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a b s t r a c t 

Sandwich core materials that offer superior mechanical properties at minimum weight 

are essential in designing high-performance sandwich structures. Hierarchical materials 

are ideal templates for this purpose. In this paper, we investigate the mechanical perfor- 

mance of a pyramidal–pyramidal hierarchical lattice material to highlight its potential as 

the core material for sandwich structures. Three-dimensional failure mechanism maps for 

the pyramidal–pyramidal hierarchical lattice material are developed under different load- 

ing conditions and the results are compared to finite element simulations. Next, we study 

the mechanical response and failure modes of a sandwich panel with self-similar pyrami- 

dal lattice core construction subjected to in-plane compression and three-point bending. 

The current study indicates that the pyramidal–pyramidal hierarchical configuration can 

improve the load bearing capacity and core buckling resistance of the sandwich structures 

at low density. The study provides insights into the role of structural hierarchy in tuning 

the mechanical response of the lattice materials and expands the application envelope of 

lightweight sandwich structures by effectively increasing the structural buckling resistance. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Lattice materials have attracted much interest in the past decade due to their superior mechanical properties and poten-

tial multifunctional applications ( Coelho and Rodrigues, 2015 ; Evans, 2001; Fleck et al., 2010; Zok et al., 2016 ). This interest

is mirrored in a recent spurt of scientific literature covering various aspects of their design, manufacturing, characterization

and evaluation (For example see: Finnegan et al., 2007; Dharmasena et al., 2011; Xiong et al., 2012a,b, 2015; Cui et al., 2012;

Liu et al., 2007, 2017; Han et al., 2015 ). One of the key areas of improvement has stemmed from using composite materials

( Xiong et al., 2012a ; Dong and Wadley, 2015 ; Liu et al., 2018 ) as well as novel topological designs such as structural hierar-

chy ( Ajdari et al., 2011 ; Vigliotti and Pasini, 2012 ; Yin et al., 2013 ; Haghpanah et al., 2013 ; Fan et al., 2008; Xu et al., 2017;
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Fig. 1. An ideal ultralight weight sandwich material (with λ≈0, where λ is the ultralight factor) fails due to crushing of the trusses with a compressive 

strength that is linearly related to the material relative density. For a normal ultralight weight sandwich material with λ ≥0, the truss members buckle 

under compression, with a buckling compressive strength that varies as a power function of the material relative density. This is followed by the crushing, 

where the compressive strength relates linearly to the material relative density (similar to an ideal situation). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cote et al., 2009; Zhang et al., 2015 ) to achieve further weight reduction and possible multifunctional applications. On the

other hand, the structured internal configuration of these lattice materials leads to complex failure modes when compared

to traditional monoliths. For instance, buckling or crushing of the core member in structures with lower relative densities is

regarded as a major factor that directly affects the mechanical properties of sandwich structures ( Finnegan et al., 2007; Cote

et al., 2009 ). The internal structure of these materials also leads to an inherent link between their mechanical performance

such as out-of-plane compressive strength and relative density ( Fan et al., 2008; Meza et al., 2015; Han et al., 2015; He

et al., 2017 ). These lightweight lattice structures can be made even more lightweight (ultralight) by employing hierarchy on

their lattice members themselves. This hierarchy leads to several interesting properties such as substantial increase in the

structural mechanical performances per unit weight. 

However, incorporating hierarchy by itself does not remove the failure modes due to buckling of the slender trusses. We

aim our current paper towards addressing this weakness of lattice structures and aim to instill ‘buckling resistance’ through

appropriate topological design thereby heralding an ‘ideal structure’. In order to demonstrate this concept, we choose a

specific pyramidal–pyramidal lattice truss topology, i.e. pyramidal lattice structures whose lattice members are themselves

pyramidal lattice structures. We investigate these structures under out-of-plane and transverse compression, shear loading,

and three-point bending. We compare our results with those of other structures studied in the literature. Closed-form ex-

pressions for the structural strength associated with different possible failure modes are also derived, and three-dimensional

failure mechanism maps for sandwich panels with hierarchical lattice core construction are established. This study provides

a systematic approach to evaluate the pyramidal–pyramidal hierarchical sandwich panels and highlights an ultralight-weight

material selection for sandwich structures. This study provides a systematic investigation on the behavior and performance

of ultralight-weight sandwich materials by expanding the scope of previous studies on quasi-static mechanical behaviors of

sandwich structures with corrugated–pyramidal hierarchical lattice trusses ( Wu et al., 2017 ). 

In the next section of the paper, the concept of designing the ideal ultralight weight sandwich materials is introduced. In

Section 3 , the out-of-plane compressive and shear properties of the pyramidal–pyramidal hierarchical structure are demon-

strated. The in-plane compressive and three-point bending properties of self-similar pyramidal hierarchical sandwich mate-

rials are investigated in Section 4 and 5 , respectively and concluding remarks are presented in Section 6 . 

2. Principle of ultralight weight sandwich materials 

The lattice cores of sandwich structures are more susceptible to failure than the face sheets under out-of-plane com-

pression ( Finnegan et al., 2007 ). The buckling and crushing of truss members of the lattice core are characterized as the

dominant failure modes under out-of-plane compression loading. Due to this specific feature, even for composite materi-

als, any failure mode of lattice struts except for buckling, is considered as the crushing of lattice trusses. The distinction of

these modes can be seen clearly for metallic sandwich structures where plastic yielding and plastic wrinkling of the lat-

tice are labeled as lattice truss crushing ( Feng et al., 2016 ). For composites, crushing mode can incorporate other damage

modes. In any case, both of these broad failure modes would determine the ultimate compressive strengths of lattice core

materials. This can be seen in Fig. 1 (left), which plots the compressive strength with relative density of the sandwich core.

Fig. 1 shows that the compressive strength of sandwich panels under truss member buckling is proportional to a power

function of the relative density which can vary according to the specific topology of the structure ( Fleck et al., 2010 ; Fan

et al., 2008; Han et al., 2015 ). This figure shows that the buckling led failure precedes the crushing regime and leads to

much lower compressive strength in the low relative density regime. This makes ultralight material highly susceptible to

failure even before the parent material experiences failure from crushing. This weakness must be eliminated for stronger

and ‘ideal’ ultralight design. For such an ideal ultralight weight sandwich material only one failure mode would occur as

shown Fig. 1 (right). When truss members fail in purely crushing mode, the compressive strength of sandwich materials is
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Fig. 2. The geometric dimensions and schematic of a representative unit cell of a self-similar pyramidal hierarchical sandwich structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

linearly related to the relative density of the sandwich unit cell compared to rapid power law decrease. A non-dimensional

factor λ is introduced as the ultralight factor which is defined as the ratio of the expression of the equivalent buckling

strength to that of the equivalent crushing strength of the structural unit cell. Therefore, reduction in the ultralight factor λ
yields the mass reduction in the sandwich structure and decreases the possibility of the buckling failure mode in the lattice

trusses. 

3. Hierarchical composite lattice truss materials under out-of-plane compression and shear loads 

A typical hierarchical pyramidal truss lattice core structure has at least two different length scales for consideration, the

larger 1 st order length scale representing the core lattice member which connects the face sheets. The 2 nd order length scale

is a smaller length scale which makes up the pyramidal truss member. Note that the topological configuration of the second

order (2 nd order) lattice strut and that of the 1 st order lattice core do not have to be identical. However, when they are

similar, the structure is self-similar hierarchic ( Haghpanah et al., 2013 ). In this paper, the topology of both orders of length

scale is kept same resulting in a pyramidal–pyramidal cores structure. The characteristic dimensions and the schematic of the

pyramidal–pyramidal unit cell is shown in Fig. 2 . The lattice strut itself may be solid, hollow or a foam core member of vari-

ous cross sections. By varying the cross section of the struts, different relative densities of the core can be obtained keeping

the topology of the hierarchy constant. In this section, the out-of-plane compressive and shear properties of the pyramidal–

pyramidal hierarchical sandwich materials will be studied. Meanwhile, the corresponding properties of pyramidal sandwich

structures with various uniform cross sections of the lattice struts will be given in the Appendix for subsequent comparison.

To be specific, the study of the relative density, equivalent out-of-plane stiffness and strength from Section 3.1 to 3.3 is to

pave the way for the comparative studies under compression in Section 3.5 . Similarly, the research on the comparison of

shear properties in Section 3.9 will be based on the equivalent shear stiffness and strength from Section 3.6 to 3.7 . 

3.1. Relative density 

The relative density of the core can be explicitly calculated from the geometry of the structure and cross section of the

struts as shown in Fig. 2 . The thickness of the face sheet is T . The length of the 1 st order pyramidal lattice truss member

is l and ω is the angle between the 1 st order pyramidal lattice truss member and the corresponding face sheet. The terms

α, β and θ represent the angles between the pyramidal core and the coordinate axis, respectively as shown in Fig. 2 . The

density of the parent material which constitutes sandwich panels is ρ and the Young modulus of parent material is E . When

a foam core is considered for the strut, the density of the foam-core would be taken as ρ f with negligible Young’s modulus.

The cross section area of the pyramidal unit cell A can be calculated as A = 2 l 2 co s 2 ω and the spatial volume of the core V

is equivalent to V = 2 l 3 co s 2 ω sin ω ( Finnegan et al., 2007 ). 

The length of the 2 nd order lattice struts is denoted as l c and if the cross section is circular, the radius of the strut is

r c . The angle between the 2 nd order lattice strut and the 1 st order pyramidal truss member is ω c . This 1 
st order truss also

serves as the 2 nd order ‘face sheet’ for the hierarchical structure as seen in Fig. 2 . The thickness and width of this 2 nd order

face sheet is denoted by t f and b f with a cross-sectional area of A t . This 2 
nd order ‘sandwich structure’ which is made up

of 2 nd order struts and 1 st order truss members as face sheet is characterized by a cross-sectional area A c . The equivalent

density of this 2 nd order pyramidal core sandwich structure ρce is 

ρce = 

(√ 

2 A t cos ω + 2 A c 
)
ρ

l c 
2 
cos 2 ω sin ω 

(1) 

This can be used to compute the density and relative density of the overall (1 st order) hierarchical pyramidal structure

as well. If the cross-sectional area of the 1 st order pyramidal lattice strut is denoted as A a , the mass of the 1 st order lattice
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Fig. 3. Cross-section of different lattice struts with various configurations: (a) solid lattice truss, (b) hollow lattice truss, and (c) foam-core lattice truss. 

 

 

 

 

 

 

 

 

 

 

 

core would be M = 4 l A a ρce . The equivalent density and relative density of the hierarchical structure can then be calculated

using Eqs. (2) and (3) . 

ρe = 

2 A a ρce 

l 2 cos 2 ω sin ω 

(2)

ρ̄ = 

A a 
(
2 
√ 

2 A t cos ω + 4 A c 
)

l 2 l c 
2 
cos 4 ω sin 

2 ω 

(3)

This expression can be specialized for different strut cross sections of the 2 nd order structure, shown in Fig. 3 (see

Appendix 1 for these expressions). 

3.2. The equivalent out-of-plane compressive stiffness 

The pyramidal unit cells are assumed to have a small displacement δ along the load direction under out-of-plane com-

pression. The external force of each pyramidal lattice truss F can then be written as (see Section 3.1 of the Appendix 3 for

details): 

F = 

( EA ) e l 
2 sin 

2 ω + 12 ( EI ) e cos 
2 ω 

l 3 
δ (4)

where ( EA ) e and ( EI ) e denote the equivalent compressive stiffness and the equivalent flexural rigidity of the lattice core,

respectively. The equivalent stress of the pyramidal unit cell can be expressed as σ= 4 F /A . Substituting Eq. (4) and the area

of pyramidal unit cell into this expression, the equivalent stress of the pyramidal sandwich panels can be calculated as: 

σ̄ = 

2 ( EA ) e l 
2 sin 

2 ω + 24 ( EI ) e cos 
2 ω 

l 5 cos 2 ω 

δ (5)

The non-dimensional parameter ξω is defined as: 

ξω = 

( EA ) e l 
2 sin 

2 ω + 12 ( EI ) e cos 
2 ω 

( EA ) l 2 sin ω 

(6)

e 
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Fig. 4. The free-body-diagram of truss unit cells under (a) in-plane compression, (b) bending moment, and (c) shear load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The equivalent stress can be further simplified into: 

σ̄ = 

2 ξω ( EA ) e sin ω 

l 3 cos 2 ω 

δ (7) 

The equivalent strain of the unit cell along the z -axis direction is then given by ε = δ/ l sin ω . The out-of-plane compressive

stiffness E is E = σ/ ε . Substituting Eq. (7) into the expression of the compressive stiffness, the corresponding expression

becomes: 

Ē = 

2 ξω ( EA ) e sin 
2 ω 

l 2 cos 2 ω 

(8) 

With the equivalent compressive stiffness ( EA ) e and the non-dimensional parameter ξω of various types of pyramidal

lattice trusses, the equivalent out-of-plane compressive stiffness of different pyramidal sandwich panels can be obtained

using Eq. (8) . Meanwhile, the effects of the cross-sectional characteristics of the 2 nd order struts on the compressive stiffness

E of the sandwich structure and a non-dimensional parameter ξω can also be studied analytically (see Appendix 2 for 

details). 

The equivalent compressive stiffness of the hierarchical sandwich structure can be found using the principle of virtual

work. A lateral compressive load F is applied to the 1 st order unit cell of the pyramidal–pyramidal structure, with a corre-

sponding displacement δ as shown in Fig. 4 (a). Using virtual work calculation (shown in Section 3.2 of the Appendix 3 ), the

relationship between F and δ can be obtained as: 

F = 

2 ( EA ) f 
l cos β

δ + 

2 ( EA ) e l 
2 cos 2 β + 24 ( EI ) e sin 

2 β

l 3 
δ (9) 

where the compressive stiffness and the flexural rigidity of the 2 nd order pyramidal truss member with circular section are

( EA ) c = E π r c 
2 and ( E I ) c = E π r c 

4 / 4 respectively and the compressive stiffness of the 2 nd order face sheet is ( EA ) f = E b c t f . On

the other hand, the equivalent strain of the hierarchical sandwich structure is 

ε̄ = 

δ

2 l c cos β
(10) 

The equivalent compressive stiffness of pyramidal–pyramidal lattice truss structures ( EA ) e = F / ε can be expressed as: 

( EA ) e = 2 E b c t f + 

6 Eπ r 4 c sin 
2 β cos β

l 2 c 
+ 2 Eπ r 2 c cos 

3 β (11) 

Similarly, virtual work can also be used to obtain the equivalent flexural rigidity of the unit cell by applying a bending

moment M to the lateral surface of the 1 st order unit cell of the structure. Through the structural symmetry of the structure

shown in Fig. 4 (b), the equivalent flexural rigidity of this unit cell is found to be (see Section 3.2 of the Appendix 3 for

details) 

( EI ) e = 2 ( EI ) m 
+ 

[
f 3 ( β, θ ) E π r c 

4 + f 4 ( β, θ ) l 2 c E r c 
2 
]

(12) 

where f 3 ( β , θ ) and f 4 ( β , θ ) are defined as cos β − 3 
2 cos 

2 β sin θ + 
3 
4 cos 

3 βsin 2 θ and 1 4 cos 
3 βcos 2 θ , respectively. 

