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Abstract

Hydrogen-deuterium exchange (HDX) experiments are widely used in studies of

protein dynamics. To predict the propensity of amide-hydrogens for exchange with deu-

terium, several models have been reported in which computations of amide-hydrogen

protection factors are carried out using molecular dynamics (MD) simulations. Given

significant variation in the criteria used in different models, the robustness and broader

applicability of these models to other proteins, especially homologous proteins showing

distinct amide-exchange patterns, remains unknown. The sensitivity of the predictions

when MD simulations are conducted with different force-fields is yet to tested and

quantified. Using MD simulations and experimental HDX data on three homologous

signaling proteins, we report detailed studies quantifying the performance of seven

previously reported models of two general types: empirical and fractional-population

models. We find that empirical models show inconsistent predictions but predictions

of the fractional population models are robust. Contrary to previously reported work,

we find that solvent accessible surface area of amide-hydrogens is a useful metric when

combined with a new metric defining the distances of amide-hydrogens from the first

polar atoms in proteins. Based on this, we report two new models, one empirical (M8)

and one population-based (M9). We find strong protection of amide-hydrogens from

solvent exchange both within the stable helical motifs and also in the interhelical loops.

We further observe that the exchange-competent states of amide-hydrogens occur on

the sub 100 ps time-scale via localized fluctuations, and such states among amides of

a given protein do not appear to show any cooperativity or allosteric coupling.
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Introduction

Hydrogen-deuterium exchange (HDX) is a widely used protein labeling reaction in which an

amide hydrogen in the backbone of amino-acids in proteins is exchanged with a deuterium

atom. To probe the locations of exchanged hydrogens in the protein backbone, HDX is

often accompanied by other techniques including nuclear magnetic resonance (NMR) spec-

troscopy and mass-spectrometry (MS).1 HDX methodologies have been successfully applied

to understand protein-protein interactions,2–4 conformational changes in proteins,5–9 protein

folding,7 and ligand binding.10,11 Early applications of HDX on the A-chain of hormone in-

sulin showed that intra-molecular hydrogen-bonds were a hindrance for hydrogen exchange

because of their role in stabilization of the helical structure.12 Since then many investiga-

tions have been conducted to characterize the mechanism of exchange events. These include

studies of: deuterium exchange of poly-DL-alanine in aqueous solution at different tempera-

tures and pH,13,14 the influence of residue side-chains on the HDX rate of peptide groups,15

modeling amides and peptides in a chemical exchange step,16–18 development of empirical

rules for acid and base catalytic rate-constants,19,20 development of general models for rec-

ognizing hydrogen exchange process between the folded states and the unfolded states using

temperature variation,21–25 the negative effect of static solvent accessibility on exchanging

protons,26 and the correlation between apparent adiabatic compressibility and hydrogen ex-

change rates.27 Bai et al.28 carried out experiments to formulate inductive and steric blocking

effects of neighboring amino-acids on the amide group hydrogen exchange. Their compre-

hensive dipeptide models included all 20 amino-acids and have informed values of intrinsic

kinetic rates used in many previous studies.29–31

The qualitative and quantitative interpretation of HDX events is becoming an increas-

ingly important tool for studying dynamics in proteins which are challenging to study using

other experimental methods.29,32–34 These investigations, over the past half-century, have re-

sulted in various interpretations of the HDX mechanism34–37 primarily via different models

used to rationalize exchange events.28–30,38–42 The general mechanism of HDX is described by
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Figure 1: Kinetic scheme for HDX is highlighted. A conformational fluctuation in
the protein exposes buried amide groups (blue) (closed state) to solvent (open state) where
amide hydrogens (white) are exchanged by deuterium (yellow) with an intrinsic rate constant
kint.

a dynamic equilibrium between closed and open states (Figure 1) of amide hydrogens with

rate constants kc and ko, respectively, and a first order reaction in the exchange competent or

open state29 (denoted as an intrinsic rate constant, kint, in Figure 1). The normal exchange

mode for proteins that do not undergo global unfolding events is the EX2 exchange limit, in

which kc�kint.18 This mechanism suggests that steric hindrance protects amide hydrogens

from exchanging with deuterium. In addition to the physical protection, amide hydrogens

that are involved in hydrogen-bonded (H-bonded) structures are protected and show de-

creased exchange rates.35,37,43,44 Therefore, HDX rates implicitly involve structural changes

and dynamics in proteins.29 A variety of models have been used to determine protein confor-

mational states using Monte Carlo (MC)38,45 or molecular dynamics (MD)29–31,39,40,42,46–54

approaches.

