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COMMUNICATION
Origami-Inspired Cellular Metamaterial With Anisotropic
Multi-Stability
Soroush Kamrava, Ranajay Ghosh, Zhihao Wang, and Ashkan Vaziri*
Origami designs offer extreme reconfigurability due to hinge rotation and
facet deformation. This can be exploited to make lightweight metamaterials
with controlled deployability and tunable properties. Here, we create a
family of origami-inspired cellular metamaterials which can be programmed
to have various stability characteristics and mechanical responses in three
independent orthogonal directions. The cellular metamaterials were con-
structed from their origami unit cell that can have one or two admissible
closed-loop configurations. The presence of the second closed-loop configu-
ration leads to the emergence of bi-stability in the cellular metamaterial. We
show that the stability and reconfigurability of the origami unit cell, and
thus the constructed cellular metamaterials, can be programmed by
manipulating the characteristic angles inherited from the origami pattern.
Two examples of such programmable metamaterial with bi-stability in out-
of-plane direction and anisotropic multi-stability in orthogonal directions are
presented. Our study provides a platform to design programmable three-
dimensional metamaterials significantly broadening the application envelope
of origami.
Geometry induced instabilities are ubiquitous in nature due to
their importance in influencing large changes in mechanical
response and adding extra functionality to the structure.
Examples include the closure of Venus flytrap plant,[1] trapping
mechanism of the bladderworts,[2] buckling of drying colloidal
droplets,[3] and osmotically shrinking polymeric capsules.[4]

Including instability in a materials design can similarly lead to
added functionality and rapid shape change. In this context,
using origami structures to harness instability is an exciting
new area of research. Twisted origami square,[5] cylindrical
origami with Kresling and Miura-ori pattern,[6] and rigid-
foldable cellular structures with special hinge characteristics[7]

are some examples of origami-inspired structures capable of
exhibiting instability. More generally, over the past few decades,
origami has truly evolved from an ancient Japanese art of paper
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folding into a rich scientific field bridging
different disciplines.[8] However, in spite
of the unlimited possible origami config-
urations, at a very fundamental level
origami can be classified into two broad
categories � rigid-foldable and deformable
origami.[9] In the rigid-foldable origami,
facets remain flat and the only source of
deformation is rotation about the
creases.[10–12] The assumption of rigid
facets with zero thickness in the rigid-
foldable origami causes the kinematics of
origami to solely depend on the fold
pattern and be independent of material
and hinge properties.[11,13,14] These sim-
plifications lead to straightforward corre-
lations between the fold pattern and
kinematics of origami folding.[8,12] This
very simplification also results in an
inherently limited envelope of perfor-
mance since for many applications, more
degrees of reconfigurability may be desir-
able. This limitation can be overcome if
more flexible facets are used resulting in deformable origami
structures,[14] which opens up new possibilities to develop bi-
stable origami structures.[5,15]

Here, we propose a family of origami-inspired load bearing
cellular structures with anisotropic programmable multi-
stability. The multi-stability of the cellular structure originates
from the bi-stability of individual deformable origami unit cells.
Each unit cell structure is built by folding a Miura-ori string,[16]

