

1 **Producing knowledge by admitting ignorance: enhancing**
2 **data quality through an “I don’t know” option in citizen**
3 **science**

4

5 Marina Torre^{1†}, Shinnosuke Nakayama^{1†}, Tyrone J. Tolbert¹, Maurizio Porfiri^{1,2*}

6

7 ¹Department of Mechanical and Aerospace Engineering, New York University Tandon School of
8 Engineering, 6 MetroTech Center, Brooklyn, New York, United States of America

9 ²Department of Biomedical Engineering, New York University Tandon School of Engineering, 6
10 MetroTech Center, Brooklyn, New York, United States of America

11

12 *Corresponding author: mporfiri@nyu.edu, +1-646-997-3681 (phone), +1-646-997-3532 (fax)

13 [†]These authors contributed equally to the study.

14 **Abstract**

15 The “noisy labeler problem” in crowdsourced data has attracted great attention in recent years,
16 with important ramifications in citizen science, where non-experts must produce high-quality
17 data. Particularly relevant to citizen science is dynamic task allocation, in which the level of
18 agreement among labelers can be progressively updated through the information-theoretic notion
19 of entropy. Under dynamic task allocation, we hypothesized that providing volunteers with an “I
20 don’t know” option would contribute to enhancing data quality, by introducing further, useful
21 information about the level of agreement among volunteers. We investigated the influence of an
22 “I don’t know” option on the data quality in a citizen science project that entailed classifying the
23 image of a highly polluted canal into “threat” or “no threat” to the environment. Our results show
24 that an “I don’t know” option can enhance accuracy, compared to the case without the option;
25 such an improvement mostly affects the true negative rather than the true positive rate. In an
26 information-theoretic sense, these seemingly meaningless blank votes constitute a meaningful
27 piece of information to help enhance accuracy of data in citizen science.

28

29 **Introduction**

30 Participation of non-trained people in scientific research projects, often called “citizen science”,
31 has been continuously gaining popularity [1–4]. Since the first massive citizen participation in
32 bird counting in 1900 [5,6], the number of projects has considerably increased, covering many
33 research disciplines, from ecology [7] to biology [8], astronomy [9], and geography [10,11].
34 Popularity of citizen science has further expanded with the accessibility to computers and mobile
35 devices [6,12–14]. Through online platforms, volunteers can remotely contribute to various
36 disciplines by performing tasks such as classifying galaxies [15,16], DNA sequences alignment
37 [17], analyzing and modeling protein structures [18], and identifying cancer cells [19]. However,
38 one of the major challenges in citizen science is guaranteeing a satisfactory level of data quality,
39 considering that most of the participants are not professionally trained in the specific field of
40 research [20–22].

41 A powerful method to deal with the so-called “noisy labeler problem” is the estimation-
42 maximization algorithm [23]. Using the data on labelers’ responses on multiple tasks, the
43 algorithm infers posterior distributions of correct answers and labelers’ error rates through
44 maximum likelihood estimation [23]. The algorithm has been extended to include the estimation
45 of task difficulties [24,25] and the possibility of correcting labelers’ biases [26], toward
46 improved prediction of correct answers. However, these methods often require a large sampling
47 pool to attain high accuracy [27], and, therefore, are not practical for several citizen science
48 projects where the number and effort of volunteers are limited. Further, these methods are
49 designed for static data, which demand redundancy in labeling efforts when the task difficulty is
50 not known in advance. Considering that volunteers’ effort is a valuable and constrained resource

51 for the researchers, an economical solution would be to re-direct the participants to tasks that
52 would benefit from more responses.

53 Dealing with the problem of limited effort by participants in citizen science is similar to
54 optimal task allocation among crowdsourcing workers under a limited budget, where
55 practitioners aim to reduce the total cost while maintaining a desired accuracy. Intensive research
56 has been focused on the design of algorithms that dynamically allocate instances when
57 crowdsourcing workers sequentially enter the system [28–33]. Agreement on each instance is
58 quantified through the information-theoretic notion of entropy. Entropy is a measure of the
59 uncertainty of a random variable, where high entropy relates to a highly stochastic state, and low
60 entropy represents a predictable, nearly deterministic one [34]. In the context of labeling, the
61 entropy of a specific instance measures the level of agreement among labelers, which is related
62 to the accuracy of the responses when the labels are aggregated [35,36]. Based on entropy and its
63 derivative metrics, the framework of sequential task allocation attempts to dynamically select
64 instances that maximize a utility function under a Markov decision process [28,29,33].

65 Dynamic task allocation presumes that workers label each instance without the possibility
66 to avoid labeling and report an answer like “I don’t know”. In the estimation-maximization
67 algorithm, it is necessary that labelers select a response, rather than choosing a hypothetical “I
68 don’t know” option, whereby knowledge about a wrong selection is useful information for
69 estimating individual error rates. Just as dynamic task allocation in crowdsourcing projects has
70 stayed away from an “I don’t know” option, so did citizen science, although for a different
71 reason. In citizen science, an “I don’t know” option has been proposed to be detrimental, because
72 it might reduce the output of volunteers who could overuse it [37]. However, it is presently
73 unknown whether the same rationale applies to dynamic task allocation that involves a fewer

74 number of volunteers per instance. In this situation, an “I don’t know” option might increase
75 accuracy by providing further information about the confidence of the aggregated responses
76 when entropy is used to determine the level of agreement among volunteers. For example,
77 volunteers might frequently choose an “I don’t know” option when an image is difficult to
78 classify, whereas they might select correct labels when an image is simple to classify. Thus, an “I
79 don’t know” option could provide additional information about the difficulty of the task, but
80 research to address this hypothesis is presently lacking.

81 Toward illuminating the influence of an “I don’t know” option on data quality within
82 entropy-based dynamic task allocation, we conducted a citizen science project in which
83 volunteers performed binary classification tasks with an “I don’t know” option. The study was
84 carried out within the Brooklyn Atlantis Project [38], which entails monitoring the environment
85 of the Gowanus Canal (Brooklyn, NY), a highly polluted body of water in the U.S. Volunteers
86 were presented with images of the Canal and asked to classify the objects in the images, by
87 assessing whether they could pose a threat to the environment. Using this dataset, we apply the
88 notion of entropy to measure the level of agreement among volunteers with respect to their
89 responses in a specific image. Entropy is computed in three different ways, which contrast in
90 how the “I don’t know” is treated. Specifically, entropy is computed by (1) using only binary
91 labels, (2) including “I don’t know” as a third class, and (3) randomly reassigning “I don’t know”
92 into either label, mimicking the situation where volunteers are forced to choose one when they
93 do not know. We adopt a simplified task allocation procedure where tasks are randomly
94 allocated to volunteers until the entropy falls below a chosen threshold. The entropy of each task
95 is progressively updated to determine whether the task should require more responses from

96 additional volunteers. We compare accuracy as a measure of data quality across the cases in
97 which “I don’t know” is treated differently.