In these models, the protection factor (PF) (ranging between 0 and 1010) is a key param-

eter that correlates conformational dynamics in proteins with the overall HDX rate (khdx).
55

In Table 1, we summarize various PF-correlations for seven different models (M1 through

M7) that have been proposed previously; detailed descriptions of these models are provided

in the supplemental introduction. The parameters and criteria in PF-correlations can be

tuned either using MD simulations40 or using structures refined from experiments (e.g. the

NMR method). There are two general approaches to obtain the PFs for amide-hydrogens

by sampling conformations using simulation methods. In the first approach, PFs empirically
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Table 1: Model definitions and corresponding metrics. Among models reported
in the literature are models M1 through M6 (empirical models) and the model
M7 (a fractional population model). For models reported in this work, M8 is an
empirical model and M9 is a fractional population model. Additional details on
models M8 and M9 are provided in supporting information.

criteria

Model 1 2 3 4 5 6 7 8 Protection Factor Definitions

M1ref. 55 3 3 log(PFi) = u ∗ (SAi) + v/(HB i)
M2ref. 38 3 3 ln(PFi) = (βcN

c
i + βhN

h
i )

M3ref. 39 3 3 ln(PFi) = (βcN
c
i + βhN

h
i )

M4ref. 40 3 3 ln(PFi) = (βcN
c
i + βr(N

r
i )−1)

M5ref. 42 3 PFi = (CoNH sol
i + CcNH β

i )/CoNH sol
i

M6ref. 29 3 PFi = base/(1 + (
√
base)1−NHstati)

M7ref. 30 3 3 PFi = τC/τO

M8† 3 3 ln(PFi) = (βsSASA−γsi + βpD
−γp
i )

M9† 3 3 PFi = τC/τO

1 Hydrogen bond; 2 Distance from the surface; 3 # of residues in the vicinity;4 # of
heavy atoms in the vicinity; 5 RMSF; 6 # of waters in the vicinity; 7 polar atoms
in the vicinity; 8 SASA; † new model proposed in this work.

correlate to metrics of the protein structure (e.g. models M1 to M6 in Table 1). In the sec-

ond approach,30 the PF is defined as a fractional population of the closed state to the open

state for each amide-hydrogen (e.g. model M7 Table 1). As a complement to HDX exper-

iments, MD simulations not only provide details on exchanging amide hydrogens, but also

capture frequencies of open states which may occur on a much shorter time-scale than the

hydrogen-exchange itself.30,40 As it remains challenging to conduct long time-scale atomistic

MD simulations, the modeling of hydrogen exchange using MD simulations has generally

been limited to coarse-grained and/or empirical models with implicit solvent.38,47,56 Several

studies have employed short time-scale MD simulations to predict HDX rates.29–31,57 To

date, only Persson et al.30 used a millisecond long MD simulation58 for HDX analysis of a

58-residue protein, bovine pancreatic trypsin inhibitor (BPTI). They suggest that the mean

residence times for the open states of all amides in BPTI are on the sub 100 ps time-scale.

5



However, the ability of existing models of PF-correlations (Table 1) to predict HDX

trends, when applied to identical experimental dataset(s), is yet to be systematically an-

alyzed. Furthermore, it would be useful to determine whether any of the existing models

(based upon their default or re-optimized parameters) can faithfully distinguish differences in

HDX patterns of homologous proteins. Finally, comparing the predictive performance of var-

ious models for widely-used interatomic potentials (force-fields) for proteins (e.g. CHARMM

and AMBER) will likely provide further guidance for future studies combining MD simula-

tions and HDX experiments. In this work, we have investigated these issues by conducting

a series of atomistic MD simulations of three homologous regulators of G-protein signaling

