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ABSTRACT13

In citizen science, participants’ productivity is imperative to project success. We investigate the feasibility
of a collaborative approach to citizen science, within which productivity is enhanced by capitalizing on the
diversity in individual attributes among participants. Specifically, we explore the possibility of enhancing
productivity by integrating multiple individual attributes to inform the choice of which task should be
assigned to which individual. To that end, we collect data in an online citizen science project composed of
two task types: i) filtering images of interest from an image repository in a limited time, and ii) allocating
tags on the object in the filtered images over unlimited time. Building on prior literature, the first task is
assigned to those who have more experience in playing action video games, and the second task to those
who have higher intrinsic motivation to participate. We demonstrate a greater increase in productivity
when assigning participants to the task based on a combination of these attributes, in spite that each
attribute has weak predictive power on the task performance. We acknowledge that such an increase
is modest compared to the case where participants are randomly assigned to the tasks, which could
offset the effort of implementing our attribute-based task assignment scheme. This study constitutes a
first step toward understanding and capitalizing on individual differences in attributes toward enhancing
productivity in cooperative citizen science.
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INTRODUCTION29

Productivity is imperative to success in citizen science, yet retaining participants is a challenge (Chu et al.,30

2012). Low engagement limits the scope and quality of data (Cox et al., 2015), by hindering the ability of31

researchers to aggregate data generated by multiple participants (Hines et al., 2015; Swanson et al., 2015).32

However, a great effort is required to increase participation (Segal et al., 2015) and data volume (Sprinks33

et al., 2017), especially when the projects focus on specific topics that may not appeal to broad audiences34

(Prestopnik and Crowston, 2012). A new approach is in need to leverage the effort of limited pools of35

participants (Roy et al., 2015) and maximize their potential productivity.36

A key to the effective use of citizen scientists’ effort may lie in an improved understanding of the37

varying types of the tasks involved in citizen science (Wiggins and Crowston, 2014). For example, some38

tasks are designed specifically for data creation, where participants function as distributed sensors to39

collect data, and others focus on data curation, where they serve as distributed processors to analyze40

data (Haklay, 2013). Given that each task may require different cognitive abilities, one might enhance41

productivity by integrating different tasks into a single, cohesive project, where participants are given42

the choice to opt for a task versus another. A notable example of collaborative citizen science through43

division of labor is found in iNaturalist (https://www.inaturalist.org), a popular citizen science project44

with more than 80,000 active participants. In iNaturalist, some participants upload field observations of45

organisms to the website, and others identify them online. However, the potential benefit of integrating46



multiple tasks in a single project remains elusive.47

Another important aspect may be found in the diversity of participants’ individual attributes. Citizen48

science projects normally welcome participants who are diverse with regard to experience, demographics,49

knowledge, and motivation. If any quality or characteristic ascribed to each individual can predict50

performance in a specific task, it might be possible to harness attributes’ variations toward enhanced51

productivity via informed task assignment. For example, expertise in the topic is correlated with the level52

of agreement within and among participants in analyzing geomorphological features of craters on Mars53

(Wardlaw et al., 2018), and age is correlated with productivity in classifying wild animals online (Anton54

et al., 2018). Another example of such a correlation is found in the experience in playing action video55

games. Empirical studies demonstrate that people with the experience tend to perform better in cognitive56

tasks (West et al., 2008; Dye et al., 2009; Chisholm et al., 2010; Green et al., 2010). It is suggested that57

playing action video games could lead to faster processing of visual information (Green and Bavelier,58

2003, 2007) or better strategies in completing tasks (Clark et al., 2011). Thus, although the underlying59

mechanisms are still debatable, the evidence hints at the possibility of informing the division of labor in60

collaborative citizen science based on experience in playing action video games.61

Individual differences in performance can also be explained by variation in motivation to participate.62