98

99 **Methods**

100 **Dynamic task allocation procedure**

101 We used the information-theoretic notion of entropy [34] to determine whether an instance
102 requires more labels from additional volunteers. Entropy (H) is a measure of uncertainty of a
103 random variable, quantified as

$$104 \quad H = - \sum_{i=1}^n p_i \log_2 p_i,$$

105 where p_i is the probability of observing the category i among n possible categories. When
106 applied to an image classification task, images with high entropy indicate a large uncertainty in
107 classification among volunteers, whereas those with zero entropy identify consensus among
108 volunteers.

109 In our procedure, volunteers sequentially enter the system and classify images randomly
110 taken from an image repository into pre-defined categories. As a new volunteer classifies the
111 images, the entropy of each image is progressively updated. The system assesses whether the
112 image requires further analysis by new volunteers, by comparing the current entropy of the
113 image with a certain threshold. When the entropy lowers below the threshold, the image is
114 deemed processed and removed from the repository, and no further labeling is conducted by new
115 volunteers. If the entropy is above the threshold, then the image stays in the repository, subjected
116 to further labeling by new volunteers. Although there exist more sophisticated algorithms to
117 intelligently allocate items to classifiers based on the transient entropy and similar metrics

118 [28,29,33], we chose random task allocation to focus on our research question, which is to
119 illuminate the influence of an “I don’t know” option on data quality.

120

121 **Data collection**

122 The experiment was framed in the context of a citizen science project for monitoring the
123 environmental health of the Gowanus Canal (Brooklyn, NY, USA). To obtain information about
124 the status of the environmental health of the canal, volunteers were asked to analyze the images
125 of the canal and identify the presence of objects that could constitute a threat for the
126 environment. The images were taken by the aquatic robot designed by our team as part of the
127 Brooklyn Atlantis Project [38], which, over the years, was used by our group to address a
128 number of important areas in citizen science, including face-to-face interactions between
129 volunteers and researchers [39], the effect of individual curiosity on contribution [40],
130 motivations [41–43], and the potential of integrating rehabilitation tasks into citizen science [44–
131 47].

132 The robot is able to navigate on the water surface of the Canal and collect water quality
133 data (pH, conductivity, salinity, temperature, and oxygen concentration) and images, through
134 onboard sensors and a camera above the water surface. The images taken by the robot are
135 uploaded on a temporary website built for this experiment, where volunteers can access them
136 from their computers and mobile devices. The website was built using HTML and CSS for the
137 design and JavaScript for functionalities such as sending data to the server. The web server was
138 written in JavaScript using the Node.js runtime. The data are sent to and stored in a MySQL
139 database, which is administrated using phpMyAdmin.

140 Before taking part in the project, participants were required to log in through either a
141 Facebook profile or an email account. This login system allowed a one-time access with a
142 personal account to guarantee that each participant performed the task only once. Upon accessing
143 the website, participants were first presented with a short movie explaining the current pollution
144 problems of the Canal and the objective of the project (S1 Video). To ensure that all participants
145 received the same information, they were not allowed to take part in the project until the movie
146 ended.

147 After the movie, participants proceeded to a practice session of image classification. The
148 images contained objects (such as garbage, a bird, or a factory), which could give visual
149 information of the environmental health of the Canal. In the practice session, participants were
150 instructed to classify whether the object in the image would pose a threat to the water quality or
151 wildlife by clicking either a “threat”, “no threat”, or “I don’t know” button below the image.
152 Once the task was performed, the correct answer was displayed, along with a short description of
153 the explanation.

154 Upon classifying two objects in the practice session, participants proceeded to the main
155 task in which the screen displayed 31 images consecutively for 5 seconds each (Fig 1). The time
156 limit was fixed to grant that all participants would have the same amount of time to classify an
157 image. Participants were asked to classify the highlighted object in each image into “threat”, “no
158 threat”, or “I don’t know”, but this time, the correct answer was not displayed. When the
159 participant did not select any answer in 5 seconds, it was recorded as “no answer”. The images
160 were displayed in a random order for each participant to eliminate the influence of the display
161 order on performance. For each participant, we recorded the anonymous user identification
162 number generated from the website and the selected answer for each image. When a participant

163 changed her/his opinion by clicking a different button within 5 seconds, we recorded only the
164 last selection.

165 Before the experiment, all authors identified the correct answer of each image through
166 careful examination and discussion. For example, we classified garbage, a factory with
167 discharged water, or an oil spill on the water surface as “threat” to the environment, whereas a
168 bird or an anthropic object within the human control, such as an art installation or a buoy, as “no
169 threat” to the environment. We only used images that received unanimous consent within our
170 research team to ensure that each of them could be properly associated with the correct answer
171 (S2 File).

172 The data collection was carried out between February and June 2017. Participants were
173 recruited through social media of New York University and the Gowanus Canal Conservancy (a
174 local community), and by distributing flyers to passers-by in the neighborhood of the Gowanus
175 Canal. In total, 94 volunteers were recruited in the project. All participants were over 18 years
176 old and anonymous. The data collection was approved by the institutional review board of New
177 York University (IRB-FY2016-184).

178

179 **Application to the citizen science data**

180 We investigated the influence of an “I don’t know” option on data quality by assessing the
181 performance of the system using the data collected from volunteers in our citizen science project.
182 Specifically, we compared three cases that encompass hypothetical simulations: (1) volunteers
183 were provided with three classes (“threat”, “no threat”, and “I don’t know”) but only “threat” and
184 “no threat” were used to compute entropy, (2) all classes were used to compute entropy, and (3)
185 each “I don’t know” choice was randomly reassigned to either “threat” or “no threat” when

186 computing entropy. The latter case was intended to simulate the typical citizen science setting, in
187 which a participant does not have access to the “I don’t know” option.