These stiffness and rigidities can be substituted in Eqs. (6) and (8) to obtain the non-dimensional strength and stiffness

of the hierarchical sandwich structure (1 st order). 
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3.3. The equivalent out-of-plane compressive strength 

The equivalent compressive stress of the pyramidal cell has been listed in Eq. (7) , the relationship among the axial force

of struts, the inherent strength of the materials and the equivalent compressive stress of the structures will be established

in this section, and then the corresponding equivalent strength of the pyramidal unit cell associated with various truss

member’s failure modes is derived. The out-of-plane compressive force F is assumed to be applied in the normal direction to

the sandwich panels. The relationship between the axial force F A , the shear force F S and the bending moment M of a single

truss and the resultant force F of the 1 st order pyramidal unit cell can be given as (see Section 3.2.2 of the Appendix 3 for

details): 

F = 4 ξω F A (13)

F S = 

12 ( EI ) e cos ω 

( EA ) e l 
2 sin ω 

F A (14)

M = 

6 ( EI ) e cos ω 

(EA ) e l sin ω 

F A (15)

Eqs. (14) and (15) denote the ratio of the shear force and the bending moment to the axial force which can be suffi-

ciently small assuming that the pyramidal truss members are relatively slender. Therefore, the axial force can be regard as a

dominant destructive force which induces the failure of the pyramidal lattice truss under out-of-plane compressive loads. If

the magnitude of the external force is F , the equivalent out-of-plane compressive strength of the pyramidal unit cell σ can

be expressed as: 

σ̄ = 

F 

2 l 2 cos 2 ω 

(16)

In this section, the hierarchical pyramidal–pyramidal lattice truss sandwich panel with four different modes of failure

under out-of-plane compressive loads is considered. The failure modes include face sheet wrinkling (FW) of the 2 nd order

lattice truss, face sheet crushing (FC) of the 2 nd order lattice truss (which is same as crushing of 1 st order truss member),

core member Euler buckling (CE) of the 2 nd order lattice truss and Euler buckling of the 1 st order pyramidal truss. The

corresponding schematic of failure modes of hierarchical pyramidal sandwich unit cell is shown in Fig. 5 . In the following,

each failure mode is described. 

Here, it’s imperative to describe the derivation of various failure modes accordingly. The critical load F of the 2 nd order

face sheet or hierarchical lattice truss can be primarily obtained by means of the elementary mechanics formulas. In order

to obtain the instability envelopes, the externally applied force on the face sheets (1 st order lengths scale) is transferred to

the local axial force of the strut (2 nd order length scale) using relationships derived earlier and the equations tabulated in

Table 2 . The corresponding equivalent compressive strength σ can be further derived by substituting the axial force into

Eqs. (13) and (16) . Table 2 lists the equivalent compressive strength of each failure mode. In Table 2 , the abbreviation ECS

denotes the equivalent compressive strength of the hierarchical sandwich structure. The non-dimensional parameters ξ p and

ξω are in Eq. (A-13) and Table A-3 , respectively. For core member buckling of the 2 nd order lattice truss, the dimensionless

parameter λp is 

λp = cos β + 

3 r c 
2 sin 

2 β

l 2 c cos β
+ 

4 l c t f 

cos βπ r c 2 
(17)

The equivalent out-of-plane compressive strength of the pyramidal sandwich structures with the uniform cross section

lattice struts has been described in Section 3.2.2 of the Appendix 3 . 

3.4. Numerical simulation and failure mechanism map under compressive loads 

In this section, numerical simulations are conducted to validate the accuracy of the analytical derivation and investigate

the mechanical response of the pyramidal–pyramidal hierarchical sandwich structure under compressive loads. A commer-

cial finite element (FE) package ABAQUS (Dassault Systemes) was used for all numerical simulations. Table A-1 lists the

geometrical characteristics of different sample geometries analyzed computationally for compressive stiffness and compres-

sive strength calculations. In this study, the mechanical properties of carbon fiber reinforced epoxy composites are used for

establishing the material model in the numerical analysis. The elastic modulus and compressive strength of the parent ma-

terial are 100 GPa and 800 MPa, respectively, and Poisson’s ratio is 0.3. In the simulation, rigid face sheets were tied to the

lattice core structure at the interface nodes. While the bottom face sheet was fixed, a compressive displacement was then

applied to the top face sheet to simulate core crushing. The models were meshed using three-dimensional 8-node linear

brick elements with reduced integration (i.e., C3D8R element in ABAQUS), and a mesh sensitivity analysis was performed

to guarantee that the results were not mesh-dependent. Static-general solver of ABAQUS was used to simulate the response

of the structures under compressive loads. Moreover, in the numerical model, two pyramidal unit cells were used along the

width of the first order pyramidal core struts. 
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Fig. 5. (a) Failure modes of the pyramidal–pyramidal 2 nd order lattice truss under out-of-plane compression: (I) Macro Euler buckling of the 1 st order 

pyramidal truss, (II) Face sheet crushing (FC) of the 2 nd order lattice truss, (III) Face sheet wrinkling (FW) of the 2 nd order lattice truss, (IV) Core member 

buckling (CE) of the 2 nd order lattice truss. (b) Failure modes in the pyramidal–pyramidal columns subjected to in-plane compression load. (I) Macro Euler 

buckling of the 1 st order pyramidal truss, (II) FW of the 1 st order pyramidal truss, (III) FC of the 1 st order pyramidal truss, (IV) FW of the 2 nd order lattice 

truss, (V) FC of the 2 nd order lattice truss. (c) The schematic diagram of failure modes of hierarchical face sheet under three-point bending load: (I) FW of 

the 1 st order pyramidal truss, (II) FC of the 1 st order pyramidal truss, (III) FW of the 2 nd order lattice truss, (IV) FC of the 2 nd order lattice truss. 
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Fig. 6. Comparisons of the materials properties between the 2 nd order lattice truss and the 1 st order pyramidal truss at different relative densities (the 

number of unit cells is equal to 51): (a) Compressive stiffness, and (b) Compressive strength. 
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Numerical simulations showed that the number of the 2 nd order pyramidal unit cells has a significant effect on the error

between the theoretical and numerical results. The error decreases with an increase in the number of the 2 nd order unit

cells. Meanwhile, some existing studies ( Cote et al., 2007; Li et al., 2011 ; Biagi and Bart-Smith, 2012 ) have validated their

relationship. It is worth noting that the macroscopic elastic buckling failure mode of the member is also usually predicted

by the traditional Euler’s buckling formula in these studies. Here, taking the pyramidal–pyramidal hierarchical structure with

51 secondary unit cells under various relative densities (0.102% −0.221%) as an example, the difference between theoretical

and numerical results will be compared. In Fig. 6 , the analytical and numerical results of the compressive stiffness or com-

pressive strengths are compared based on several common relative densities. In this histogram the width of each bar graph

was changed in order to visually distinguish them. Fig. 6 (a) lists the out-of-plane compressive stiffness of the 1 st and 2 nd

order lattice truss under various relative densities (0.102% −0.221%). Excellent agreement is observed between the analytical

and FE results for the compressive stiffness of the 1 st and 2 nd order lattice truss. The results presented in Fig. 6 (a) show that

the out-of-plane compressive stiffness of the pyramidal–pyramidal 2 nd order lattice truss is slightly lower than its 1 st order

counterpart. Our FE simulations also show that in contrast to the 1 st order pyramidal truss in which the deformation is uni-

formly distributed between all truss members, for the pyramidal–pyramidal 2 nd order lattice truss, the majority of the load

is carried by the 2 nd order face sheets, and the 2 nd order truss members make relatively small contribution to the overall

stiffness of the structure. The out-of-plane compressive strengths of the 1 st and 2 nd order lattice truss as a function of the

relative density (0.102% −0.221%) are given in Fig. 6 (b). This figure shows that for sandwich panels with the 1 st order lattice

truss, the error between theoretical and numerical results is less than 5%. The corresponding magnitude of the equivalent

compressive strength is summarized in Table 6 . The numerical results agree well with the theoretical results for both the

1 st order and hierarchical pyramidal sandwich structures. 

According to the compressive strength prediction formula of hierarchical pyramidal sandwich panels under various fail-

ure modes, a three-dimensional failure mechanism map of pyramidal hierarchical sandwich panels under out-of-plane com-

pression can be generated, Fig. 7 (a). The nature of failure which is primarily due to structural instability allows this phase

diagram to be mapped using normalized geometric parameters r c / l c , l c / l f and t f / l c ( ω = ω 1 = 4 5 ◦ for this study). The 3D fail-

ure map and the 2D failure mechanism diagram of the three perspectives ( x-y plane, x-z plane and y-z plane, namely,

 f / l c = r c / l c = l c / l = 0 . 05 ) are given at the same time in order to improve the readability of the results. The 2D failure map

when the parameter t f / l c is 0.01, 0.03, 0.04 and 0.1 is also given. The relationship between the failure modes of the hierarchi-

cal structure and geometric parameters of the structure is described as follows. When the parameter t f / l c increases from 0.01

to 0.03, the area corresponding to the Euler buckling failure mode of the 2 nd order and 1 st order pyramidal struts increases

and the area corresponding to the 2 nd order face sheet wrinkling decreases. When the parameter t f / l c increases to 0.04, the

2 nd order face sheet wrinkling disappears and the 2 nd order face sheet crushing appears. When the parameter increases to

0.1, the area of several failure modes in the failure mechanism maps remains substantially constant. Compared to the tra-

ditional planar failure mechanism map, three-dimensional failure mechanism diagram can accurately visualize the location

of the failure mode with all three sets of geometric parameters in one single plot. This also allows for easy observation of

trends in all three variables since 3D failure mechanism map can be used to visualize 2D failure mechanism maps from

various perspectives simultaneously. At the 2 nd order scale, face sheet wrinkling and face sheet crushing failure modes are

considered as two dominant failure modes. The core member buckling of the 2 nd order lattice truss can be only observed

when the normalized parameter r c / l c is very small. The core member buckling of the 1 st order lattice truss can also be ob-

served when the parameter l c / l is very small. These failure mechanism maps can be used to design hierarchical lattice core

materials which avoid lying inside undesirable failure regions. To ascertain the feasibility of fabricating pyramidal–pyramidal

hierarchical sandwich structure, this could be especially useful for additive manufacturing based design where substantially
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Fig. 7. (a) Failure mechanism maps of the 2 nd order lattice truss under out-of-plane compression where FW denotes face sheet wrinkling, FC denotes face 

sheet crushing and CE denotes core member buckling. (b) Samples of hierarchical pyramidal–pyramidal sandwich structures manufactured using 3D printing 

technology. 

 

 

 

 

 

 

 

 

 

 

complicated geometries may be manufactured. We show several unit cells of different sizes which are based on this method

of design in Fig. 7 (b). 

3.5. Comparative out-of-plane compressive properties 

This section compares the out-of-plane compressive properties of regular pyramidal and hierarchical pyramidal–pyramidal 

sandwich structures of same relative density and parent material. We also compare the compressive strength of the

pyramidal–pyramidal hierarchical sandwich panels to that of the previous studies in the literature demonstrating the me-

chanical performance of the ideal ultralight weight sandwich materials. Such an analysis facilitates and expedites the selec-

tion of sandwich panels with desired compression performance. The compression behavior of these sandwich structures is

described in detail as follows. 

3.5.1. Stiffness of pyramidal–pyramidal hierarchical lattice structures 

To compare the out-of-plane compressive stiffness of hierarchical pyramidal sandwich panels with uniform cross-section 

lattice truss, the out-of-plane compressive stiffness of pyramidal–pyramidal hierarchical structures is expressed as a func-

tion of relative density. In addition, when comparing the out-of-plane stiffness of two structures we need to ensure that

the structural unit cells maintain the same relative density. Due to the complicated structure of the 2 nd order pyramidal

lattice truss leading to complex geometric quantities, it becomes necessary to set the proportional relationship between

the geometric parameters. We set t f = m l c and r c = m 
2 l c and m is a dimensionless proportionality coefficient. Substituting

Eqs. (3) and (11) into Eq. (8) , the equivalent out-of-plane compressive stiffness of pyramidal hierarchical structures is 

Ē = 

√ 

2 ξω E f p ( m ) 
ρ̄ (18) 
4 
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Fig. 8. Comparison of out-of-plane compressive stiffness of hierarchical structures with corrugated, pyramidal truss sandwich struts and uniform sectional 

foam-core struts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f p ( m ) = 

8 + πm 
3 + 9 πm 

7 

8 
(
1 + 2 

√ 

2 m 

)(
1 + 2 πm 

3 
) (19)

where the dimensionless parameter value ξω in Eq. (18) is similar to that of the uniform cross-section core rod, namely,

ξω ≈ sin ω. The structural function f p ( m ) indicates the proportion of stiffness change after changing from uniform cross-

section lattice trusses to the pyramidal hierarchical truss members. 

The equivalent out-of-plane compressive stiffness of the uniform cross-section lattice trusses can be expressed as a func-

tion of relative density using the expressions given in Section 3.3.1 of the Appendix 3 . The trends of the equivalent com-

pressive stiffness versus relative density for three hierarchical structures with m = 0 . 1 is shown in Fig. 8 . The uniform cross-

sectional hierarchical lattice structure has superior equivalent compressive stiffness, and the equivalent compressive stiffness

of the corrugated–pyramidal hierarchical structure ( Wu et al., 2017 ) is slightly inferior to that of the self-similar pyramidal

structure in current study. As shown in Fig. 8 , the compressive stiffness of pyramidal–pyramidal hierarchical structures and

that of corrugated–pyramidal hierarchical structures decreases by about 22.5% and 25.8%, respectively. This is because each

part of truss members in hierarchical sandwich structures with uniform cross section is subjected to the same out-of-plane

compressive load. However, for the pyramidal–pyramidal hierarchical lattice truss, the main external load is imposed on the

2 nd order face sheets. In addition, the material between the 2 nd order face sheets makes little contribution for the structural

compressive stiffness but increases the weight of the structure. Therefore, when compared to the 1 st order pyramidal struc-

ture, the compressive stiffness of pyramidal–pyramidal hierarchical structure decreases under the same weight of structure. 