(RGS) proteins (RGS4, RGS8, and RGS19) (Figure 2) using CHARMM and AMBER force-

fields (CHARMM-FF and AMBER-FF). We compared the predictive performance of seven

existing models (Table 1) with our recently reported HDX-MS data for all three proteins, 59

and re-optimized parameters of these existing models for improved predictions. We also

found solvent accessible surface area (SASA) as a useful metric to better predict protection

factors in combination with the open-state definition of Persson et al.30 This was surprising

because some existing models have reported SASA as a poor predictor. Based upon this

latter observation, we derived two new models (M8 and M9; see supplemental methods and

Table S2, S3) for better reproducing our experimentally observed HDX trends in three RGS

proteins.

Materials and Methods

We carried out all MD simulation trajectories and their analyses using NAMD and VMD

software suite60,61 as well as python,62 and used both the CHARMM36 force-field with the

CMAP correction63,64 and the AMBER force-field (ff14SB).65 For all MD trajectories, 50000

frames were generated for each µs of dynamics. For RGS4 and RGS8, simulations were

conducted with two different initial coordinates, while for RGS19 only one experimental
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structure is currently known, the coordinates of which were used in simulations. In par-

ticular, the initial coordinates for RGS4, RGS8, and RGS19, respectively, were taken from

the following protein data bank entries (RGS4: 1AGR and 1EZT; RGS8: 2IHD, 2ODE;

RGS19: 1CMZ). Each protein was initially modeled using the psfgen tool in VMD, and then

further solvated in a simulation box (∼65 Å × ∼70 Å × ∼65 Å) of TIP3P water molecules

and charge-neutralized with NaCl. All system-sizes are provided in Table S1. The volume of

simulation domains was then optimized in the NPT ensemble by initially applying 500 cycles

of a conjugate-gradient minimization scheme followed by a short 40-ps MD run with a 2-fs

time step in which the temperature was controlled at 310K using the Langevin thermostat

and the pressure was controlled by the Nose-Hoover barostat. We carried out all simulations

using periodic boundary conditions. These briefly equilibrated systems of all RGS proteins

were further subjected to long time-scale (2 µs for each protein) MD simulations in the NVT

ensemble. For all proteins and both force-fields, we generated 10 total MD simulations with

20 µs of MD simulation data (Table S1). All details on protein expression, purification,

and data collection using HDX-MS are provided in our previous work.59 Briefly, deuterium

incorporation (DI) for RGS4, RGS8 and RGS19 was measured at a fragment resolution us-

ing HDX-MS experiments at t = 1, 3, 10, 30, 100, 300, and 1000 minutes (Figure S1 and

Figure S2).59 We note that incubations were carried out in a 90% D2O solution containing

5 mM HEPES and 100 mM NaCl. We provide further description of protocols for HDX

modeling in supplemental methods.

Results and Discussion

Comparison of predicted and experimentally-observed deuterium incorporation

trends for RGS4, RGS8, and RGS19: To evaluate the predictive performance of var-

ious existing models for PF-correlations (see Table 1 and supplemental introduction), we

conducted 10 independent all-atom, explicit-solvent, and µs-timescale MD simulations for
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Figure 2: Sequence and structural views of RGS proteins. (A) Sequence alignment
of RGS4, RGS8, and RGS19 is shown with conserved residues highlighted in red; blue boxes
indicate residues that are conserved between at least two among three RGS proteins. (B)
Shown are front and back views of the overlay of RGS4 (PDB code 1AGR), RGS8 (PDB
code 2ODE), and RGS19 (PDB code 1CMZ) structures with each of the nine helices uniquely
colored. Regions rendered as white cartoons are interhelical loops.

all RGS proteins (see Table S1 and supplemental methods). For each 2 µs timescale sim-

ulation, we analyzed 100,000 conformations of each protein by applying criteria reported

previously for each model (Table S3) and combined calculations on those metrics to obtain

protection factors (PFs) for each residue. These PFs, when combined with the intrinsic

exchange rates,28 were then used to predict and compare the percentage of deuterium in-
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corporation (%DI) at t = 0, 3, 10, 30, 100, 300, and 1000 minutes for each experimentally

observed fragment of each protein (Figure S1, S2).59 Then, we re-optimized parameters of

models M1 through M7 (the re-optimized models hereafter are referred to as M1∗ through

M7∗) by minimizing a fragment-based objective function that compares the predicted and

measured values of DI (see supplemental methods). The re-optimization procedure was car-

ried out for simulations conducted with both force-fields (CHARMM-FF and AMBER-FF).