188 In all the cases, we started by selecting a volunteer from the data set in a random order
189 and allocating five images randomly drawn from the image repository, which initially contained
190 31 images. Collection of labels on each image was updated each time a new volunteer labeled
191 the image. In the third case where volunteers were not provided with the “I don’t know” option,
192 we reassigned it to either “threat” or “no threat” with an equal probability. In this way, we
193 mimicked the situation where volunteers randomly chose either “threat” or “no threat” when they
194 did not know which to choose. The entropy on each image was normalized between 0 and 1 for
195 all three cases by dividing it by $\log_2 N$, where N is the number of classes ($N = 2$ for cases 1 and 3,
196 and $N = 3$ for case 2). An image was deemed processed and removed from the repository when
197 the entropy fell below a certain threshold and it received at least three labels of “threat” or “no
198 threat” combined. The latter condition was imposed to avoid the situation in which a first few
199 votes on an image could lead to zero entropy by chance, while attempting to minimize the
200 number of votes to process an image based on entropy. The procedure was continued until we
201 exhausted either volunteers or images in the repository.

202 We assessed the performance of the three cases by varying the normalized entropy
203 threshold from 0 to 1, with an interval of 0.1. Entropy threshold 0 means that an image was
204 labeled unanimously, and 1 means that an image was removed from the repository when it
205 received three “threat” and “no threat” combined, regardless of the level of agreement among
206 volunteers. To test the situation where a smaller number of volunteers was available, we
207 randomly sampled volunteers from 10 to 90, with an interval of 10. We performed 1,000
208 simulations each using R 3.4.0 [48].

209

210 **Evaluation of the system performance**

211 We compared the system performance as a function of the entropy threshold for the three cases.
212 To assess the quality of the system output, we aggregated the collection of labels into a single
213 label for each processed image using simple majority voting on “threat” and “no threat”, due to
214 its interpretability and robustness [49]. The votes for “I don’t know” were not included in the
215 majority voting because our objective was to classify the images into either “threat” or “no
216 threat”. Then, we quantified the accuracy of the system as the proportion of the number of
217 images correctly classified over the total number of processed images, by comparing the
218 aggregated label with the correct answer for each processed image. The quantity of the system
219 output was scored as the total number of images processed.

220 To further examine the system performance, we compared the true positive rate
221 (sensitivity) and the true negative rate (specificity) as a function of the entropy threshold for the
222 three cases. To that end, first we classified each label of “threat” as a true or false positive and
223 “no threat” as a true or false negative, by comparing it with the correct answer. Then, we tallied
224 each occurrence on all processed images and calculated the true positive rate as the proportion of
225 true positives over the sum of true positives and false negatives, and the true negative rate as the
226 proportion of true negatives over the sum of true negatives and false positives.

227 To identify when volunteers opted for “I don’t know”, we documented the correct
228 answers of the images that received “I don’t know” from volunteers. We counted the numbers of
229 “threat” and “no threat” on such instances, and the frequency was compared with the one when
230 volunteers actually labeled “threat” and “no threat” on the images, using a χ^2 test.

231

232 **Results**

233 **Summary of the citizen science data**

234 In total, 94 volunteers contributed to the classification of the 31 images consisting of 11 “threat”
235 and 20 “no threat” images. On average, volunteers selected 45.9% of the images as “threat” and
236 29.9% as “no threat”. They opted for “I don’t know” in 10.6% of the images and did not answer
237 13.6% of the images.

238 Reflecting the variation in classification difficulty among the images, each image
239 received 1.1–90.4% of the 94 votes as “threat”, 1.1–92.6% as “no threat”, and 0–35.1% as “I
240 don’t know”. Of the images, 5.3–26.6% were left without any choice. Among the images that
241 contained “threat” objects, 71.8% of the votes correctly identified them as threat, ranging from
242 47.9 to 90.4% among the images, whereas 13.7% of the votes incorrectly identified them as no
243 threat, ranging from 1.1 to 40.4% among the images. By contrast, among the images that
244 contained “no threat” objects, 38.7% of the votes correctly identified them as no threat, ranging
245 from 8.5 to 92.6% among the images, whereas 31.6% of the votes incorrectly identified them as
246 threat, ranging from 1.1 to 69.1% among the images.

247

248 **Influence of “I don’t know” under entropy-based task allocation**

249 Sequential binary labeling with entropy-based task allocation increased data quality at the
250 expense of data quantity, compared to the case in which no entropy threshold was implemented
251 in task processing (Fig 2). In all the cases examined, a higher accuracy was attained with a
252 smaller threshold, which corresponds to a higher level of agreement among volunteers. In case 2,
253 where the “I don’t know” was used to compute entropy, the system was able to attain higher

254 accuracy when the entropy threshold was below 0.5, compared to case 1, where the entropy was
255 computed only with “threat” and “no threat”. However, the reverse trend was observed when the
256 entropy threshold was above 0.5. By contrast, in case 3, where the “I don’t know” was randomly
257 reassigned to either a “threat” or a “no threat” label in the entropy computation, the accuracy was
258 virtually the same as in case 1, where only the original “threat” and “no threat” labels were used.
259 Mirroring the improvement in accuracy, the number of images processed showed the opposite
260 trend over entropy threshold. In addition, when “no answer” was included in “I don’t know”, or
261 “no answer” was treated as an additional class, we observed the same trend as in case 2, where
262 higher accuracy was attained at smaller entropy, compared to the cases where the entropy was
263 computed only with “threat” and “no threat”.

264 The number of volunteers did not change the trend in accuracy (Fig 3). When a smaller
265 number of volunteers performed image labeling, inclusion of an “I don’t know” option resulted
266 in a higher accuracy with a smaller entropy threshold and in a lower accuracy with a larger
267 entropy threshold. In all cases, accuracy increased when fewer volunteers were involved in
268 image labeling.

269 The “I don’t know” option influenced the true positive rate and the true negative rate
270 differently, as a function of the entropy threshold (Fig 4). When the entropy threshold was
271 greater, the “I don’t know” option led to a lower true positive rate compared to the other cases in
272 which the image entropy was computed using only two classes of “threat” and “no threat”.
273 However, it achieved a similarly high true positive rate when the entropy threshold was below
274 0.5. By contrast, the “I don’t know” option led to greater improvement of the true negative rate
275 with a decreasing entropy threshold, compared to the other two cases.