which is a sequence of n individual Miura-ori as shown in
Figure 1a, to make a closed-loop configuration. Crease pattern of
the Miura-ori string is defined by number of Miura-ori in the
string (n), two repeating characteristic angles of α1 and α2
(α1 > α2) and the dimensions of a and H, shown in Figure 1a.
Angle θ is the dihedral angle between plates in flat and folded
configurations, which varies from 0� to 90� and represents the
level of folding. The Miura-ori string shown in this figure has
α1 ¼ 77� and α2 ¼ 42� and folds from the flat configuration
at θ ¼ 0� and goes through a rigid foldable regime until it
makes a closed-loop configuration at θ ¼ 16�. We investigate the
formation of the closed-loop configuration for any arbitrary
Miura-ori string with rigid facets based on two criteria. First,
from the plane geometry of polygons, all closed-loop config-
urations should satisfy the internal angle condition η1 þ η2 ¼
π 2� 2=nð Þ, where η1 and η2 are the internal angles formed
between longitudinal creases and shown in Figure 1b and n is
number of Miura-ori in the string (see Supporting Information
for more details). The values of η1 and η2 at different folding
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Figure 1. a) Folding an origami string consisted of five identical Miura-ori with characteristic angles of α1 and α2. The string folds from the flat
configuration (θ ¼ 0�) to a closed-loop star-shaped configuration at θ ¼ 16�. b) The longitudinal creases of the closed-loop configurations that form
internal angles of η1 and η2. c) Design map for stability analysis of star-shaped structures with different α1 and α2 angles. Blue, yellow, and red areas
correspond to single-stable, semi-bi-stable, and bi-stable units, respectively. d) Numerically determined elastic strain energy versus applied compressive
out-of-plane displacement for three different star-shaped structures denoted by A (α1 ¼ 77�, α2 ¼ 42�), B (α1 ¼ 77�, α2 ¼ 40�), and C (α1 ¼ 75�,
α2 ¼ 30�) showing the behavior of bi-stable, semi-bi-stable, and single-stable units, respectively. The distribution of strain energy density in each
structure is shown at different compressive displacements. e) A 3D printed n ¼ 5 origami string with α1 ¼ 77� and α2 ¼ 42� in the flat configuration
which folds in to a five-pointed star-shaped structure. The resulting star-shaped structure is bi-stable with two stable configurations as shown. The
structure can reversibly transform from configuration to another by applying a compressive/tensile loading. f) Experimentally obtained load-
displacement response of 3D printed samples A, B, and C.
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levels are determined based on the governing equations of
Miura-ori fold[7]:

η1 ¼ π � 2cos�1 cos α1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2θ sin2α1

p
� �

η2 ¼ πþ 2cos�1 cos α2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2θ sin2α2

p
� � ð1Þ

Substituting Equation (1) into η1 þ η2 ¼ π 2� 2=nð Þ results in
a trigonometric equation, which can be simplified to Equa-
tion (2).
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Acos4θþ Bcos2θþ C ¼ 0 ð2Þ

A ¼ sin2α1sin2α2

B ¼ sin2 α1�α2ð Þ
sin2 π

=n
� � � sin2α1 þ sin2α2

� �

C ¼ 1� sin2 α1�α2ð Þ
sin2 π

n= Þð
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Solving Equation (2) gives us the values of θ in which a Miura-
ori string described with α1, α2, and n would make a closed-loop:

θ1 ¼ cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p

2A

s0
@

1
A;

θ2 ¼ cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p

2A

s0
@

1
A ð3Þ

Note that in general Equation (2) will have four roots.
However, if we restrict our angles to 0� < θ < 90�, the two
negative possibilities are eliminated. This ensures that for all
practical purposes, only two possible type of solutions can
emerge from Equation (3). Thus, any arbitrary Miura-ori string
could have either zero, one, or two closed-loop configurations
which correspond to θ1 and θ2 both imaginary, one imaginary
and one real and both real numbers, respectively. The second
criterion requires two ends ofMiura-ori string tomeet each other
at the closed-loop configurations which can be mathematically

written as the summation condition
X2n

i¼1
li~¼ 0 where li~is the i

th

middle crease vector shown in Figure 1b.[17,18] Note that these
possible configurations, which do not lead to facet bending, can
be called zero energy configuration if hinge stiffness is
neglected. These possible configurations can be plotted on a
phase map. Such a phase map is shown in Figure 1c for Miura-
ori strings with n ¼ 5 and α1and α2 ranging from 0� to 90�. This
phase map is symmetric with respect to the α1 ¼ α2 line, which is
expected from the geometry of the Miura-ori string. The white
region is a forbidden zone where the given α1 and α2 would not
lead to loop closure. The single solution configuration (i.e.,
unique loop configuration) is shown by the blue region and is
called single-stability case. On the other hand, the red regions
correspond to the folding pattern, which gives rise to two
possible closed-loop solutions and results in a bi-stable unit.
However, although the single stable case is predicated on only
one possible stable configuration there is a scenario that can
yield another point of structural stability. We hypothesize that in
this case, the second stable point will partially share the
characteristic of the bi-stable case. In general, as soon as the
origami is subjected to out-of-plane load, facet bending will
make rigid origami conditions inapplicable. These would mean
that both the internal angle and closed loop criteria will no longer

be true. In other words, jP~li j > 0 and η1 þ η2 � π 2� 2=nð Þ�� ��
> 0. For a single stable unit this constraint will never be satisfied
again. However, for the bi-stable unit this will be satisfied again
at the second zero energy state. In other words, after an initial

increase in jP~li j and η1 þ η2 � π 2� 2=nð Þ�� �� they will begin to
decrease. Hence, for another stable point to exist at a subsequent

