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Abstract – One-dimensional slender bodies can be deformed or shaped into spatially complex
curves relatively easily due to their inherent compliance. However, traditional methods of fabri-
cating complex spatial shapes are cumbersome, prone to error accumulation and not amenable to
elegant programmability. In this letter, we introduce a one-dimensional origami based on attach-
ing Miura-ori that can fold into various programmed two- or three-dimensional shapes. We study
the out-of-plane displacement characteristics of this origami and demonstrate with examples, de-
sign of slender bodies that conform to programmed complex spatial curves. Our study provides a
new, accurate, and single actuation solution of shape programmability.
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The inherent compliance of slender structures makes
them easy to deform into complex spatial shapes. This
makes them the geometry of choice for a number of bio-
logical applications such as DNA scaffolds [1–4], microbial
appendages [5–7] and plant tendrils [8]. Many engineering
designs also seek to leverage this deformability in appli-
cations such as robotic grippers [9–12], deployable struc-
tures [13–16], medical implants [17,18], prosthetics [19]
and soft robotics [20,21]. However, biological structures
still show far greater shape flexibility, functionality and
deformation rates, transitioning between multiple shapes
over wide time scales from fast protein folding that takes
few microseconds [22] to very slow movements in kingdom
plantae [23]. Extracting such wide range of responses has
been challenging for man-made structures. However, abil-
ity to attain complex geometries is highly desirable since
it leads to an expansion of the design space and function-
ality. Typically one can obtain complex spatial curves
either through direct fabrication using conventional man-
ufacturing such as wire draw and metal forming or modern
additive manufacturing. These are difficult to adapt for
complicated spatial curves due to complexity of the fab-
rication setup for the conventional process and the com-
plexity of scaffolds, overhangs and sensitivity to process
parameters for additive manufacturing.

A typical alternative is to start from an easily avail-
able thin flat sheet and then crimp it repeatedly to
obtain the desired shape. Figure 1(a) shows a simple

example of such a geometry which can be obtained from
a straight reference configuration of a slender metallic
plate. In this case, multiple crimps (localized bending)
were used to shape the straight metallic plate into the
desired eight-pointed-star–like shape. While such local-
ized bending and twisting can be used to form a wide
range of shapes, this process, like the ones mentioned
earlier, is not reversible due to plastic deformation at
the folds and may cause fracture [24,25]. In addition,
from a fabrication standpoint, this is a multi-step pro-
cess with multiple sequential crimping operations. This
can lead to cumulative addition of deviations from the
desired shape (increasing error). In contrast, a single-
step fabrication technique in which the structure is cre-
ated by a single actuation event (mechanical, chemical,
thermal, etc.) is beneficial in terms of accuracy, speed
and simplicity. However, a single-step crimping would
require the use of specific die configurations consider-
ably restricting its generality. On the other hand, shape
memory alloys can be programmed into an initial desired
shape, which would then be restored through heat [26]
in a single step. However, programming the shape mem-
ory material into complex shapes would require specific
molds and chips to align with the desired configuration
and considerable thermal loads. Both of these processes
are therefore, very difficult to scale and adapt for spa-
tial curves. In contrast, a folding-based approach such as
origami where only the fold is made of actuating/stimuli
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Fig. 1: (Colour online) (a) Shaping a metal strip into an eight-
pointed–star shape through a sequential crimping. (b) A one-
dimensional origami that evolves into an eight-pointed–star
shape as it folds. (c) In the four-crease pattern, A and B creases
are aligned with the longitudinal direction of the origami and
creases C and D intersect with crease A with angles α1 and
α2, respectively. (d), (e): folding response of a four-crease pat-
tern. γ is the angle between crease B and plane XY and angle
φ represents the out-of-plane angle of the origami and is the
angle between the projection of line B on the plane XY and
the X -axis. The markers on the γ plot show the analytical re-
sults for α1 = α2 = 60◦. (f) Folding sequence of a four-crease
origami with α1 = 90◦ and α2 = 60◦. The first row shows a
valley folding (θ > 0◦) and the second row shows a mountain
folding (θ < 0◦).

responsive material can enable a wide range of shapes
and patterns using a single actuation event much more
conveniently [27,28].

