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ABSTRACT 

Pure metallic nanofoams in the form of interconnected networks have shown strong potentials 
over the past few years in areas such as catalysts, batteries and plasmonics. However, they are 
often fragile and difficult to integrate in engineering applications. In order to better understand 
their deformation mechanisms, a multiscale approach is required to simulate the mechanical 
behavior of the nanofoams, although these materials will operate at the macroscale, they will 
still be maintaining an atomistic ordering. Hence, in this work we combine molecular dynamics 
(MD) and finite element analysis (FEA) to study the mechanical behavior of copper (Cu) 
nanofoams. Molecular dynamics simulations were performed to study the yield surface of a 
representative cell structure. The nanofoam structure has been generated by spinodal 
decomposition of binary alloy using an atomistic approach. Then, the information obtained 
from the molecular dynamics simulations in the form of yield function is transferred to the finite 
element model to study the macroscopic behavior of the Cu nanofoams. The simulated 
mechanical behavior of Cu nanofoams is in good agreement of the real experiment results. 

INTRODUCTION 

Metallic nanofoams made of materials such as copper (Cu), nickel (Ni), gold 
(Au) and platinum (Pt) have the potential to present clear advantages in a broad spectrum 
of low-density and high surface area applications. Their excellent surface to volume ratios 
make them great choice for catalysts [1], sensors [2], actuators [3], fuel cells [4] and 
plasmonics [5]. Despite such advantages, metallic nanofoams exhibit brittle behavior 
macroscopically due to plastic deformation in individual ligaments. In pure metallic 
nanofoams, the ligament strength does approach the theoretical strength, but there is almost 
no ability to strain harden, and hence local geometry fluctuations leads to premature 
macroscopic failure. This lack of macroscopic strength is one of the limiting factors in 
broadly applying metallic nanofoams. Overall, the mechanical behavior of a metallic 
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nanofoam is determined by the relationship between the behavior of the ligaments of which 
this material is formed and the geometry of the ligaments.  

For the past few years, large amounts of effort have been devoted to study the 
mechanical properties of metallic nanofoams. The Gibson and Ashby model [6] has been 
widely used for theoretical studies of nanofoams to estimate the yield strength, the elastic 
modulus and ultimate tensile strength. However, this model is not applicable for nano-
scale porous foams because it fails to consider the microstructural parameters of ligaments, 
which consist the nanofoam. Hodge et al. [7] and Briot et al. [8] reported that the yield 
strength of metallic nanofoam varies with the ligament diameter and a modified scaling 
equation was proposed which incorporates the Hall-Petch relation. However, many 
reported models are focused either on microstructures which simulate those in real 
nanofoams or simplified geometrical models which neglects the atomistic configurations. 
In current work, we use a multiscale approach to predict the mechanical properties of Cu 
nanofoams with a random distribution of ligaments. MD simulations were performed to 
generate yield surfaces and FEA were performed to investigate the mechanical strength of 
the macroscopic Cu nanofoam. 

METHODOLOGY 

First, a randomly distributed foam structure was created. Previous works have 
used various techniques to generate the random foam structure. For example, Gunkelmann 
et al. [9,10] first built a template for the foam structure by starting with an fcc crystal with 
periodic boundary conditions. Then the crystal structure was heated above the melting 
temperature and atoms with temperature above a chosen value have been removed to get 
the desired porosity. Ngô et al. [11] and He et al. [12] generated the structure by a spinodal 
decomposition simulation of a binary mixture via Monte Carlo (MC) method. Crowson et 
al. [13,14] also model the spinodal decomposition of a binary alloy using a phase field 
method. Their sample presented similar shape to experimental observations in terms of 
ligament size distribution and surface curvature. In this work the method suggested by 
Gunkelmann [10] has been used. It has been reported that this technique results to similar 
foam macrostructures to that obtained using the analysis based on small-angle neutron 
scattering data considered for porous gold.  

A simulation box consisting 40*40*40 Cu lattice spacing with (001) direction 
was formed. We randomly assign two types of atoms to the lattice sites: type 1 which 
represents Cu atom and type 2 which represents void. The relative density in our case here 
is 46%. After the spinodal decomposition process we remove the void part in the box and 
the final structure is shown using OVITO [15] in Figure 1. The simulation box has a side 
length of 14.4 nm, and the total number of Cu atoms is 138762. 

