAgxNPs do not show strong charge transfer because our calcula-
tions indicate point charges of less than ±0.1 |e−|. Bimetallic systems
that potentially develop significant charge transfer could affect the BE
of adsorbates [and affect, for example, electrocatalytic behavior (18)]
and may require an additional descriptor, such as binding site electro-
negativity, to capture these effects (34).

Extension to d7 and d8 metal slabs
Having shown that we are able to train on just one d9metal and capture
the adsorption trends of the other d9metals (fig. S2), we believe that we
should be able to extend ourmodel to other systems.We again used the
slab dataset (29), in which several d9 (Cu, Ag, and Au), d8 (Ni, Pd, and
Pt), and d7 (Rh and Ir) metals were investigated. In Fig. 4A, we only
trained the model on the Roling and Abild-Pedersen dataset of CH3,
CO, and OH adsorbed to Cu, Ag, and Au NPs and showed that it is
Dean et al., Sci. Adv. 2019;5 : eaax5101 13 September 2019

 S
eptem

ber 16, 2019
able to capture the general adsorption trends for the other columns of
the periodic tables, although deviations occur on a per adsorbate and
per metal basis.

We then expanded our training set to include every periodic system
in the slab dataset (CH3, CO, andOH adsorbed to Rh, Ir, Ni, Pd, Pt, Cu,
Ag, or Au slabs) and attempted to fit our three-descriptormodel to it.
This resulted in a poor fit: Although it captures to some degree of
accuracy the different metal-adsorbate pairs, it is unable to capture dif-
ferences in the binding site of each slab (fig. S3A). This suggests that our
model is missing some physical descriptor that can accurately differ-
entiate between different columns of the periodic table. Searching for
such a descriptor, we then investigated a variety of additional physical
descriptors: TheCNof the local site, the same first-order approximation
of the chemical potential (of themetal), the hardness of themetal, the
d-count of the metal, the covalent radius of the metal, the resistivity of
the metal (related to the electronic structure), and the melting point of
the metal (related to the strength of bonds). Even allowing the model to
overfit by including all 10 of the potential physical descriptors we inves-
tigate, we do not see a substantial improvement over our originalmodel.
We present the summary of our search for an effective descriptor via
OLS in table S5 and fig. S3.

We attempted to leverage more complex machine learning tech-
niques to provide additional avenues to improve the adsorption model.
Using LASSO (least absolute shrinkage and selection operator; see the
“LASSO” subsection in section S3), we find the best descriptors to be the
CN, the chemical potential of the metal (calculated in the same way as
IPEA), the covalent radius of the metal, CElocal, IPEA, and MADs. Of
these, both the covalent radius and the chemical potential of the metal
exhibit low coefficients.Higher importance is given to the other descrip-
tors, which, in the absence of CN (which can be justified by how CElocal
is a demonstrably better descriptor), reduces to the model we have de-
veloped with slightly different coefficients (which is to be expected,
considering that LASSO is not the same as OLS).

We additionally use symbolic regression (see the “Symbolic regres-
sion with Eureqa” subsection in section S3), which is a highly flexible
(but also interpretable) machine learning technique. Despite this
enhanced flexibility, we again converge to the same three descriptors:
CElocal, IPEA, and MADs. This is a further evidence that our model
has a physically sound basis: The symbolic regressionwas given free rein
to combine any of the investigated set of descriptors using addition, sub-
traction, multiplication, division, or any combination thereof yet still
quickly predicted the form of our model, albeit with different coeffi-
cients (which is again expected, as the coefficients were generated via
genetic algorithm and not formal OLS regression).

Although this provides excellent support for our physics-based
chosen descriptors, it also indicates that none of the descriptors we have
investigated so far is able to capture the difference in elements from
column to column. In the absence of a good tabulated physical descriptor
for this, if one even exists, we instead perform fits on a per column basis
(Fig. 4B). We observe a general agreement with parity on the d8 and d7
metals and excellent agreement for the d9 metals.