People participate in citizen science projects because of several, diverse drivers, including reputation,63

collective motivation, norm-oriented motivation, and intrinsic motivation (Nov et al., 2011). Among them,64

intrinsic motivation is found to be a strong predictor for the participants’ performance in citizen science,65

where participants with high intrinsic motivation are found to be more productive and yield high quality66

data (Eveleigh et al., 2014; Nov et al., 2014, 2016; Zhao and Zhu, 2014). Recognizing the diversity in67

individual attributes among citizen scientists and its correlation to performance, it is tenable to enhance68

productivity through division of labor in collaborative citizen science by matching individual attributes to69

task types.70

However, it is often difficult to identify which are the individual attributes that can predict performance71

in specific tasks in advance. The starting point might be literature that provides empirical evidence on72

the relationship between individual attributes and task performance, grounded in person-environment73

fit theory (Caplan, 1987). Yet, when the findings in this literature are applied to specific tasks of74

one’s interest, predictive power may become weaker or even disappear due to many factors, including75

differences in measurement instruments, low variations in predictor variables, and idiosyncrasy of subject76

populations. These drawbacks could be alleviated by combining multiple individual attributes to predict77

task performance. Information fusion is known to produce more informative knowledge by reducing78

uncertainty, and it has been successfully applied to various fields, such as image processing and sensor79

networks (Khaleghi et al., 2013). It is thus tenable to enhance the match between individuals and tasks80

by using multiple individual attributes, even when each attribute has a poor predictive power on task81

performance.82

Here, we investigate the feasibility of enhancing productivity in collaborative citizen science by83

capitalizing on the diversity in individual attributes among participants. Specifically, we hypothesize84

that matching individual attributes to task types, informed by literature, will increase productivity in85

collaborative citizen science. We also hypothesize that combining multiple individual attributes will86

further reinforce the match between individual attributes and task types, thereby leading to a further87

increase productivity. The hypothesis is tested in an image-tagging project composed of two tasks with88

different granularities: quickly filtering images of interest from an image repository in a limited time,89

and allocating tags on the object in the filtered images over unlimited time. These tasks are designed90

to increase efficiency, considering that many image-tagging projects involve analyzing images taken by91

automated cameras (Lintott et al., 2008; Swanson et al., 2015), which could contain a large amount of92

images that are of no interest to the researchers. We evaluate the system performance in simulations using93

real data collected for a citizen science project. We used a project in which a highly polluted canal is94

monitored as the setting of our experiment, whereby participants are tasked with filtering and tagging real95

data collected from an autonomous robot deployed in the canal to monitor its environmental health (Laut96

et al., 2014).97

THEORETICAL FRAMEWORK98

Our study is grounded in two theoretical strands. One is organization theory, in which enhanced group99

performance is attained by allocating individuals to tasks based on competence, while balancing the100
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effort among tasks (Shafritz and Whitbeck, 1978). Task-specific variations in individual competence are101

explained by a myriad of personal attributes, including personality (Barrick and Mount, 1991), knowledge102

(Schmidt et al., 1986), and age (Veenman and Spaans, 2005). Analogous to enhanced productivity through103

task specialization (Smith, 1776), adaptive task assignment based on competence can increase overall104

productivity when the task is decomposable into subsets.105

The other is motivation theory, in which different types of individual motivations translate into a certain106

behavior and performance in combination with task-specific competence (Kanfer, 1990). Motivation107

is a multifaceted construct, which is broadly divided into extrinsic and intrinsic motivations (Ryan and108

Deci, 2000). Extrinsic motivation refers to goal-oriented behavioral drivers that come from external109

sources, such as reward, competition, and compliance, whereas intrinsic motivation is regulated by internal110

processes, such as enjoyment, curiosity, and inherent satisfaction (Ryan and Deci, 2000). These internal111

processes are explained by the self-determination theory, which posits people inherent growth tendencies112

in human nature (Deci and Ryan, 2000). In the context of citizen science, volunteers participate in projects113

through various motivations (West and Pateman, 2016), but the latter is known to be a strong predictor for114

contribution (Eveleigh et al., 2014; Nov et al., 2014, 2016; Zhao and Zhu, 2014).115

MATERIALS & METHODS116

Setting: our citizen science project117

This study was designed as part of the Brooklyn Atlantis Project (Laut et al., 2014), in which an aquatic118

monitoring robot was developed to take images of the canal along with water quality measurements and119

upload to our server during the navigation in the canal (Laut et al., 2014). In the past, we have used this120

project to successfully address various emergent questions in citizen science, including the effects of121

face-to-face interactions between volunteers and researchers (Cappa et al., 2016), individual curiosity122