3.5.2. Strength of pyramidal–pyramidal hierarchical lattice structures 

To compare the hierarchical panels with uniform cross-sectional truss members, the compressive strength of pyramidal–

pyramidal hierarchical structures should be expressed as a function of relative density which can be compared against the

1 st order pyramidal sandwich structures described in the previous section. Also, the geometric parameters of the hierarchical

structure should conform to the previous framework: t f = m l c and r c = m 
2 l c . Here, the equivalent compressive strength of

the structure under these two failure modes (2 nd order FC and 1 st order CE) is the same with that in Table 2 . However, the

equivalent compressive strength in this section needs to be expressed as a function of relative density. When the 2 nd order

face sheet crushing failure mode occurs, the equivalent compressive strength of the structure is 

σ̄ = ξω ( 1 + ξp ) σ f f f p ( m ) ̄ρ (20)

where the parameter f fp ( m ) in Eq. (20) can be expressed as a function of m as f f p (m ) = 1 / ( 
√ 

2 + 4 m )( 1 + 2 πm 
3 ) . 

When the overall Euler buckling of the 1 st order truss members occurs, the equivalent compressive strength of the struc-

ture can be obtained by substituting the relative density and the equivalent compressive stiffness in Eqs. (3) and (12) into

the equivalent compressive strength under the 1 st order CE failure mode in Table 2 . This leads to 

σ̄ = ξω π
2 E f bp ( m ) ̄ρ2 (21)

where 

f bp ( m ) = 

35 −12 
√ 

2 
64 

πm 
7 + 

1 
64 
m 

3 + 
2 
3 
m 

2 + 

√ 

2 
2 
m + 

1 
4 

4 m 

(√ 

2 + 4m 

)2 (
1 + 2 πm 

3 
)2 (22)

The relationship between the equivalent out-of-plane compressive strength and relative density of the uniform cross-

section lattice trusses and the nature of the curves in Fig. 9 (a)–(d) have been fully described in Section 3.3.2 of the
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Fig. 9. The aggregate out-of-plane compressive properties of hierarchical sandwich structures: (a) the variation of structural functions under different 

conditions, (b) compressive strength of various circular cross-sections, (c) compressive strength of various triangular cross-sections, (d) compressive strength 

of various rectangular cross-sections, (e) the equivalent out-of-plane compressive strength of hierarchical sandwich structures with all cross-sections in the 

present paper, (f) the comparison of the anti-buckling capacity between the pyramidal–pyramidal hierarchical and the first order uniform cross-sectional 

lattice trusses, (g) the relationship between the proportional coefficient m and the structural equivalent compressive strength in the pyramidal–pyramidal 

hierarchical sandwich structure. 
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Appendix 3 . The strength of foam hollow sandwich struts is the largest for that of rectangular, circular and triangle struts

(see Fig. 9 (b)–(d) for details) and their strength will be compared with that of hierarchical structures with corrugated

( Wu et al., 2017 ) and pyramidal truss sandwich strut. The equivalent compressive strength versus relative density is shown

in Fig. 9 (e) for m = 0 . 1 . Fig. 9 (e) also shows the sandwich structures with uniform cross-sectional truss members (rectan-

gular, circular and triangular) with the superior anti-buckling feature to other cross-sectional configurations of struts with

the same shape. The ability of pyramidal–pyramidal hierarchical unit cells to resist buckling is distinctly better than that

of the hierarchical sandwich structures with uniform cross-sections as shown in Fig. 9 (e). The 2 nd order hierarchical struc-

ture in this study shows distinctly better strength. This is because the intricate hierarchical structure can distribute the load

more efficiently over the material points. For the self-similar pyramidal and corrugated–pyramidal hierarchical structures, the

only difference in the expression for the equivalent compressive strength of the two hierarchical structures under these two

failure modes is that some parameters in these equations are related to the internal geometric features of the hierarchical

structures. In fact, the 2 nd order corrugated and pyramidal lattice trusses mainly increase the flexural rigidity of the 1 st

order struts via discretely placed materials. Therefore, the thickness of the 2 nd order face sheets will be small relative to the

distance between the two face sheets. Here, the parameter m denotes the proportional relationship between the 2 nd order

face sheets and the spacing of the face sheets. In Eq. (20) , ξω ≈ sin ω and the parameter ξ p is much smaller than 1. The com-

pressive strength of the parent material σ f is equal to 800 MPa. The difference in the equivalent compressive strength of two

hierarchical structures under these two failure modes is only reflected on the parameters f fp and f bp . Under the ultra-low

densities, the intersections of the pyramidal–pyramidal and corrugated–pyramidal hierarchical lattice structures are 0.00183

and 0.00443, respectively. This structure shows even better characteristics than the corrugated–pyramidal hierarchical sand-

wich panels because the core materials of the pyramidal truss cores are lighter than the corrugated core with a similar

load-carrying ability. Fig. 9 (f), which shows the comparison of the anti-buckling capacity between the pyramidal–pyramidal

hierarchical and the first order uniform cross-sectional lattice trusses further illustrates the benefits of hierarchy. The relative

density corresponding to the intersection of the two failure modes in the hierarchical structure is more than 6 times smaller

than that of the first order uniform cross-sectional lattice trusses. In other words, the pyramidal–pyramidal hierarchical sand-

wich structure has stronger buckling resistance than the first order pyramidal structure with various cross-sectional shapes.

To highlight the key distinctions of how geometry influences each of the failure mechanisms in the pyramidal–pyramidal

hierarchical structure, the relationship between the proportional coefficient m and the equivalent out-of-plane compressive

strength of the self-similar pyramidal hierarchical structure is shown in Fig. 9 (g). Here, the parameter m establishes the

relationship among the 2 nd order core radius r c , the length of the 2 
nd order strut l c and the thickness of the 2 

nd order face

sheet t c . As the proportional coefficient m increases, the intersection of the two failure modes (core member buckling and

crushing) in the pyramidal–pyramidal hierarchical structure appears later. In other words, assuming that the thickness of

the 2 nd order face sheet remains unchanged, the length of the 2 nd order struts is reduced and the 2 nd order core radius is

increased, which leads to weakening of the anti-buckling capacity of the self-similar pyramidal hierarchical lattice trusses.

Therefore, the three geometric parameters described earlier have a significant influence on the buckling resistance of the

hierarchical structure studied in this paper. 

3.5.3. Out-of-plane compressive strength of sandwich structures previously studied in the literature 

Using the proposed concept of the ideal ultralight weight sandwich materials in Section 2 , the equivalent compressive

strength of different topological configurations from literature is compared to the hierarchical pyramidal–pyramidal lattice

sandwich structures as a function of density of structural parent materials as shown in Fig. 10 . Typical materials used in lit-

erature are Al and Carbon fiber ( Fan et al., 2008 ; Fan and Fang, 2009 ). Here, the elastic modulus and compressive strength of

aluminum alloy are 70 GPa and 110 MPa, respectively. The compressive stiffness and compressive strength of aluminum foam

are 2 GPa and 5 MPa. To show the advantage of hierarchical sandwich structure in an ultra-low density region, the density of

sandwich structure is fixed in the range of 0 to 1 g/cm 
3 . Here, in Fig. 10 (a), the abscissa uses logarithmic coordinates and the

ordinate uses linear coordinates. To compare the out-of-plane compression performance between the hierarchical structure

and the first order structure, we investigated different topological configurations, an isogrid, pyramid, honeycomb and foam.

The compressive strength of the first order and hierarchical structures corresponding to various configurations varies with

density as shown in Fig. 10 (a), and the schematic diagram of four topological configurations is given in Fig. 10 (b). By com-

paring the structure of any configuration in Fig. 10 (a), the compression performance of the hierarchical structure is superior

to the first order structure under the same density. In addition, for pyramidal–pyramidal hierarchical sandwich structures,

the material properties of carbon fiber reinforced composite and aluminium alloy are seperately assigned to investigate the

effect of the material properties on the structural response. The material properties are shown to only have an effect on the

buckling strength of structures with no significant effect on the ultralight factor λ. 
Comparing the four types of the hierarchical sandwich structures in Fig. 10 (a) suggests that the pyramidal–pyramidal hi-

erarchical sandwich structure buckle primarily at lower densities. As a result, a density of 0.01 g/cm 
3 leads to an equivalent

compressive strength of about 1.1 MPa for the aluminum pyramidal–pyramidal hierarchical sandwich structures. However, for

the hierarchical honeycomb and hierarchical isogrid, their equivalent compressive strength is far less than that of the former

with the same density. Similarly, the comparison between the aluminum 1 st order pyramidal and hierarchical pyramidal–

pyramidal lattice trusses suggest that the anti-buckling and anti-crushing abilities of the latter are superior to those of the

former with the same density. The equivalent compressive strength of pyramidal–pyramidal hierarchical sandwich structure

is greater than that of the 1 st order pyramidal structure under the same density as well. As shown in Fig. 10 (a), the equiva-
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Fig. 10. The comparison of the out-of-plane compressive strength between the hierarchical and the first order sandwich structures in the literature. The 

line-dot shows the analytical data and the scattered points denote the experimental results. (a) Lattice and grid materials; (b) The schematic diagram 

of various structural configurations. Due to the small space in this diagram, the symbols [1]–[2] represent the papers which are listed in sequence in 

Section 3.5.3 . λ denotes ultralight factor. 

 

 

 

 

 

 

 

 

 

 

 

lent compressive performance of pyramidal–pyramidal hierarchical sandwich structures is more remarkable than that of the

other structures with different topological configurations. For the listed structural configurations, only the pyramidal and

hierarchical pyramidal structures in current study listed in Fig. 10 (a) exist the ultralight factor. For the composite and alu-

minum pyramidal lattice truss in Fig. 10 (a), the ultralight factors are 0.0299 and 0.0311. For the composite and aluminum

pyramidal–pyramidal lattice truss, the ultralight factors are 0.0078 and 0.0084. Compared to other sandwich structures with

various topological configurations, the magnitude of the ultralight factor λ of the pyramidal–pyramidal hierarchical sand- 

wich structures is minimum. Therefore, based on the proposed concept of ideal ultralight weight sandwich materials, the

hierarchical sandwich structure in this paper has excellent mechanical response under out-of-plane compression. 

3.6. The equivalent shear stiffness 

In order to obtain the relationship of external forces in truss members under shear loads, the in-plane shear force F

is applied to the pyramidal unit cell as shown in Fig. 4 (c). The expression between the resultant force F and the small

displacement δ associated with the shear force is (see Section 3.2.2 of the Appendix 3 for details) 

F = 

4 ( EA ) e l 
2 cos 2 α + 48 ( EI ) e sin 

2 α

l 3 
δ (23) 

The axial force F A along the truss member can be written as a function of the small displacement δ as: 

F A = 

( EA ) e 
l 

δ cos α (24) 

where ( EA ) e and ( EI ) e are the equivalent compressive stiffness and equivalent flexural rigidity of the 1 st order pyramidal

lattice truss, respectively. 

The relationship between the external shear force F of a unit cell and the axial force in truss member can be simplified

as: 

F = 4 ξαF A (25) 

where the expression of dimensionless parameter ξα in Eq. (25) is 

ξα = 

( EA ) e l 
2 cos 2 α + 12 ( EI ) e sin 

2 α

( EA ) e l 
2 cos α

(26) 

The equivalent shear stress τ and equivalent shear strain γ of a unit cell are 

τ̄ = 

2 ξα( EA ) e cos α

l 3 cos 2 ω 

δ (27) 

γ̄ = 

δ

l sin ω 

(28) 

The equivalent shear stiffness of the unit cell is G = τ/ γ . Substituting Eqs. (27) and (28) into the equivalent shear stiffness

expression, the shear stiffness can be further simplified as: 

G = 

2 ξα(EA ) e cos α sin ω 

2 2 
(29) 
l cos ω 
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In this section, the pyramidal sandwich panels according to various structural configurations of truss members are di-

vided into two categories similar to the previous section. The pyramidal sandwich panels also include pyramidal–pyramidal

hierarchical sandwich structures and the pyramidal sandwich structure with uniform cross-section truss members. The

equivalent compressive stiffness and equivalent flexural rigidity of the hierarchical structures with pyramidal–pyramidal lat-

tice trusses were obtained in Eqs. (11) and (12) . Substituting Eqs. (11) and (12) into Eqs. (26) and (29) , the equivalent out-

of-plane shear stiffness of the hierarchical structures will be obtained in the next section. The derivation of the equivalent

shear stiffness of the uniform cross-section lattice trusses can be found in Section 4.1 of the Appendix 4 in detail. 

3.7. The equivalent shear strength 

Based on the force analysis in Section 3.2.3.2 of the Appendix 3 , the relationship between the shear force F S (the bending

moment M ) and the axial force F A through the free-body-diagram in our previous work, can be expressed as: 

F S 
F A 

= 

12 ( EI ) e sin α

l 2 ( EA ) e cos α
(30)

M 

F A 
= 

6 ( EI ) e sin α

l ( EA ) e cos α
(31)

The relationship between the axial force of an arbitrary pyramidal truss member F oc 
A 

and the external shear force of the

unit cell F is 

F oc A = 

F 

4 ξα
( sin ϕ + cos ϕ ) (32)

where ϕ is the angle between the out-of-plane shear force and x -axis. 

The truss members in pyramidal lattice cores shown in Fig. 2 are considered to be axially symmetrical. As shown in

Fig. 2 , the OD strut would likely undergo buckling or crushing failure when the angle is π /2 ≤ϕ < π . Similarly, the collapse

of the strut named OA will occur when the angle is π ≤ϕ < 3 π /2. The strut OB will buckle or collapse when the angle is

3 π /2 ≤ϕ < 2 π . In addition, the axial forces of struts are equal due to the geometrical distribution of struts. The pyramidal

unit cell shows a specific failure mode when the external shear force is equal to F . The equivalent out-of-plane shear strength

of the unit cell when the external force is equal to F can be expressed as: 

τ̄ = 

2 F A ξα

l 2 ( sin ϕ + cos ϕ ) cos 2 ω 

(33)

In Eqs. (A-13) and (A-14) , both the face sheets and the pyramidal truss members are subjected to external in-plane

compressive loads. In addition, the external force of the 2 nd order pyramidal lattice core is related to the strut’s geometric

dimensions. Through a comprehensive analysis, four failure modes of the pyramidal–pyramidal hierarchical sandwich struc-

tures under shear force are identified. The corresponding equivalent shear strength of the hierarchical pyramidal unit cell

under these failure modes is described as follows. 