The default as well as re-optimized parameters of all 9 models are listed in Table S3.

We quantified the comparisons between the predicted and experimentally-measured deu-

terium incorporation (%DI) using the relative error (E) and correlation-coefficient (CC)

analyses. E measures the discrepancy between the exact values of DI that were measured

via HDX-MS experiments and the values that were calculated from MD simulations. How-

ever, CC measures the linear relationship between the measured DI and the modeled DI. It

is a measurement of the inter-dependence or association of two variables and ranges between

-1 (negative correlation) and 1 (positive correlation). Therefore, both E and CC are taken

into account for the evaluation of each model. In Figure 3 and Figure 4, we present the

statistics of performance of each model via calculations on E and CC for the CHARMM-FF

and the AMBER-FF. Specifically, Figure 3 shows the performance metrics computed by av-

eraging over data from all MD simulations of all RGS proteins (RGS4, RGS8, and RGS19),

while Figure 4 shows the same metrics computed by averaging over all MD simulations of

each RGS protein. For additional details, we show the traces of the predicted vs. measured

%DI for all fragments of each RGS protein for both force-fields (Figure S3 to Figure S32).

For discussion in the following, we refer to models M1 through M6 as empirical models,

and the model M7 as a fractional population model (see supplemental introduction). Overall,

we observe that the models M1 through M6 show larger errors and lower correlations in

comparison to the model M7 for simulations with both force-fields (gray bars in Figure 3).

Among empirical models, the model M6 has the smallest error for simulations with the

CHARMM-FF (Figure 3A), while the model M4 has the smallest error for simulations with
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Figure 3: Comparisons of model predictions of HDX-MS data across all three
RGS proteins. Performance metrics (relative error, E, and correlation coefficient, CC)
for different models are shown based upon data averaged from all trajectories of RGS4,
RGS8, and RGS19 conducted with the CHARMM-FF (data in panels A and B) and the
AMBER-FF (data in panels C and D). (A, C) The relative error between the predicted and
observed %DI [E(x, y) =

∑n
i=0 |xi− yi|/

∑n
i=0 yi]. (B, D) Correlation coefficient between the

predicted and observed %DI [CC(x, y) = Σ(xi − x̄)(yi − ȳ)/
√

Σ(xi − x̄)2Σ(yi − ȳ)2]. Gray
bars are for models with the default parameters reported in the literature, blue bars are their
re-optimized versions based upon our experimental data, and red bars are for new models
proposed in this work. No performance data for the original model M5 are reported because
the parameter values were not available from the original work,42 but the performance data
are reported for the optimized version of this model (M5∗) based upon our experimental
data.

the AMBER-FF (Figure 3B). The CC values are comparable for the model M6 in the

CHARMM-FF and for the model M4 in the AMBER-FF. After re-optimizing the parameters
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for these models (see supplemental methods and Table S3), the models M1∗ and M2∗ showed

significant improvement (lower E and higher CC) for both force-fields in comparison to

other models (M3∗ to M6∗), that only moderately improved (blue bars in Figure 3). After

the re-optimization, even though the E values for the model M7∗ marginally decreased in

comparison to the model M7 (with default parameters), the CC values are similar in both

force-fields. The E and CC values for our proposed models (M8 and M9), both of which

are based on the SASA of each amide hydrogen and its distance from the first polar atom

(see supplemental methods), show results comparable to the fractional population model

M7 and its re-optimized version M7∗. Both of our proposed models consistently predict

DI trends with lower E values and higher CC values for both force-fields. Taken together,

these data suggest that the proposed models M8 and M9 as well as the models M7 and

M7∗ predict experimentally observed HDX trends better than the other models (M1/M1∗

through M6/M6∗).