 

Figure 1. Atomistic configuration of Cu nanofoam cell structure. 

ht
tp

s:
//

do
i.o

rg
/1

0.
15

57
/a

dv
.2

01
9.

56
D

ow
nl

oa
de

d 
fr

om
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 C
la

rk
so

n 
U

ni
ve

rs
ity

, o
n 

28
 Ja

n 
20

19
 a

t 1
6:

33
:4

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1557/adv.2019.56
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Then, MD simulations were performed using LAMMPS [16] with potentials 
based on the embedded atom method (EAM) [17,18]. The EAM potential used to describe 
the atomic interactions between Cu is given by Voter and Chen [19]. To model infinitely 
large nanofoams, periodic boundary conditions were applied along all three directions. In 
all simulations the temperature was kept constant at 300K during both the relaxation and 
loading steps. The isothermal-isobaric (NPT) ensemble was used to update the atomic 
velocities and positions at each step. The Cu nanofoam structure was subjected to uniaxial 
and hydrostatic and mixed compression stress states and the yield stress value has been 
recorded for each case. For the mixed loading, first the hydrostatic stress was reduced to a 
fraction (4/5, 3/5, 2/5 and 1/5) of the hydrostatic yield strengths, and a uniaxial 
compression was performed along z-direction until yield was achieved with the hydrostatic 
stress in the other two directions kept constant. The mean stress and the von Mises effective 
stress were calculated at the yield point of all simulation tests. Using this method, yield 
surfaces were generated and curve fitted into the isotropic constitutive model given by 
Deshpande [20]. The yield function Φ is defined by 
                                                   Φ ≝  𝜎̂  − 𝑌 ≤ 0.                                                          (1) 

And the equivalent stress 𝜎̂ is defined by 
                                            𝜎̂2 ≝  

1

[1+(𝛼 3⁄ )2]
[𝜎𝑒

2 + 𝛼2𝜎𝑚
2].                                            (2) 

In this equation, 𝜎𝑚 is the mean stress 𝜎𝑚 ≝  𝜎𝑘𝑘 3⁄ , and 𝜎𝑒 is the von Mises effective 

stress 𝜎𝑒 ≝ √
3

2
𝜎𝑖𝑗

′𝜎𝑖𝑗
′ . We fit our results with this model and get the value of the 

parameter α, which defines the elliptical shape of the yield surface.  
Then, this parameter α has been used in the FEA part to generate the macroscopic 

stress-strain curve of the copper nanofoam under compression. The original work by 
Deshpande used experimental data to find the hardening behavior of the theoretical model. 
However, very few of such data are available in the case of nanofoams. To account for 
that, the theoretical hardening model suggested by Hanssen et al. [21] has been used. This 
model has the advantage that also includes the foam density which is an important 
characterization parameter. Hanssen’s hardening model is defined as 

                                             𝑌 = 𝑌𝑜 + 𝛾
𝜀̂

𝜀𝐷
+ 𝛼2 ln (

1

1−(𝜀̂ 𝜀𝐷)⁄ 𝛽).                                       (3) 

where 𝑌𝑜  is the yield strength, 𝛼2 , 𝛽 , and 𝛾  are material parameters, and 𝜀𝐷  is the 
compaction strain 𝜀𝐷 ≝ 1 −

𝜌𝑓

𝜌𝑜
. The material parameters 𝛼2, 𝛽, and 𝛾 were obtained by 

fitting experimental results [22] of uniaxial compression testing on a Cu foam with elastic 
modulus of 1.7 GPa, yield strength of 12 MPa, and relative density of 40%. These material 
parameters depend on the foam relative density as defined by 

                                          {𝛼2, 𝛾,
1

𝛽
} = 𝐶0 + 𝐶1 (

𝜌𝑓

𝜌𝑜
)

𝑛

.                                              (4) 

where 𝐶0, 𝐶1, and 𝑛 are constants, which were determined by fitting the experimental data 
with Hanssen’s hardening model. After obtaining the constants, the material parameters 
could be computed for different relative densities. FEA using MOOSE Framework [23] 
was performed for the metallic nanofoam generated in MD. For the elastic part of the Cu 
nanofoam, following the Hall Petch effect, the yield strength of the foam would vary 
depending on the ligament size; however, since the ligament diameters for the generated 
foam were random, the yield strength was considered to be the same as the experimental 
yield strength. The elastic modulus was determined using the scaling equation  [6] 
described by 𝐸 = 𝐸𝑜(𝜌𝑓 𝜌𝑜⁄ )2, where 𝐸𝑜  is the elastic modulus of bulk Cu. Finally, to 
evaluate the effects of density, different relative densities were considered for the 
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simulated nanofoam. Three cases were compared with relative density of 35%, 50% and 
55% using the same 𝛼 parameter obtained from MD simulations. 

