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ABSTRACT | Over the past 10 years, molecular communication
(MC) has established itself as a key transformative paradigm in
communication theory. Inspired by chemical communications
in biological systems, the focus of this discipline is on the
modeling, characterization, and engineering of information
transmission through molecule exchange, with immediate
applications in biotechnology, medicine, ecology, and defense,
among others. Despite a plethora of diverse contributions,
which has been published on the subject by the research
community, a general framework to study the performance
of MC systems is currently missing. This paper aims at filling
this gap by providing an analysis of the physical processes
underlying MC, their
underpinnings. In particular, a mathematical framework is

along with information-theoretic
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proposed to define the main functional blocks in MC, supported
by general models from chemical kinetics and statistical
mechanics. In this framework, the Langevin equation is utilized
as a unifying modeling tool for molecule propagation in MC
systems, and as the core of a methodology to determine the
information capacity. Diverse MC systems are classified on the
basis of the processes underlying molecule propagation, and
their contribution in the Langevin equation. The classifications
and the systems under each category are as follows: random
walk (calcium signaling, neuron communication, and bacterial
quorum sensing), drifted random walk (cardiovascular system,
microfluidic systems, and pheromone communication), and
active transport (molecular motors and bacterial chemotaxis).
For each of these categories, a general information capacity
expression is derived under simplifying assumptions and
subsequently discussed in light of the specific functional
blocks of more complex MC systems. Finally, in light of the
proposed framework, a roadmap is envisioned for the future
of MC as a discipline.

KEYWORDS | Fokker-Planck equation; information capacity;
Langevin equation; molecular communication (MC); nanonet-
works; Poisson noise; statistical mechanics.

. INTRODUCTION

The genesis of molecular communication (MC) as
a discipline stands in the observation of the units
of life, i.e., biological cells, where information is
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generated, stored, and communicated through molecular
processes [1]. Molecules are the common substrates used
in cells to represent information, and their chemical reac-
tions and transport mechanisms are the key processes that
enable their encoding and propagation. MC aims to build
on top of these processes by modeling, characterizing, and
engineering communication systems and devices able to
tap into a previously uncharted territory, the biochemical,
to enable applications where classical communication sys-
tems show limitations, i.e., inside the human body and/or
directly interacting with biological cells [2]. Current and
future MC applications range from the engineering of com-
munication systems between microorganisms [19], to the
development and optimization of biomedical devices [12],
and the augmentation of the human body functionalities
through pervasive intrabody deployment of intercom-
municating nanotechnology- and biotechnology-enabled
devices, i.e., the Internet of Bio-Nano Things (IoBNT) [3].

Since the birth of this field, the research community,
largely driven by communication and networking engi-
neers, as well as computer scientists, has taken different
elements from the aforementioned biochemical commu-
nication processes and abstracted them into theoretical
models to assemble and characterize MC systems. This
has led researchers to develop communication channel
models based on a wide range of processes for propa-
gating information via molecules, ranging from passive
Brownian motion diffusion [17], [18], [60], [83], to the
transport, or advection, in fluid currents [10], [12], [76],
and to active processes that require a dedicated energy
source to move molecules from a transmitter to a
receiver [67], [72], [77]. Subsequent contributions have
explicitly addressed the estimation or expression of the
communication capacity with ad hoc studies for some of
these MC channels, such as time-slotted ON-OFF keying
(OOK) [20], one-shot [21], time-slotted [22], [23], and
continuous [24], [25] timing channels, and multiple sym-
bol transmission [26] with perfect transmitter-receiver
synchronization for passive Brownian motion and between
bacteria colonies [33], time-slotted transmission in the
cardiovascular system [11] and continuous transmission
in passive Brownian motion [15], [32], and microflu-
idic systems [74], [75]. Although these contributions
have wvalidity for specific MC scenarios, a general
information-theoretic framework that captures the pecu-
liarities of an MC channel over classical communication
systems is currently missing.

This paper aims at filling the aforementioned research
gap by providing a mathematical framework rooted in
statistical mechanics to abstract any MC system and deter-
mine or estimate the information capacity of their commu-
nication channels. As shown in Fig. 1, by stemming from
the general formulation of the Langevin equation [9] of
a moving nanoscale particle subject to unavoidable ther-
mally driven Brownian forces, we build a general mathe-
matical abstraction of an MC system and its main elements.
Subsequently, we derive a methodology to determine
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stems from the Langevin SDE.

(or estimate, whenever closed-form analytical solutions
are intractable) the MC channel capacity based on the
decomposition of the Langevin equation into two con-
tributions, namely, the Fokker-Planck equation [7] and a
Poisson process. We classify any MC system on the basis of
their representation in terms of the Langevin equation as
follows. MC systems based on random walk, such as cal-
cium signaling in cell tissues [39], neuron communication
by means of neurotransmitters [49], and bacterial quorum
sensing [55], include only the contribution of the Brown-
ian stochastic force f. MC systems based on drifted ran-
dom walk, such as MC in the cardiovascular system [12],
microfluidic systems [74], and pheromone communication
between plants [57], include both f and a drift velocity
v, (t) as function of the time ¢ for each molecule n, which
is independent of the Brownian motion. MC systems based
on active transport, such as those based on molecular
motors [72] and bacteria chemotaxis [67], include instead
a deterministic force F,, (¢) added to f. For each of these cat-
egories of MC systems, and based on the aforementioned
Langevin equation decomposition, we provide a general
information capacity expression under simplifying assump-
tions and subsequently discuss these results in light of
the functional blocks of more specific MC system models,
including cases where a closed-form capacity expression
cannot be analytically derived.

The rest of this paper is organized as follows.
In Section II, we introduce the framework to model and
classify MC systems based on the Langevin equation,
and we introduce a general methodology to determine
their channel capacity. In Sections III-V, we detail general
capacity expressions and specific functional block mod-
els for MC systems based on a random walk, drifted
random walk, and active transport, respectively. Finally,
in Section VI, we conclude this paper and discuss the future
of MC as a discipline.

I. FRAMEWORK TO ANALYZE
MOLECULAR COMMUNICATION
SYSTEMS AND THEIR CAPACITY

MC is defined as the transmission, propagation, and
reception of information by utilizing molecules and their
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Fig. 2. Fundamental processes and functional blocks of an MC

system.

propagation as the medium [1]. Molecules are the small-
est identifiable units of a substance, a form of matter with
specific homogeneous chemical composition and proper-
ties. Consequently, a molecule is the smallest unit that still
retains information on the substance identity and its ability
to take part in chemical reactions. The size of a molecule
ranges from that of diatomic hydrogen (0.074 nm), water
(0.275 nm), and carbon dioxide (0.232 nm), to the size
of a biological macromolecule, such as an average protein
(~2 nm) or a deoxyribonucleic acid (DNA) chain (from
2 nm). In an MC system, their dimensions and the strong
forces of the chemical bonds that underlie their struc-
ture, and the information they carry, are manipulated by
chemical reactions, where molecule composition and struc-
ture are rearranged. Chemical reactions are the primary
processes underlying the MC transmission and reception.
Since a single chemical reaction involves single or a few
molecules of one or more (few) substances, an entire
MC system has nanoscale precision and can be contained
within nanoscale dimensions, and for this reason, MC is
identified as a nanocommunication paradigm [2].

To manipulate and propagate information-bearing mole-
cules, the components of an MC system should neces-
sarily be immersed in or include a substance in a fluid
state. Brownian motion is the random and independent
movement of molecules suspended in a fluid, and it is an
unavoidable consequence of the molecule vibrations for a
temperature higher than the absolute zero. An MC system
is, therefore, subject to Brownian motion as a fundamental
stochastic process underlying all its components, and the
Brownian motion effects are present in every possible
implementation of an MC system.

A. Mathematical Models of Fundamental
Processes in MC

With the goal of modeling information propagation
in MC, the aforementioned fundamental processes in
MC, sketched in Fig. 2, have the following analytical
formulation.
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1) Molecules of the same substance, which carry infor-
mation in MC, are considered indistinguishable and
equivalent to spherical particles of radius r and
mass m, where r < d, d being the distance between
the transmitter and the receiver in an MC system,
defined in the following, and s is the particular
substance. Consequently, from now on, we will indis-
tinguishably refer to molecules or particles.

2) Chemical reactions are processes that convert one or
more input molecules (reactants) into one or more
output molecules (products). A reaction j may pro-
ceed in forward or reverse directions, which are char-
acterized by forward (ky ;) and reverse (k.. ;) reaction
rates, respectively. We assume to have, in general,
S chemical substances and M different chemical reac-
tions in their elementary form, i.e., each chemical
reaction happens without any intermediate product.
They can be expressed as follows:

k.