On comparing the performance of all empirical models for each RGS protein (Figure 4),

we observe that the DI trends in RGS4 and RGS8 for the CHARMM-FF are best described

(lower E and higher CC values) by the model M6, and for the AMBER-FF are best described

by the model M4 (for RGS4) and equally well described by the models 4 and 6 (for RGS8).

For RGS19, the model M1 captures DI trends better than other empirical models (M2

through M6) for both force-fields, but this model is a poor predictor for RGS4 and RGS8.

We also observe that the model M2 poorly predicts DI trends (higher E and lower CC values)

for all three proteins, and the model M7, a fractional population model, consistently shows

better predictions (lower E and higher CC values) for both force-fields. On re-optimizing,

all empirical models (M1∗ through M6∗) show improvement (lower E and higher CC values)

over their default parameter versions (M1 through M6), but both versions of the fractional

population model (M7 and M7∗) provide consistently better predictions than the empirical

models. The performance of our proposed models M8 and M9 is comparable to the model

M7∗, but for all three models (M7∗, M8, and M9) the performance is marginally poorer (i.e.
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E values are marginally higher and CC values marginally lower) for RGS19 in comparison

to RGS4 and RGS8.

The time-dependence of model predictions contributes significantly to differences in the

ability of each model to predict HDX-DI results for each experimentally-observed fragment

(24 fragments for RGS4, 38 fragments for RGS8, and 26 fragments for RGS19; Figure S2). 59

The models show significant variation between shorter time-points (t = 0, 3, 10, 30, and 100

minutes) and longer time-points (t = 300 and 1000 minutes) when comparing predicted DI

trends at the level of individual fragments for both force-fields (Figure S3 to Figure S32).

Figure 4: Comparisons of model predictions of HDX-MS data for each RGS pro-
tein. The definitions of E and CC, and other details are the same as in Figure 3. Colored
bars distinguish data for each RGS protein: black bars, RGS4; blue bars, RGS8; and magenta
bars, RGS19.

12



For example, models M3, M4, and M6 under-predicted experimentally observed DI trends

at shorter time-points, but the trends at longer time-points are predicted reasonably well

(Figures S18 and S19). Similarly, the re-optimized models including M2∗ through M6∗ under-

predicted DI trends at shorter time-points for RGS4 simulations (Figures S24 and S29).

Unlike these models, our proposed models M8 and M9 overall show better agreement with

the HDX data across all time-points and fragments for RGS4 and RGS8 with both force-

fields (Figures S13 to S16 and S28 to S31). However, for RGS19, except fragments 18 to 26,

each model under-predicts DI trends for both force-fields (Figures S17 and S32).

Our HDX-MS data showed that the amide hydrogens exchanged rapidly in RGS19 in

comparison to RGS4 and RGS8 (Figure S1), especially in helices α4, α5, and α6 (fragments

10 to 23; Figure S2).59 At t = 1000 minutes and for models M7, M8, and M9, the mapping

of the predicted vs. measured DI on protein structures (Figure S33) shows that these models

under-predicted DI trends in the α4 helix of RGS19, but predicted well in the α6 helix as

well as in the α5-α6/α6-α7 interhelical loops. Importantly, the structural motifs in RGS

proteins that showed poor agreement between the predicted and measured DI trends also

showed significantly lower residue fluctuations in MD simulations (Figure S34) in comparison

to those motifs that showed higher fluctuations and as a result better agreement with the

experiments.