DISCUSSIONS 

Molecular dynamics 

The stress-strain curve for both uniaxial compression and hydrostatic 
compression are shown in Figure 2(a). The yield strengths of uniaxial compression and 
hydrostatic compression are 1.24 GPa and 1.35 GPa, respectively. The elastic modulus in 
the hydrostatic compression is significantly higher than in the uniaxial compression due to 
the anisotropic nature of the foam. 

(a) (b)  

Figure 2. (a) The stress-strain curve for uniaxial and hydrostatic compression of the Cu nanofoam structure. (b) The yield 
surface of Cu nanofoam structure with curve fitting. 

The yield surface of the Cu nanofoam cell structure is shown in Figure 2(b). The 
mean stress and effective stress are normalized with the uniaxial yield strength for 
comparison. The uniaxial point is the point with normalized effective stress is 1, and the 
hydrostatic point is the point with normalized effective stress is 0. All the six points are 
curve fitted into the yield equation with parameter α = 1.05. This value is transferred to 
the FEA part for further calculations.  

Finite element analysis 

The curve fitting of the experimental data for the uniaxial compression using 
Hanssen’s model is shown in Figure 3. Using the curve fitting, the constants describing the 
material parameters were determined and FEA was performed to confirm the accuracy of 
the fitting. Table 1 shows the numerical results of the curve fitting used in the FEA. 
 

Table 1. Results of material parameters for FEA. 

Factors 𝛼2 (MPa) 1/𝛽 𝛾 (MPa) 
𝐶0 2.066 0.228 0.806 
𝐶1 11.02 7.198 12.23 
𝑛 0.0135 1.614 0.0107 
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Figure 3. Curve fitting of experimental data using Hanssen’s hardening model. 
Once the accuracy of the fitting was confirmed, the material parameters were 

calculated for each relative density of the MD generated foam as shown in Table 2.  
 

Table 2. Material parameters used in FEA simulations. 

Foam 𝜌𝑓 𝜌𝑜⁄  𝜀𝐷 𝐸 (GPa) 𝑌𝑜 (MPa) 𝛼2 (MPa) 1 𝛽⁄  𝛾 (MPa) 
Experimental 0.40 0.60 1.70 12 12.95 1.87 12.92 

1 0.46 0.54 26.1 12 12.97 2.28 12.93 
2 0.50 0.50 31.0 12 12.98 2.58 12.95 
3 0.35 0.65 15.2 12 12.93 1.55 12.90 
4 0.55 0.45 37.5 12 12.99 2.97 12.96 

Using the material parameters from Table 2, FEA was performed for each 
relative density and the results were compared to the experimental data as depicted in 
Figure 4. The variance in the elastic region is caused by the differences in elastic moduli. 
Comparing the FEA results of the MD generated foam shows that denser foams are 
stronger as they contain more material helping them withstand higher compressive 
stresses. 

(a) (b)  

Figure 4. FEA results for the Cu nanofoams with different densities. (a) plastic region, (b) elastic region.  
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CONCLUSIONS 

A multiscale approach to predict the mechanical properties of Cu nanofoams is 
presented in our work. First, the nanoporous foam structure has been constructed through 
spinodal decomposition method using atomistic simulations. Then, the yield surface of this 
structure was generated using molecular dynamics and the results were curve fitted with a 
yield equation with the mean stress and effective stress. Finally, finite element analysis has 
been performed to simulate the mechanical behavior of Cu nanofoams under uniaxial 
compression test. The simulated results were shown to be in good agreement with 
experiment findings. The application of this method can be used to predict the mechanical 
behavior of macroscopic nanofoam specimens under complex loading conditions, 
maintaining an atomistic order resolution. 
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