3.7.1. Face sheet wrinkling (FW) of the 2 nd order lattice truss 

The face sheet wrinkling has been described in Section 3.3 , and the schematic diagram of this failure mode is shown

in Fig. 5 (a-III). The specific force analysis is described (see Section 4.2.1 of the Appendix 4 for details). Substituting Eq. (A-

41) into Eq. (33) , the equivalent shear strength of the hierarchical unit cell is 

τ̄ = 

ξα( 1 + ζp ) π2 Eb t f 
3 

3 l c 
2 
l 2 ( sin ϕ + cos ϕ ) cos 2 βcos 2 ω 

(34)

3.7.2. Face sheet crushing (FC) of the 2 nd order lattice truss 

Similarly, the formula is derived in Section 4.2.2 of the Appendix 4 . Substituting Eq. (A-42) into Eq. (33) , the equivalent

shear strength of the hierarchical unit cell is 

τ̄ = 

4 ξα( 1 + ζp ) b t f σ f 

l 2 ( sin ϕ + cos ϕ ) cos 2 ω 

(35)

3.7.3. Core member buckling (CE) of the 2 nd order lattice truss 

The expression of the critical force of the 2 nd order truss member for the core member buckling of the 2 nd order lattice

truss is described in Table 2 . Substituting ( EI ) e = Eπ r c 
4 / 4 , the axial force of the 2 nd order CE ( Table 2 ) into Eq. (33) , the

corresponding equivalent shear strength of the unit cell is 

τ̄ = 

2 ξαλp π2 Eπ r c 
4 

2 
(36)
l 2 l c ( sin ϕ + cos ϕ ) cos 2 ω 
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Fig. 11. Comparisons of shear properties between the 2 nd order lattice truss and the 1 st order pyramidal truss with different relative densities (the number 

of unit cells is equal to 51): (a) Shear stiffness; (b) Shear strength. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.7.4. Macro Euler buckling of the 1 st order lattice truss 

The formula for the critical force of the Euler buckling of the strut is shown in Table 2 . Substituting the axial force of the

1 st order CE ( Table 2 ) into Eq. (33) , the equivalent shear strength of the unit cell is 

τ̄ = 8 ξα
π2 ( EI ) e 

l 4 ( sin ϕ + cos ϕ ) cos 2 ω 

(37) 

Similarly, the equivalent shear strength of the uniform cross-section lattice trusses under different failure modes has

been derived in Section 4.2.2 of the Appendix 4 . 

3.8. Numerical simulation under shear loads 

FE based computational models are used to investigate the shear properties of pyramidal–pyramidal hierarchical sandwich

panels with details of computational parameters kept same with those under compressive load in Section 3.4 . In addition, at

least two elements were used along the width of the secondary pyramidal core struts. Fig. 11 (a) shows the correspondence

between the equivalent shear stiffness of the 1 st and 2 nd order lattice truss structures and relative density (0.102% −0.221%).

Results show that the equivalent shear stiffness of the pyramidal–pyramidal 2 nd order lattice truss structures is slightly lower

than its 1 st order counterpart. In contrast to the 1 st order pyramidal truss structures in which all the members contribute

almost equally to the overall shear stiffness of the structures, in the 2 nd order lattice truss structures with the pyramidal–

pyramidal lattice cores, greater part of the load is carried by the 2 nd order face sheets and the contribution of corrugated

struts is negligible. Thus, the equivalent shear stiffness of the 2 nd order lattice truss structures is slightly lower than its 1 st 

order counterpart of equal mass. 

Fig. 11 (b) shows the equivalent shear strength versus relative density (0.102% −0.221%) for both 1 st and 2 nd order lattice

truss structures. Moreover, the corresponding magnitude of the equivalent shear strength is summarized in Table 7 . As

the relative density increases, the error between the theoretical and the numerical results of the hierarchical structure lies

between 7.5% and 28.7%. The results show that the 2 nd order structures are considerably stronger compared to the 1 st order

pyramidal truss structures in terms of shear strength. This is mainly due to a higher "anti-buckling" property (i.e., superior

ability to resist buckling) of the 2 nd order structures, where their bending stiffness is significantly greater than the 1 st order

pyramidal core of equal mass. This suggests that the 2 nd order pyramidal core can better exploit the load-bearing capacity

of the material compared to its 1 st order counterpart. 

3.9. Comparative shear properties 

In this section the equivalent shear stiffness of sandwich structures with various cross-sectional lattice trusses is com-

pared. The equivalent shear strength of the hierarchical structures with uniform section lattice truss and self-similar

pyramidal hierarchical structures in this paper are compared together. The shear strength of sandwich panels from the

literature are included and compared to the results from the case studied in this paper. 

3.9.1. Stiffness of pyramidal–pyramidal hierarchical lattice structures 

In order to compare the shear stiffness of the hierarchical panels with uniform cross-section lattice truss, under the

premise of ensuring the same weight, the equivalent shear stiffness of pyramidal–pyramidal hierarchical structure should
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Fig. 12. Comparison of shear stiffness of hierarchical structures with corrugated, pyramidal truss sandwich struts and uniform sectional foam-core struts. 
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be expressed as a function of relative density. In addition, geometric parameters of the hierarchical struts should satisfy:

 f = m l c and r c = m 
2 l c . Therefore, the equivalent shear stiffness of the structural hierarchy can be expressed as: 

G = 

1 

4 
ξαE f p ( m ) ̄ρ (38)

f p ( m ) = 

8 + πm 
3 + 9 πm 

7 

8 
(
1 + 2 

√ 

2 m 

)(
1 + 2 πm 

3 
) (39)

For lattice trusses with various sectional configurations, the relationship between the shear stiffness of sandwich struc-

tures and relative density is established in the derivation in Section 4.3.1 of the Appendix 4 . The flexural rigidity of sandwich

structures is closely related to the geometry of its structural section. For the pyramidal–pyramidal hierarchical structure, the

2 nd order pyramidal strut is obtained by increasing the distance between the 2 nd order face sheets to increase the core

bending stiffness. In addition, the thickness of the 2 nd order face sheets is much lesser than the distance of two face sheets,

implying that the magnitude of m is very small. The equivalent shear stiffness versus relative density curve with m = 0 . 05

is shown in Fig. 12 . The shear stiffness of corrugated–pyramidal hierarchical sandwich panels in ( Wu et al., 2017 ) were also

included in Fig. 12 . The stiffness of hierarchical structures with corrugated and pyramidal truss sandwich struts decreases

about 14.6% and 12.5% compared with hierarchical structures with circular, triangular and rectangular struts, respectively as

shown in Fig. 12 . The increase in the stiffness is because all the materials of hierarchical structures with circular, triangular

and square struts are used to bear the transformation. However, only face sheet of the 2 nd order corrugated and pyramidal

truss sandwich struts can be used to support load, and the core materials are used to increase the bending stiffness which

only benefits the buckling resistance. The two hierarchical sandwich structures are only similar in terms of the structural

equivalent stiffness. In fact, the 2 nd order corrugated and pyramidal lattice trusses mainly increase the flexural rigidity of the

1 st order struts using discrete materials, while the 2 nd order core rod itself contributes little to the overall stiffness of the hi-

erarchical structure. We now compare the equivalent shear stiffness of the self-similar pyramidal and corrugated–pyramidal

hierarchical structures ( Fig. 12 ). The equivalent shear stiffness of the two hierarchical sandwich structures in Eq. (38) are

related to their corresponding geometrical characteristics. For the pyramidal–pyramidal hierarchical structure, since the pyra-

midal configuration is a stretching-dominated lattice material, the equivalent flexural rigidity of the structure in Eq. (26) is

much smaller than the structural equivalent compressive stiffness, and the parameter in Eq. (38) satisfies ξα ≈ cos α. In

Eq. (38) , the parameter f p ( m ) is related to the internal geometric parameters of the hierarchical structures. However, the

elastic modulus of the parent material E equals 100 GPa and the magnitude of this parameter is much larger than that of

f p ( m ). In other words, the parameter associated with the structural geometric dimensions contributes much less to the over-

all equivalent shear stiffness of the hierarchical structure than the elastic modulus of the parent materials. Similarly, the

shear stiffness of the corrugated–pyramidal hierarchical structure is less affected by its geometric parameters as well. 

3.9.2. Strength of pyramidal–pyramidal hierarchical lattice structures 

To compare the hierarchical panels with uniform cross-sectional truss members, the equivalent shear strength of

pyramidal–pyramidal hierarchical structures should be expressed as a function of relative density under the premise of en-

suring the same weight. Similarly, the geometric parameters also satisfy: t f = m l c and r c = m 
2 l c . The corresponding failure
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equation of face sheet crushing of the 2 nd order lattice truss is 

τ̄zy + τ̄zx = ξω ( 1 + ζp ) σ f f f p ( m ) ̄ρ (40) 

where the expression of parameter f fp ( m ) in Eq. (40) has been described in Section 3.5.2 . 

The failure equation of macro Euler buckling of the 1 st order pyramidal truss is 

τ̄zy + ̄τzx = E ξω π
2 f bp ( m ) ̄ρ2 (41) 

where the expression of parameter f bp ( m ) in Eq. (41) is Eq. (22) . 

The relationship between the equivalent shear strength of the uniform cross-section lattice trusses and relative density

under different failure modes has been explained in detail in Section 4.3.2 of the Appendix 4 . And this section describes

the trends of the curves in Fig. 13 (a)–(d). Fig. 13 (e) shows the failure envelop curve of the equivalent shear strength with

m = 0 . 1 . The buckling collapses of hierarchical structures with circular, triangular and rectangular struts are also included in

Fig. 13 (e). The buckling resistant abilities of hierarchical structures with corrugated and pyramidal truss sandwich struts are

considerably superior to that of hierarchical structures with circular, triangular and rectangular struts. The main reason is

that the core material is only used to increase the bending stiffness of the sandwich panel, and pyramidal truss core is the

lightest compared with other core materials or struts. 

4. In-plane compression of pyramidal–pyramidal hierarchical sandwich structures 

In this section, the in-plane compressive behavior of the pyramidal–pyramidal hierarchical sandwich panels will be in-

vestigated. Several failure modes are considered due to the structural hierarchy and the in-plane compressive loads. The

dominant structural failure mode will change with the geometrical dimensions of the different parts of the structure. As

shown in Fig. 5 (b), five failure modes may occur during the in-plane compressive loading which is described as follows. 

4.1. Failure modes under in-plane compression 

4.1.1. Macro Euler buckling of the pyramidal lattice truss 

The hierarchical structure is composed of several numbers of pyramidal–pyramidal hierarchical lattice trusses, and the

number of 1 st order pyramidal truss is set to n . According to the basic mechanics of materials formulas, the critical loads in

Euler buckling failure mode ( Fig. 5 (b-I)) is 

F = 

π2 ( EI ) e 
2 n 2 μ2 l 2 cos 2 ω 

(42) 

where the parameter μ = 0 . 5 ( Hearn, 1997 ). Substituting these expressions into Eq. (42) , the critical loads of the hierarchical

structures in this failure mode can be obtained accordingly. 

4.1.2. Face sheet wrinkling (FW) of the 1 st order pyramidal truss 

For the case of face sheet wrinkling of the 1 st order pyramidal truss ( Fig. 5 (b-II)), the critical load of the 1 st order face

sheet is in Table 2 . Here, the flexural rigidity of the face sheet ( EI ) e equals to Ebt 
3 /12. The pyramidal lattice truss will

deform during the in-plane compression, since the lattice struts are subject to the partial external force. Based on the effect

of external forces, the total in-plane compressive load in this failure mode is 

F = 

( 1 + ξp ) π2 ( EI ) e 
μ2 l 2 cos 2 ω 

(43) 

The expression for the non-dimensional parameter is defined as: 

ξp = 

( EA ) e cos 
3 β

( EA ) f 
+ 

12 ( EI ) e sin 
2 β cos β

( EA ) f l 
2 

(44) 

4.1.3. Face sheet crushing (FC) of the 1 st order pyramidal truss 

The flexural rigidity of the face sheets increases with increasing their designed thickness, improving their anti-buckling

feature. The failure modes of composite materials will be divided into two categories: the Euler buckling and the crushing

of the composite materials. The average strength of the face sheet’s crushing is defined as σ f , and this stress value can be

measured by compressive tests. Because the two face sheets are the same, the critical external load in collapse of the 1 st 

order face sheets ( Fig. 5 (b-III)) is 

F = 4 
√ 

2 σ f l t f cos ω (45) 

The relationship between the external force on the face sheets F f and the general in-plane compressive loads F can be

expressed as: 

F = 4 
√ 

2 ( 1 + ξp ) σ f l t f cos ω (46) 

where the expression of parameter ξ p is described in Eq. (A-13) . 
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Fig. 13. The aggregate shear properties of hierarchical sandwich structures: (a) crushing failure collapse of hierarchical structures with circular, rectangular 

and triangular struts, (b) shear buckling failure collapse map of hierarchical structures with rectangular cross-section, (c) shear buckling failure collapse 

map of hierarchical structures with circular cross-section, (d) shear buckling failure collapse map of hierarchical structures with triangular cross-section, 

(e) the shear properties of hierarchical sandwich structures: comparisons of shear buckling strength of hierarchical structures with different struts. 
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4.1.4. Face sheet wrinkling (FW) of the 2 nd order lattice truss 

For wrinkling of the 2 nd order face sheets ( Fig. 5 (b-IV)), the total external force P c of the face sheets under this failure

mode is in Table 2 . Here, the flexural rigidity of the face sheet ( EI ) e equals to Ebt f 
3 /12. The axial force along the 1 st order

pyramidal struts can be formulated as: 

F A = ( 1 + ξcp ) P c (47) 

where the non-dimensional parameter is 

ξcp = 

( EA ) cp cos 
3 β

( EA ) c f 
+ 

12 ( EI ) cp sin 
2 β cos β

( EA ) c f l 
2 

(48) 

In Eq. (48) , ( EA ) cf denotes the equivalent compressive stiffness of the 1 st order face sheets ( EA ) c f = E b c t f . ( EA ) cp is the

equivalent compressive stiffness of the 2 nd order pyramidal truss members ( EA ) cp = Eπ r c 
2 . ( EI ) cp is the equivalent flexural

rigidity of the 2 nd order pyramidal struts ( EI ) cp = Eπ r c 
4 / 4 . 