In summary, each model has unique metrics for estimating the PFs and some of these

metrics are shared among different models. For example, the number of polar atoms or

residues in the vicinity of an amide-hydrogen indirectly assess the likelihood of existence of

hydrogen bonds between amide-hydrogens and other atoms in proteins. Therefore, different

models are directly or indirectly correlated to hydrogen bonds. Our analyses show that the

fractional population modeling (e.g. models M7/M7∗ and M9) is more robust than empirical

approaches. In particular, the fractional-population models are broadly applicable to newer

systems without reoptimization of parameters (e.g. the model M7 makes reasonably accurate

predictions both before or after optimization). In our new models (M8 and M9), combining
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Figure 5: The exposure of amide-hydrogens in the NMR structures of RGS pro-
teins. Shown are the maximum (open circles) and the average (solid circles) values of the
solvent accessible surface area for all amide hydrogens in the NMR structures of RGS4 (panel
A) and RGS19 (panel B). In both panels, the absence of filled circles for certain amides as
well as the absence of open circles in panel B, is due to the approximately nil SASA val-
ues for those amides. The absence of open circles for RGS4 in panel A is due to the lack
of availability of more than 1 conformer in the NMR structure of RGS4 as opposed to 20
conformers in the NMR structure of RGS19.

two metrics, SASA and the number of polar protein atoms in the vicinity of a given amide-

hydrogen, shows better predictions both for the empirical model (M8) and the fractional

population model (M9). We also suggest that our new models are potentially applicable to

other protein systems for efficient interpretation of HDX data because these models only

require coordinates of the protein-atoms. These can be readily extracted from the solvated

simulation trajectories for rapid analysis.

Comparison of predicted and measured HDX-data at a single-residue resolu-
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tion: Our HDX-MS data was collected at a fragment resolution for each protein (Figures S1

and S2),59 but atomistic MD simulations complement these data by providing additional de-

tails on the protections of amide hydrogens at a single-residue resolution. At t= 1000 minutes

for models M7, M7∗, M8, and M9, we show in Figures S35 to S40 a color-coded mapping

of DI trends for each residue of RGS4, RGS8, and RGS19 for both force-fields. These data

show that the amide-hydrogens in the N-terminus of the α3-helix (containing 12 residues;

see Figure 2) are fully exchanged and some residues are partially exchanged. MD simula-

tions show that the unexchanged or partially-exchanged amide-hydrogens are participating

in hydrogen-bonds and are therefore largely protected. Consistent with HDX experiments,

these protection effects are observed in fragments 2 and 3 in RGS4 (Figure S23), fragments

8, 10, 11 in RGS8 (Figure S25), and the fragment 6 in RGS19 (Figure S27). In HDX-MS

experiments, we observed that the residues in the N-terminus of the α4-helix show high ex-

change propensity in all RGS systems which is accurately predicted by models M7, M7∗, and

M8. However, all models under-predicted amide-hydrogen exchanges in other parts of the

α4-helix (e.g. fragment 6 in RGS4, fragments 14, 15, 16 in RGS8, and fragments 11 and 12 in

RGS19) (Figures S24, S25, S27, S28, S30, and S32). Analyses of our MD simulations showed

that the amide-hydrogens in these fragments are strongly protected via hydrogen-bonds, and

therefore local unfolding of the helical structure, even if very transiently, is perhaps required

to facilitate any exchange event. Through MD simulations, similar protection effects were

identified in the α5-helix of RGS8 (fragments 24 and 25) (Figures S25, S26, S30, and S31)

and RGS19 (fragment 18) (Figures S27 and S32).

The models accurately predicted experimentally-observed exchanges in amide-hydrogens

in the connecting loops between helices, particularly for the α5-α6 loop (e.g. fragments

12 and 13 for RGS4 in Figures S24, S25, S28, and S29; fragment 27 for RGS8 in Fig-

ures S25, S26, S30, and S31; and fragments 20, 21, and 22 for RGS19 in Figures S27 and S32)

which is the longest unstructured region in RGS proteins (Figure 2). However, our models

showed partial protection for the amide-hydrogen of Q122, a residue located in the α5-α6
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interhelical loop of RGS4, even though the side-chain of this residue is solvent-exposed. The

amide-hydrogen in Q122 forms a long-lasting hydrogen-bond with S120 leading to a signifi-

cant protection of this amide-hydrogen (Figure S41A and S41C). We also observed complete

protection of the amide-hydrogen in the residue R119 of RGS8, which is located in the α5-α6

interhelical loop (Figure S36). We attribute this to strong salt-bridging interactions between

the residue R119 and residues E84/E111 (Figure S41B and S41D). For residues located near

the protein surface as well as in flexible loops, the ability to remain protected is consistent

with the earlier observations on Staphylococcal nuclease66 showing that the proximity to the

surface of the protein does not usually produce fast exchange and therefore a detailed hydro-

gen by hydrogen analysis is needed, as we have carried out here via MD simulations. These

results also provide testable predictions for future HDX-NMR studies aimed at resolving

residue-level exchanges since HDX-MS results only provide fragment-level resolution.