(Nov et al., 2016), and interactions with peers (Laut et al., 2017; Diner et al., 2018) on participants’123

performance. The specific objective of the project in this study is to allocate tags to the objects of124

researchers’ interest in the images taken in the canal.125

The project consists of two tasks: quickly filtering images (Task A) and allocating tags on images126

(Task B). Task A is designed to filter images that may contain objects of researchers’ interest from an127

automated image collection performed by the robot (Figure 1a). A computer screen displays a panel128

consisting of 20 images, and users select images that contain an object indicated on the top of the panel129

by clicking them. The selected images are marked by green frames around them, and users can deselect130

images by clicking them again. Selected images are stored in an image repository with the associated tag131

names. The same images can reappear for different tags, and therefore, each image in the repository can132

contain multiple tags.133

Task B is designed to allocate image tags on objects in images filtered from the image repository in134

Task A (Figure 1b). A computer screen displays an image from the repository generated through Task A,135

along with associated tags displayed on the side. Users allocate each tag to the object in the image by136

dragging the tag. When the object indicated by the tag does not exist in the image, users remove the tag137

by dragging it to the trash bin.138

Experiment139

We conducted a controlled experiment using pre-selected images to collect data on individual performance,140

which were later used to test our hypothesis on matching individuals with tasks. Participants were141

university student volunteers. Upon agreement to participate by signing a consent form, the experimenter142

briefly introduced the pollution problem in the Gowanus Canal and our environmental monitoring project.143

Next, participants filled in a survey on a computer regarding their motivation to participate in a citizen144

science activity and their experience in playing action video games. For intrinsic motivation, we asked the145

following four questions, each of which participants answered on a seven-point Likert scale ranging from146

‘Strongly disagree’ to ‘Strongly agree’: (i) Participation in scientific projects gives me a sense of personal147

achievement, (ii) I really enjoy participating in scientific projects, (iii) Participating in scientific projects148

is fun, and (iv) Participation in scientific projects gives me the chance to do things I am good at (adapted149

from Roberts et al. (2006)). For the experience in playing action video games, we asked participants150

about the number of hours per day and days per week they spend playing action video games. We did not151

collect any other personal data, such as age and educational level.152
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a

b

Figure 1. Platform for the citizen science project. (a) Task A, where participants select the images that

contain an object of interest within a short time. (b) Task B, where participants allocate the tags to

appropriate locations on the image.
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Finally, participants performed both Task A and Task B. In Task A (quickly filtering images of153

interest), participants were shown nine panels sequentially, with each panel displayed for 5 seconds. In154

each panel, participants were asked to select all images that contain the specific object indicated on top155

of the panel, such as buoy, boat, and tree. Each panel contained 1–8 correct images out of 20 images.156

In Task B (allocating tags on images), participants were asked to allocate each tag to the appropriate157

location of the image. Each image was associated with 1–4 tags. Based on a preliminary trial on Task A158

(n = 8), participants incorrectly selected 3% of images as correct. Therefore, in the main experiment, we159

added 3% of tags incorrectly associated with the image. When they finished allocating all tags on the160

image, participants clicked a ‘Next’ button on the bottom of the image, and a new image was displayed.161

Participants continued performing the task until they click a ‘Quit’ button on the screen, or they completed162

52 images, the maximum number of images we prepared.163

Participants performed Task A and Task B in a random order. Images to both tasks and to all164

participants were the same. Images were displayed in a same order for all participants in both tasks. The165

experiment was approved by the University’s Institutional Review Board (IRB-FY2016-184).166

Matching individual attributes with task types167

Before examining our hypotheses, we estimated the optimal distribution of participants between the tasks168

toward maximizing productivity, measured as the total number of tags allocated on the images. To that169

end, we partitioned the participants into two synthetic groups in a random manner, where one group170

would perform Task A and the other would perform Task B. We varied the proportions of participants171

who were assigned to Task A from 0 to 100% with an interval of 10%. We calculated the output in Task A172

by summing the number of images selected in Task A by the participants who were assigned to the task.173