Through the relationship between the axial force of a single pyramidal strut and total in-plane compressive load, the

total in-plane compressive load of the hierarchical structure is 

F = 

λp ( 1 + ξcp ) π2 Ebt 3 
f 

3 l c 
2 
cos 2 ω 

(49) 

where the parameter λp in Eq. (49) is 

λp = 2 cos β + 

2 ( EA ) f 

( EA ) p cos 
2 β

+ 

24 ( EI ) p sin 
2 β

( EA ) p l 
2 cos β

(50) 

The terms ( EA ) p and ( EI ) p are the equivalent compressive stiffness and the equivalent flexural rigidity of the pyramidal

lattice truss, respectively. ( EA ) f denotes the equivalent compressive stiffness of the face sheets. 

4.1.5. Face sheet crushing (FC) of the 2 nd order lattice truss 

The crushing strength of composite materials is that of the raw material used in the preparation of structures and de-

noted by σ f . The corresponding axial force F c f in the 2 
nd order face sheet for the face sheet crushing of the 2 nd order lattice

truss ( Fig. 5 (b-V)) is in Table 2 . According to the relationship between the load in face sheets and the axial force along truss

members, the axial force along the 1 st order pyramidal lattice truss is 

F A = ( 1 + ξcp ) F c f (51) 

The total in-plane load of the hierarchical structure can be deduced in accordance with the relationship between the

axial force along the lattice truss and in-plane compressive load as: 

F = 2 λp ( 1 + ξcp ) b t f σ f (52) 

4.2. The failure mechanism map under in-plane compression 

In order to demonstrate the relationship between the geometrical dimensions and the failure modes of the hierarchical

sandwich panels, the failure mechanism maps of sandwich structures under in-plane compression are plotted based on the

failure modes described in Section 4.1 . The inclination angles between the 1 st order or 2 nd order pyramidal struts with their

corresponding face sheets are considered to be 45 ° for both ω and ω c . For the design of the hierarchical structures, several

geometric parameters are significant including the thickness of the hierarchical sandwich panels T , the thickness of the 2 nd 

order face sheets t f , the radius and length of the 2 
nd order pyramidal truss member r c and l c respectively. The number of

pyramidal–pyramidal hierarchical unit cell is n 2 
l 
along the length of the 1 st order lattice truss, and the number of the 2 nd 

order pyramidal unit cell is n 1 
l 
along the length of hierarchical sandwich structures. The parameter n 2 w denotes the number

of the 2 nd order lattice truss along the width of the 1 st order pyramidal lattice truss. The dimensionless parameters r c / l c ,

T / l c and t f / l c are regarded as x -axis, y -axis and z -axis, respectively to plot the failure mechanism maps. The parameters n 1 
l 

and n 2 
l 
are defined as variable parameters affecting the change of the boundary of each failure mode. 

Fig. 14 shows three cases: (1) n 2 w = 1 , n 2 
l 

= 5 , n 1 
l 

= 10 ; (2) n 2 w = 1 , n 2 
l 

= 5 , n 1 
l 

= 50 and (3) n 2 w = 1 , n 2 
l 

= 8 , n 1 
l 

= 10 . As

shown in Fig. 15 , the variation of curve’s positions on the failure mechanism maps has a close relationship with the param-

eters n 1 
l 
and n 2 

l 
. The aforesaid non-dimensional parameters which are regarded as three sets of coordinate axes codetermine

the location of each failure mode. In addition, the larger the area occupied by the failure mode, the more likely the failure

mode will occur. From Fig. 14 (a)–(c), the face sheet wrinkling of the 2 nd order lattice truss can be regarded as the dominant

failure mode owing its largest volume in the failure mechanism maps. The local buckling of the 2 nd order face sheets appear

on account of the greater distance between adjacent nodes in the 2 nd order lattice truss and in that case the corresponding

face sheet wrinkling of the 2 nd order lattice truss is likely to occur. From Fig. 14 (a) and (b), the possibility of the face sheet

crushing of the 2 nd order lattice truss is reduced with the increase in the number of the 1 st order pyramidal unit cell along
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Fig. 14. The failure mechanism maps of the pyramidal–pyramidal hierarchical sandwich structures under in-plane compressive loads in three cases (i.e. The 

failure mode can be changed by changing the number of the 1 st order and 2 nd order unit cells): The number of 2 nd order unit cell along the length of 1 st 

order lattice truss ( n 2 
l 
) and that of the 1 st order unit cell along the length of 1 st order face sheet ( n 1 

l 
) are (a) 5 and 10; (b) 5 and 50; and (c) 8 and 10 

respectively. 
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Fig. 15. The failure mechanism maps of the pyramidal–pyramidal hierarchical sandwich structures under three-point bending loads in four cases (i.e. The 

failure mode can be changed by changing the number of 1 st order and 2 nd order unit cells): The number of 2 nd order unit cell along the length of 1st 

order lattice truss ( n 2 
l 
) and that of the 1 st order unit cell along the length of 1 st order face sheet ( n 1 

l 
) are (a) 5 and 5; (b) 5 and 10; (c) 10 and 5; (d) 10 

and 10 respectively. 
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Table 1 

Equivalent out-of-plane compressive strength of the pyramidal unit cell with different cross-sections. 

Sectional properties Equivalent buckling strength ( σ/ MPa) Equivalent crushing strength ( σ/ MPa) 

Solid rectangle 2 ξω π2 Eb h 3 

3 l 4 cos 2 ω 

2 ξω σ f bh 

l 2 cos 2 ω 

Hollow rectangle 
2 E ξω π2 ( b h 3 −b 1 h 

3 
1 ) 

3 l 4 cos 2 ω 

2 ξω σ f ( bh −b 1 h 1 ) 

l 2 cos 2 ω 

Foam rectangle 
2 E ξω π2 ( b 4 h 

3 
4 −b 3 h 

3 
3 + b 2 h 3 2 −b 1 h 

3 
1 ) 

3 l 4 cos 2 ω 

2 ξω σ f ( b 4 h 4 −b 3 h 3 + b 2 h 2 −b 1 h 1 ) 

l 2 cos 2 ω 

Solid circle 2 π3 ξω E R 
4 

l 4 cos 2 ω 

2 ξω σ f πR 2 

l 2 cos 2 ω 

Hollow circle 2 π3 ξω E( R 4 −r 4 ) 
l 4 cos 2 ω 

2 ξω σ f π( R 2 −r 2 ) 

l 2 cos 2 ω 

Foam circle 
2 π3 ξω E( r 4 4 −r 4 3 + r 4 2 −r 4 1 ) 

l 4 cos 2 ω 

2 ξω σ f π( r 2 4 −r 2 3 + r 2 2 −r 2 1 ) 

l 2 cos 2 ω 

Solid triangle 
√ 
3 ξω π2 E a 4 

12 l 4 cos 2 ω 

√ 
3 ξω σ f a 

2 

2 l 2 cos 2 ω 

Hollow triangle 
√ 
3 E ξω π2 ( a 4 −a 4 1 ) 

12 l 4 cos 2 ω 

√ 
3 ξω σ f ( a 

2 −a 2 1 ) 

2 l 2 cos 2 ω 

Foam triangle 
√ 
3 E ξω π2 ( a 4 4 −a 4 3 + a 4 2 −a 4 1 ) 

12 l 4 cos 2 ω 

√ 
3 ξω σ f ( a 

2 
4 −a 2 3 + a 2 2 −a 2 1 ) 

2 l 2 cos 2 ω 

Table 2 

Equivalent compressive strength of the hierarchical pyramidal sandwich structure un- 

der each failure mode. 

2 nd order FW 2 nd order FC 2 nd order CE 1 st order CE 

Critical load- F π2 ( EI ) e 
μ2 l c 

2 
cos 2 ω 

2 bt f σ f 
π2 ( EI ) e 
μ2 l c 

2 - 

Axial force- F A 
( 1+ ξp ) π2 Eb t f 

3 

3 l c 
2 
cos 2 ω 

2( 1 + ξp ) b t f σ f 
π2 ( EI ) e λp 

μ2 l c 
2 

π2 ( EI ) e 
μ2 l 2 

ECS a - σ
2 ξω ( 1+ ξp ) π2 Eb t f 

3 

3 l 2 l c 
2 
cos 4 ω 

4 ξω ( 1+ ξp ) b t f σ f 

l 2 cos 2 ω 
2 ξω λp π2 Eπ r c 

4 

l 2 l c 
2 
cos 2 ω 

8 ξω π2 ( EI ) e 
l 4 cos 2 ω 

a The abbreviation ECS denotes the equivalent compressive strength. 

Table 3 

Equivalent compressive strength of the pyramidal unit cell with different types of cross- 

sections. 

Sectional properties Solid Hollow Foam core 

Equivalent compressive strength ( σ/ MPa ) ξω Eπ
8 

ρ̄2 ξω Eπ f h ( g h ) 
8 

ρ̄2 ξω Eπ f m ( g f ) 

8 
ρ̄2 

Table 4 

Equivalent shear stiffness of the pyramidal unit cell with different types of cross-sections. 

Sectional properties Dimensionless parameter ( ξα) Equivalent shear stiffness ( G /MPa) 

Solid rectangle cos α + 
h 2 sin 2 α
l 2 cos α

2 ξαEbh sin 
2 ω 

l 2 cos 2 ω 

Hollow rectangle cos α + 
( b h 3 −b 1 h 1 

3 
) sin 2 α

( bh −b 1 h 1 ) l 2 cos α
2 ξαE( bh −b 1 h 1 ) cos α sin ω 

l 2 cos 2 ω 

Foam rectangle cos α + 
( b 4 h 

3 
4 −b 3 h 

3 
3 + b 2 h 3 3 −b 1 h 

3 
3 ) sin 

2 α

( b 4 h 4 −b 3 h 3 + b 2 h 2 −b 1 h 1 ) l 2 cos α
2 ξαE( b 4 h 4 −b 3 h 3 + b 2 h 2 −b 1 h 1 ) cos α sin ω 

l 2 cos 2 ω 

Solid circle cos α + 
3 R 2 sin 2 α
l 2 cos α

2 πξαE R 
2 cos α sin ω 

l 2 cos 2 ω 

Hollow circle cos α + 
3( R 2 + r 2 ) sin 2 α

l 2 cos α
2 πξαE( R 2 −r 2 ) cos α sin ω 

l 2 cos 2 ω 

Foam circle cos α + 
3( r 4 4 −r 4 3 + r 4 2 −r 4 1 ) sin 

2 α

( r 2 
4 
−r 2 

3 
+ r 2 

2 
−r 2 

1 
) l 2 cos α

2 πξαE( r 2 4 −r 2 3 + r 2 2 −r 2 1 ) cos α sin ω 

l 2 cos 2 ω 

Solid triangle cos α + 
a 2 sin 2 α
2 l 2 cos α

√ 
3 ξαE a 

2 cos α sin ω 
2 l 2 cos 2 ω 

Hollow triangle cos α + 
( a 2 + a 2 1 ) sin 2 α

2 l 2 cos α

√ 
3 ξαE( a 2 −a 2 1 ) cos α sin ω 

2 l 2 cos 2 ω 

Foam triangle cos α + 
( a 4 4 −a 4 3 + a 4 2 −a 4 1 ) sin 

2 α

2( a 2 
4 
−a 2 

3 
+ a 2 

2 
−a 2 

1 
) l 2 cos α

√ 
3 ξαE( a 2 4 −a 2 3 + a 2 2 −a 2 1 ) cos α sin ω 

2 l 2 cos 2 ω 

 

 

 

 

 

 

 

the length of hierarchical sandwich panels. In contrast, the possibility of macro Euler buckling of pyramidal lattice truss is

greatly increased with the increase in the number of the 1 st order pyramidal unit cell. Similarly, Fig. 14 (a) and (c) show that

the position of face sheet crushing of the 2 nd order lattice truss will be replaced by face sheet wrinkling of the 1 st order

lattice truss as the parameter, n 2 
l 
, increases. The reason is that under the same in-plane compressive load, the local buckling

of the 1 st order pyramidal lattice struts, namely, the face sheet wrinkling of the 2 nd order lattice truss, is more likely to

occur as the length of the 1 st order pyramidal truss increases. 

5. Three-point bending of pyramidal–pyramidal hierarchical sandwich structures 

In this section, the face sheets of sandwich structures are subjected to bending moment. The face sheet wrinkling and the

face sheet crushing failure modes are the potential failure modes for this loading state. However, the pyramidal–pyramidal
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Table 5 

Equivalent shear strength of the pyramidal unit cell with uniform sectional shapes. 

Sectional properties Equivalent buckling strength ( τ/ MPa ) Equivalent crushing strength ( τ/ MPa ) 

Solid rectangle 
2 ξασ f bh 

l 2 ( sin ϕ+ cos ϕ ) cos 2 ω 
2 ξαπ2 Eb h 3 

3 l 4 ( sin ϕ+ cos ϕ ) cos 2 ω 

Hollow rectangle 
2 E ξαπ2 ( b h 3 −b 1 h 

3 
1 ) 

3 l 4 ( sin ϕ+ cos ϕ ) cos 2 ω 
2 ξασ f ( bh −b 1 h 1 ) 

l 2 ( sin ϕ+ cos ϕ ) cos 2 ω 

Foam rectangle 
2 E ξαπ2 ( b 4 h 

3 
4 −b 3 h 

3 
3 + b 2 h 3 3 −b 1 h 

3 
3 ) 

3 l 4 ( sin ϕ+ cos ϕ ) cos 2 ω 
2 ξασ f ( b 4 h 4 −b 3 h 3 + b 2 h 2 −b 1 h 1 ) 

l 2 ( sin ϕ+ cos ϕ ) cos 2 ω 

Solid circle 
2 ξασ f πR 2 

l 2 ( sin ϕ+ cos ϕ ) cos 2 ω 
2 π3 ξαE R 

4 

l 4 ( sin ϕ+ cos ϕ ) cos 2 ω 

Hollow circle 2 π3 ξαE( R 4 −r 4 ) 
l 4 ( sin ϕ+ cos ϕ ) cos 2 ω 

2 ξασ f π( R 2 −r 2 ) 

l 2 ( sin ϕ+ cos ϕ ) cos 2 ω 

Foam circle 
2 π3 ξαE(r 4 4 −r 4 3 + r 4 2 −r 4 1 ) 

l 4 ( sin ϕ+ cos ϕ ) cos 2 ω 
2 ξασ f π(r 2 4 −r 2 3 + r 2 2 −r 2 1 ) 

l 2 ( sin ϕ+ cos ϕ ) cos 2 ω 

Solid triangle 
√ 
3 ξασ f a 

2 

2 l 2 ( sin ϕ+ cos ϕ ) cos 2 ω 
√ 
3 ξαπ2 E a 4 

12 l 4 ( sin ϕ+ cos ϕ ) cos 2 ω 

Hollow triangle 
√ 
3 E ξαπ2 ( a 4 −a 4 1 ) 

12 l 4 ( sin ϕ+ cos ϕ ) cos 2 ω 

√ 
3 ξασ f ( a 

2 −a 2 1 ) 

2 l 2 ( sin ϕ+ cos ϕ ) cos 2 ω 

Foam triangle 
√ 
3 E ξαπ2 (a 4 4 −a 4 3 + a 4 2 −a 4 1 ) 

12 l 4 ( sin ϕ+ cos ϕ ) cos 2 ω 

√ 
3 ξασ f (a 

2 
4 −a 2 3 + a 2 2 −a 2 1 ) 

2 l 2 ( sin ϕ+ cos ϕ ) cos 2 ω 

Table 6 

Compressive strength of 2 nd order lattice truss and 1 st order pyramidal truss with different relative 

densities (MPa) (n 1 
l 

= 51 , n 2 
l 

= 2) . 