point, djP~li j=dθ < 0 and d η1 þ η2 � π 2� 2=nð Þ�� ��=dθ < 0.
Whereas, for the bi-stable case, this will eventually lead to
the zero strain energy minima, for the single stable case this
manifests as the structure tries to return toward the zero-energy
state. However, since it has only one possible stable
configuration, the origami will stop in its track. Physically this
would correspond to the configuration which leads to facet
Adv. Eng. Mater. 2018, 1800895 1800895 (
contact causing a sudden increase in stiffness of the structure
after this point. We impose these restrictions on the single
stable origami and find the emergence of another region called
the semi-bi-stable region. This region is shown in yellow in
Figure 1c.

These arguments can be more readily seen through the strain
energy landscape. We use finite element (FE) simulations on
three origami samples A, B, and C from the red, yellow, and blue
regions using a commercially available FE code ABAQUS
(Dassault Systemes). These origami units were modeled as a set
of flat plates connecting to each other by ideal hinges with zero
stiffness and zero friction to eliminate the effect of materials and
merely investigate the geometry of units. Our simulations
resulted in strain energy versus out-of-plane displacement plots
in Figure 1d. For the single-stability case (sample C), the strain
energy will continue to monotonically increase with load, as
shown in Figure 1d using a blue line. For the bi-stable case
(Sample A), an energy minimum is achieved once again with
deformation at a later stage of folding level, as shown by the red
line in Figure 1d. The energy plot now reveals more clearly the
nature of the second stability point for the semi-bi-stable case
(sample B), shown using a yellow line. In this case, a clear energy
maximum is visible followed by a decline which would
correspond to the negative derivative condition. But the decline
is arrested by the face contact (the region after the face contact
would be a very high energy state dictated by the contact
configurations). Note that for this case, the deformation abruptly
stops at the displacement of 24mm which corresponds to the
contact between the facets. This strain energy configuration is
not a global energy minimum (excluded from our mathematical
relations) although it has lower energy than the neighboring
configuration. The inset figures in Figure 1d show strain energy
distribution in units A and B at the maximum and minimum
levels of strain energy rather than initial configuration and also
an arbitrary configuration of unit C. These curves can also be
used to infer stiffness of the structures from the second
derivative. Clearly, unit Cwill not show any decrease in stiffness
as its strain energy is monotonic with displacement. Unit A and
B show clear inflections on their way between their stable
configurations. Therefore, we can expect these structures to
show an initial increase in stiffness, then decrease till they reach
their second stable configuration. We can correlate these
predictions using experiments. To this end we devise compres-
sion test on fabricated units corresponding to the geometry of A,
B, and C units described above. Fabrication of origami structure
has been done in many ways in literature such as traditional
paper folding[19] and using laser-cutting.[20] However, the
elasticity of creases in these fabrication methods causes the
deviation of real origami structures from the expected theoretical
behavior. For example, the fabricated origami bellows failed to
exhibit bi-stability, although their bi-stability is confirmed
theoretically.[17] Here, we used 3D printed revolute hinges with
zero energy at any angle to closely align with the assumption of
zero-energy hinges in the theoretical and numerical modeling.
All facets were fabricated using PolyJet 3D printing technique
and connected to each other with brass pins allowing them to
rotate freely (revolute hinge). Figure 1e shows a 3D printed
sample of unit A (α1 ¼ 77�and α2 ¼ 42�). Revolute hinges at both
ends enable it to make a permanent closed-loop star-shaped unit.
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim3 of 8)
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Also, both stable closed-loop configurations of this sample at
θ1 ¼ 16� and θ2 ¼ 70� are shown in the figure. See the
Supporting Movie for the transition of the structure between
two stable configurations. The force-displacement curve of all
three 3D printed A, B, and C units under the out-of-plane
compression test is measured using a ADMET testing machine
positioned horizontally to eliminate the effect of structure
weight. A picture of unit A during the out-of-plane compression
test is shown in Figure 1e. The force-displacement curve of units
A, B, and C are plotted in Figure 1f. The force-displacement
response of unitsA and B follow a positive, negative, and positive
stiffness pattern and reaches the zero force at three distinct
equilibrium configurations. These equilibria can be stable or
unstable if they correspond to positive or negative force-
displacement slope, respectively.[21] Hence, the first and third
equilibriums are stable configurations which confirm the
bi-stability of units A and B. Also, force-displacement response
of unit C shows only one stable equilibrium configuration at the
zero displacement.