Extension to Rh NPs and NH3

We also tested our model to an entirely different adsorbate-metal pair:
NH3 and Rh. We see that, when we train on only Ag/Cu/Au with the
three adsorbates (OH, CH3, and CO), the Rh and NH3 systems are off
by a consistent amount, as shown in Fig. 5A. Thus, although there is a
deviation from parity, this deviation appears to be consistent, and the
binding trend is still captured.
Fig. 3. Parity plot between our developed model and DFT calculations on
icosahedral bimetallic (Cu55−xAgx, x = 24, 33) NPs. The model is trained on
CH3, CO, and OH adsorbing on monometallic Ag, Cu, and Au NPs and is able
to capture adsorption on bimetallic NPs. Images of the two NPs are shown as
inset, with copper and silver atoms colored in brown and gray, respectively.
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Applying a constant correction to Rh and NH3 to minimize the
RMSE (and applying both corrections simultaneously to the Rh-NH3

systems) results to bringing the data into parity (Fig. 5B). We again
see that, although we cannot find a physical descriptor able to capture
the differences between the columns of the periodic table (we trained on
d9metals with CH3/CO/OH and tested on the completely different sys-
temRhwith NH3), we still capture the overall binding trend, albeit with
an offset from parity.

Last, we parameterized the model on Rh using all three adsorbates
(Fig. 5C) and showed that, although the model has difficulties finding
differences in the BEs of each site, it is still able to capture well the trend
between different adsorbates.We observe general trends in the different
systems when we train on Ag, Au, and Cu, but offsets appear by some
constant amount from the graph bymetal and adsorbate. Furthermore,
when attempting to simultaneously fit a model to all data (fig. S3), we
see a stratification by adsorbate-metal pair, where roughly similar ener-
gies are being predicted for the same pairs with little difference in the
CN and thus the CElocal.
  16, 2019
DISCUSSION
In this work, we develop a simple yet powerful physics-basedmodel for
capturing trends in the strength of binding interactions between differ-
ent adsorbates and metal NPs using machine learning techniques. The
model introduces three simple descriptors, namely, the CElocal, IPEA,
and MADs, that are able to capture adsorption on any site of metal
NPs including monometallic and bimetallic systems.

Regarding the generalizability of the model, we are able to train the
model on DFT-calculated adsorption results on NPs and capture the
adsorption behavior on periodic surfaces. Furthermore, we use both
LASSO and symbolic regression to search a larger space of potential de-
scriptors that may differentiate between the columns in the d-block and
to validate our model formulation. Both techniques demonstrated the
importance of these three descriptors in adsorption. These simple de-
scriptors can effectively model a wide range of binding interactions, in-
cluding variations on the type of metals and composition, adsorption
sites, and adsorbates.

Beyond the functional formof thismodel,wepresent anewdescriptor
for the chemistry of the local site, CElocal. This descriptor, which repre-
Dean et al., Sci. Adv. 2019;5 : eaax5101 13 September 2019
sents the stability of the adsorption site, is a localization of the BCmodel
for NP CE (9), where only the bonds between the binding site metal
atom and its neighbors are taken into account. The CElocal descriptor
allows describing the stability of the local binding site by taking into
account not only the CN of its atoms but also the coordination of its
neighbors in addition to the chemical identity of the metal and its
neighbors.

Our CElocal descriptor addresses shortcomings of other similar de-
scriptors for local site reactivity. CN and GCNmodels (31) only con-
tain geometric information, neglecting elemental composition of the
site. In addition, these descriptors do not have an obvious extension
tomultimetallic systems, whereas CElocal requires nomodification to
describe adsorption on multimetallic binding sites. It is able to describe
accurately the adsorption on bimetallic NPs even when the model is
parameterized exclusively on monometallic systems. Other descriptors,
such as the orbitalwise CN (22), are difficult to calculate and require
knowledge or approximations of the electronic structure of thematerial
of interest.

For high-throughput screening, where many different metals need
to be investigated, computationally inexpensive and readily accessible
descriptors are essential. We highlighted that, using data tabulated for
most experimentally relevant adsorbates andmetals andparameterizing
ourmodelwith only a singleDFT calculation permetal atom–adsorbate
pair, we allow for rapid high-throughput screening of the adsorbate-NP
and adsorbate-surface search space. Impressively, the model captures
adsorption trends on bimetallic systems. Although we have not tested
ternary systems here, we have no reason to believe that these physical
properties will not remain relevant to accurately model multimetallic
systems. Furthermore, we note that CElocal is constructed to account
for practically any combination of metals on the local site. Future work
will address whether this model is directly extendable to ternary
systems.