276 When volunteers labeled either “threat” or “no threat”, they were more likely to label

277 “threat” over “no threat” (60.6% for “threat”), which significantly deviated from the distribution
278 of the correct answers (35.5% for “threat”; $\chi^2_1 = 7.02, p = 0.008$). When they opted for “I don’t
279 know”, the correct answer of those instances was significantly biased toward “no threat” (14.8%
280 for “threat”; $\chi^2_1 = 227.89, p < 0.001$), compared to when they actually selected either “threat” or
281 “no threat” (Fig 5).

282

283 **Discussion**

284 In this study, we investigated the influence of an “I don’t know” option on data quality within a
285 sequential task processing that utilizes the information-theoretic notion of entropy to
286 dynamically allocate tasks among a limited number of volunteers. Confirming previous studies
287 [28,29,33], we demonstrated that entropy is a useful tool to balance between accuracy of
288 classification and the number of tasks completed. Without knowing the task difficulty or the
289 volunteer reliability in advance, entropy can help improve classification performance, not at the
290 expense of the workload of the volunteers. Within an entropy-based dynamic task allocation, our
291 results show that providing volunteers with an “I don’t know” option is a useful means to further
292 enhance accuracy. Compared to the case without such an option, the system was able to attain
293 greater accuracy with the same number of volunteers. Thus, an “I don’t know” option allows for
294 capitalizing on limited workload, by providing additional information that moderates accuracy of
295 the classification, thereby offering an efficient and effective way to support data classification in
296 citizen science.

297 The entropy of a task, scored based on volunteers’ responses, encapsulates information
298 about the level of agreement among volunteers. In our citizen science project, images with high
299 entropy indicate conflicting opinions among volunteers, leading to considerable uncertainty

300 about the classification. On the other hand, images with low entropy indicate consensus among
301 volunteers, suggesting clear classification of the images. By comparing volunteers' responses
302 with the correct answers, we found that when a lower entropy threshold is selected, the
303 classification of the processed images is more accurate. The higher level of accuracy and the
304 stronger agreement among participants reflect the difficulty of the images, confirming our
305 intuition that entropy can be used as a proxy of task difficulty. In line with our observations,
306 similar results were reported in the Snapshot Serengeti Project [37], where participants were
307 asked to identify species through image classification. In that study, the correctly identified
308 species through majority voting had lower standardized entropy, whereas incorrectly identified
309 images had higher one [37]. Thus, the entropy of a task, scored based on participants' responses,
310 is a useful tool to determine whether the image requires further information from volunteers to
311 be classified correctly, without knowing the true answer in advance. Entropy provides an
312 indication of the reliability of the contributions, allowing researchers to selectively determine
313 when data validation from experts is required [50]. Considering that the accuracy of entropy
314 measures increases with the number of observations, it is possible to further improve the
315 entropy-based task allocation by dynamically adjusting the entropy threshold proportional to the
316 number of votes, such that entropy computed from a smaller number of votes would require a
317 stricter threshold.

318 An "I don't know" option affords volunteers with an opportunity to avoid random choice
319 when they are not certain about the classification. Some citizen science platforms intentionally
320 omit the possibility of these blank votes to avoid their overuse, and volunteers are forced to
321 select one of the pre-defined classes to complete the task [37]. However, when entropy is applied
322 to the image classification tasks, these blank votes that are seemingly not meaningful constitute a

323 meaningful piece of information about the task. Specifically, when an image is difficult to
324 classify, one would observe high entropy because of the large proportion of blank votes, in
325 addition to splitting opinions between “threat” and “no threat” among volunteers. On the other
326 hand, if the object in the image is simple to classify, volunteers may tend to answer correctly,
327 thereby less likely cast blank votes. Additionally, the blank votes provide a beneficial piece of
328 information about general knowledge of a specific question among citizen scientists. For
329 example, questions with a high percentage of blank votes could offer a direction on which aspect
330 should be emphasized in the training session in future citizen science projects.

331 Our results show that an “I don’t know” option moderates the tradeoff between the
332 accuracy of the data analysis and the number of image processed. Compared to the hypothetical
333 cases that do not use the “I don’t know” option, the experimental configuration with such an
334 option led to a higher accuracy with a smaller entropy threshold. At the same time, it led to a
335 lower accuracy with a larger entropy threshold. The number of images processed mirrored the
336 accuracy, with fewer images processed with a smaller entropy threshold. The same trends were
337 observed when the analysis was conducted by fewer volunteers, demonstrating the generality of
338 the result. The positive effect of an “I don’t know” option arises from the fact that it abates
339 erroneous decision of the task by increasing the entropy through additional knowledge, thereby
340 requiring stronger agreement among volunteers for the same entropy threshold. However, we
341 observed the adverse effect of the “I don’t know” option on accuracy when the entropy
342 thresholds were set high. This is because higher entropy thresholds are more likely to falsely
343 detect agreement among volunteers on the task that received more “I don’t know” than “threat”
344 or “no threat”. Such a false detection lead to lower accuracy by outweighing the positive effect
345 brought about by the inclusion of the “I don’t know” answer. The adverse effect can easily be

346 avoided by setting the entropy threshold smaller, or by simply adding an additional criterion to
347 ensure that the entropy reflects the level of agreement between the labels of interest. Therefore,
348 an “I don’t know” option can provide useful information toward enhancing data quality in citizen
349 science projects when combined with entropy-based dynamic task allocation.

350 A multilabeling problem often ignores the asymmetry in the importance of labels, but
351 researchers may want to place more emphasis on some labels over others, depending on their
352 objectives. For example, spam email detection would be impractical with high false positive
353 rates, whereas medical diagnostics would be dangerous with high false negative rates. Our
354 results show that an “I don’t know” option can influence true positive rate and the true negative
355 rate differently. Specifically, it led to greater improvement of the true negative rate compared to
356 the true positive rate. This is because volunteers were more likely to opt for “I don’t know” when
357 the correct answer was negative (“no threat”) than positive (“threat”). Consequently, the images
358 received fewer erroneous negatives with the “I don’t know” option, thereby decreasing the false
359 negative rate. Had we asked volunteers instead whether the objects in the images were beneficial
360 to the environment, we should have observed a reverse result.