The results presented in Equations (2 and 3) were
demonstrated for a string with five embedded Miura-ori which
folds to a five-pointed star-shaped unit. However, these results
can be used for all strings with nMiura-ori which fold to make a
n-pointed star-shaped unit. Figure 2a shows the prototypes of
various n-pointed star-shaped units with n ranging from 3
(minimum possible) to 10. The computational design maps of
these stars are shown in Figure 2b in which the colored areas
indicate the α1 and α2 values of the strings which would give rise
to either a bi-stable or semi-bi-stable unit. As n increases,
the colored area moves toward the α1 ¼ α2 line decreasing the
possible multiple stability configuration. On the other extreme,
when n gets closer to three, the bi-stable region is possible in
an increasingly thin slice of angles which restrict α1 to be near
90�. This angular configuration is near to the so called
singular design point for the Miura-ori pattern and makes the
unit dramatically sensitive to the fabrication errors.[16] To further
study the characteristics of different star-shaped units, we
modeled the eight units shown in Figure 2a and performed
an out-of-plane compression simulation where all units
were bi-stable and required the same amount of out-of-plane
displacement (Δd) to go from the first to the second stable
configuration given by (see the Supporting Information for
more details about the design of these eight units)

Δd ¼ 2H�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p

A
ð4Þ

where H is defined in Figure 1a and A, B, and C can be
determined using Equation (2). The strain energy and out-of-
plane load versus out-of-plane displacement of these eight units
are plotted in Figure 2c and 2d. The overall shape of the energy
curves in Figure 2c does not change for different values of n and
all eight units retain the zero-energy level at both zero and
10.2mm displacements. However, the point corresponding to
maximum energy for these curves depend on the n value. The
three- and six-pointed star-shaped units have the smallest and
largest strain energies among the eight simulated units,
respectively. This is confirmed in the load-displacement curve
plotted in Figure 2d. Furthermore, Figure 2e shows the
Adv. Eng. Mater. 2018, 1800895 1800895 (
distribution of strain energy density of three-, six-, and ten-
pointed star-shaped units at two stable and one maximum
energy configurations. The dark blue color in two stable
configurations confirms the zero amount of stored energy
and bi-stability of these units. The distribution of strain energy is
not uniform and it is higher near the creases which reveals the
necessity of using brass pins in that area which has higher
strength than the 3D printed material. Note that the use of brass
pins will introduce a new interaction between the pins and plates
which is not reflected in the theoretical model and simulation
results. We use this 3D printed prototype only to confirm the
presence of stable configurations in which star units are
undeformed and neither plates nor pins carry stored energy, so
we may ignore the effect of brass pins in these zero energy
configurations.

Another interesting property in the bi-stable star-shaped units
is the auxeticity (or negative Poisson’s ratio) which can add a
wide range of functionality to the structure such as tunable
bandgap[22] and tunable shape.[23] The second stable configura-
tion is attained through an in-plane contraction from the first
stable configuration so that the resultant cross-sectional area is
less than the initial area. The poison’s ratio for unit is defined as
dD=dT, where D and T are diameter of the circumcircle and
height of the star-shaped unit, respectively, and shown in the
schematic of Figure 2f. The Poisson’s ratios of eight units
discussed earlier (3 � n � 10) are calculated numerically using
FE simulation as a function of displacement and results are
presented in Figure 2f. All units have negative Poisson’s ratio
with decreasing absolute value as they deform toward the second
stable configuration. Also, greater values of n result in a larger
absolute value of Poisson’s ratio with n ¼ 10 exhibiting the most
intense auxetic behavior among the simulated units.