Rijs1+ -+ Rn jss \k: Pijsi+---+ Pnjss (1)
7.

where R;; and P, ; are the number of molecules of

the substance s; that participate in a single chemical

reaction j expressed in (1) as reactants or products,

respectively. This can be mathematically expressed
with the following reaction rate equation:

S S
Vi =kyy [ [ls:i09 = Koy [ [ (s 2
i=1

i=1

where V; is the rate of the reaction, i.e., the rate of
variation in the molecule concentration [s;] of the
substance s; in number of molecules per unit space.
Following classical chemical kinetics, the evolution of
the M chemical reactions can be expressed as:

d[s] M

j=1

where v; ; = P;; — R;,; expresses the net change in
the concentration [s;] of the substance s; due to the
jth reaction.

3) Particle motion in a physical system can be analyti-
cally formulated according to the Langevin stochastic
differential equation (SDE) [9], which states that the
location p,,(t) = {pn,:(t)}, of the particle n at time ¢
along any space dimension ¢ (e.g., one of the 3-D axes
X,Y,Z shown in Fig. 3) obeys the following equation:

& () — va(0))

2 = Fa(t)
g 10200 v ()
+£(t) “
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where m is the molecule mass, §°(-)/9t* and 9(-)/dt
are the second and first time derivative operators,
respectively, v, (t) is a drift velocity of the fluid where
the particle n is located, F,(¢) is a force applied to
the particle n independently of its Brownian motion,
1 is the viscosity of the fluid, which we assume homo-
geneous in the propagation space, r is the radius of
the particle, and f(¢) is a random process that models
the Brownian motion force, whose probability density
function is Gaussian and has correlation function

< fi(t) f;(t") > given by
< fi@®) ;") >= 12mprksTs; j6(t —t') 5)

where f;(t) is the component of f(¢) in the ith dimen-
sion, < - > is the average operator, ¢ and j indi-
cate any of the space dimensions, kp is Boltzmann’s
constant, T is the absolute temperature of the fluid,
considered homogeneous throughout the space, and
d;,; is equal to 1 if 4 = j and zero otherwise, and
§(t — t') is the Dirac delta function.

B. Functional Blocks of a Molecular
Communication System

An MC system [38], defined as a set of natural or
engineered components that work together to receive
information from a source, encode this information into
properties of molecules emitted at a transmitter, propagate
the information-bearing molecules through a channel, and
reconstruct this information through a Receiver, includes
the following main functional blocks based on the afore-
mentioned fundamental processes.

1) Information encoding is the modulation of the mole-
cule properties according to the source information
X(t), either continuous-time signals or symbols at
discrete time instants ¢ = ¢, k € N. These properties
can be classified into two main categories, namely,
intensive and extensive, following the ways physical
systems can be characterized. Intensive properties
do not depend on the quantity of the molecules,
such as their chemical composition and structure
(e.g., protein folding), concentration, density, pres-
sure, or temperature. Extensive properties are instead
proportional to the quantity of molecules, such as
their number, total mass, occupied volume, enthalpy,
or entropy. Some intensive properties can be assigned
to a single molecule, e.g., temperature or chemical
composition and structure, while others are derived

from the ratio between two extensive properties, e.g.,
concentration or density. Some of these properties
are continuous, e.g., concentration (at high molecule
number) or temperature, while others are discrete,
e.g., molecule number, chemical composition, and
structure. The information encoding results in values
of these properties as function of the source informa-
tion X (¢). Consequently, the encoding of an intensive
property that can be assigned to a single molecule is,
here, formalized as

Int;,, (X () = A(X (1)) (6)

where A;(-) is the encoding function for the Ith
intensive property, which determines the intensive
property for the nth molecule. The encoding of an
extensive property can be formalized as

Ext; m (X (1)) = bm(nu(t)), nu(t) = Ci(X () (7)

where b, is a proportionality constant for the mth
extensive property, n;(t) is the number of molecules
with identical intensive property A;(X(t)) at the
transmitter at time ¢, and C;(X(t)) is a function of
the source information X (t). One of the most used
intensive properties in MC, namely, the concentration
of a substance (characterized by molecules with
intensive property [ corresponding to a specific
chemical composition and structure) can be derived
by dividing the number of molecules n;(t) by their
occupied volume Ext;,,,(X(t)), where m denotes a
specific occupied volume.

2) Molecule emission is the release of information-

bearing molecules to the molecule propagation
medium. In an MC system, this corresponds to
moving the molecules, whose properties compose
the encoded signal from inside to outside the space
occupied by the transmitter, into the propagation
medium. Realistic molecule emission processes
include free diffusion, evaporation, dilution,
osmosis/dialysis, pressure gradients (e.g., spray),
encapsulation, or release from vesicles/reservoirs.
The molecule emission results in molecule locations
p, (t») at the boundary Sr that separates the
transmitter from the rest of the space, expressed as

p,(tn) €St Vtn,n:Ny(tn) >0, n€Np(tn) (8)

where Nt (tn) = >, ni(tn) is the number of molecules
emitted at time ¢, at the transmitter, and Np(¢) is the
set containing all the indices of the emitted particles
from time 0 to time ¢

Na(t) = {/t Nr(r)dr

O<t'<t}. )
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3) Molecule propagation is the process whereby the
emitted molecules propagate through space from the
transmitter location to the receiver location by means
of a propagation medium. In an MC system, this
propagation is unavoidably affected by the aforemen-
tioned Brownian motion, i.e., the Brownian stochastic
force f, but other processes can be in place to further
control the molecule propagation over a completely
random walk, represented by the drift velocity v, (¢)
and the force F,(t) in (4), both independent of the
Brownian motion, where the former results from
currents in the fluid, and the latter from other deter-
ministic forces acting on each molecule n. Regardless
of the particular underlying process, the molecule
propagation can be expressed as the translation of
the spatial coordinates from the location p,, (¢,) at the
transmitter to a location p,, (¢, + AT at time ¢, + AT

P, (tn) = P, (tn + AT), Vn e Ne(tn)  (10)

where AT is an arbitrary propagation time interval.

4) Molecule reception is the detection of the molecules
that propagated to the receiver. The most widespread
process for realizing this detection is through
chemical reactions between the information-bearing
molecules at the receiver and other molecules,
i.e., chemical receptors, which can be placed at
the receiver boundary or within the receiver space
Sr. Upon detection, molecules can separate from
the chemical receptors and either degrade/be
degraded (absorbing receiver) or resume their
propagation (nonabsorbing receiver). The set Ng(t)
of received molecules at the receiver at time ¢ > ¢, is
represented as

Nr(t) = {n[p,(t) € Sr}. (11

5) Information decoding is the demodulation of the
properties of the received molecules to obtain an
estimate of the source information, which may
possibly include noise or errors in the recognition of
symbols. Upon effective collision of these molecules,
if a chemical reaction takes place, a specific molecule
with composition/structure complementary to
the chemical reception is recognized as being
received. By considering the result of chemical
reactions at multiple (different) receptors, in the
most general formulation where both intensive and
extensive properties are utilized to encode the source
information X(¢), the reception process output is
composed of the estimated values El?l(t) and E?ti(t)
of the intensive and extensive properties of the
received molecules. This is expressed as

Xin(t) = A7 (Int, (1)) (12)
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 Exta(t)

Xim(t) = ; (13)

where X, ,,(t) and X, (t) are the estimated value of
the source information X(¢) from the /th intensive
property of the received molecule n and from
the mth extensive property of molecules with [th
intensive property, respectively. A;"'(-) is the inverse
of the encoding function A,(-) for the Ith intensive
property, and b,, is the proportionality constant
defined in (7). The received information Y (¢) is then
obtained from X, (t) and X, . (¢). The expressions
in (12) and (13) are intended to be general and
include any possible information encoding scheme on
molecule properties. For example, information could
be encoded into the sequence of the nucleotides of
different DNA strands (intensive properties) and in
a different number of copies of each different DNA
strand (extensive properties). In the case where the
same source information has been encoded both in
intensive and extensive properties of the emitted
molecules, the received information can be obtained,
e.g., through averaging, as follows:

Ne(t) &

M S
Xl,n(
t

Xl’m(t)
M

m=1

t)+

0 (14)

1 L

n=1

where we average over the total number L of
intensive properties used for encoding the source
information X (¢). For the intensive properties,
we also average over the number of received
molecules Ng(t) at time ¢, while for the intensive
properties, we average over the total number of
extensive properties M used for encoding.