In this letter, we introduce a one-dimensional slender
origami based on attaching Miura-ori [29] folds to form
a slender body which can fold from a flat reference state
into various programmed shapes which could be two- or
three-dimensional as desired. Figure 1(b) shows an exam-
ple of such one-dimensional slender origami made out of
paper, which evolves into the eight-pointed–star based on
a single folding action. The distinction from the crimping
technique is clear in this case, because, the origami, which
has one degree of freedom and a single folding action con-
trols the global shape.

To understand the folding of such slender origami into
complex shapes, we study the folding response of the
Miura-ori fold shown in fig. 1(c) in which angles α1 and α2

are not necessarily equal. Angle θ represents the origami
folding angle and varies from 0◦ (flat configuration) to the
maximum possible value of 90◦ (fully folded configuration

admissible for a pattern with α1 = α2), see fig. 1(c).
The angle θ = 1

2 (180◦ − θ′), where θ′ is the dihedral
angle between two facets sharing a longitudinal crease
line (A or B). A fixed right-handed Cartesian coordinate
system is attached to the origami structure with origin
located on the intersection of crease lines. In our analy-
sis, the X-axis is aligned with the crease line A and the
Z-axis is the bisector of the angle θ′. Angle γ is measured
between the XY plane and the crease line B and can vary
from −90◦ to 90◦ during the folding of the origami struc-
ture with the positive direction convention shown in the
figure. The angle φ is the angle between the X-axis and
the projection of crease B on the XY plane. This angle
can vary from −180◦ to 180◦ with the positive direction
convention shown in the figure. The Miura-ori, also known
as four-crease pattern, has only one degree of freedom [30].
Therefore, its configuration at any arbitrary folding level
can be fully defined by either γ, φ or θ.

The relationship between θ and γ or θ and φ is highly
non-linear and there are no available analytical solutions
for them. However, some numerical approaches or re-
stricted analytical solutions for the case of α1 = α2 are
available [12,31–33]. We simulated the folding of origami
in a commercially available software, SolidWorks (Das-
sault Systems, Vlizy-Villacoublay, France). The simula-
tions solve the rigid-body equations of motion for each
origami facet numerically to predict geometrically admis-
sible configurations [34]. These simulations estimate the
relation between angle θ and output parameters γ and
φ as the origami folds. Figure 1(d) shows the depen-
dence of γ on θ when α2 = 60◦ and α1 varies from 5◦

to 175◦. γ starts from 0◦ at θ = 0◦ and as the value
of θ approaches +90◦ or −90◦, γ goes back to zero after
passing through an extremum point. The folding proce-
dure stops at a folding angle corresponding to the contact
between facets. This maximum value of θ can be deter-
mined as a function of α1 and α2 (see Supplementary Ma-
terial Supplementarymaterial.pdf for the derivation of
this equation),

θmax = ±
(

90◦ − 1
2

cos−1

(
tan α2

tan α1

))
, (1)

where | tan α1| > | tan α2|. We can compare our numerical
simulations with the special case of α1 = α2 = α for which
a closed-form solution for γ as a function of θ is available
in the literature [12],

see eq. (2) on the next page

where k = 1 for θ ≥ 0◦ and k = −1 for θ < 0◦. Note
that from eq. (1), in this case, contact would occur only
when θ = ±90◦ which is the fully folded state. This is an
important practical case for flat folding design. The black
markers on the α1 = α2 = 60◦ curve, in fig. 1(d) indi-
cate the analytical results obtained from eq. (2), which
shows an excellent agreement with simulations. Inter-
estingly, fig. 1(d) also shows that the angle γ is an odd
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γ =