Solvent accessible surface area as a metric

In our proposed models M8 and M9, SASA is a key metric in determination of the exposure

of amide-hydrogens to solvent that consequently contributes to the calculation of protection

factors. Since the hydrogen atoms are resolved in the NMR structures of RGS4 (PDB code

1EZT containing only 1 conformer) and RGS19 (PDB code 1CMZ containing 20 conform-

ers), we computed the maximum and average SASA of all amide-hydrogens from the NMR

structures (Figure 5). Given that all missing hydrogens are included in our MD simula-

tions, we also calculated similar SASA measures of all amide hydrogens of RGS4, RGS8,

and RGS19 from all MD trajectories conducted using both force-fields (Figure S42). The

NMR structures show that only a few amide-hydrogens are exposed to solvent and those

are located in the connection loops between helices. The maximum values of SASA among

all amide-hydrogens are ∼8 Å2 and ∼14 Å2 for RGS4 (PDB code 1EZT) and RGS19 (PDB

code 1CMZ), respectively.

Our model M9 showed that the SASA threshold beyond which the experimental HDX
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trends are well predicted are 8.02 Å2 and 9.15 Å2 for CHARMM and AMBER force-fields,

respectively. Given these values, none of the residues in the NMR structure of RGS4, and

only 4 residues in the NMR structure of RGS19 have enough exposure for competent ex-

change. However, amide-hydrogens show larger exposure to solvent in MD simulations (Fig-

ure S42) with maximum values up to ∼20 Å2. For interhelical loops, the average SASA of

amide-hydrogens in simulations is about two times that of helical motifs in RGS proteins.

The residues within well-folded and stable helices never adopt SASA values beyond the

threshold SASA values (vide supra), thereby suggesting strong protection effects for these

amide-hydrogens. Given that the SASA values of amide-hydrogens in the initial structures

of RGS proteins (Figure 5) and in MD simulations (Figure S42) are different as well as

given the consistent performance of our SASA-based proposed models (M8 and M9; Fig-

ure 3 and Figure 4), we find SASA computed from MD simulations as a useful metric in

modeling of HDX-MS data.

Mean residence times and cooperativity of amide hydrogens in the

open and closed states

In the fractional-population models (M7/M7∗ and M9), the kinetics of fluctuations between

the open and closed states are characterized by the mean residence time (MRT) which is

defined, in an MD simulation, as the average number of consecutive frames in each state

multiplied by the time-step.30 Therefore, computing the MRT at residue-resolution provides

information on the tendency of each amide-hydrogen to be in the open and the closed state.

Two specific criteria (see Table S3) were evaluated to classify amides as being in the open

or closed states for each frame in MD trajectories. Then, the MRT values of the closed state

and the open state are used to calculate the protection factors (PF = τC/τO). To calculate

the PF for model M9, we divided the number of frames in which an amide-hydrogen is in a

closed state (NFC) by the number of frames in which an amide-hydrogen is in an open state

(NFO). If NO and NC are the number of visits to the open state and the closed state during
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Figure 6: Mean residence times for the open and closed states of amide-hydrogens.
Data are shown from all simulations of RGS4, RGS8, and RGS19 conducted with the
CHARMM-FF (panel A) and the AMBER-FF (panel B). The MRT calculations were carried
out using our proposed fractional population model M9 that showed consistent predictions
with the HDX-MS data.

the MD trajectory, respectively, and TO and TC are the total time that each amide is in

the open or the closed state, respectively, it can be written that TO = NFO∆τ = NOτO and

TC = NFC∆τ = NCτC , where ∆τ is the time-step (which is 2-fs in our MD simulations). This

results in the protection factor, PF=TC/TO by assuming that NO = NC−1.30 In Figure 6, we

show the MRT values of the open and the closed states of all residues from MD trajectories

of all proteins conducted using the CHARMM-FF and the AMBER-FF. These values were

calculated using equations: τO = NFO∆τ/NO and τC = NFC∆τ/NC .