Beyond the work of Roling and Abild-Pedersen (29), highlighted
earlier in extending ourmodel to periodic systems, recent work has also
focused on developing adsorption models using statistical techniques.
The automated screening and modeling approach of Tran and Ulissi
(32) describes binding sites in terms of their atomic number, Pauling
electronegativity, CN, and median of adsorption energies between the
adsorbate and the pure metal. This approach yields accurate adsorption
Fig. 4. Our three-descriptor model extended to slab dataset. (A) The model trained on the slab dataset (29) on Cu, Ag, and Au surfaces and tested against the Rh, Ir,
Ni, Pd, Pt, Cu, Ag, and Au surfaces from the slab dataset. (B) The equivalent model when trained separately for each column of the d-block, still using the slab dataset.
Error bars in every case are the 10-fold cross-validated RMSE of the training set.
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energies showing good agreement with DFT but uses statistical
models with enhanced complexity such as k-nearest neighbors and
variations on the random forest. Enhanced model complexity typically
requires larger datasets to prevent overfitting; this highlights the advan-
tage of using a simpler linearmodel (see discussion on the “leave-one-in”
tests in fig. S2).
Dean et al., Sci. Adv. 2019;5 : eaax5101 13 September 2019
Thework of Andersen et al. (34) similarly uses a variety of DFT (e.g.,
d-band and densities of states) and experimentally derived descriptors
(e.g., IP, EA, and CN), showing that DFT-calculated descriptors tend
to provide better adsorption predictions than tabulated experimental
descriptors such as the IP and EA. Using SISSO (Sure Independence
Screening and Sparisfying Operator), they present several models,
including models that take the form of first-order polynomials (form
similar to Eq. 3). Comparing with the first-order polynomial models,
they show training set RMSE ranging from approximately 0.38 to
0.16 eV as the number of terms increases, which is similar to what
we observe in our multi–d-column linear regressions. Although the
DFT-based approach can provide better predictions (due to compar-
ing DFT adsorption energies with DFT-derived properties), we note
that, in this work, we use tabulated data for more rapid screening,
parameterizing our model with minimal DFT calculations.

Overall, ourmodel generally exhibits cross-validatedRMSE of about
0.12 to 0.18 eV. This error is comparable to othermodels in literature
(29, 32, 34) and relatively small compared to the simplicity and appli-
cability of our model. However, we suggest that our model should be
primarily used for screening potential catalytic or adsorption materials
to retrieve qualitative materials performance trends. For a quantitative
property estimation, especially for properties that are very sensitive to
error propagation as turnover frequencies in catalysis, these should be
calculated by higher-fidelitymethods once candidatematerials are iden-
tified by our model (screening).

Our choice of descriptors has a strong physical basis. The IPEA can
be viewed as the tendency of an adsorbate to react with other species, the
CElocal is the equivalent tendency of the adsorption site to form bonds
with adsorbates, and the MADs is a tuning of interaction between a
metal and an adsorbate. Our model can accurately capture adsorption
on both NPs and periodic surfaces, despite not having a descriptor for
the stability of the whole surface or NP (i.e., CENP). This indicates that
long-range interactions on a metal surface/NP play a minor role in
determining the binding strength of the adsorbates. It is the stability
of the local site on a surface or NP (CElocal) that contributes the most
to adsorption on this site. We should acknowledge, however, that the
adsorbates we investigate in this work are all relatively small and that
most of their atoms either are directly participating in the metal-
adsorbate bond or are nearest neighbors to the bonding interac-
tion. We hypothesize that, for larger adsorbates, this IPEA descriptor
mayneed to be replaced by anewdescriptor characterizing the electron-
ics of only the portion of the adsorbate directly involved in the bonding
interaction. This can be justified via well-known effects such as induc-
tion and hyperconjugation, which (in the case of s bonds) tend to be
limited to the range of only one or two bonds. Fortunately, there is a
large body of metal-catalyzed reactions such as the Haber-Bosch
(35, 36), Fischer-Tropsch (37), water-gas shift reaction (38), etc., where
small molecules similar to the ones we have investigated comprise most
of the reactants and intermediates.