C. General Principles of Molecular
Communication Channel Capacity

The capacity C' of an MC channel in [bit/sec] is, here,
defined as the maximum rate of transmission between
the molecule emission process and the reception process,
where this maximum is with respect to all possible prob-
ability distributions of the emission process [14]. This is
expressed by the general formula from Shannon [6], which
defines the capacity as the maximum mutual information
I(E; P) between the transmitted signal (emitted mole-
cules) E = {tn,p,,(tn)}n, where n is the index of an emit-
ted molecule at time ¢, in the set Nr(¢,), and the received
signal (received molecules) P = {tn;,p,,(tng)}ng,
where ¢, is the time of reception of one or more mole-
cules, and ng is the index of a received molecule in the
set Ngr(t), with respect to the probability density function
fe(e) in all the possible values of the transmitted signal

C’z}lcne(xx) {I(E;P)}. (15)
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The mutual information I(E; P) in [bit/sec] is defined
as

I(E; P) = H(E) — H(E|P) = H(P) — H(P|E)

= H(E)+ H(P) — H(E, P) (16)

where H(F) is the entropy per second of the transmitted
signal E [6], H(FE|P) is the entropy per second of the
transmitted signal F, given the received signal P, H(P|E)
is the entropy per second of the received signal P, given
the transmitted signal F, and H(FE, P) is the joint entropy
per second of the transmitted signal £ and the received
signal P.

The relationship between the transmitted signal £ and
the propagated signal P in an MC system is expressed,
in general, by the aforementioned Langevin SDE (4).
According to statistical mechanics, this propagation model
can be separated into two distinct contributions, as shown
in Fig. 3. The Fokker—Planck equation [7], which is a deter-
ministic partial differential equation (PDE) to compute
the probability density of the particles in the propaga-
tion space, and a Poisson point process [15], which is a
stochastic process that results in the assignment of the
particle locations p,, in the space based on the result of
the Fokker-Planck equation. In the following, we detail
how to exploit these properties of the molecule propaga-
tion process to define general principles to determine the
channel capacity in MC systems.

The Fokker-Planck equation describes the evolution of
the particle propagation in the space in the variable p(p, t),
which is the probability distribution of the location of a
particle as function of the space coordinates p = {p;} and
time ¢. The expression of this equation for MC systems
accounts for the aforementioned molecule emission as a
source of particles at the transmitter. This translates into
an additional term, namely, (1/n)d(|p — p,,(tn))0(t — tn),
which corresponds to the contribution of one particle at
time ¢, and location p,(¢») to the total number n of
propagating particles up to time ¢,,. We make the following
assumptions: 1) the diffusing particles have a spherical
shape; 2) the diffusing solute particles are in low con-
centration; 3) their dimension is much larger than the
particles of the solvent; and 4) their diffusion is isotropic
in the considered space. We express this formulation of the
Fokker—Planck equation as follows:

Ip(p; t)
ot

= DV?p(p,t) — Vv(p,t)p(p,t)

Nr(t)

£ 3 28D~ R ()3~ ) (1)

n=1

where n is computed from Ny (¢) according to (8), v(p,t) =
(1/m) [ F(p,t)dt [where F(p,,,t) = F,(¢) from (4)], and D
is the particle diffusion coefficient, whose expression is as

follows:

D— K,T
6mur

(18)

where K, is Boltzmann’s constant, 7" is the absolute tem-
perature of the system, p and r are the aforementioned
viscosity of the fluid and the particle radius, respectively.

The Poisson point process is expressed through the sto-
chastic process that randomly assigns the location to each
transmitted particle according to the particle distribution
po(p,t) at each time instant ¢. This process is a spatial
Poisson point process where the expected value is the
particle distribution p(p, t), expressed as follows:

p,.(t) ~ Poiss (p(p,t)) Vn € Nr(t) (19)

where Nr(t) is given by (9). Although specific MC system
implementations will incorporate other stochastic sources,
as described in the next sections of this paper, which
will impact the performance of the system through noise,
we consider the noise generated by the stochastic process
in (19) as inevitably present in any MC system described
by our general information-theoretic framework.

The cascade of the aforementioned Fokker—Planck equa-
tion and the Poisson point process, as illustrated in Fig. 3,
defines a Markov chain [6] in the variables F, p, and P
following the order E — p — P. This is justified by
the property that £ and P are conditionally independent
given p, which is expressed as follows:

fE,P\p(evp) :fE\p(e) fP\p(p) (20)

since p is a function of E from (6)-(8) and the
Fokker-Planck equation in (17), and the distribution of
P is a function of p from [11]-[14] and [19]. The chain
rule applied to the joint entropy of E, p, and P states the
following [6]:

H(E, p, P)=H(E, P|p)+ H(p) = H(E|p) + H(P|p) + H(p)
(21

since p is a deterministic function of E through the infor-
mation encoding in (7) and (12), molecule emission (8),
and molecule propagation (17), then the joint entropy
per second of F, p, and P is equal to the joint entropy
per second of F and P

H(E,p,P) = H(E, P). 22)

By applying (21) and (22) to the third expression in (16),
we obtain that the mutual information I(FE;P) of the
transmitted signal F and the received signal P as the sum
of the mutual information of a communication system,
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which includes only the Fokker-Planck equation (mutual
information I(F;p) of the transmitted signal and the par-
ticle distribution) and conditional entropy H(p|P) of the
particle distribution given the received signal

I(E;P) = H(E) + H(P) — H(E|p) — H(P|p) — H(p)
= I(E;p) + 1(P;p) — H(p)
= H(p) — H(p|E) + H(p) — H(p|P) — H(p)

= H(p) — H(p|P) (23)

where we applied the first two definitions of mutual
information from (16) and we considered the fact that
H(p|E) = 0 since p is completely determined by F (deter-
ministic function of E).

As a consequence of (23), to determine the aforemen-
tioned capacity C, it is necessary to analytically express
(or estimate) the entropy H(p) of the particle distribu-
tion and the conditional entropy H (p|P) of the particle
distribution given the received signal. The former depends
exclusively on the Fokker—Planck equation (17), while the
latter depends on the Poisson point process in (19). These,
in turn, depend on the processes underlying molecule
propagation in the particular MC system being consid-
ered. In particular, as illustrated in Fig. 1, the aforemen-
tioned propagation processes can be classified on the basis
of the randomness on the trajectory of the propagating
molecules, which impact the particular expression of the
Fokker-Planck equation (17). In the following, for each
class of MC systems, we present a general information
capacity expression under simplifying assumptions and
discuss the impact of specific functional block implemen-
tations in more realistic MC systems.

IIl. MOLECULAR COMMUNICATION
VIA RANDOM WALK

In MC systems based on random walk, the molecules
emitted by the transmitter propagate to the receiver solely
by means of Brownian motion. Consequently, the molecule
propagation can be modeled by the Langevin equation
in (4), where the drift velocity v, (¢) of the fluid and the
Brownian-motion-independent force F,, are set to zero.
MC based on random walk occurs naturally in a number
of biological systems, and it is considered the simplest and
most widespread molecule propagation process in nature.
In the following, we obtain a closed-form expression to
compute the capacity of the Brownian motion channel
through the aforementioned methodology by defining the
functional blocks of a basic abstraction of an MC system
via random walk. Subsequently, we provide more specific
functional block models of key diffusion-based implemen-
tations found in nature, namely, cell calcium signaling,
communication through chemical synapses between neu-
rons, and quorum sensing networks of bacteria.
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A. Brownian Motion Channel Capacity

With reference to Fig. 4, we describe the functional
blocks of a basic abstraction of an MC system based on
random walk.

1) Information Encoding: One single molecule type is
modulated in its number Ny(¢) at time ¢ proportionally to
the source information X (¢), expressed as

Np(t) = KX(t), t>0 (24)

which is derived from (6) and (7) by considering L = 1,
M=1,and C; = K.

2) Molecule Emission: Molecules are released in a con-
tinuous fashion by an ideal point-wise transmitter (size
equal to zero) at location p;, = {pz,7c, Py, T2, Pz,1c} i
an 3-D space, as shown in Fig. 2. At the time ¢,, of emission
of the nth molecule, its location p,, (¢,,) corresponds to the
location of the transmitter p,.,, expressed as

where n is a function of Ny(¢) according to (8) and (9).

3) Molecule Propagation: Molecules propagate through
the Brownian motion in the 3-D space according to (4)
where F,, = v,, = 0. For this basic abstraction model, and
to derive analytical expressions to determine the channel
capacity, we make the assumption to have a 3-D space with
infinite extent in every dimension.