Since the open-states of amide-hydrogens may occur at time-scales shorter than the time-

step (∆τ) used in MD simulations, it was previously shown that the MRT values can be quan-
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titatively corrected to account for the sampling-resolution systematic binning error. The cor-

rected values are given by τ cO = −∆τ/ln(1−NO/NFO) and τ cC = NFC∆τ/1−NFOln(1−NO/NFO).30

We show the corrected MRT values in Figure S43. These data show that τO ranges between

20 to 50 ps while τ cO ranges between 5 to 50 ps and τC ranges between 170 ps to 2 µs while

τ cC ranges between 110 ps to 2 µs. The observation that the open states of amides occur on

a sub 100 ps time-scale is consistent with similar earlier observations on the protein BPTI. 30

As suggested previously,30 these time-scales are orders-of-magnitude shorter than the MRT

values of globally unfolded proteins and therefore highlight the concept that amides can

exchange by highly localized and short-lived fluctuations without the need for global unfold-

ing. We further examined whether the open states of amide-hydrogens are truly localized or

if they are allosterically coupled and cooperative. Specifically, we computed the open-state

residue-residue correlation matrix for two simulations that have shown significant per-residue

fluctuations in RGS4 (PDB:1AGR) and RGS8 (PDB:2ODE) using the CHARMM-FF. We

observed that the correlation matrix varies in a short-range for both systems (see Figures S44

and S45) indicating that the open-states for amides are largely uncorrelated between residue

pairs, as also has been previously observed for BPTI.30 These observations are consistent

with the amide-hydrogen exchanges occurring in the EX2 exchange limit.18 Furthermore,

the probability of observing open states of amides for a trajectory of given length can be an-

alyzed using Poisson statistics.30 We present this analysis in Figure S46 for the PF-values of

102, 104, 106, and 1011 with τO = 20 ps and 100 ps. The analysis shows that the open states

of amides with the PFs ranging between 102 and 106 can be observed in MD trajectories of

simulation lengths ranging between 10−3 µs and 10 µs. This is consistent with the results

on the DI observed in experiments and predicted by simulations for RGS proteins. However,

the amides that are highly protected and are not observed to exchange in experiments likely

have protection factors of 1011 or higher (as predicted by our simulations) and would require

trajectories on time-scales of millisecond or higher for observing open states. We suggest that

the probability of observing sufficient opening events for amides can be further enhanced by
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conducting simulations with multiple force-fields and different initial structures of proteins,

as we have carried out in this work for RGS proteins.

Conclusion

We used MD simulations to study hydrogen-deuterium exchange events in three isoforms

of RGS proteins. Specifically, we analyzed various existing models from the literature to

assess their ability in accurately predicting experimentally-observed exchange patterns in

these homologous RGS proteins. These analyses revealed significant variation among models

in accuracy of predictions and showed that empirical models (termed models M1 through

M6 in Table 1) with their previously reported criteria made inconsistent predictions, while

a fractional population model (Model M7) predicted experimentally-observed trends with

good accuracy. Even though we found that reoptimizing previous empirical models using our

data on RGS proteins improves their prediction accuracy, the performance of the fractional

population model is less sensitive to parameters. We further assessed the usefulness of

a previously ignored metric, SASA of amide-hydrogens determined from MD simulations,

and combined it with the distance of a given amide-hydrogen from the first polar atoms in

proteins to propose two new models (models M8 and M9) that show good predictions for

observed HDX patterns. Importantly, the proposed models only require the coordinates of

protein atoms from solvated trajectories providing improved computational efficiency. We

also find that the amide-hydrogens often transiently visit open-states on sub 100 ps time-

scales, which is significantly shorter than time-scales for global unfolding. This therefore

suggests that there is localized exposure of the amide-hydrogens, especially given that open-

states among amide-hydrogens of a given protein are uncorrelated.
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