The unique properties of the proposed star-shaped units such
as programming instability by changing the α1 and α2 angles,
auxeticity, and rotationally symmetric geometry make them a
promising candidate to be used as building blocks of a cellular
metamaterial (synthetic materials with nontraditional and
extreme properties). The lattice of this type of cellular
metamaterial could be made by tilling star-shaped units in 2D
or 3D spaces. Figure 3a and b show two examples of
such metamaterials made from four- and eight-pointed star-
shaped units. The cellular metamaterial shown in Figure 3a is
consisted of 27 units with α1 ¼ 78:9�, α2 ¼ 35:8�, a ¼ 20mm,
and H ¼ 12mm. Individual unit cells have two stable config-
urations at θ1 ¼ 18� and θ2 ¼ 62�, determined fromEquation (3),
and switching between these two stable points causes
reconfiguration of the unit cells. This reconfigurability gets
transferred to the entire structure and creates two corresponding
stable configurations at θ1 ¼ 18� and θ2 ¼ 62� in the lattice, see
Figure 3a and the Supporting Movie for more details on this
structure. This type of topologically dictated extreme behavior is
hallmark of metamaterials.[24] Similarly, another metamaterial
made by tiling four eight-pointed star-shaped units with
α1 ¼ 72�,α2 ¼ 51�, a ¼ 20mm, and H ¼ 15mm is shown in
Figure 3b. Both metamaterial and individual cells retain two
stable configurations at θ1 ¼ 18� and θ2 ¼ 60�. The top views of
metamaterial at two stable configurations are shown in
Figure 3b. In order to characterize the reconfigurability of these
metamaterials, we study the variations of cross-sectional area
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim4 of 8)
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Figure 2. a) n-pointed (3 � n � 10) star-shaped units formed by folding origami strings with n number of identical Miura-ori. b) Stability of n-pointed
star-shaped units. The colored regions correspond to units with bi-stable and semi-bi-stable behaviors. c) Numerically obtained elastic strain energy
versus applied out-of-plane compressive displacement for star-shaped units. d) Numerically determined force-displacement response of star-shaped
units discussed in part C under out-of-plane compression. e) Strain energy density distribution for three star units with n ¼ 3, n ¼ 6, and n ¼ 10 at two
zero-energy (stable) and onemaximum energy configurations. f) Poisson’s ratio of the star-shaped units discussed in part C as a function of out-of-plane
displacement.
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and internal volume as factors indicating the intensity of
reconfiguration in two- and three-dimensions, respectively. The
cross-sectional area is the area of the smallest rectangle which
can cover the top or bottom surface of the metamaterial and the
internal volume is the volume of the smallest cuboid which fits
the metamaterial interior. Figure 3c and d shows the variation
of the cross-sectional area and the internal volume of
Adv. Eng. Mater. 2018, 1800895 1800895 (
metamaterials presented in Figure 3a and b as a function of
out-of-plane displacement. The auxeticity of individual unit cells
causes a decreasing rate in the area and volume such that the
second stable configuration occupies smaller cross-sectional
area and internal volume than the first stable configuration. As
shown in the schematics and curves of Figure 3c and d, the
cross-sectional area and internal volume of metamaterial with
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim5 of 8)
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Figure 3. a) Isometric view of a 3� 3� 3 cellular structure with four-pointed star-shaped unit cells. Top view of two stable configurations are shown on
the right. b) A 2� 2� 1 cellular structure with eight-pointed star unit cells. Top view of two zero-energy configurations (unfolded and folded) are shown
on the right. c, d) Normalized cross-sectional area and normalized volume versus out-of-plane displacement for two structures presented in parts a and
b. e, f) The shrinkage ratio of the lattices shown in parts A and B as a function of α1 and α2 angles.
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eight-pointed stars decrease at a higher rate than the
metamaterial with four-pointed stars. This reveals the effect of
unit cells type on the reconfigurability of the metamaterial. This
observation confirms the results for Poisson’s ratio of star units
with different n value shown in Figure 2f. Since the absolute
value of the Poisson’s ratio increases by increasing n, further
Adv. Eng. Mater. 2018, 1800895 1800895 (
increase in n results in higher reduction in cross-sectional area
and internal volume of the unit cells. Note that this conclusion is
valid only for comparison of star units with same amount of out-
of-plane displacement (Δd) discussed in Figure 2. Another factor
affecting the reconfigurability of the metamaterial is the α1 and
α2 angles which define the properties of underlying star-shaped
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim6 of 8)
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unit cells. The metamaterials are reconfigurable only in certain
range of α1 and α2 as discussed earlier in the context of Figure 1c.
These ranges are shown in Figure 3e and 3f for two previously
introduced metamaterials and quantified in terms of shrinkage
ratio is defined as the positive ratio of change in dimension L
(shown in subfigure) to the out-of-plane displacement between
the first and second stable configurations. The color contours of
Figure 3e and f shows the variation of shrinkage ratio with
respect to α1and α2 for the metamaterials shown in
Figure 3a and b, respectively. As α1 and α2 go toward 90�,
shrinkage ratios go to zero and result in a structure which has
two similar stable configurations but decreasing the values of
α1and α2, while they are still inside the colored area, causes more
distinct stable configurations andmaximize the reconfigurability
of the structure.