⎧⎪⎪⎨
⎪⎪⎩

2k cos−1

(
cos α√

1 − cos2 θ sin2 α

)
, for θ ≤ cos−1(

√
1 − cot2 α),

2π − 2k cos−1

(
cos α√

1 − cos2 θ sin2 α

)
, for θ > cos−1(

√
1 − cot2 α),

(2)

function of θ. Physically this indicates that reversing the
sign of θ (folding in opposite direction) merely changes
the direction but keeps the absolute value of γ constant.
Figure 1(e) shows the corresponding variation of the angle
φ with θ. This figure shows that as the origami folding pro-
ceeds (increasing the absolute value of θ), φ also increases
from zero. It subsequently achieves an extremum value,
which corresponds to the maximum twisting of the Miura-
ori and eventually ends at a non-zero value of φ at θmax

due to contact. In contrast to γ, φ is an even function of
θ, which means that the direction of folding is immaterial
to both the direction and magnitude of φ. These math-
ematical outcomes are illustrated in fig. 1(f), which is a
set of illustrations from folding of four-crease pattern with
α1 = 90◦ and α2 = 60◦ in both directions (±θ). The value
of γ is positive when it folds downward and negative when
it folds upward, and regardless of the folding direction,
line B turns toward the larger angle α, which satisfies the
properties expected of an even function in fig. 1(e). Four-
crease patterns with different α1 and α2 and lengths can
be attached together along a straight line to form a slen-
der origami that could fold to a wide range of programmed
two-dimensional and three-dimensional shapes.

Next, we study the out-of-plane displacement of a
slender origami, which is critical for creating three-
dimensional folding shapes because a design with only in-
plane displacement would only fold into planar shapes.
We consider a slender origami with length L and width
W , which comprises six four-crease patterns with un-
derlying angles α1 = 90◦, α2 = 60◦, α′

1 = 90◦ and
α′

2 = 120◦, fig. 2(a). We quantify this out-of-plane dis-
placement (OPD), as the distance between the free end
of the string and the XZ plane of the first four-crease
pattern in the string. The number of segments along a
slender origami is denoted by n and is equal to the num-
ber of four-crease patterns plus one. Angles α1, α2, and n
are considered as the three main characteristics of the pre-
sented origami, which can be altered to change the OPD
of the string. Figure 2(b) shows the value of OPD

L , which
is a dimensionless parameter, as a function of θ (folding
level) for different n values, while θ varies from the initial
folding angle 0◦ to the maximum folding angle 45◦ deter-
mined from eq. (1). For n = 1, normalized OPD is always
zero by definition but for larger n, it always starts from
zero and goes to some non-zero value. For n = 2, normal-
ized OPD increases almost linearly with θ. However, as
the number of unit cells increases, such linear and mono-
tonic behavior should not be expected. This is because
the position of the free end (tip) of the origami is deter-
mined by the complex interaction of rotations of individual
units. This would mean that for a given configuration and

Fig. 2: (Colour online) Out-of-plane displacement of origami
string. (a) Origami string made from five interconnected four-
crease patterns in a L×W paper strip with repetitive α1 = 90◦,
α2 = 60◦ and their supplementary angles. (b) Simulation re-
sults for the variation of normalized out-of-plane displacement
(OPD) as a function of angle θ for different numbers of seg-
ments (n). (c) Simulation results for the variation of normal-
ized OPD as a function of n for different angles α. (d) Three
origami strings with equal lengths (l) and 3, 6 and 9 number
of segments at four levels of folding (θ = 5◦, 15◦, 30◦ and 45◦).
The folded configurations for a string with nine divisions and
θ > 21◦ is not accessible due to the self-intersecting in string.