361 Although we demonstrated the benefit of an “I don’t know” option toward enhancing
362 data quality, we cannot dismiss the possibility that forcing volunteers to choose binary answers
363 could change their behavior. That is, if they did not have the “I don’t know” option, they might
364 have exerted more effort to contribute to science, thereby influencing data quality. However, it is
365 likely that accuracy would decrease further than a random choice, because the distribution of the
366 observed labels submitted by volunteers was biased more toward “threat” than “no threat”, while
367 the distribution of the true answers was the opposite. In such a case, it is possible to compensate
368 the bias by applying a weight function during label classification if one knows the degree of bias

369 in advance. Further research is required to understand how an “I don’t know” option would
370 change motivations and effort in citizen science [51].

371 One of the most compelling challenges in citizen science projects is obtaining accurate
372 information from citizens with no formal training. A common practice to guarantee an adequate
373 accuracy involves the engagement of a large number of volunteers performing the same task and
374 aggregate their answers [37,52]. In this study, we demonstrated that providing volunteers with an
375 “I don’t know” option could enhance accuracy under entropy-based dynamic task allocation. The
376 advantage could further be augmented by implementing more sophisticated task allocation
377 algorithms [28,29,33]. The proposed framework does not require any assessment of volunteer
378 reliability or task difficulty in advance, thereby laying the foundations for a powerful and
379 efficient system that is easily customizable by researchers and applicable to different platforms.

380

381 **Acknowledgments**

382 We thank the Dynamical Systems Laboratory at New York University Tandon School of
383 Engineering as a whole for providing useful insight during the analysis of the data.

384

385 **References**

- 386 1. Bonney R, Cooper CB, Dickinson J, Kelling S, Phillips T, Rosenberg K V., et al. Citizen
387 science: a developing tool for expanding science knowledge and scientific literacy.
388 Bioscience. Oxford University Press; 2009; 59: 977–984.
- 389 2. Dickinson JL, Zuckerberg B, Bonter DN. Citizen science as an ecological research tool:
390 challenges and benefits. Annu Rev Ecol Evol Syst. Annual Reviews; 2010; 41: 149–172.

391 3. Donnelly A, Crowe O, Regan E, Begley S, Caffarra A. The role of citizen science in
392 monitoring biodiversity in Ireland. *Int J Biometeorol.* 2014; 58: 1237–1249.

393 4. Mayer A. Phenology and citizen science: volunteers have documented seasonal events for
394 more than a century, and scientific studies are benefiting from the data. *Bioscience.* 2010;
395 60: 172–175.

396 5. Butcher GS, Fuller MR, McAllister LS, Geissler PH. An Evaluation of the Christmas Bird
397 Count for monitoring population trends of selected species. *Wildl Soc Bull.* 1990; 18:
398 129–134.

399 6. Silvertown J. A new dawn for citizen science. *Trends Ecol Evol.* 2009; 24: 467–471.

400 7. Francis RA, Lorimer J. Urban reconciliation ecology: the potential of living roofs and
401 walls. *J Environ Manage.* Elsevier Ltd; 2011; 92: 1429–1437.

402 8. Prainsack B. Understanding participation: the “citizen science” of genetics. *Genetics as*
403 *social practice: transdisciplinary views on science and culture.* Farnham, UK: Ashgate
404 Publishing Ltd; 2014. pp. 147–64.

405 9. Lintott CJ, Schawinski K, Slosar A, Land K, Bamford S, Thomas D, et al. Galaxy Zoo:
406 morphologies derived from visual inspection of galaxies from the Sloan Digital Sky
407 Survey. *Mon Not R Astron Soc.* 2008; 389: 1179–1189.

408 10. Goodchild MF. Citizens as sensors: the world of volunteered geography. *GeoJournal.*
409 2007; 69: 1–15.

410 11. Balram S, Dragicevic S, Feick R. Collaborative GIS for spatial decision support and
411 visualization. *J Environ Manage.* 2009; 90: 1963–1965.

412 12. Newman G, Wiggins A, Crall A, Graham E, Newman S, Crowston K. The future of
413 citizen science: emerging technologies and shifting paradigms. *Front Ecol Environ.* 2012;

414 10: 298–304.

415 13. Graham EA, Henderson S, Schloss A. Using mobile phones to engage citizen scientists in

416 research. *Eos, Trans Am Geophys Union*. 2011; 92: 313–315.

417 14. Paulos E, Honicky R, Hooker B. Citizen science: enabling participatory urbanism. In:

418 Foth M, editor. *Handbook of research on urban informatics: the practice and promises of*

419 *the real-time city*. Hershey, Pennsylvania: IGI Global; 2009. pp. 414–436.

420 15. Simpson R, Page KR, De Roure D. Zooniverse: observing the world's largest citizen

421 science platform. *Proc 23rd Int Conf World Wide Web*. 2014; 1049–1054.

422 16. Lintott C, Schawinski K, Bamford S, Slosar A, Land K, Thomas D, et al. Galaxy Zoo 1:

423 data release of morphological classifications for nearly 900 000 galaxies. *Mon Not R*

424 *Astron Soc*. 2011; 410: 166–178.

425 17. Kawrykow A, Roumanis G, Kam A, Kwak D, Leung C, Wu C, et al. Phylo: a citizen

426 science approach for improving multiple sequence alignment. *PLoS One*. 2012; 7: e31362.

427 18. Khatib F, Cooper S, Tyka MD, Xu K, Makedon I, Popovic Z, et al. Algorithm discovery

428 by protein folding game players. *Proc Natl Acad Sci*. 2011; 108: 18949–18953.

429 19. dos Reis FJC, Lynn S, Ali HR, Eccles D, Hanby A, Provenzano E, et al. Crowdsourcing

430 the general public for large scale molecular pathology studies in cancer. *EBioMedicine*.

431 2015; 2: 681–689.

432 20. Bonter DN, Cooper CB. Data validation in citizen science: a case study from Project

433 FeederWatch. *Front Ecol Environ*. 2012; 10: 305–307.

434 21. Kosmala M, Wiggins A, Swanson A, Simmons B. Assessing data quality in citizen

435 science. *Front Ecol Environ*. 2016; 14: 551–560.