4) Molecule Reception: The receiver detects the particles
that are present inside a spherical volume V3 centered at
the receiver location and with radius Rv, < d, where d is
the distance between the transmitter and the receiver. This
choice makes the results of the Brownian motion channel
capacity accounting for the simplest ideal receiver possible
(e.g., chemical ligand-binding reception will be further
limited by a nonnegligible time of unbinding [16]), where
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the number of received molecules Ngr(t) is expressed as

Ne(t) = {nlp,(t) € Vr}. (26)
5) Information Decoding: This is ideally based on the
count of the number of detected molecules expressed as

Y(t) = #Nr(t), t>0 @7

where # stands for the cardinality (number of elements)
of the set Ng(t) defined in (26).

6) Capacity: As a consequence of the aforementioned
functional blocks, the Fokker—Planck equation (17) for this
MC system corresponds to the inhomogeneous Fick’s sec-
ond law of diffusion, or diffusion equation [8], expressed
as follows:

dp(p,t)
ot

t>0.

= DV?p(p,t) + Nr(t)5(|p — Pr.|); (28)

As a consequence of the aforementioned molecule
reception and information decoding functional blocks,
the probability distribution of the output signal Y (¢) can be
expressed from the aforementioned spatial Poisson point
process (19) as follows:

(V)™

Privipwy(N) = == —exp—p(t)Ve  (29)

where p(t) is the average particle distribution inside the
receiver spherical volume Vg, for which simplicity is con-
sidered equal to the value of the particle distribution at the
center pp, of Vg, expressed as p(pp,,, t), in agreement with
the aforementioned assumption on the receiver radius.

The entropy H(p) of the particle distribution p can be
analytically expressed by stemming from the solution to
the aforementioned Fick’s second law, which is expressed
as follows:

P(Prert) = hoige(d, t) = Nr(t) (30)

where d = |p — pr.|, * is the convolution operation, and
hpite(d, t) is the impulse response of (28), expressed as
follows:

_d2
e~ aDt

hoige(d, t) = @02

(€2Y)

As a consequence of (24), (30), and (31), Fick’s second law
corresponds to a linear and time-invariant filter applied
to the modulated number Nt(t) of emitted molecules.
According to the formula to compute entropy loss in linear
filters [14], the entropy H'(p) per degree of freedom of the

particle distribution as expressed in (30) is as follows:
/ ’ 1
H'(p) = H'(Ne) + 3 [ doms oD df - 32)
w

where H'(Nt) and W are the entropy per degree of
freedom and the bandwidth, respectively, of the number
of molecules Ny(t), and Hp(f) is the Fourier transform
of the impulse response in (28). The entropy H(p) can
be then computed by multiplying the entropy H'(p) per
degree of freedom by twice the aforementioned band-
width W. The expression in (32) can be evaluated by
considering the following.

1) The modulated number of molecules Ny(t) can be
defined as a band-limited ensemble of functions [14]
within a bandwidth W, with the following expression:

> k \ sin[r(2Wt -k
Nr(t) :kZ:ONT <ﬁ> W keN

(33)

where the bandwidth W is, here, defined as the maxi-
mum frequency contained in the time-continuous sig-
nal Ny(t) (24), which corresponds to the modulated
number of molecules as function of the time ¢. The
entropy H'(Nt) per degree of freedom then equal
to the entropy of Nr(t) sampled at time instants
k/(2W), which is the first term of the sum in (33).

2) The Fourier transform Hpi(f) of the impulse
response in (28) has the following analytical
expression:

o~ (1= T

(34)

Consequently, the entropy H (p) of the particle distribution
p can be derived from (32) and (34)

4y/7d

3
_VTC s AW log, 4nDd.
31n2vD 82

H(p)=2W H'(Ny)— (35)

The conditional entropy H (p|P) of the particle distribu-
tion given the received signal can be computed from (29)
as per time sample of a spatial Poisson counting process
with rate parameter equal to p. According to [15], this
becomes

H(plP) = E[Nt] Rvg tin <r (gE[NT] RVR>>

2
3 Wd 37 Wd

2 E[Nt] Ry 2 E[N1] Ry
( 3 Wd >w<§ wd > (36)

+

where E[Ny] is the average value of emitted molecules in
a time interval equal to 1/(2W), W is the bandwidth of
the transmitted signal X, ¢(-) is the digamma function,
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D is the diffusion coefficient, d is the distance between
the transmitter and the receiver, and Ry, is the radius of
the spherical receiver volume V5. The conditional entropy
H(p|P) is then equal to (36) multiplied by two times
the bandwidth W of the modulated number of molecules
NT(t).

The capacity Cprown Of the Brownian channel is then
obtained by substituting (35) and (36) multiplied by
2W into (23), and by maximizing it according to (15)
constrained to the average thermodynamic power P,
defined in [15] as the energy necessary to emit the aver-
age number E [NT} of particles per time sample 1/(2W),
divided by the duration of a time sample. The latter is
expressed as

Py = %KbTE [Ar] 2W 37

where K, is Boltzmann’s constant, T is the absolute
temperature of the system, and W is the bandwidth of
the modulated number of molecules Nr(¢). The capacity
Cprown results in the following expression [15]:

C’Brown _
Py ) 4\/md
~22W 1+ 1o —
( ©3WEK,T)  3m2vD
2]57—( Ry,

QPHRVR

—ow (1 (e )

QPHRVR QPHRVR
w <1 9 W2 deT> ¥ <9W2deT
(33)

w3

where ¢ (-) is the digamma function, D is the diffusion
coefficient, d is the distance between the transmitter and
the receiver, and Ry, is the radius of the spherical receiver
volume Vkg.

B. Calcium Signaling

Calcium signaling is at the basis of biological cell
signaling regulation, where it is one form of juxtacrine sig-
naling, which is found in numerous biological regulatory
functions in both animals as well as plants [39]. Juxtacrine
signaling is a form of close contact cell-to-cell or cell-to-
extracellular matrix information exchange. The regulation
of the cellular process resulting from the Ca*" signaling
can range between millisecond (e.g., protein synthesis and
cell division) and minutes as well as hours. This form of
signaling can exist in both excitable as well as nonexcitable
cells, where the elevated Ca?* concentration can result
from triggering of the internal pathways that are due to
the ligand-receptor chemical reaction of specific molecules
at the cell’s membrane. The analysis of Ca®>-based MC is
governed by biophysical models, which have been devel-
oped through experimental work [40], [41], [45]. Fig. 5
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illustrates the block diagram of a calcium-signaling-based
MC system, where communication is established through
the diffusion of ions. The calcium propagates through the
gap junction to allow the ions to flow between the cells.

1) Information Encoding: The encoding process can be
achieved through the elevation of the Cla** ion concen-
tration Ny from (7) within the cytoplasm of the cell. This
is achieved by releasing the Ca?' from the organelles
(stores), which is controlled by the intracellular Ca?*
signaling pathway, as well as the intake from the extracel-
lular space. The increased concentration of the C'a®* ions
within the cytoplasm is dependent on various chemical
reaction stimuli, which may include extracellular agonists
and intracellular messengers (for nonexcitable cells). One
of the most basic models was proposed in [45], and it con-
sists of three types of C'a®" concentration: the cytoplasm
(Ceyt), the stores within the organelles (Cs), and the Ca**
buffer (B). The kinetic model of the type in (3) for these
three components is represented as follows:

I Can
5 = k1(h+ ho)(Csr — Ceyt) + V3 K2+ C2, (39
9Ceyt Cén
=ki(h+h — — V315 2
o 1(h +ho)(Csa — Ceyt) — V3 W+ CE,
Cén
+ ks (h + ho)(Cext — Ceyt) — VGM
— kzccth + ko (Btotal - B) (40)
0B
E = —k’gccth + k(Btotal - B) (41)

where k; is the rate of Ca®" release and influx for the
store, ks is the binding constant of Ca** for the buffers,
Vs is the maximum rate of Ca®T intake to the store,
ks is the disassociation constant for the store calcium,
Bioiay is the total calcium buffer concentration, k7 is the
disassociation constant of the plasma membrane calcium
pump (0.6 um), ks is the rate of calcium influx from the
external medium (0.000158 sec™ 1), Vi is the maximum
rate of the plasma membrane calcium pump (1.5 pm/sec),
h is the fractional activity of the channels in the store and
plasma membrane (ho < h < 1), ho is the basal fractional
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activity of the channels in the store and plasma membrane
(0.4), and C..; is the extracellular calcium concentration
(1500 pm). Equation (39) reflects the change in the Ca?"
in the stored organelles, and this is dependent on the stor-
age release as well as the recovery rate, and the quantity of
Cleyt; (40) reflects the relationship between the change in
Ceyt, concentration in the intracellular storage, buffer B in
the cytoplasm, extracellular matrix, as well as the release
and recovery rate; (41) is the process for the Ca*" binding
to the buffer B in the cytoplasm.