In the same way, we calculated the output in Task B by summing the number of tags allocated to images174

in Task B by the participants assigned to the task. The minimum of the two was used as a measure of175

the system productivity, considering that the output in Task B is dependent on the output of Task A. By176

comparing the average system productivity of 10,000 simulations for each proportion, we identified that177

distributing 40% of participants to Task A and 60% to Task B yielded the highest productivity (2,100 on178

average).179

To assign participants to the tasks based on their individual attributes, we focused on the individual180

motivation level and video game experience. The individual motivation level was scored as a mean181

value of the multiple survey responses, and scale reliability was checked by calculating Cronbach’s α182

(Cronbach, 1951). The video game experience was scored as hours playing action video games per week.183

The motivation and the video game experience were normalized between 0 and 1 by subtracting the184

minimum value from the observed value and divided by the range, respectively.185

We reproduced productivity by dividing the participants into two synthetic groups based on individual186

attributes. To examine our first hypothesis that using findings in literature could inform better task187

assignment, we used only one attribute to assign tasks to the participants. Specifically, participants were188

ranked in a decreasing order of the video game experience, and the top 40% were assigned to Task A189

(quickly filtering images of interest), and the rest was assigned to Task B (allocating tags on images). In a190

similar way, participants whose motivation fell in the top 60% were assigned to Task B, and the rest was191

assigned to Task A. In case of ties, we randomly ranked the tied participants.192

To examine our second hypothesis that combining individual attributes could improve the process of193

assigning participants to tasks, the two individual attributes were aggregated into one value as a difference194

between the two. Specifically, participants were scored as A−wB, where A is the video game experience,195

B is the level of intrinsic motivation, and w is a relative weight. The higher score indicates more experience196

in playing video games, compared to the level of intrinsic motivation. With no a priori knowledge on the197

relative importance between the two variables on the system productivity, we arbitrarily set w = 1. We198

ranked participants by their scores in a decreasing order and assigned Task A to the participants whose199

ranks were in the top 40% and Task B to the rest. In case of ties, we randomly ranked tied participants200

within the ties.201

System evaluation202

We evaluated the proposed task assignment scheme by comparing the productivity resulting from attribute-203

based task assignment against that from random assignment, using the empirical data collected in the204

experiment. In each simulation, we computed the total numbers of tags allocated on the images in cases205

where participants were assigned to the tasks randomly and based on individual attributes (motivation206
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only, game experience only, or the combination of both). Then, for each simulation, we recorded the207

change in the productivity by subtracting the number of processed images through random task allocation208

from that through attribute-based task allocation. We obtained the probability distribution of the change209

in output by iterating for 10,000 times.210

In addition, we investigated the relative contribution of the two individual attributes to productivity211

when they were aggregated into one score to assign participants to the tasks. We evaluated the productivity212

by assigning participants to the tasks based on individual score A−wB, where the relative weight of213

intrinsic motivation on the individual score (w) was varied from 0 to 3 with an interval of 0.1, with 10,000214

simulations each. The relative contribution of the two individual attributes to productivity was explored215

by investigating changes in the productivity over w.216

Relationships between individual attributes and task performance217

Our first hypothesis is built on the empirical evidence of the relationship between the experience in218

playing action video games and performance in the tasks that require fast visual acuity (West et al., 2008;219

Dye et al., 2009; Chisholm et al., 2010; Green et al., 2010), as well as the level of motivation and the220

quantity of output in citizen science (Eveleigh et al., 2014; Nov et al., 2014, 2016; Zhao and Zhu, 2014).221

To ascertain how much these individual attributes would predict task performance in our specific case,222

we performed a linear regression analysis using data collected from all participants. In one model, we223

specified video game experience as the explanatory variable and the output in Task A as the response224

variable. Video game experience was rescaled using an inverse hyperbolic sine transformation to avoid225

high leverage of large values. In another model, we specified motivation level as the explanatory variable226

and the output in Task B as the response variable. We tested for the significance by checking improvement227

of the model fit using an F test. Further, to check whether the two attributes were orthogonal to each other,228

collinearity between the two individual attributes was investigated through Kendall’s rank correlation229