436 22. See L, Comber A, Salk C, Fritz S, van der Velde M, Perger C, et al. Comparing the

437 quality of crowdsourced data contributed by expert and non-experts. *PLoS One*. 2013; 8:
438 1–11.

439 23. Dawid AP, Skene AM. Maximum likelihood estimation of observer error-rates using the
440 EM algorithm. *Appl Stat*. 1979; 28: 20.

441 24. Zhou D, Basu S, Mao Y, Platt JC. Learning from the wisdom of crowds by minimax
442 entropy. *Advances in Neural Information Processing Systems*. 2012. pp. 2195–2203.

443 25. Whitehill J, Ruvolo P, Wu T, Bergsma J, Movellan J. Whose vote should count more:
444 optimal integration of labels from labelers of unknown expertise. *Adv Neural Inf Process
445 Syst*. 2009; 22: 1–9.

446 26. Ipeirotis PG, Provost F, Wang J. Quality management on Amazon Mechanical Turk.
447 Proceedings of the ACM SIGKDD Workshop on Human Computation - HCOMP '10.
448 New York, New York, USA: ACM Press; 2010. p. 64.

449 27. Hung NQV, Tam NT, Tran LN, Aberer K. An evaluation of aggregation techniques in
450 crowdsourcing. *Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect
451 Notes Bioinformatics)*. 2013; 2: 1–15.

452 28. Sheng VS, Provost F, Ipeirotis PG. Get another label? Improving data quality and data
453 mining using multiple, noisy labelers. *Proceeding of the 14th ACM SIGKDD international
454 conference on Knowledge discovery and data mining - KDD 08*. New York, New York,
455 USA: ACM Press; 2008. p. 614.

456 29. Li Q, Ma F, Gao J, Su L, Quinn CJ. Crowdsourcing high quality labels with a tight
457 budget. *Proceedings of the Ninth ACM International Conference on Web Search and Data
458 Mining - WSDM '16*. New York, New York, USA: ACM Press; 2016. pp. 237–246.

459 30. Tran-Thanh L, Venanzi M, Rogers A, Jennings NR. Efficient budget allocation with

460 accuracy guarantees for crowdsourcing classification tasks. Proceedings of the 2013
461 international conference on Autonomous agents and multi-agent systems. International
462 Foundation for Autonomous Agents and Multiagent Systems; 2013. p. 1466.

463 31. Karger DR, Oh S, Shah D. Budget-optimal task allocation for reliable crowdsourcing
464 systems. *Oper Res. INFORMS*; 2014; 62: 1–24.

465 32. Raykar V, Agrawal P. Sequential crowdsourced labeling as an epsilon-greedy exploration
466 in a Markov Decision Process. *Proceedings of Machine Learning Research*. 2014. pp.
467 832–840.

468 33. Chen X, Lin Q, Zhou D. Optimistic knowledge gradient policy for optimal budget
469 allocation in crowdsourcing. *Proceedings of Machine Learning Research*. 2013. pp. 64–
470 72.

471 34. Cover TM, Thomas JA. *Elements of Information Theory*. 2nd ed. Hoboken, New Jersey:
472 John Wiley & Sons, Inc.; 2012.

473 35. Park LAF, Simoff S. Using entropy as a measure of acceptance for multi-label
474 classification. In: Fromont E, De Bie T, van Leeuwen M, editors. *Advances in Intelligent*
475 *Data Analysis XIV*. Springer, Cham; 2015. pp. 217–228.

476 36. Waterhouse TP. Pay by the bit : an information-theoretic metric for collective human
477 judgment. *Proceedings of the 2013 ACM Conference on Computer Supported*
478 *Cooperative Work*. 2013. pp. 623–637.

479 37. Swanson A, Kosmala M, Lintott C, Packer C. A generalized approach for producing,
480 quantifying, and validating citizen science data from wildlife images. *Conserv Biol*. 2016;
481 30: 520–531.

482 38. Laut J, Henry E, Nov O, Porfiri M. Development of a mechatronics-based citizen science

483 platform for aquatic environmental monitoring. *IEEE/ASME Trans Mechatronics*. 2014;
484 19: 1541–1551.

485 39. Cappa F, Laut J, Nov O, Giustiniano L, Porfiri M. Activating social strategies: face-to-
486 face interaction in technology-mediated citizen science. *J Environ Manage*. 2016; 182:
487 374–384.

488 40. Nov O, Laut J, Porfiri M. Using targeted design interventions to encourage extra-role
489 crowdsourcing behavior. *J Assoc Inf Sci Technol*. 2016; 67: 483–489.

490 41. Laut J, Cappa F, Nov O, Porfiri M. Increasing citizen science contribution using a virtual
491 peer. *J Assoc Inf Sci Technol*. 2017; 68: 583–593.

492 42. Diner D, Nakayama S, Nov O, Porfiri M. Social signals as design interventions for
493 enhancing citizen science contributions. *Information, Commun Soc*. 2018; 21: 594–611.

494 43. Cappa F, Laut J, Porfiri M, Giustiniano L. Bring them aboard: rewarding participation in
495 technology-mediated citizen science projects. *Comput Human Behav*. 2018; 89: 246–257.

496 44. Laut J, Cappa F, Nov O, Porfiri M. Increasing patient engagement in rehabilitation
497 exercises using computer-based citizen science. *PLoS One*. 2015; 10: e0117013.

498 45. Palermo E, Laut J, Nov O, Cappa P, Porfiri M. Spatial memory training in a citizen
499 science context. *Comput Human Behav*. 2017; 73: 38–46.

500 46. Palermo E, Laut J, Nov O, Cappa P, Porfiri M. A natural user interface to integrate citizen
501 science and physical exercise. *PLoS One*. 2017; 12: e0172587.

502 47. Nakayama S, Tolbert TJ, Nov O, Porfiri M. Social information as a means to enhance
503 engagement in citizen science-based telerehabilitation. *J Assoc Inf Sci Technol*. In press.

504 48. R Core Team. R: A language and environment for statistical computing. 2014;

505 49. Kestler HA, Lausser L, Lindner W, Palm G. On the fusion of threshold classifiers for

506 categorization and dimensionality reduction. *Comput Stat.* 2011; 26: 321–340.

507 50. Wiggins A, Newman G, Stevenson RD, Crowston K. Mechanisms for data quality and

508 validation in citizen science. 2011 IEEE Seventh Int Conf e-Science Work. 2011; 14–19.