The introduced star-shaped units can also be positioned in
other ways to tailor the behavior of the metamaterial by
introducing anisotropy (different response along different
loading axes) and multi-stability. Figure 4a shows this novel
metamaterial which is constructed from six four-pointed star-
shaped units arranged to form a cuboid. Figure 4a also shows
three configurations of the metamaterial, achieved by harness-
ing bi-stability of star units in each direction. The resulting
metamaterial has zero effective Poisson’s ratio in three
orthogonal directions and multiple stable configurations that
enable controlled reconfiguration in each x, y, and z directions
independent of other two orthogonal directions. The proposed
metamaterial can be scaled in three directions and to any desired
size by adding extra unit cells. Increasing the size of
metamaterials significantly increases the number of design
parameters, resulting in a wide range of properties. This
terminology is congruent with the results presented for star
units where their properties are function of α1 and α2
characteristics angles, and these angles can be changed to tune
Figure 4. a) A cubic metamaterial which has multiple stable configurations
units positioned along three orthogonal directions. The metamaterial is an
orthogonal direction bymanipulating α1 and α2 angles of each star unit. b) Sca
resultant structure is multi-stable, anisotropic and has 15 independent desi
displacement obtained from horizontal testing in X, Y, and Z directions. The
monotonic multi-stability, and single-stability in compression along the X,
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the properties of the 3Dmetamaterial. Scalability of the proposed
3D metamaterial improves the design possibilities and response
tunability. Figure 4b shows a metamaterial with 12 star-shaped
units in each direction (36 totally) connected to neighboring
units using revolute hinges. This metamaterial has 15
independent design parameters in each orthogonal direction,
which can be used for programming the mechanical behavior of
metamaterial in that direction. In general, having n1; n2; and n3
star-shaped units in series along the orthogonal directions
provides 3 n1n2n3ð Þ � 2 n1n2 þ n2n3 þ n1n3ð Þ þ 2 n1 þ n2 þ n3ð Þ
independent design parameters. The metamaterial shown in
Figure 4b is programmed to have three different behaviors of
1) stiffening multi-stability in which the required force for
transition between consecutive stable configurations increases
gradually; 2) monotonic multi-stability with constant required
force for transition between consecutive stable configurations;
and 3) single-stability with only one stable configuration in
compression along the x, y, and z directions. To do so, we have
placed three different types of bi-stable star-shaped units along
the X axis, one type of bi-stable star-shaped unit along the Y axis,
and one type of single-stable star-shaped unit along the Z axis.
The horizontal compression test has been performed using an
ADMET testing machine along all three orthogonal directions of
the metamaterials and the obtained load-displacement results
are shown in Figure 4c. The metamaterial exhibits multiple local
minima along the X direction (markers on the curve) in which
removing force will result in the stable configuration. Also,
as expected, an increasing peak values can be observed
(3:0;4.1, 5.8N). A similar response can be obtained from the
compression testing along the Y direction while the peak values
are identical and equal to 11:8N (9% tolerance due to the error
in fabrication process). The compression test in the Z direction
shows an almost linear response with no stable configuration
other than the initial point.
as shown in the figure and constructed from six four-pointed star-shaped
isotropic and can be programmed to have a desired response in each
ling themetamaterial by packing eight of them in a 2� 2� 2 network. The
gn parameters in each orthogonal direction. c) Compressive load versus
2� 2� 2 metamaterial is programmed to have stiffening multi-stability,
Y, and Z directions.
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In conclusion, we introduced a novel family of origami-based
structure fabricated by the folding a Miura-ori string. Our
analytical investigation showed that by manipulating values of
α1; α2 angles and number of Miura-ori (n) in the string one
can create three distinct stability regimes � single-stability,
bi-stability, and semi-bi-stability. The experimental out-of-plane
compression test on 3D printed prototypes as well as the FE
simulation for different unit geometries confirm the analytical
results and reveal the potential of star-shaped units to serve as
building blocks of a metamaterial with programmable stability,
reconfigurability, and anisotropy. This type of inherently
lightweight and readily manufactured structure can have
potentially transformative impact on a number of modern high
performance industrial, medical, military, and aerospace
systems.
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