In summary, we introduce an adsorptionmodel that is able to accu-
rately describe the binding strength of molecules on any site of metal
NPs, including alloys. Ourmodel is simple in its form and uses data that
can be readily accessible (or calculated on the fly).With surface adsorp-
tion being a critical step in catalysis, we anticipate it to be highly appli-
cable as a screening tool for the high-throughput search of potential
catalysts. With the rise of large databases and recent advancements in
machine learning, these high-throughput searches tend to require cheap
but physically relevant descriptors for reactivity of metals. In addition,
our model can advance the discovery of nanosensors because it allows
Fig. 5. Extension of our model to Rh and NH3. (A) The model parameterized on
our Ag, Cu, and Au NPs adsorbing CH3, CO, and OH and tested against Rh and
NH3. (B) The equivalent model with empirical (constant) corrections for Rh and
NH3. In the case of NH3 bound to Rh, both corrections are simultaneously applied
and indicated by two-colored dots. (C) The model trained on CH3, CO, OH, and
NH3 adsorbing on icosahedral/cuboctahedral Rh55.
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MATERIALS AND METHODS
NP adsorption calculations
All adsorbate-NP BEs were calculated with DFT using QUICKSTEP
(39), as implemented in CP2K (40). Exchange-correlation was accounted
using the PBE functional. The DZVP (double-zeta valence polarized)
basis set (41) was used with the Goedecker, Teter, and Hutter (GTH)
pseudopotentials (42) at a 500-rydberg cutoff. Self-consistent field cycles
were performed with a convergence criterion of 10−7 Ha. Geometry re-
laxations were converged to forces below 0.02 eV/Å. Visual depictions
of the NPs with labeled CNs can be found in fig. S4 (A to E), and depic-
tions of the top adsorption configurations studied can be found in fig. S4
(F to I). DFT-calculated BEs for eachNP-adsorbate pair we investigated
can be found in table S6.

Single-metal adsorption calculations
To calculate the MADs, we used the molecular structures of the
complexes between a single metal and the adsorbate, as illustrated in
Fig. 2. The energy for these complexes was evaluated using the PBE
functional with the def2–SV(P) (split valence polarized) basis set (43)
and the RI/MARIJ [Resolution of Identity/Multipole Accelerated RI-J,
where RI-J is the RI approximation for coulomb (J) integrals] approx-
imations, as implemented in the Turbomole package (44, 45). Each
structure was relaxed using a quasi–Newton-Raphson method for all
multiplicities at or lower than septet (to account for spin state of each
complex), and the lowest-energy multiplicity was used to calculate the
MADs in Eq. 5 as

MADs ¼ Ebind;M�Ads ¼ EM�Ads;complex � EM � EAds ð5Þ

whereEX represents the electronic energy of species X,M is ametal, and
Ads is the adsorbate. Visual depictions of the gas-phasemetal-adsorbate
binding description can be found in fig. S4 (J to M). Calculated values
for MADs can be found in table S4.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/9/eaax5101/DC1
Section S1. Thermodynamic data
Section S2. Leave-one-in tests
Section S3. Investigations on slabs
Section S4. Adsorption configurations
Table S1. Ionization energies and electron affinities for CH3, CO, OH, and NH3.
Table S2. BC model–calculated CEs of the relevant NPs we investigated.
Table S3. Calculated local CEs for relevant adsorption sites.
Table S4. Regression statistics for the various leave-one-in tests we performed.
Table S5. Regression statistics for intentionally overfit model plot of fig. S3B, with coefficients
generated via OLS regression.
Table S6. DFT-calculated BEs for all studied adsorbate-NP pairs, ordered first by adsorbate,
then by morphology, then by element, and lastly by CN.
Fig. S1. Adsorbate BEs versus BC model–calculated NP CEs.
Fig. S2. Parity plots for the various leave-one-in tests we performed.
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Fig. S3. Characterization of all metal-adsorbate pairs in the slab dataset (29) simultaneously
(e.g., there is one training set, which includes all adsorption interactions from the dataset).
Fig. S4. Illustration of initial configurations for several DFT calculations performed.
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