folding level of an origami, simply increasing the number
of units would not necessarily lead to increase in OPD.
This is shown in fig. 2(c) where we study the variation of
normalized OPD in a folded string (θ = 30◦) with differ-
ent angles α1 with α2 = 60◦ as a function of n. The figure
shows that for any configuration, the origami with more
elements correspond to an increasing OPD magnitude for
the initial addition of units. However, the increase is not
monotonic as the complexity of the origami increases with
units. These mathematical insights are summarized pic-
torially in fig. 2(d) which illustrates the change of OPD
during the folding for three strings with n equal to 3, 6
and 9 (angles α1 and α2 are the same as in fig. 2(a)) in four
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Fig. 3: (Colour online) Designing a 3D string. (a) A helix with equation x(z)2 + y(z)2 = 702 is discretized to n (5, 10, and 20)
equal segments. The corresponding angles of γ and φ are measured between each two neighboring segments and then values of
α1 and α2 are chosen based on the measured values of γ and φ. Three origami strings with 5, 10 and 20 segments are shown
here which fit to the helix curve with some amount of error and as n increases this error diminishes. (b) Three strips of paper
with identical length and width are patterned by different crease line. Three folding levels (θ = 5◦, 17◦ and 45◦) are shown for
each design. Blue, red and green strings fold to a helical, double-spiral and star-helical final shapes at θ = 45◦, respectively.

levels of folding. The inflections in tip deflections observed
in fig. 2(b), (c) can be seen in the changing tip positions
with folding level in this figure. The figure also shows that
the number of origami units cannot be increased unencum-
bered since self-contact prevents access to the maximum
possible folding range, limiting the design space.

Our study so far has shown that using Miura-ori units,
the tip of the structure can be raised to a programmed spa-
tial position. However, the real strength of the method
comes from an extension of this technique to synthesize
more complex spatial curves. We illustrate this by de-
signing an origami, which folds into a helix described
by x = −70 cos(πz

45 )mm and y = 70 sin(πz
45 )mm, where

0 ≤ z ≤ 180mm, as shown in fig. 3(a). This is a helix of
radius 70mm and pitch 90mm. To design the origami to
approximate this helix, we divide the helix into n+1 equal
segments by putting n markers in equal distances along
the helix. This means that the coordinates of each marker
can be obtained from plugging zi = iL

n into the X and
Y expression of the helix equation, where i = 0, 1, . . . , n
representing the i-th marker. Thus, the helix is now di-
vided into n + 1 nodes. Adjacent nodes can be connected
by straight line segments leading to n straight line seg-
ments. We then treat each pair of adjacent lines as part
of a four-crease origami. In this construction, the ori-
gin of our coordinate system introduced earlier will be at
the intersection of these pairs of lines and we will mea-
sure the γ and φ angles between them. The angles γ, φ
are determined from the geometry of the line segments.
Using simulations, we can choose appropriate α1 and α2

which would be the best approximation for γ and φ of
a particular four-crease pattern. The angles α1 and α2

do not have to be unique for this design of the helix but
would determine the crease pattern along the helix. As the

number of line segments approximating the helix increases,
the changes in γ would be milder giving rise to smoother
and better approximations. However, at the same time
there is an inherent limit on the number of segments due
to self-contact of the origami. Figure 3(a) shows three de-
signed origamis with n = 5, 10, and 20 which mimic the
given helix. As expected, when n is increased, the origami
better approximates the helix while folding. The values of
α1 and α2 repeating along the entire slender origami are
shown in the bottom left corner of each picture.

The same procedure can be implemented to design
origami, which fold to other more complex shapes from
a flat reference state which can serve applications such
as robotic manipulator [12,35], deployable space struc-
tures [36] and foldable building blocks [37]. In fig. 3(b),
we illustrate the folding procedure of three examples in-
cluding helix, double-spiral, and star-shape helix with
identical unfolded shape and completely different folded
configurations.

In conclusion, our work provides an alternative to de-
sign 3D space curves out of a flat and thin sheet to
other techniques such as discretized rigid-foldable curva-
tures [38], continues buckled curvature [39,40] and tessel-
lated origami patterns to approximate a 3D geometry [28].
However, this method is distinct in providing a simple
way to fabricate spatial shapes using a single actuation
regardless of the complexity of the desired pattern. This
technique overcomes many of the limitations of traditional
fabrication techniques.
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