(Kendall, 1938) between the two individual attributes.230

RESULTS231

We collected data from 101 participants. In Task A, participants selected 35± 6 (mean ± standard232

deviation) images among 38 correct images. In Task B, participants allocated 60±40 tags to the images233

and spent 3.9±2.7 minutes. Eleven participants completed all of the 52 images we prepared in advance.234

Hours of playing action video games per week ranged from 0 to 28 hours (mean 1.2, median 0). The level235

of intrinsic motivation, estimated as a mean of the responses, ranged from 2.5 to 6 (mean 4.7, median 4.8).236

Responses from the four questions were highly consistent within participants (Cronbach’s α = 0.77).237

When participants were randomly assigned to the tasks, we obtained a productivity of 2,100±40238

(mean ± standard deviation from 10,000 simulations). By contrast, when participants were assigned to239

the tasks based only on experience in video game playing, we observed a productivity of 2,126± 40.240

Compared against the random task assignment, it changed the productivity by 27 on average, with a 95%241

interval from −88 to 130 (Figure 2a). Similarly, when participants were assigned to the tasks based only242

on intrinsic motivation, we observed a productivity of 2,108±13, resulting in a mean change of 8, with a243

95% interval from −60 to 101 (Figure 2b). Finally, when participants were assigned to the tasks based on244

both attributes, we registered a productivity of 2,156±5, resulting in a mean change of 56, with a 95%245

range from −6 to 141 (Figure 2c). Among these changes, 95.9% cases showed increases from the random246

assignment, whereas only 3.8% showed decreases.247

The weight of the two attributes on individual score influenced the productivity (Figure 3). The248

maximum mean change in the productivity (63) was attained at w = 0.6.249

Individual attributes partially explained the task output (Figure 4). The experience in playing action250

video game significantly explained the output in Task A (F1,99 = 9.036, p = 0.003). However, the251

predictive power was low (r2 = 0.084). By contrast, the level of intrinsic motivation did not explain the252

output in Task B (F1,99 = 2.317, p = 0.131,r2 = 0.023). The two attributes were not correlated with each253

other (n = 101, Kendall’s τ =−0.060, p = 0.459).254

DISCUSSION255

Our proposed attribute-based task assignment aimed at enhancing citizen science system productivity by256

capitalizing on multidimensional diversity of human attributes, such that diverse people can contribute257
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Figure 2. Probability distribution of the change in output through attribute-based task allocation. (a)

When participants were allocated to the tasks based only on video game experience, (b) only on

motivation, and (c) on both attributes. Change in output was obtained by comparing the number of

processed images through attribute-based task allocation against that through random task allocations for

10,000 times. Dashed vertical line represents zero (no change).
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score A−wB, where A is the experience in playing action video games, and B is the level of intrinsic

motivation. A solid line represents a mean change in output, and dark and light gray areas indicate 50%

and 95% interquantiles of the change in output, respectively, obtained from 10,000 simulations at each

value of w. A dashed horizontal line is zero (no change).
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number of tags allocated to the images. The experience in playing action video games (h/week) was

plotted on a scale of an inverse hyperbolic sine transformation. A line and a shaded area indicates a

predicted mean and a 95% confidence band, respectively.

collaboratively toward a shared goal. By evaluating the attribute-based task assignment through empirical258

data, we explored the possibility of enhancing the project’s productivity by integrating multiple weak259

predictors of task performance in the process of assigning participants to tasks. Our approach of matching260

individual attributes to task types contributes to designing collaborative citizen science projects that261

increase system productivity while reducing participants’ effort.262

Our proposed task allocation scheme builds on prior empirical evidence that certain individual263

attributes predict task performance. Specifically, we selected individual attributes that could predict task264

performance based on empirical evidence: the experience in playing action video games would explain the265

output of the task that required processing visual information with quick judgment (West et al., 2008; Dye266

et al., 2009; Chisholm et al., 2010; Green et al., 2010), and the level of intrinsic motivation would explain267

the output of the task that required engagement for a prolonged time (Eveleigh et al., 2014; Nov et al.,268

2014, 2016; Zhao and Zhu, 2014). In contrast to the literature, however, we found that these individual269

attributes had extremely weak predictive powers on the task performance in our setting.270