509 51. Nov O, Arazy O, Anderson D. Scientists@home: what drives the quantity and quality of

510 online citizen science participation? *PLoS One.* 2014; 9: e90375.

511 52. Simmons BD, Lintott C, Willett KW, Masters KL, Kartaltepe JS, Häußler B, et al. Galaxy

512 Zoo: quantitative visual morphological classifications for 48,000 galaxies from

513 CANDELS. *Mon Not R Astron Soc.* 2017; 464: 4420–4447.

514

515 **Supporting information**

516 **S1 Video. Video clip explaining the current pollution problems of the Gowanus Canal and**

517 **the objective of the project.**

518 **S2 File. Image used in this study.**

519 **S3 File. Data collected and analyzed in this study.**

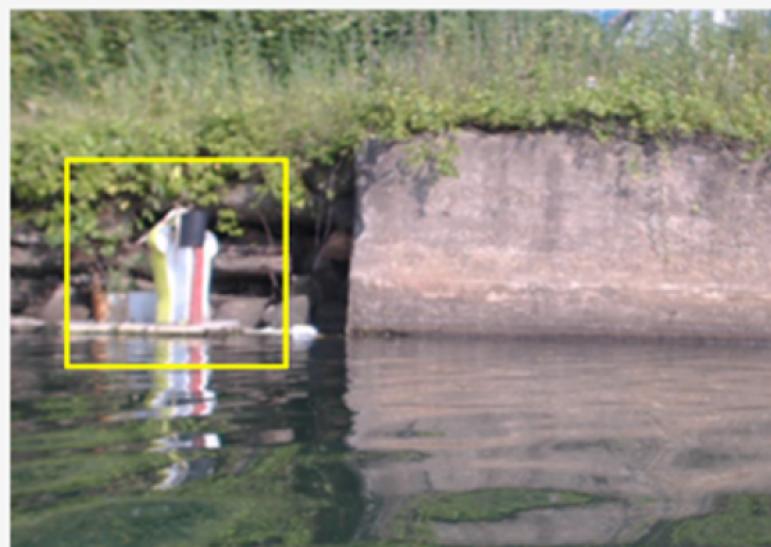
520 **Figures**

521

522

523

Threat or No Threat?

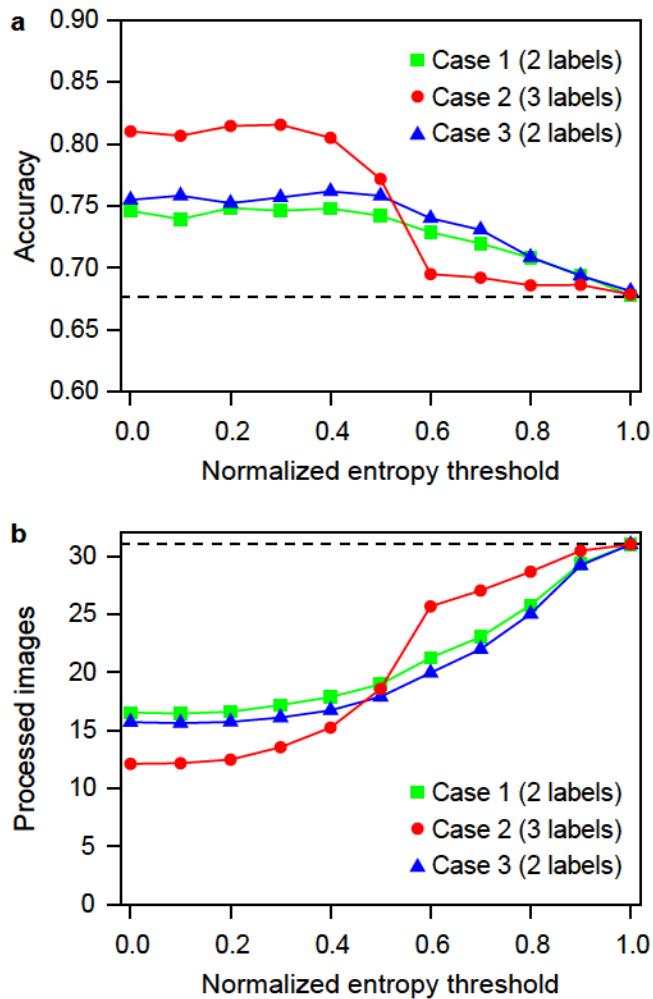


2

524

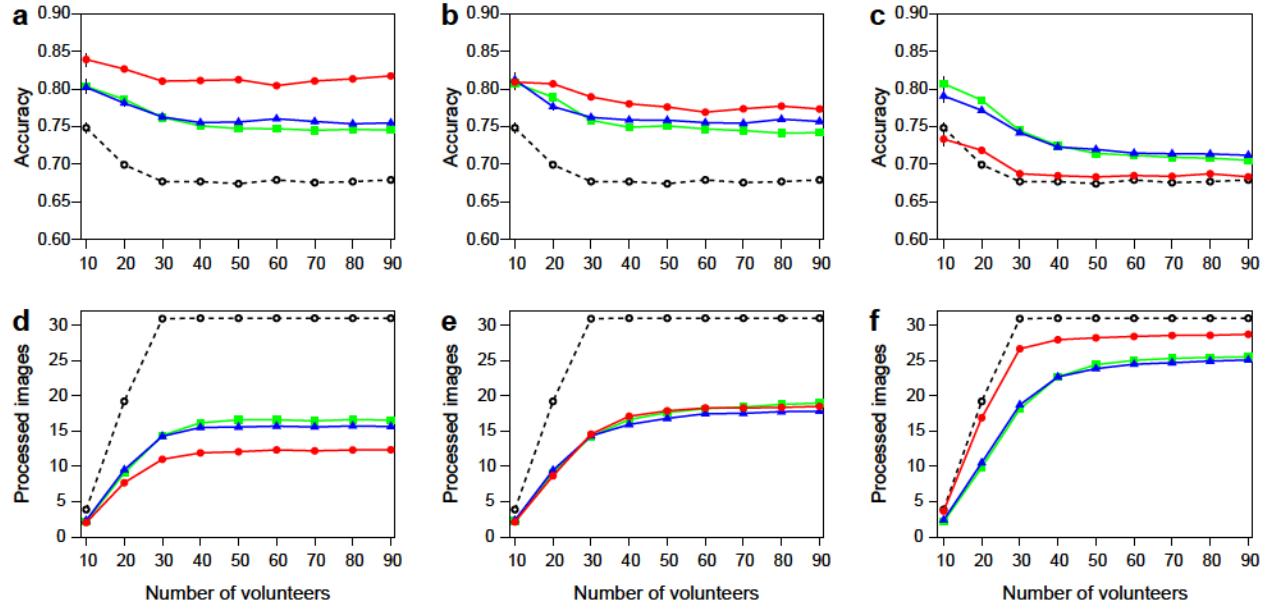
525 **Fig 1. Screenshot of the image classification task.** The object to be classified is highlighted by
526 a rectangular frame. The number on the right (“2”) denotes the time remaining to answer the
527 question in seconds. The bottom bar indicates the progress toward completing the classification
528 of all images. The correct answer of this image is “no threat” (art installation).