Based on (7), the modulated concentration Cey of Ca?t
ion will result in Nt (t) and is represented as

Ni(t) = CepX(t), t>0 2)

where L =1, M =1, and C; = Ceyt.

2) Molecular Emission: Once the Ca?t concentration is
elevated, this results in ion wave generation. A linear chan-
nel model can result from the Ca?®' concentration once it
reaches steady state [39]. The steady state can be achieved
when (39)-(41) becomes zero. At the steady-state point,
the concentration Css is less than the quantity of external
Ca** ions and is represented as follows:

C — k7 ks(h + hO)Oext
P V6 — k5(h + hO)Cext '

(43)

At the same time, the transient response of the Ca?"
wave is approximated as follows:

Copt(t) = Cit + (Cosp — Cayt) (1 — e7*F) (44)

where C’Ci‘yli‘ is the initial cytoplasmic calcium concentration,
and 3 is the elevation rate of cytoplasmic calcium [39].

Based on the general molecular emission of MC in (8),
the Ca?" ion n released at time ¢, will have a location
Peaz+ o, that corresponds to the location of the transmitter
Pr. at the center of the cell and is expressed as

Pca2+,n(tn) =Pz 45)

3) Molecular Propagation: The propagation of the wave
is established through physical connections between the
cells, where the generated waves will travel from the
cytoplasm through gap junctions [46]. The gap junctions
are composed of two connexons situated on each side
of the cell, and they are formed by six proteins called
connexins. The probability of the number of open gap
junctions s, out of S,, is modeled as a binomial distribution
and is represented as [39]

P-(snopens) = (f) Cin(1 = ¢n)n o, (46)

n

The opening of the gap junction is dependent on the
elevation of the Ca®' concentration. The period for the
Ca** waves to travel through the gap junction is 7gap.
The effective gap junctional transitional rate 6,, for cell n,
which depends on the level of Ca®", is represented as

P(")
= — o (“7)
Tgap D,

where Pc, is the permeability of the gap junction and
Dc. is the diffusion constant of Ca?* ions. Based on this,
the received Ca®* level at the end of the gap junction and
the cytoplasm entry of the next cell n is represented as

C’g,t(l_(") T(”)) — ﬁanc&fl(lﬁ"*l) 7_(7L,1)>

jet 0 Tjet S, jet » jet (48)
where n is the cell receiving the C'a®>" emitted from the
previous neighboring cell n — 1. lj is the gap junction
position, and T is the time instant Ca®T travels through
the gap junction between cells n — 1 and n. Once the C'a®"
wave enters the cytoplasm of cell n — 1, it will propagate
through diffusion. The modified Fick’s law for this diffusion
is represented as

1 67(12/41:)0&7&?))
\/47TD(cna) Tc(y?)

where z is the 1-D distance that is perpendicular to the
gap junction entry into the cytoplasm, and ey is the delay
propagation of C'a®" in the cytoplasm. This is represented
as the inhomogeneous Fick’s second law of diffusion as
in (28), with boundary conditions that are defined by
the cell’s membrane. The boundary conditions of the cell
membrane ensure that the finite space contains the oscil-
lations of the Ca*" ions within the cytoplasm. We also
assume that interference between these oscillations and
other components of the cell is negligible. From (28), p
is the distribution of Cg(x,t), p is the location of the ions
within the cell, D is the diffusion coefficient D(c"a), and Nt
is the number of Ca?* ions as in (42).

Although the models that have been presented are
between two cells, the channel can be extended to multiple
cells as the C'a®T propagates through the tissue.

Coye(@,t) = (49)

4) Molecular Reception: The Ca®" that propagates into
each cell will be sensed, and the concentration changes will
invoke the subsequent wave generation. The regeneration
of the C'a®>T ion waves as it passes from one cell to the
next is based on the internal C'a®"-induced Ca®" release
process, and this will depend on the increase in Ca?"
concentration that has been received. Once the number
Nr(t) (11) of received Ca®" ions binds to the organelles
of the receiving cell, this will invoke the intracellular C'a®"
signaling pathway to restart the generation of C'a®>" waves
for the next cell.
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5) Information Decoding: Depending on the approach
taken for encoding the information into the Ca®" ion
concentration, the decoding process will sample the waves
that are received in the cytoplasm. In the case of amplitude
modulation, the receiver will sample the peak as well as
the duration of the arrived Ca®*" waves.

6) Capacity: Given the highly stochastic behavior of
calcium signaling, a closed-form expression for calcium
signaling has not been developed. In [39], the gain and
delay of C'a®>* waves traveling through a 1-D array of cells
were proposed. This was developed from extracting the
linear channel behavior of Ca** waves that are generated
from the cells, as well as a stochastic gap junction model
in (46). A capacity expression was developed in [43] for
a 1-D array of cells, using empirical measurements for
the entropy of the received Ca®t wave that was used to
determine the mutual information. The same approach
was developed in [44] for a channel model of a multidi-
mensional array of cells representing a tissue. The analysis
considered the biophysical properties of three different
types of cells (e.g., smooth muscle cells, epithelial, and
astrocytes), and how these impact on the Ca?T wave
propagation. The analysis also considered the reflective
behavior of the Ca®t waves due to the boundary con-
ditions of the tissue. In [62], a channel model was also
developed between the two cardiomyocyte cells, based
on the electrochemical signaling that influences the C'a®*
propagation. The significance of this channel model was
the introduction of an electrochemical model for Ca?*
signals that are generated from excitable cells. The mutual
information was developed based on the OOK modulation
of Ca®" waves, out of which the capacity was obtained.

An open issue for the future is the development of
a closed-form expression for the capacity model. This
closed-form expression must include the impact of interac-
tions between organelles (e.g., endoplasmic reticulum and
mitochondria) that contribute toward Ca®* generation.
This model could then be utilized to understand the impact
of abnormalities between the intracellular to intercellular
signaling, and how disease can result from this.

C. Neuron Communications

One of the most complex regulatory systems within the
human body is the nervous system. The nervous system
mimics an information highway that interconnects a num-
ber of different organs as well as various physiological
subsystems to the brain. This information highway controls
and maintains homeostatic equilibrium while ensuring
adaptations as an organism faces varying environmental
changes [47]. This highly complex system communicates
through electrical stimulation based on a compound action
potential (AP). At a single-cell level, the nervous system as
well as the brain are constructed from neurons, which com-
municate through electrochemical impulse signals known
as AP spikes. Through the highly complex interconnection
of neurons, the brain is able to process information, create
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Fig. 6. Sketch of an MC system based on neuron communications.

actions through the control of muscles, store information
for both short- and long-term memory, as well as control-
ling emotions, sensations, and perception.

1) Information Encoding: The discrete impulse signal,
or the AB is established through both electrical and chemi-
cal impulses that occur in parallel. The electrical impulses,
i.e., electrical spikes, travel through the neuron, while the
chemical impulses propagate on the surface of the cell. The
information that is conveyed between the neurons depends
on the frequency of the electrical spikes that travel through
the cell. As the electrical spike propagates down the axon,
this will result in the chemical impulse that depolarizes and
repolarizes the chemical balance of the neuron. Fig. 6 illus-
trates this process. Before the electrical spike propagates
down the axon, there is a chemical balance in the quantity
of ions both inside and outside the neuron. At rest, there is
more potassium ions (X ) and negative ions (—ve) inside
the axon, while higher sodium ions (Na*) and positive
ions (+ve) outside. As the impulse propagates down the
axon, the depolarization process starts, where the K ions
will diffuse outwards from the axon, and the Na™ ions
will diffuse in the opposite direction into the axon. After a
short period, the repolarization process starts, and this will
result in the reverse process. This sequence will continue
until the impulse arrives at the terminal synapse. Since the
information traveling through the neuron is dependent on
the type of stimulated and train of spikes, the encoding
process can be established through the variations in the
electrical spike train. The train of spikes carries the infor-
mation to be projected onto the subsequent target neuron,
and this is considered as neural codes that are transmitted
through the network. The train of spikes that carry the
codes is not only affected by the types of neurons but also
by the synaptic connections to other neurons, which can be
either inhibitory or excitatory. This is one of the elements
of how physical changes in the environment due to sensory
changes (e.g., touch and hearing) can be processed in the
brain as unique information.