The disagreement might have been caused by the experimental procedure, in which we recruited271

participants on the spot and asked them to perform the tasks on a computer. This situation might have272

posed a challenge to motivated participants with time constraints, weakening the relationship between273

motivation and contribution. Alternatively, some people might not have been interested in a local274

environmental problem. In addition, many of our subject population indicated no action video game275

playing, which could have weakened the predictive power on the task performance. Nevertheless, we276

were able to enhance the system productivity by combining two orthogonal attributes in the assignment277

of participants to tasks, compared to using only one attribute. In addition, combining the two attributes278

resulted in a lower variation in the productivity, thereby reducing uncertainty of the system output.279

The idea of matching individual attributes with task types could be implemented in various crowd-280

sourcing practice. Online crowdsourcing platforms often offer practitioners numerous criteria for selecting281

workers based on their attributes and experience, which can be used to match workers with specific tasks282

toward reducing costs by increasing productivity. For example, matching worker expertise and wage283

requirements with task is shown to enhance knowledge production in collaborative crowdsourcing (Roy284

et al., 2015). Although many citizen science projects do not collect personal information, it would also285

be possible to predict individual performance before participants perform tasks by assessing individual286

attributes through a simple survey. Alternatively, in projects with many recurrent participants, their287

past performance could also be useful to predict their future performance and assign them to specific288

tasks. Considering that task performance may be related to a myriad of individual attributes, the idea of289

combining multiple attributes to inform the selection of which participant should perform which task290

could find greater applications beyond the case of two attributes we examined here. We believe that such291
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an approach could be effective toward enhancing system performance through an efficient division of292

labor.293

Several factors contributed to enhancing the system productivity by combining the two orthogonal294

individual attributes. First, dividing participants into dichotomous tasks could alleviate a weak predictive295

power of individual attributes on task output. The output of each task was estimated as a sum of the output296

by the participants assigned to the task, and therefore, uncertainty in the output among individuals was297

damped within each task group. By integrating the weak predictors, we could further take advantage of this298

effect. Indeed, higher productivity was found when the individual attributes were aggregated by weighting299

less on the level of intrinsic motivation, which had a weaker predictive power. Second, combining the two300

attributes could differentiate participants with tie scores. As more than half of the participants reported no301

experience in playing action video games, there was a great uncertainty in assigning participants to the302

tasks based solely on the video game experience. With additional information of another attribute, we303

were able to further differentiate individuals within ties, resulting in enhanced system productivity.304

It is important to note that implementing attribute-based task assignment into a project can be a305

significant effort. Although we demonstrated that productivity in the attribute-based task assignment was,306

in most cases, greater than the values that could be observed by chance, the magnitude of the increase307

was only 2.7% on average. This is simply due to the fact that the productivity in the attribute-based308

task assignment is a subset of a random task assignment. As a result, it cannot be feasible to attain a309

productivity beyond the upper limit of the null distribution associated with productivity in the random task310

assignment. It is presently unclear whether such a limited benefit may offset the effort of implementing311

the attribute-based task assignment scheme into a citizen science platform.312

In this study, we explored an idea for designing collaborative citizen science projects that harness313

variation in individual attributes, using video game experience and motivation as examples. The individual314

attributes we focused on in this study may show a weaker predictive power in other citizen science projects.315

For example, if a certain project entails participants of diverse ages, video game experience may not be316

a valid predictor of a certain task, considering that a relationship between video game experience and317

cognitive abilities may be confounded by age (Wang et al., 2016). In such a case, practitioners may need318

to integrate more individual attributes toward accurate task assignment.319

CONCLUSION320

Several citizen science projects offer multiple tasks among which volunteers are free to choose (for321

example, iNaturalist, https://www.inaturalist.org). Although autonomy in task choices may enhance322

performance by increasing intrinsic motivation, task preference may lead to an unbalanced distribution323

of citizen scientists among tasks, thereby diminishing the overall performance in collaborative citizen324

science. Our study proposes a new direction in designing citizen science projects toward enhancing325

productivity through an efficient division of labor that matches individual attributes with task types using326

multiple individual attributes.327
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