ρ(%) 1 st order analytical 1 st order numerical 2 nd order analytical 2 nd order numerical 

0.102 0.0035 0.0036 0.253 0.21 

0.122 0.0061 0.0061 0.306 0.252 

0.133 0.0079 0.0079 0.29 0.254 

0.166 0.0083 0.0084 0.418 0.332 

0.221 0.0131 0.0133 0.483 0.439 

Table 7 

Shear strength of 2 nd order lattice truss and 1 st order pyramidal truss with different relative densities 

(MPa) (n 1 
l 

= 51 , n 2 
l 

= 2) . 

ρ(%) 1 st order analytical 1 st order numerical 2 nd order analytical 2 nd order numerical 

0.102 0.0014 0.0015 0.08 0.086 

0.122 0.0025 0.0025 0.096 0.104 

0.133 0.0032 0.0033 0.086 0.104 

0.166 0.0034 0.0035 0.13 0.138 

0.221 0.0054 0.0056 0.143 0.184 

 

 

 

 

 

 

hierarchical lattice trusses also experience shear loads increasing the possibility of the four failure modes depicted in

Section 3.7 to occur. Fig. 5 (c) shows the four failure modes of the pyramidal lattice cores including face sheet wrinkling

of the 1 st order lattice truss, face sheet crushing of the 1 st order lattice truss, face sheet wrinkling of the 2 nd order lattice

truss and face sheet crushing of the 2 nd order lattice truss. In the next section, the corresponding structural strength terms

for the failure modes in the three-point bending configuration are derived. 

5.1. Failure modes under three-point bending conditions 

5.1.1. Face sheet wrinkling (FW) of the 1 st order pyramidal lattice truss 

The expression for the failure mode of pyramidal–pyramidal hierarchical truss members under three-point bending loads

can be derived and the external loads of hierarchical pyramidal sandwich panels can be expressed as: 

F = 

4 π2 t 3 E sin ω 

3 nl cos 2 ω 

(53) 

where n denotes the number of the 1 st order unit cell in hierarchical sandwich structures. The residual parameters in

Eq. (53) have been described in aforesaid sections. 

5.1.2. Face sheet crushing (FC) of the 1 st order pyramidal lattice truss 

The external loads of pyramidal lattice structures under this failure mode is 

F = 

4 

n 
sin ω σ f lt (54) 

where the related parameters have been introduced in the previous sections. 
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5.1.3. Face sheet wrinkling (FW) of the 2 nd order lattice truss 

The external load associated with this failure mode equals the out-of-plane compressive strength of the structures under

FW of the 2 nd order lattice truss in Section 3.3.2 multiplied by the area of the 1 st order pyramidal unit cell. Therefore, the

corresponding expression of external loads can be expressed as: 

F = 

2 ξω ( 1 + ξc ) π2 Eb t f 
3 

3 l c 
2 
cos 2 ω 

(55)

5.1.4. Face sheet crushing (FC) of the 2 nd order pyramidal truss 

Similarly, the external loads of pyramidal–pyramidal hierarchical unit cell associated with collapse of the 2 nd order face

sheets is 

F = 8 ξω ( 1 + ξc ) b t f σ f (56)

5.2. The failure mechanism map under three-point bending conditions 

This section describes four scenarios of hierarchical sandwich structures with various numbers of unit cells under three-

point bending loads, namely, (1) n 2 w = 1 , n 2 
l 

= 5 , n 1 
l 

= 5 ; (2) n 2 w = 1 , n 2 
l 

= 5 , n 1 
l 

= 10 ; (3) n 2 w = 1 , n 2 
l 

= 10 , n 1 
l 

= 5 ; (4) n 2 w = 1 ,

n 2 
l 

= 10 , n 1 
l 

= 10 . The corresponding three-dimensional failure mechanism map is shown in Fig. 15 demonstrating the effect

of the numbers of single-cell on the failure modes. As shown in Fig. 15 , the number of the 1 st or 2 nd order unit cell affects

the slenderness ratio of the 1 st order lattice truss and the distribution of failure mode location. 

The area enclosed by the threshold of each failure mode constitutes the failure mechanism map. The occurrence of a

particular failure mode is directly related to the area occupied by the failure mode. The five failure modes where the face

sheet wrinkling of the 2 nd order lattice truss is the dominant failure mode is shown in Fig. 15 (a) which compares the

volume size of each failure mode in the failure mechanism map. In addition, grey area in this figure indicates the face

sheet wrinkling of the 1 st order lattice truss. Namely, the dimensionless parameter t f / l c satisfies less than 0.25, and the

corresponding thickness of 2 nd order face sheets is relatively small. Based on this observation, this failure mode will be

observed during three-point bending. Similarly, core member buckling of the 2 nd order lattice truss occurs in some cases

where the parameter ratio r c / l c is less than 0.015. 

As shown in Fig. 15 (b), the face sheet crushing of the 1 st order lattice truss vanishes with an increase in the number

of 1 st order pyramidal unit cells. Fig. 15 (c) and (d) support the same observation. The face sheet wrinkling of 2 nd order

lattice truss is mainly caused by localized bulking of face sheets of the 2 nd order pyramidal truss between adjacent nodes.

Fig. 15 (a) through 15 (d) suggest that the face sheet wrinkling of 2 nd order lattice truss can be regarded as a dominate failure

mode under three-point bending loads. The reason is that the 2 nd order lattice truss can be regarded as a slender rod when

the parameter ratio r c / l c is less than 0.15. Furthermore, Fig. 15 (a)–(d) show that core member buckling (CE) of the 2 nd order

lattice truss becomes a factor when the parameter value r c / l c is minimum. By comparing the volume size of possible failure

mode in Fig. 15 , this failure mode is very unlikely to appear. 

6. Conclusions 

In this paper, we propose the concept of an ideal ultralight weight sandwich materials and introduce the pyramidal–

pyramidal topological configuration for hierarchical sandwich structures. The mechanical response and failure of the

pyramidal–pyramidal 2 nd order lattice truss structures under different quasi-static loading conditions were investigated

through analytical and numerical methods. In addition, the effect of the cross-sectional characteristics of the lattice truss on

the mechanical properties of sandwich structures was explored. The out-of-plane compressive strength of sandwich struc-

tures from other literatures was compared to that of the hierarchical pyramidal–pyramidal sandwich materials in this paper.

The results indicated a good correlation between analytical predictions and FE simulations. Based on the proposed con-

cept of ideal ultralight weight sandwich materials, the mechanical properties of hierarchical structures were shown to have

significant advantages compared to the 1 st order sandwich structures. Also by comparing the hierarchical structures from

the literature to the proposed hierarchical sandwich structure, we highlighted the superior mechanical performance of the

pyramidal–pyramidal sandwich materials. 
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Appendix 1. Relative density 

The relative density of the pyramidal unit cell with various types of cross-sections is described in Table A-2 . For solid

and hollow pyramidal lattice cores, A m is the cross-sectional area of the truss member, and the mass of the core M is

equivalent to M = 4 l A m ρ . The mass of the hierarchical pyramidal core can be calculated as M = 4 l( A m ρ + A f ρ f ) where A f is

the cross-sectional area of foam-core. 

Appendix 2. The equivalent out-of-plane compressive stiffness of the uniform section lattice trusses 

According to the definition of the out-of-plane compressive stiffness and non-dimensional parameter, the compressive

stiffness and non-dimensional parameters of sandwich panels with three different cross-sectional shapes are derived in

Table A-3 . The relevant geometrical dimensions of various types of cross-sections are shown in Fig. 3 , and the corresponding

abbreviation for parameters in Table A-3 can be expressed as: 

f ( b, b 1 , h, h 1 ) = ( bh − b 1 h 1 ) l 
2 sin 

2 ω + 

(
b h 3 − b 1 h 1 

3 
)
cos 2 ω 

f ( R, r ) = l 2 sin 
2 ω 

(
R 2 − r 2 

)
+ 3 

(
R 4 − r 4 

)
cos 2 ω 

f ( a, a 1 ) = 2 l 2 
(
a 2 − a 2 1 

)
sin 

2 ω + 

(
a 4 − a 4 1 

)
cos 2 ω 

f ( b i , h i ) = ( b 4 h 4 − b 3 h 3 + b 2 h 2 − b 1 h 1 ) l 
2 sin 

2 ω + 

(
b 4 h 

3 
4 − b 3 h 

3 
3 + b 2 h 

3 
3 − b 1 h 

3 
3 

)
cos 2 ω 

f ( r 1 , r 2 , r 3 , r 4 ) = 

(
r 2 4 − r 2 3 + r 2 2 − r 2 1 

)
l 2 sin 

2 ω + 3 
(
r 4 4 − r 4 3 + r 4 2 − r 4 1 

)
cos 2 ω 

f ( a 1 , a 2 , a 3 , a 4 ) = 2 l 2 
(
a 2 4 − a 2 3 + a 2 2 − a 2 1 

)
sin 

2 ω + 

(
a 4 4 − a 4 3 + a 4 2 − a 4 1 

)
cos 2 ω 

(A-1) 

Appendix 3. The equivalent out-of-plane compressive property 

3.1. The external force of each pyramidal lattice truss 

Under the out-of-plane compressive loading F along the y -axis, as the pyramidal unit cell is symmetrical, the force along

each lattice strut is the same, so the force analysis is performed on any single strut. The vertical downward small dis-

placement δ is generated by the external force F . The axial and tangent displacement components along the single strut

are δA = δ sin ω and δS = δ cos ω respectively. The axial displacement component δA is generated by the axial force F A , and
the tangent displacement component δS is produced by the tangent force F S and bending moment M . The corresponding

external force components can be obtained by means of the basic mechanics of materials formulas as: 

F A = 

( EA ) e 
l 

δ cos ω (A-2) 

F S = 

12 ( EI ) e 
l 3 

δ sin ω (A-3) 

M = 

6 ( EI ) e 
l 2 

δ sin ω (A-4) 

The total external force F is calculated by F = F A sin ω + F S cos ω. 

3.2. The equivalent out-of-plane compressive stiffness 

3.2.1. The lateral compressive load on a quarter of a unit cell 

From the schematic of the pyramidal unit cell in Fig. 2 , the symmetrical load F is applied to the y -axis of the unit cell

sandwich structure. Due to the symmetry of the structure, the displacement on the mid-section of the unit cell is zero. As-

suming that the left and right sides of the unit cell have small displacement δ, a quarter of a unit cell is considered as the
force analysis object. Fig. 4 (a) shows the free-body-diagram of the unit cell under in-plane compression. Under the premise

of small deformation, it is considered that the contribution of axial deformation caused by the axial force and tangential

deformation caused by the shear and bending moment contribute to the small deformation δ. The force-displacement rela-

tionship then can be obtained using the deformation compatibility considerations and equilibrium formulation of the partial

unit. 

The axial and tangential displacement components of the truss member can be obtained on the basis of the geometrical

relationship where their corresponding expressions are δA = δcos β and δS = δsin β , respectively. The axial displacement δA 
is generated by the axial force F A and the tangential displacement component δS is induced by the shear force F S and the
bending moment M . The boundary conditions at both ends of the truss member are assumed to be clamped. The corre-

sponding expression of the axial force, shear force and bending moment of a single truss can be obtained by means of the

basic mechanics of materials formulas and the boundary condition of the lattice truss as: 

F A = 

( EA ) e 
l 

δ cos β (A-5) 
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F S = 

12 ( EI ) e 
l 3 

δ sin β (A-6)

M = 

6 ( EI ) e 
l 2 

δ sin β (A-7)

The external force on face sheet of the partial unit cell F f which induces the existed small displacement δ can be obtained

as: 

F f = 

( EA ) f 
2 l cos β

δ (A-8)

where ( EA ) f denotes the equivalent compressive stiffness of the face sheet of the unit cell. 

The end force of the bottom face sheet F d can be obtained according to the force equilibrium equations as follows. 

F d = F A cos β+ F S sin β + F f (A-9)

Substituting Eqs. (A-5), (A-6) and (A-8) into Eq. (A-9) , the end force can be further simplified as: 

F d = 

(
( EA ) e l 

2 cos 2 β + 12 ( EI ) e sin 
2 β

l 3 
+ 

( EA ) f 
2 l cos β

)
δ (A-10)

The magnitude of the end force of the top face sheet F u equals to that of the external force on face sheet of the partial

unit cell F f . Moreover, the magnitude of the resultant in-plane compressive force of the unit cell is twice the sum of the end

force of the both face sheets and can be expressed as: 

F = 2 F u + 2 F d (A-11)

Substituting Eqs. (A-8) and (A-10) into Eq. (A-11) , the resultant force can be further simplified as: 

F = 

2 ( EA ) f 
l cos β

δ + 

2 ( EA ) e l 
2 cos 2 β + 24 ( EI ) e sin 

2 β

l 3 
δ (A-12)

In Eq. (A-12) , the first term indicates the external force F f on the face sheets, and the second term denotes the external

force F c on the two truss members. The ratio of F c and F f is defined as ξ p and this non-dimensional parameter is 

ξp = 

π r 2 c l 
2 
c cos 

2 β + 2 π r 4 c sin 
2 β

2 l 3 c t f 
(A-13)

The axial force of a partial unit cell F A is 

F A = ( 1 + ξp ) F f (A-14)

From the above analysis, the proportion of the load on the 2 nd order pyramidal lattice truss will change with the geo-

metric dimensions under in-plane compression. The magnitude of the external force F c will reach the collapse strength of

the parent material resulting the failure mode on the 2 nd order truss. 