529



530

531 **Fig 2. Performance of image classification as a function of the entropy threshold.** (a)
532 Accuracy and (b) number of image processed. Square: case 1, where image entropy is computed
533 from two labels (“threat” and “no threat”), filled circle: case 2, where image entropy is computed
534 from three labels (“threat”, “no threat”, and “I don’t know”), triangle: case 3, where image
535 entropy is computed from two labels (“threat” and “no threat”) after reassigning “I don’t know”
536 to either class proportional to “threat” and “no threat” by all participants. Points and vertical lines
537 are means and standard errors of 1,000 runs. Dotted lines correspond to the case, where no
538 entropy threshold was applied (that is, the image is retired from the repository when it receives
539 three labels of “threat” and “no threat” combined).



540

541 **Fig 3. Performance of image classification over different numbers of volunteers. (a)**

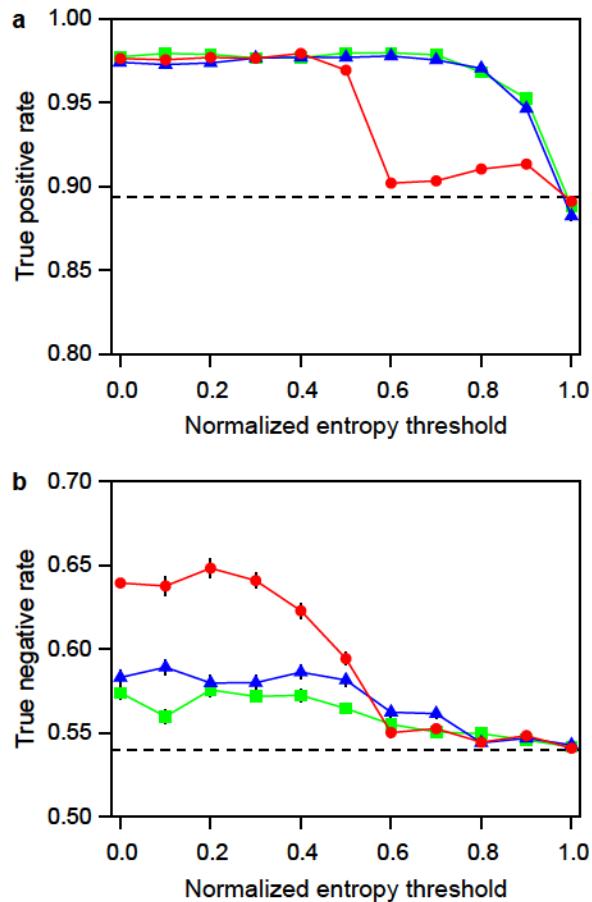
542 Accuracy at entropy threshold 0.2, (b) at 0.5, and (c) at 0.8. (d) The number of processed images

543 at entropy threshold 0.2, (e) at 0.5, and (f) at 0.8. Colors correspond to Fig 2 (square: case 1,

544 filled circle: case 2, triangle: case 3, open circle: no entropy threshold).

545

546

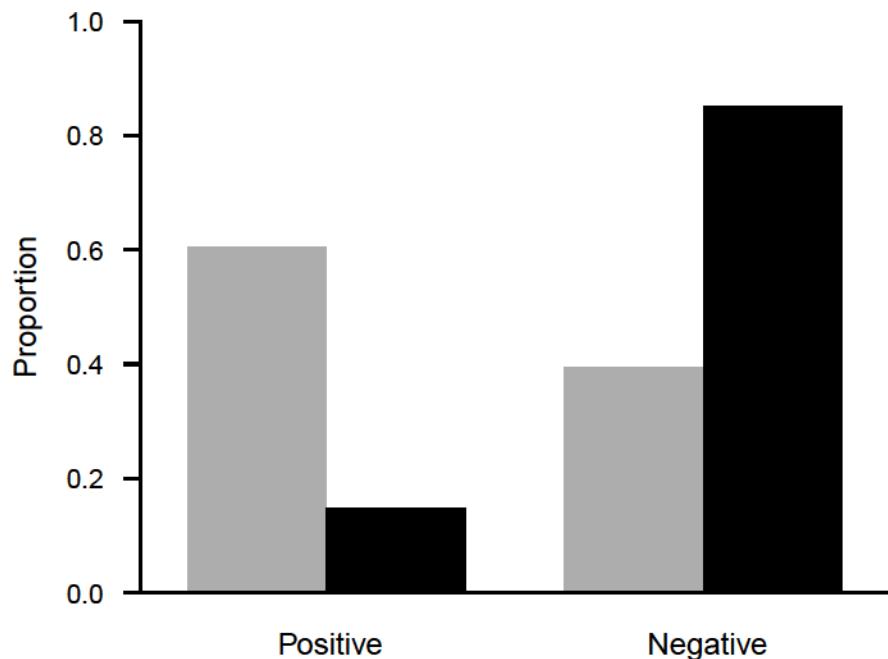


547

548 **Fig 4. (a) True positive rates and (b) true negative rates over entropy threshold.** Colors
 549 correspond to Fig 2 (square: case 1, filled circle: case 2, triangle: case 3).

550

551



552

553 **Fig 5. Proportion of the labels.** Gray bars are observed proportions when participants labeled
554 positive (threat) and negative (no threat). Black bars are the proportion of true answers when
555 participants opted for “I don’t know”.