As the spike travels down the axon, this will lead
to the neuron-neuron communication process. Although
electrical synapse can also occur for neuron-to-neuron
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communication, where AP is transferred through the gap
junctions of the cells, in this paper, we only consider the
chemical synapse through the diffusion of neurotransmit-
ters (note that the chemical synapse is different from the
chemical signaling that occurs only along the axon of the
neuron). Once the spike arrives at the synaptic terminal,
the vesicles containing the neurotransmitters will bind to
the terminal membrane to release the neurotransmitters
into the synaptic cleft, by following a stochastic process.
A model for this process has been proposed in [61]. The
model considers the vesicles are packed in a pool, and
when a spike arrives at the synaptic terminal, a single
vesicle will be released. Two types of vesicle release process
are discussed, which are evoked and spontaneous. For the
evoked release, given that the spike time begins at ¢, and
the duration Ats, the release occurs in the time interval
[to, to + Ats]. During this period, the probability of evoked
release for Ny vesicles within the pool is 1—exp(— Nra, At)
for At < At, and 1 — exp(—Nra,Ats) for At > At
(this is for a release rate as). We do not consider the
stochastic production of Nt and assume a fixed quantity
of production as well as secretion, because this is highly
dependent on the type of cells as well as pattern of AP
signals. In the case of spontaneous release, the waiting
time before secretion is approximately 8 min, and for this
reason, the probability of release for N, vesicles within
the pool during At is 1 — exp(NN,At/480)). Based on a
maximum vesicle capacity N, in the pool, the release in
ith time slot (time slot is At larger than the refractory
period) is determined by the probability F'(N, ), expressed
as follows:

F;(Ny)=1— |exp(— Ny Ats)ps+exp <_]\;U8ﬁt> (1—p5)]
(50)

where p; is the probability of a spike arrival at the ith
time slot, which is a Poisson process with rate equal to the
source information X (¢), with the following expression:

ps = 1 — exp{—X(t)At}. (51

The model also considers one vesicle vacancy replen-
ishment G(7p, At), where 7p is the mean recovery time
for one vacancy after At, and is modeled as a Poisson
process (G(tp,At) = 1 — exp — 75 At)). After At,
the vesicle recovery is governed by a binomial distribution
(B(Nmax — N, G(tp, At))) [61].

2) Molecular Emission: When the released vesicle binds
onto the membrane, it will secrete Ny (t) neurotransmitters
at the same time ¢. We assume the neurotransmitters
release to be point-wise, as defined in (8). This is expressed
asin (8), where p,, = (Pn,z, Pn,y, Pn,-) and St corresponds
to points in the membrane surface of the neuron facing the
synaptic cleft.

3) Molecular Propagation: These neurotransmitters will
propagate through diffusion in the synaptic cleft (the dis-
tance of the synaptic cleft is approximately 20 nm). The
region of diffusion for the neurotransmitters is a confined
space. This means that at an initial stage, a number of neu-
rotransmitters will bind to the postsynaptic neuron, while
a short period later, a different number will arrive to bind.
This is modeled in [60] with the following expression:

Nt ~ e —pn,x)’ —(py—pny)?
Nr,pt) = —m=—=ce 1Dt
PR = ey

_1 - 2

{ Z 2-P)(1 - Pu)fk+1e%

koo

oo —(pz—k+1)H)?

+Z(2_Pu)(1—Pu)ke P (2 }
k=0

(52)

where p is the probability density of neurotransmitters at
location p = (pz, py, p-) in the synaptic cleft, P, represents
the uptake probability of the neurotransmitters (when
P, = 0, none of the neurotransmitters have reached the
postsynaptic neuron for uptake, while P, = 1, means all
have reached the target within a specified time), H is the
length of presynaptic cleft along the z-axis, and D is the
diffusion coefficient of the neurotransmitters. The location
p,, of each neurotransmitter is based on a Poisson point
process as in (19).

4) Molecular Reception: As these neurotransmitters dif-
fuse and arrive at the postsynaptic neuron, they will bind
onto the receptors forming a ligand-receptor complex.
According to [61], the binding probability is based on an
expected neurotransmitter flux that will bind to vacant
receptors during the sampling time ¢. This means that as
the neurotransmitters arrive at the postsynaptic neuron,
the number of vacant receptors will also reduce. This will
also reduce the binding probability as the sampling time
increases. Therefore, at the kth sampling time, the binding
probability will be represented as

Py(kAt) = a(kAH)[1 — (1 — P.(kA)NEA)]  (53)

where the probability P. of finding the neurotransmitters
inside the effective volume V. is as follows:

Pe(t) = /// p(Nt,p,t)dp

where At is the duration of the sampling period, and a is
the availability of a receptor [0, 1]. The probability of the
neurotransmitters within the volume space of the synaptic
cleft will be the basis of the prediction of the quantity
of neurotransmitters that will bind to the receptors of
the postsynaptic neuron. This results in a relationship
between the binding process and the patterns of spike

(54)
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trains generated to carry the information between the
neurons. a is also adjusted for the next step and expressed
as follows:

a((k + 1)At) = a(kAt) — Py(kAt). (55)

Therefore, the expected number Ny of neurotransmit-
ters bindings in each sampling period is the summation of
binding probabilities of all the receptors and is represented
as follows:

Nr(kAt) = Mo P, (kAt) (56)

where M is the number of receptors at the receiver.

5) Information Decoding: When sufficient neurotrans-
mitters bind onto the receptors of the postsynaptic neuron,
it will invoke an impulse that will again travel along the
neuron, which will open a channel that allows the positive
ions to flow into the cell, starting another impulse, which
was described in the information encoding.

6) Capacity: A physical channel model was developed
in [49] for two neurons, considering the mutual informa-
tion of the AP and the diffusion of neurotransmitters in the
synaptic cleft. In [51], an upper bound information capac-
ity model was developed for both bipartite and tripartite
neural connections using results from optical Poisson chan-
nels. The Poisson channel model was used to represent
the impulse of AP that is generated from the presynaptic
neurons, and how this varies depending on the feedback
control from the astrocytes. A multiple access model for
neural connections was also developed in [48] based on a
sequence of spike timings from the presynaptic neurons.
This is based on multiple presynaptic neurons that form
connections to the postsynaptic neuron and specifically on
the capacity that is impacted from the variations in the
AP The limitations in all these capacity models are that
there are no closed-form solutions proposed. This is an
open research problem that needs to be investigated for the
future. The closed-form expression should also consider
the impact of different types of biophysical properties
of the neurons, and how this impacts the capacity. This
can lead to applications of neuron communication models
that can be applied to understanding neuronal disease,
such as the correlation between impairments of the sig-
naling process and changes in the AP signaling sequences.
An extension toward neuronal networks will also need to
be investigated, by understanding how the MC varies as
signals propagate through heterogeneous neurons (e.g.,
pyramidal and fusiform) in the network.

D. Bacterial Quorum Sensing

Besides the communication process through the transfer
of DNA, bacteria also have another form of natural commu-
nication that uses molecules. This communication is based
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on the simple secretion of molecules, and this could be
cooperative between all the bacteria in the vicinity. This
form of communication is found in both Gram-negative
and Gram-positive bacteria. One bacterial functionality
that results from this simple communication is known
as quorum sensing, where the bacteria communicates
through molecules known as autoinducers and results in
synchronized gene expression of the bacterial population
(the autoinducers are known as messenger molecules).
This communication is ineffective when the bacterium
is on its own; however, as a population, this leads to
numerous powerful functionalities, and hence the name
“quorum.” A number of diverse physiological activities
can emerge from quorum sensing, and examples include
biofilm formation, antibiotic production, and biolumines-
cence. Fig. 7 illustrates an MC system that is based on the
bacterial quorum sensing communication process.

1) Information Encoding: The encoding process can
be achieved by stimulating the bacterial population
with an external chemical signal, in order to produce
autoinducers. For example, in [56], signaling molecule
N-(3-Oxyhexanoyl)-L-homoserine lactone, or C6-HSL, was
injected into engineered E. coli bacteria and in response,
this resulted in the cells activating a genetic program to
produce green fluorescent protein (GFP). In this simple
setup, OOK was achieved, where the application of C6-HSL
produced a pulse that represents a single bit. Another
example is the generation of pulse-amplitude modula-
tion (PAM) using a similar excitation approach [55].