3.2.2. The bending load on a quarter of a unit cell 

In order to obtain the equivalent flexural rigidity of the unit cell, the bending moment M is applied to the lateral surface

of the hierarchical pyramidal unit cell. Due to the structural symmetry, the displacement and rotation angle of the mid-

sections in the unit cell is zero. The slight rotation angle θ induced by the bending moment acts on the side of the structure.

In this analysis, a quarter of the hierarchical pyramidal unit cell is considered as a force analysis object. Under the premise of

small deformations, the deformation of pyramidal lattice core which has an effect on the bending deformation of the general

sandwich structure is also considered. Therefore, both the face sheets and the lattice core will be subjected to the bending

moment. According to the deformation compatibility conditions and equilibrium formulation, the free-body diagram of a

quarter of a unit cell under bending moment is shown in Fig. 4 (b). For the condition, at which one end of the structure is

fixed and the other is subjected to a bending moment, the displacement and rotation angle on the free end of the sandwich

panels can be derived by means of the mechanics of materials as: 

δ= 

1 

2 
θ l cos β (A-15)

According to the geometric relationship between the vertical, axial and tangential displacement components of the truss,

the axial and tangential displacements can be expressed as δA = δcos θ and δS = δsin θ , respectively. The axial force can be
derived from the mechanics of materials and be expressed as: 

F A = 

1 
( EA ) e θ cos θ cos β (A-16)
2 
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The tangential displacement δS is induced by the shear force F S and bending moment M which are applied to the end of

the truss. From the basic mechanics of materials formulas, the tangential displacement is: 

δS = 

M c l 
2 

2 ( EI ) e 
− F S l 

3 

3 ( EI ) e 
(A-17) 

Based on the continuous displacements, the rotation angle θ of the truss end is equal to that of the face sheet. The

rotation angle of the truss end which is induced by both the shear force F S and the bending moment M c . With the aid of

basic mechanics of materials formulas, the rotation angle is: 

θ= 

M c l 

(EI) e 
− F s l 

2 

2 (EI) e 
(A-18) 

By combination of the expression of the tangential displacement component of the truss and Eqs. (A-17), (A-18) , the

expression for the shear force and the bending moment can be obtained as: 

F S = 

6 ( EI ) e 
l 2 

( 1 − cos β sin θ ) θ (A-19) 

M c = 

( EI ) e 
l 

( 4 − 3 cos β sin θ ) θ (A-20) 

The shear force of face sheets which is induced by the lattice core is defined as F cs . Using the equilibrium equations, the

shear force can be presented as: 

F cs = F A cos θ − F S sin θ (A-21) 

Substituting Eqs. (A-16), (A-19) into Eq. (A-21) , the shear force can be further simplified as: 

F cs = 

1 

2 
( EA ) e θ cos βcos 2 θ − 6 ( EI ) e 

l 2 
θ
(
sin θ − cos βsin 

2 θ
)

(A-22) 

From the force relationship, the rotation angle θ is determined by the shear force F cs of the lattice core, the bending

moment M c on the truss rod and external bending moment M d . According to the basic mechanics of materials formulas, the

corresponding expression of the rotation angle is: 

θ = 

2 M d l cos β

( EI ) m 

− 2 M c l cos β

( EI ) m 

+ 

F cs l 
2 cos 2 β

( EI ) m 

(A-23) 

where ( EI ) m is the flexural rigidity of the face sheet relative to the neutral layer. 

Substituting Eqs. (A-20), (A-22) into Eq. (A-23) , the external bending moment can be simplified as: 

M d = 

( EI ) m 

2 l cos β
θ + 

[ 
f 1 ( β, θ ) 

( EI ) e 
l 

+ f 2 ( β, θ ) l ( EA ) e 

] 
θ (A-24) 

where f 1 ( β , θ ) and f 2 ( β , θ ) are expressed as 4 − 6 cos β sin θ + 3 cos 2 βsin 2 θ and 1 
4 cos 

2 βcos 2 θ , respectively. In Eq. (A-24) ,
the first term represents the contribution of the bottom face sheet to the bending moment, and the second term is the

contribution of the lattice core to the bending moment. 

The bending moment M u needs to be applied when the rotation angle θ is generated at the end of the upper panel.

Based on the basic mechanics of materials formulas, the bending moment M u is 

M u = 

( EI ) m 

2 l cos β
θ (A-25) 

The external applied total bending moment is twice the sum of the bending moments M d and M u , namely, M =
2 M d + 2 M u . Substituting Eqs. (A-24) and (A-25) into this expression, the total bending moment can be further expressed

as: 

M = 

2 ( EI ) m 

l cos β
θ + 

[ 
f 1 ( β, θ ) 

( EI ) e 
l 

+ f 2 ( β, θ ) l ( EA ) e 

] 
θ (A-26) 

where ( EI ) m = E b c t f 
3 / 12 + ( l c sin ω + t f ) 

2 
E b c t f / 4 and the equivalent flexural rigidity of the unit cell ( EI ) e is ( EI ) e =

2 M l c cos β/θ . 

3.2.3. The equivalent out-of-plane compressive strength 

3.2.3.1. The shear load on a quarter of a unit cell. The in-plane shear load F is applied on a pyramidal unit cell along the

x -axis, shown in Fig. 4 (c). The derivation process of this unit cell under shear load is similar to the method in Section 3.1 of

Appendix 3 . The corresponding axial force F A and external shear load F can be respectively expressed as: 

F A = 

(EA ) e 
l 

δ cos α (A-27) 
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F = 

4 ( EA ) e l 
2 cos 2 α + 48 ( EI ) e sin 

2 α

l 3 
δ (A-28)

where the non-dimensional parameter ξα can be expressed as: 

ξα = 

( EA ) e l 
2 cos 2 α + 12 ( EI ) e sin 

2 α

( EA ) e l 
2 cos α

(A-29)

Therefore, the relationship between the external shear load and axial force is shown in Eq. (13) . 

3.2.3.2. The uniform section lattice trusses. The pyramidal lattice trusses with uniform sections include solid, hollow and

foam-core sandwich struts with different cross-section shapes. Sandwich structures with solid/hollow lattice trusses be-

long to non-hierarchical structures. However, the sandwich structures with foam-core lattice trusses are typical kinds of

hierarchical structures. The two dominant failure modes of the pyramidal lattice truss that occur with an increase in the

out-of-plane compressive loads include core member buckling of the pyramidal lattice truss and core member crushing of

the pyramidal lattice core. 

The critical Euler buckling load of the truss in the case of core member buckling of the pyramidal lattice truss ( Hearn,

1997 ) can be written as: 

F A = 

π2 ( EI ) e 
μ2 l 2 

(A-30)

where F A and ( EI ) e respectively represent the axial force and the equivalent flexural rigidity of the lattice truss. l is the

length of the lattice truss. The parameter μ is assumed to be equal to 0.5 considering both ends of the strut to be clamped.

Substituting Eq. (A-30) into Eqs. (13) and (16) , the closed-form expression of equivalent out-of-plane compressive strength

of the unit cell can be obtained as: 

σ̄ = 

8 ξω π2 ( EI ) e 
l 4 cos 2 ω 

(A-31)

In the case of core member crushing of the pyramidal lattice core, the failure mode is characterized by crushing of the

lattice truss members. In this study, the mechanical properties of carbon-epoxy are used for establishing the material model

in the numerical analysis. The elastic modulus and compressive strength of the parent material are 10 0 GPa and 80 0 MPa,

respectively. The axial force of the lattice truss can be expressed as: 

F A = σ f A m (A-32)

where the corresponding strength at which the crushing failure of the parent material occurs is σ f and the cross-sectional

area of the lattice truss is A m . Substituting Eq. (A-32) into Eqs. (13) and (16) , the equivalent out-of-plane compressive

strength can be further simplified as: 

σ̄ = 

2 ξω σ f A m 

l 2 cos 2 ω 

(A-33)

Substituting the equivalent flexural rigidity ( EI ) e of pyramidal truss members and the dimensionless parameter ξω of

pyramidal lattice trusses with various sectional configurations into Eqs. (A-31) and (A-33) , the corresponding equivalent out-

of-plane compressive strength of pyramidal unit cell under two failure modes can be obtained. Table 1 lists the compressive

strength of pyramidal sandwich panels with three cross-sectional properties which include the solid, hollow and foam-core

truss members and each cross-sectional property consists of three cross-section shapes (i.e. rectangle, circle and equilateral

triangle). 

3.3. Comparative out-of-plane compressive properties 

3.3.1. Stiffness of the uniform cross-sectional lattice trusses 

The out-of-plane compressive stiffness of pyramidal sandwich structure with various truss members of various cross

sections can be expressed succinctly as 

Ē = 

√ 

2 ξω E 

4 
ρ̄ (A-34)

where the parameter ρ denotes the relative density of the 1 st order pyramidal unit cell and the corresponding expression

has been defined in Table 3 . 

In Eq. (A-34) , the dimensionless parameter ξω is the shape factor, whose expressions for various solid and hollow cross-

sectional lattice struts with arbitrary sectional shape is listed in Table A-3 . These expressions typically contain a leading

angular sine term which is same for all cross sections and an additional cross section dependent function. For the stretch

dominated lattice cores, the cross-sectional dimensions of struts are much smaller than the length of the truss members

which diminishes the magnitude of second function making ξω ≈ sin ω. This suggests that the out-of-plane compressive

stiffness of the pyramidal sandwich panels with various lattice truss cross sections are nearly equal for similar relative

density. 
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3.3.2. Strength of the uniform cross-sectional lattice trusses 

3.3.2.1. Core member buckling of the pyramidal lattice trusses. For the pyramidal lattice struts with circular section, equivalent

out-of-plane strength of pyramidal lattice structure with core member buckling is expressed as a function of relative density.

The relative density itself depends on the geometry of the structural members. For hollow circular cross sections, the inner

(r) and outer radii (R) can be related using a proportional factor g h leading to r = g h R . The geometry of the foam core

consists of several concentric circles of radii r i which can be related sequentially with proportionality constants g f leading to

the set r i = g f r i +1 . These non-dimensional constants are useful in expressing equivalent compressive strengths of struts of

similar lengths and cross sections. This can be achieved by defining the non-dimensional factors f h and f m . Here f h is defined

as a function of the proportional factor g h whereas f m is defined as a function of the proportional factor g f . Substituting the

corresponding parameters of circular section which include the dimensionless diameter ξω ( Table A-3 ) and the relative

density of the pyramidal unit cell ( Table A-2 ) into the equivalent buckling strength of the pyramidal unit cell with circular

section ( Table 1 ), these expressions come out to be (see Table 3 ): 

f h ( g h ) = (1 + g 2 
h 
) / (1 − g 2 

h 
) 

f m 

(
g f 

)
= (1 − g 4 

f 
+ g 8 

f 
− g 12 

f 
) / 

(
1 − g 2 

f 
+ g 4 

f 
− g 6 

f 

)2 (A-35) 

From the three formulas in Table 3 , the structural functions f h ( g h ) and f m ( g f ) determine the buckling resistance of the

circular sectional struts. To ensure the same relative density, the cross-sectional area of the struts with hollow and foam-

core sections need to be consistent. 

πR 2 
(
1 − g 2 h 

)
= π r 2 4 

(
1 − g 2 f + g 4 f − g 6 f 

)
(A-36) 

Then, in order to establish the connection between the wall thickness of two lattice trusses, the wall thickness of the

hollow section is x times the thickness of outer wall of the foam-core pyramidal struts 

R ( 1 − g h ) = x r 4 
(
1 − g f 

)
(A-37) 

Substituting Eq. (A-37) into Eq. (A-36) , the buckling strength coefficient f h ( g h ) can be obtained 

f h ( g h ) = 

1 −g 2 
f 
+ g 4 

f 
−g 6 

f 

2 x 2 (1 −g f ) 
2 

+ 

x 2 (1 −g f ) 
2 

2(1 −g 2 
f 
+ g 4 

f 
−g 6 

f 
) 

(A-38) 

The two buckling strength coefficients f h ( g h ) and f m ( g f ) versus the proportional coefficient g f are shown in Fig. 9 (a). For a

case where the thickness of hollow struts is two times that of foam hollow sandwich strut, the critical buckling load of the

foam hollow sandwich is greater than that of the hollow struts. The buckling capacity is shown to be a function of the ratio

g f . Here, some case-study parameters are taken as an example to investigate the relationship between the sectional geomet-

ric parameters and buckling resistance of the lattice struts. The out-of-plane compressive strength versus relative density

curve is shown in Fig. 9 (b) for x = 2 and g f = 0 . 8 . Similar procedure can be used for non-circular cross sections. The out-of-

plane compressive strength of triangular section truss members versus relative density curve is shown in Fig. 9 (c) for x = 3

and g f = 0 . 8 . Due to the different aspect ratio of rectangular section, the two buckling strength coefficients of the rectangular

section lattice struts cannot be represented by a single parameter and the mechanical properties of rectangular sections are

usually simplified to square sections ( Ashby, 2005 ). The parametric form of the buckling strength of the rectangular section

lattice struts are same with those of circular section truss members. Fig. 9 (d) shows the out-of-plane compressive strength

of sandwich structures with rectangular section lattice struts versus relative density curve when x = 2 and g f = 0 . 7 . 

3.3.2.2. Core member crushing of the pyramidal lattice trusses. The out-of-plane compressive strength of the pyramidal lattice

structure with various cross-sections can be expressed as a function of relative density (by substituting the relative density

in Table A-2 into the equivalent crushing strength of the lattice truss in Table 1 ) 

σ= 

ξω σ f √ 

2 
ρ (A-39) 

This expression is similar to the equivalent out-of-plane compressive stiffness in Eq. (A-34) . When the core member

crushing failure mode occurs, the corresponding equivalent out-of-plane compressive strength is almost unaffected by the

cross-section of the lattice truss. 

Fig. 9 (a)–(c) show that the buckling failure mode of lattice struts with various cross-sections are in the lower relative

density area. However, the core member crushing occurs in the higher relative density area. This is because for the core

member buckling failure mode, the equivalent out-of-plane compressive strength of sandwich panels of lattice struts with

various cross-sections is in a quadratic relationship with the relative density. For the core member crushing, the compressive

strength of pyramidal lattice sandwich panels with various sectional properties scale linearly to relative density. For a cross-

section with the same shape, the critical relative density corresponding to the intersection of buckling and crushing is the

highest for the sandwich panels with solid section lattice truss and the buckling resistance of the solid lattice core is the

weakest. However, for the hollow lattice truss, as its second moment of area increases, the corresponding flexural rigidity

and the buckling resistance of the hollow lattice struts increase as well. For the foam-core sandwich struts, the buckling

resistance is related to the wall thickness and the proportionality coefficient g f of the inner and outer walls where the wall
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thickness has the greatest effect among the other factors. When the outer-wall thickness of foam-core sandwich truss is less

than one half of the wall thickness of the hollow structure, the advantages of the foam-core sandwich structure in buckling

resistance can be shown for any coefficient of proportionality. When the outer wall thickness of the foam-core sandwich

truss is greater than two-thirds of the wall thickness of the hollow truss, the buckling resistance of the foam-core sandwich

truss is less than that of the hollow truss because of the smaller relative moment of inertia of the foam-core sandwich truss

compared to the hollow truss with the same relative density. 

Appendix 4. The equivalent shear property 

4.1. The equivalent shear stiffness of the uniform cross-sectional lattice trusses 

The uniform cross-section lattice trusses consist of solid, hollow and foam-core sandwich struts with three cross-sectional

shapes. The corresponding expressions of the equivalent compressive stiffness and equivalent flexural rigidity of truss mem-

bers with various cross-sectional shapes are derived in Table A-4 . Substituting the equivalent compressive stiffness ( EA ) e
and the equivalent flexural rigidity ( EI ) e of lattice trusses with various sectional configurations into Eqs. (26) and (29) , the

dimensionless parameter ξα and the shear stiffness of the unit cell G for pyramidal struts with different cross-sectional

shapes are listed in Table 4 . For the sake of brevity, the dimensionless parameter ξα in the expression of the shear stiffness

is not further expanded ( Table 5 ). 

4.2. The equivalent shear strength 

4.2.1. The pyramidal–pyramidal hierarchical lattice trusses 

4.2.1.1. Face sheet wrinkling (FW) of the 2 nd order lattice trusses. According to the basic mechanics of materials formulas, the

critical force of the face sheets is 

F f = 

π2 ( EI ) e 

2 μ2 l c 
2 
cos 2 β

(A-40)

where the parameter is μ = 0 . 5 , and the equivalent flexural rigidity of the face sheets is ( EI ) e = Eb t f 
3 / 12 . 

Substituting Eq. (A-15) into Eq. (A-11) , the axial force of the partial unit cell is 

F A = 

( 1 + ζp ) π2 Eb t f 
3 

6 l c 
2 
cos 2 β

(A-41)

4.2.1.2. Face sheet crushing (FC) of the 2 nd order lattice trusses. The crushing strength of the face sheets is σ f , and the corre-

sponding external force of the face sheets is Eq. (24) . Substituting Eq. (24) into Eq. (A-11) , the axial force of the partial unit

cell is 

F A = ( 1 + ζp ) 2 b t f σ f (A-42)

4.2.2. The uniform cross-sectional of lattice trusses 

Here, the failure modes of the unit cell under shear loads are similar to those under the out-of-plane compressive loads

in Section 3.5.2 . There will be two failure modes in the pyramidal sandwich structures under shear load: (1) core member

buckling of the pyramidal lattice core; (2) core member crushing of the pyramidal lattice truss. 

4.2.2.1. Core member buckling of the pyramidal lattice trusses. Substituting the buckling critical load of struts described in

Table 2 into Eq. (33) , the equivalent out-of-plane shear strength of the pyramidal unit cell can be expressed as: 

τ = 

8 ξαπ2 (EI) e 
l 4 ( sin ϕ + cos ϕ) cos 2 ω 

(A-43)

4.2.2.2. Core member crushing of the pyramidal lattice trusses. The crushing strength of the parent material which is com-

posed of the sandwich panels is defined as σ f , and A m is the cross-sectional area of the truss member. The axial force

corresponding to the collapse of the strut in the truss members is 

F A = σ f A m (A-44)

Substituting Eq. (A-44) into Eq. (33) , the equivalent shear strength of the unit cell is 

τ̄ = 

2 ξασ f A m 

l 2 ( sin ϕ + cos ϕ ) cos 2 ω 

(A-45)

The equivalent flexural rigidity ( EI ) e and the dimensionless parameter ξα are the only two variables in the expression of

the equivalent shear strength of the pyramidal unit cell under buckling and crushing failure modes. Therefore, the equivalent

shear strength of pyramidal sandwich structures with various uniform cross-sectional shapes can be deduced by substituting

corresponding expressions as listed in Table A-4 and Table 4 . 
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Table A-1 

The specification of the specimens used for compressive property simulations (mm). 

Relative density ρ(%) Structural topologies Truss I ( l × b f × t f ) Truss II ( l c × r c ) 

0.102 1 st order 62.91 ×2.49 ×0.236 / 

2 nd order 62.91 ×2.49 ×0.1 1.33 ×0.0578 

0.122 1 st order 72.48 ×2.87 ×0.326 / 

2 nd order 72.48 ×2.87 ×0.14 1.50 ×0.071 

0.133 1 st order 103.3 ×4.09 ×0.506 / 

2 nd order 103.3 ×4.09 ×0.21 2 ×0.12 

0.166 1 st order 72.48 ×4.30 ×0.326 / 

2 nd order 72.48 ×4.30 ×0.14 1.5 ×0.071 

0.221 1 st order 103.3 ×8.18 ×0.506 / 

2 nd order 103.3 ×8.18 ×0.21 2 ×0.12 

Table A-2 

The relative density of the pyramidal unit cell with various types of cross- 

sections. 

Sectional properties-relative densities ( ρ) 

Solid/hollow Foam core Rectangle Circle Regular triangle 
2 A m 

l 2 cos 2 ω sin ω 

2( A m + A f ρ f /ρ) 

l 2 cos 2 ω sin ω 
2 bh 

l 2 cos 2 ω sin ω 
2 πR 2 

l 2 cos 2 ω sin ω 

√ 
3 a 2 

2 l 2 cos 2 ω sin ω 

Table A-3 

The equivalent compressive stiffness of the pyramidal unit cell with various types of cross-sections. 

Sectional properties Dimensionless parameter ( ξω ) Equivalent compressive stiffness ( E / MPa ) 

Solid rectangle sin ω + 
h 2 cos 2 ω 
l 2 sin ω 

2 ξω Ebh sin 
2 ω 

l 2 cos 2 ω 

Hollow rectangle sin ω + 
( b h 3 −b 1 h 1 

3 
) cos 2 ω 

( bh −b 1 h 1 ) l 2 sin ω 
2f( b, b 1 ,h, h 1 ) E sin ω 

l 4 cos 2 ω 

Foam rectangle sin ω + 
( b 4 h 

3 
4 −b 3 h 

3 
3 + b 2 h 3 3 −b 1 h 

3 
3 ) cos 

2 ω 

( b 4 h 4 −b 3 h 3 + b 2 h 2 −b 1 h 1 ) l 2 sin ω 
2 Ef( b i , h i ) sin ω 

l 4 cos 2 ω 

Solid circle sin ω + 
3 R 2 cos 2 ω 
l 2 sin ω 

2 πξω E R 
2 sin 2 ω 

l 2 cos 2 ω 

Hollow circle sin ω + 
3( R 2 + r 2 ) cos 2 ω 

l 2 sin ω 
2 πEf( R,r ) sin ω 

l 4 cos 2 ω 

Foam circle sin ω + 
3( r 4 4 −r 4 3 + r 4 2 −r 4 1 ) cos 

2 ω 

( r 2 
4 
−r 2 

3 
+ r 2 

2 
−r 2 

1 
) l 2 sin ω 

2 Ef( r 1 , r 2 , r 3 , r 4 ) π sin ω 
l 4 cos 2 ω 

Solid triangle sin ω + 
a 2 cos 2 ω 
2 l 2 sin ω 

√ 
3 ξω E a 

2 sin 2 ω 
2 l 2 cos 2 ω 

Hollow triangle sin ω + 
( a 2 + a 2 1 ) cos 2 ω 

2 l 2 sin ω 

√ 
3 f( a, a 1 ) E sin ω 
4 l 4 cos 2 ω 

Foam triangle sin ω + 
( b 4 h 

3 
4 −b 3 h 

3 
3 + b 2 h 3 3 −b 1 h 

3 
3 ) cos 

2 ω 

( b 4 h 4 −b 3 h 3 + b 2 h 2 −b 1 h 1 ) l 2 sin ω 

√ 
3 Ef( a 1 , a 2 , a 3 , a 4 ) sin ω 

4 l 4 cos 2 ω 

Table A-4 

The equivalent compressive stiffness and equivalent flexural rigidity of the lattice strut with various 

types of cross-sections. 

Sectional properties Equivalent compressive stiffness ( EA ) e Equivalent flexural rigidity ( EI ) e 

Solid rectangle Ebh Ebh 3 /12 

Hollow rectangle E( bh − b 1 h 1 ) E( b h 3 − b 1 h 1 
3 
) / 12 

Foam rectangle E( b 4 h 4 − b 3 h 3 + b 2 h 2 − b 1 h 1 ) E( b 4 h 
3 
4 − b 3 h 

3 
3 + b 2 h 

3 
2 − b 1 h 

3 
1 ) / 12 

Solid circle E πR 2 E πR 4 /4 

Hollow circle Eπ( R 2 − r 2 ) Eπ( R 4 − r 4 ) / 4 

Foam circle Eπ( r 2 4 − r 2 3 + r 2 2 − r 2 1 ) Eπ( r 4 4 − r 4 3 + r 4 2 − r 4 1 ) / 4 

Solid triangle 
√ 

3 E a 2 / 4 
√ 

3 E a 4 / 96 

Hollow triangle 
√ 

3 E( a 2 − a 2 1 ) / 4 
√ 

3 E( a 4 − a 4 1 ) / 96 

Foam triangle 
√ 

3 E( a 2 4 − a 2 3 + a 2 2 − a 2 1 ) / 4 
√ 

3 E( a 4 4 − a 4 3 + a 4 2 − a 4 1 ) / 96 

 

4.3. Comparative shear properties 

4.3.1. Stiffness of the uniform cross-sectional lattice trusses 

The equivalent shear stiffness of pyramidal lattice sandwich structure with the uniform cross-section can be expressed

as a function of relative density, and the corresponding unified expression is 

G = ξαE cos αsin 
2 ω ̄ρ (A-46) 



Q. Wu, A. Vaziri and M.E. Asl et al. / Journal of the Mechanics and Physics of Solids 125 (2019) 112–144 143 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where the dimensionless parameter ξα in Eq. (A-46) under different conditions has been given in Table 4 . Due to the fact

that the ratio of the length to diameter of the truss members is larger, the dimensionless parameter of various sectional

types is almost the same. 

4.3.2. Strength of the uniform cross-sectional lattice trusses 

4.3.2.1. Core member crushing of the pyramidal lattice trusses. The relationship between the equivalent shear strength of var-

ious types of sandwich structures and relative density has the following form 

τ̄zy 
σ f ρ̄

+ 

τ̄zx 
σ f ρ̄

= ξα sin ω (A-47)

Since the equivalent shear strength varies with the angle ϕ between the external load and the x -axis, the curve which

shows equivalent shear strength versus relative density cannot describe the shear strength of pyramidal sandwich unit cell

completely. In Eq. (A-47) , if the first term represents loading along y -axis, and the second term along x -axis, then the cor-

responding failure envelop curve is shown in Fig. 13 (a). This figure describes that the distance between the points of failure

envelop curve and initial point equals the magnitude of shear strength. The angle between the x -axis and the connecting

line of these two points is defined as ϕ. In addition, the equivalent shear strength changes periodically with the angle with

period π /2, which is consistent with the periodicity of the pyramidal sandwich structure. When ϕ satisfies ϕ = kπ/ 2 ( k be-

longing to a natural number), the magnitude of shear strength is maximum. Moreover, the angle satisfies ϕ = ( 2 k + 1 ) π/ 4

( k is a natural number), and the corresponding magnitude of the equivalent shear strength is minimum. 

4.3.2.2. Core member buckling of the pyramidal lattice trusses. For pyramidal lattice truss members with the rectangular solid

cross-sectional property, the ratio of length to width satisfies the equation h = f b. The failure equation is therefore, 

τ̄zy 
E ρ̄2 

+ 

τ̄zx 
E ρ̄2 

= 

1 

24 
ξαπ2 f (A-48)

For the rectangular hollow section struts, the inner and outer wall thickness satisfies: h 1 = f h b 1 , h 1 = f h h , b 1 = f h b. The

corresponding failure equation is obtained as: 

τ̄zy 
E ρ̄2 

+ 

τ̄zx 
E ρ̄2 

= 

1 

24 
ξαπ2 f ( f h ) (A-49)

where the parameter in Eq. (A-49) is f ( f h ) = f h ( 1 + f 2 
h 
) / (1 − f 2 

h 
) . 

For the rectangular foam-core sandwich struts, the geometric parameters satisfies: b i = f f b i +1 , h i = f f h i +1 , h i = f f b i ( i = 1,

2, 3…) leading to, 

τ̄zy 
E ρ̄2 

+ 

τ̄zx 
E ρ̄2 

= 

1 

24 
ξαπ2 f ( f f ) (A-50)

where the parameter in Eq. (A-50) is f ( f f ) = f f ( 1 − f 4 
f 

+ f 8 
f 

− f 12 
f 

) / ( 1 − f 2 
f 

+ f 4 
f 

− f 6 
f 
) 
2 
. 

The structural function of the rectangular section is related to the ratio of length to width. To simplify the connection

between structural functions f ( f h ) and f ( f f ) a quadrate section is adopted to substitute the rectangular section, and to ensure

that the relative density of various structural forms remains the same. The wall thickness of hollow struts is x times than

that of the foam-core sandwich struts. For x = 2 , f f = 0 . 7 , the failure envelope curve of shear buckling strength is plotted in

Fig. 13 (b). For a set of parameters is x = 2 , f f = 0 . 8 , another set of parameters is x = 3 , f f = 0 . 8 . The corresponding failure

envelop curves of shear buckling strength with circular and triangular section properties are also shown in Fig. 13 (c) and

(d). From this figure, under the same cross-sectional shape of struts, the failure envelop curve of sandwich structures with

solid truss members encloses the smallest area. Thus, this type of lattice struts has the weakest anti-buckling property.

Meanwhile, for a given mass, the sandwich structure with foam-core lattice truss has stronger ability to resist buckling. 
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