Molecule emissions by the bacteria are initiated from
stimuli excitation, either through the influence of exter-
nal chemicals applied to the population such as C6-HSL
described above or initiated from a bacterium within the
quorum, which will result in a chain reaction of other cells
within the vicinity to produce the molecules collectively.
In this paper, we will only focus on the first case, where
external stimuli are applied to the bacterial population.
The assumption for this case is that external stimuli, which
correspond to administrations of a chemical agent, can
be assumed evenly distributed throughout the population,
resulting in all bacteria equally producing the autoinducer
molecules to be emitted.
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The following equations define the collective production
of molecules by the bacterial population [64], where the
source information X (t¢) is the basis for the production of
autoinducers A(t), expressed through a chemical kinetic
model (3) as follows:

d,zit) —ca KkAAf((;()t) — ko A(t) — k1 R(E) A(t) + k2 RA(2)
—poutA(t) +pinE(t) (57)

di(st) =ent Kk;f((;()t) —ksA(t) ki R(t) A(t) + ka RA(t)
(58)

dR;i(t) = k1 R(t)A(t) — k2 RA(t) — 2ka RA(t)* +2k5 C (1)

(59

dfi—(tt) = kaRA(t)* +ksC(t) 60)
dL;Et) = (poutA(t) —pinE(t)) — DA(t). 61)

Equation (57) is the production rate of internal autoin-
ducer Ar(t) within the bacterium, and this is used to
further produce more molecules; (58) is the production
rate of receptors inside the bacterium, which will bind to
the internal autoinducers to transform the complex into
a receptor-bound autoinducer (RA) monomer; (59) is the
production rate of RA monomers, and this depends on
the number of autoinducers (A), receptors (R), as well
as the dimers (C); (60) is the production rate of the
RA dimers. A dimer is an association of two monomers,
and in this case, it is the association of two RA complex.
Equation (61) is the production rate of the autoinducer
secreted from each bacterium membrane, which will freely
diffuse into the environment and result in a spatially
homogeneous concentration.

2) Molecular Emission: A concentration of autoinducers
A(t) is released collectively from the bacterial population,
as defined in (8), where St is now the volume of the
colony.

3) Molecular Propagation: The autoinducers concentra-
tion A(t) emitted by the transmitter bacteria will diffuse
into the environment. The diffusion process will follow the
inhomogenous second Fick’s law similar to (28), this time
expressed as:

Ip(p, 1) X
9 _ 2 = _ _
ot = DV Pt) + 3 AR (b))t~ )

(62)

where p(p,t) is the distribution of autoinducers at
location p and time ¢.

4) Molecular Reception: The bacteria receives the autoin-
ducer molecules, which leads to an internal signal path-
way process in response. The probability of the molecules
binding to a bacterium’s ith receptors is represented as a

chemical kinetic model (3) and expressed as follows [63]:

dpi

dt (63)

= —#pi + p(P, t)|pesy, (1 — pi)

where p(p,t)|pesy, is the distribution of autoinducers
within the receiver ith bacterium volume Sg,  is the input
gain, and « is the rate at which the molecules that have
bound to the receptor will detach from the receptors.

There is also randomness in the binding process of the
molecules to the receptors of the bacterium. According
to [59], for each bacterium ¢, the number of activated
receptors X; is a Binomial random variable with para-
meters (M,, pi;), where M, is the number of receptors
and p is the probability of binding for the ith bacterium
as defined in (63). Based on this, Ng will be the total
number of activated receptors, where Ng = M9 X.
However, a reporter mechanism is required in response
to receiving the molecules. This could be through the
expression of GFB where the fluorescence proteins will
reflect a green light when illuminated by an ultraviolet
light that can be detected through a photodetector or even
imaging technologies on board of a microscope.

5) Information Decoding: Depending on the reporting
mechanism taken, the approach for decoding will be
through sampling. In the event of fluorescence using GFB
sampling can be performed on the intensity pulse that is
generated. Sampling efficiency for GFP generated pulse
was investigated in [55] based on the peak value, the total
response duration, the ramp-up slope, as well as the
ramp-down slope.

6) Capacity: Although there has not been any
closed-form expression for the capacity of bacterial
quorum sensing, there has been a number of channel
models developed based on numerical expressions using
mutual information. In [55] and [56], an experimental
MC model was developed between two populations
of bacteria that communicate through the diffusion
of autoinducers, which was part of the National
Science Foundation MoNaCo project [58]. In [56],
the capacity was defined based on the mutual information
in communication-by-silence of bacterial quorum sensing.
Communication-by-silence was originally proposed for
noisy wireless channels, and this suits the high latency
propagation of molecules for bacterial quorum sensing.
The capacity model was based on the delay between
two-pulses representing the start and stop bits that are
transmitted, where the counting process between the
delay represents the information. In [59], a mutual
information expression for capacity was defined for
multihop bacterial network using quorum sensing. The
expression considers the intracellular to intercellular
signaling that produces the diffused molecules between
separate bacterial populations. The next evolutionary
step that is required is a closed-form solution for the
bacterial quorum sensing. The closed-form model should
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integrate the types of bacteria as well as molecules that are
produced, and the interactions between different bacteria
species, which, to date, have not been investigated in
the MC community. Applications can result from the
communication process of the bacterial quorum sensing,
such as the impact of attacks from different species that
can be detected from variations of the communication
performance. An example application is in [54], where
a synchronization between nanomachines was proposed
using the quorum sensing.

IV. MOLECULAR COMMUNICATION VIA
DRIFTED RANDOM WALK

In MC systems based on drifted random walk, the mole-
cules emitted by the transmitter not only propagate via
Brownian motion but their locations change with a velocity
v, (t) independent of the Brownian motion or the viscosity
of the fluid. Consequently, this propagation is modeled
by the Langevin equation in (4) with Brownian-motion-
independent force F,(t) set to zero. In the following,
we revise the Brownian motion capacity expressed in
Section III-A through the definition of a basic abstraction
of an MC system via based on Brownian motion with drift.
Subsequently, we exemplify more realistic functional block
models of system based on drifted random walk, which
have been studied in recent years, namely, MC based on
the cardiovascular system or microfluidic platforms and
pheromone communication between plants.

A. Capacity of the Brownian Motion
Channel With Drift

The basic abstraction of an MC system via Brownian
motion with drift is shown in Fig. 8. In the follow-
ing, we describe the differences in the channel model
with respect to the Brownian motion channel detailed in
Section III-A.

1) Molecule Propagation: Molecules propagate by sum-
ming the Brownian motion components with a constant
and homogeneous drift velocity v = {vs,vy,v.} in the
3-D space according to (4) where F,(t) = 0, and v,(¢)
is constant and equal to v for every particle n. As in
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Section III-A, we make the assumption to have a 3-D space
with infinite extent in every dimension.

2) Capacity: As a consequence of the aforementioned
molecule propagation, the Fokker-Planck equation (17)
for this MC system corresponds to the inhomoge-
neous Smoluchowski equation, or advection—diffusion
equation [7], expressed as follows:

Jp(p; t)
ot

= DV’p(p,t) = vVp(p,1) + Nr(t)3(|p — Pr.|).
(64)

Since this MC system utilizes the same functional blocks
for the molecule reception and information decoding
as those described in Section III-A, the Poisson point
process (19) again becomes a Poisson counting process as
expressed in (29).

The entropy H(p) of the particle distribution p can be
analytically expressed similar to Section III-A, but this time
based on (64), which is expressed as follows:

p(pR;c7t) = hAdV(pT;mpng t) * NT(t) (65)

where hpgy(Pry; Prert) is the impulse response of (64),
expressed as follows:

_IPRo =Py *Vt‘z
4Dt

hAdV (pT;m psz t) = (66)

(4rDt)?/z

As for Fick’s second law in Section III-A, also the
advection—diffusion described in (30), (64), and (66) cor-
responds to a linear and time-invariant filter applied to
the modulated number Ny (t) of emitted molecules. Conse-
quently, we can apply the formula in (32) where the term
Hpig(f) is substituted with Hagy(f), which is the Fourier
transform of the impulse response in (66). The latter does
not have analytical solution such as (31), and the following
expression has to be solved numerically:

Hpao(f) = / hady(Pras Prast))e 7> dt. (67)

Consequently, the entropy H(p) of the particle distribu-
tion p can be expressed as follows:

H(p) = 2WH'(Nr) + /W log, [Hage (N2 df.  (68)

The conditional entropy H(p|P) of the particle distrib-
ution given the received signal can be derived similar to
Section III-A, and expressed as in (36)

The capacity Cpgrown Of the Brownian channel with drift
is then obtained by substituting (36) and (68) multiplied
by 2 into (23), and by maximizing it according to
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Fig. 9. MC functional blocks based on the cardiovascular system.

(15) constrained to the average thermodynamic power P
expressed in (37). The maximum value expression can be
obtained similarly as in [15] even without an analytical
expression for Hp(f), since the latter does not depend
on the probability distribution of the modulated number
of molecules Ny(t). The capacity Cpprown results in the
following expression [15]:

C’DBrown

P

2 2PHRVR
+ /W logy [Haav ()" df 2W9 W2 dK,T
2Py Ry
—owin (T [ 20 ve
Win ( (9 W2 deT>>
2Py Ry 2Py Ry
—92 1-— = R
w ( 9 W2 deT> v <9WZdeT>

(69)

where ¢(-) is the digamma function, D is the diffusion
coefficient, d is the distance between the transmitter and
the receiver, and Ry, is the radius of the spherical receiver
volume Vkg.

B. Cardiovascular System

The cardiovascular system is a molecule propagation
network in the human body composed of the heart,
the blood, and the blood vessels, where the heart
pumps the blood through the blood vessels, resulting into
a drift of the molecules that are subject to Brownian
motion within the blood. An MC system has been mod-
eled around the cardiovascular system as an MC channel,
with the final goal of studying the body distribution of
drug molecules within particulate drug delivery systems
(PDDSs) [10]-[12], and this is illustrated in Fig. 9. In such
systems, drug molecules are injected into a blood ves-
sel at a specific location of the cardiovascular system,
they propagate through drifted random walk along the
blood vessels, while they distribute through bifurcations

to their branches, until reaching the diseased location of
the body in need of the drug, where the drug molecules
are absorbed by the tissues. Such a study demonstrates a
direct application of MC theory to personalized nanomedi-
cine, where the final goal is to provide a methodology
to optimize the PDDSs parameters, such as the injection
location and time evolution, according to cardiovascular
system parameters, where many of those are patient-
specific. Moreover, these system models will be essential
to design future communication links to realize pervasive
networks of nanoscale wearable and implantable devices,
i.e., the IoBNT [3]. In the following, we detail the specific
functional blocks.

1) Information Encoding: The source information X(t)
is encoded into a proportional amount of information (or
drug in PDDS context) molecules Np(t) present in the
solution to be injected in the cardiovascular system, similar
to (24).

2) Molecule Emission: The information molecules are
emitted in the blood vessel at a predefined location
of injection p,, (point-wise transmitter) by following a
sequence of impulses emitted at a specific time inter-
val Ts. According to [11], this models the behavior of a
computer-controlled pump infusion syringe and, in gen-
eral, expresses a molecule emission according to pulses
(where () might have a different shape than the Dirac’s),
e.g., emitted by engineered cells [13] in an IoBNT sce-
nario. This is expressed as

tn @1
p,,(tn) = Pr,, nNE [O,/ E Np(t)o(t—qTs)dt| (70)
(U —

where Q is the total number of injection impulses.

3) Molecule Propagation: The emitted molecules prop-
agate through the cardiovascular system according to
Brownian motion with a drift velocity v(¢,p) (4), which
is a function of the time ¢ and the location p. The time
dependence is a function of the heart pumping action while
each molecule propagates, while the location dependence
is a function of the location of the molecule at each time
instant.

4) Molecule Reception: The emitted molecules propagate
until reaching the location in the cardiovascular system
where the receiver is located (in the PDDSs case, a blood
vessel is in contact with the targeted tissue to be healed).
The received signal corresponds to the particles present
within a volume Vx surrounding the receiver, with a simi-
lar expression as in (26).

5) Information Decoding: The received molecules are
recognized and absorbed by the receiver (diseased tissue
in PDDSs, where the information they carry corresponds to
the final healing action at the tissue itself). This is modeled
as a quantity proportional to the number of received
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molecules according to the molecule reception rate pp(t)
as function of the time ¢, expressed as follows:

Y (t) = pp(t)Nr(t) (7

where pp(t) is expressed as [11]

_ _xaBw(t) a i, . a? .
pD(t) = ﬁrngmLe kpTpromp ((’Y+¢)) F°+T0 Rb) (72)

where ro is the radius of the section of an informa-
tion molecule, mp is the density of chemical receptors
at the surface of the receiver, my is the density of lig-
and/biomarkers at the surface of the molecules that can
bind the receptors, kg is Boltzmann’s constant, 7, is the
blood absolute temperature, F; is the blood molecule drag
force, R, is the rotational moment of force on the molecule
due to the blood flow, and 3. (¢) is the blood vessel wall
sheer stress as function of the time ¢. Values or expressions
of these parameters are detailed in [11].

6) Capacity: Given the generally accepted assumption
that the blood flow in the vessels is laminar [12], the inho-
mogeneous advection—diffusion equation of this MC sys-
tem is simplified into the Navier—Stokes equation. To deter-
mine if the flow is laminar, a metric known as the Reynolds
number Re is used, where a laminar flow is characterized
by Re < 2300. For blood flow in vessels, Re < 2000. The
advection—diffusion equation in this scenario relates the
information molecule distribution p(p, ¢) in every location
of the cardiovascular system to the blood velocity u;(r,t)
as a function of the radial coordinate r and the time ¢
in the artery ! of the cardiovascular system, expressed as
follows [12]:

dp(p,t)

o = —V. [—Dvp(Py t) + U/(I’, t)p(p, t)]

+ Np(t)o(lp — pral)- (73)

The solution to (73) is found by applying the harmonic
transfer matrix (HTM) theory [36] and transmission line
theory [35] to express the transfer function of each artery
and bifurcation in the cardiovascular system, as explained
in [12]. Under the aforementioned assumption of laminar
blood flow, as well as the assumptions that the blood
velocity is homogeneous along the longitude of an artery,
and that it only depends on the time variable ¢ and
the radial coordinate r in the artery, this corresponds to
solving the Navier—Stokes equation [34], which relates the
blood velocity vector u;(r,t) to the blood pressure p(t) as
functions of the time ¢. This is expressed as follows [12]:

o (2455 () V() ) = V(o)
+ Vi (r,t) + f
74)
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where pp is the blood density, which we assume homo-
geneous, u is the blood viscosity, and f represents the
contribution of blood vessel wall properties [37].

As a consequence of the aforementioned molecule
reception and information decoding functional blocks,
the probability distribution in the number of received
molecules Ny is a Poisson counting process as in (29),
where in this case, Vx is the volume surrounding the target
tissue, as mentioned above.

The capacity Ccy of this MC system is computed in [11]
by stemming from the aforementioned models. The final
expression is as follows:

(75)

R Q
CCV =1Ts Z wm (Z aq,rqur)
r=1 q=1

where «,, summarizes the probability to successfully
receive and decode an information molecule emitted at the
gth interval, defined above, and received at the rth inter-
val. A,, is the maximum nontoxic number of information
molecules at the time ¢75, pp is a coefficient depending on
the aforementioned drug reception rate pp(¢) that takes
into account a full reception interval, R is the duration of
the reception, divided into time intervals of duration T,
Q is the aforementioned total number of injection pulses,
and ., takes into account noise sources at the injection,
as described in [11].

C. Microfluidic Systems

Microfluidics is a technology that enables analysis and
characterization of fluid dynamics at submillimeter-scale.
Through the use of microchannels that allow a mixture
of fluid to flow, the technology can allow integration
of both chemical assay as well as molecular biology
operations [80]. Examples of these operations include the
ability to detect as well as separate out specific types of
molecules on a Lab-on-Chip. MC systems have also been
proposed for microfluidic systems [74], [76], [79]. Net-
works of microfluidic channels integrated with MC have
been proposed to allow multiple steps of automated chem-
ical analysis [74]. In [78], microfluidic-based MC was pro-
posed for Network-on-chip communication, building on
integrated microchannels that were cooling the computer
processors.

Since the microfluidic system is considered as a simple
version of a cardiovascular system, and it is known to be
utilized for mixing different molecule types, the microflu-
idic structure considered has multiple transmitters and a
single receiver, as illustrated in Fig. 10 [74]. The trans-
mitters release molecules, which will diffuse through the
microchannel, where the molecules will propagate under
the influence of a flow with a constant drift velocity v = v,
according to (4) (we only consider a unidirectional flow
along the z-axis). Therefore, multiple transmitters that
do not have a centralized controller, such as a droplet
register proposed in [78], can result in interference at
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the receiver, impacting the capacity. This specific structure
will be analyzed and discussed in this section, where the
capacity will be derived based on the model proposed
in [74].

1) Information Encoding: The encoding is achieved
when a concentration of molecules is released to repre-
sent the source information X (¢). In this particular case,
an OOK modulation scheme is used, where each of the
transmitter chamber will produce Ny(¢) molecules, which
is based on (24).

2) Molecule Emission: The production rate of the mole-
cules will depend on the frequency fo of Ny (¢) production
from a point source p;, . This could be a population of
cells that will coordinate to produce the molecules and
diffuse into the environment [74]. For example, in [56],
genetically engineered bacteria are placed in the transmit-
ter chamber, and will collectively release molecules upon
an external stimulus.

3) Molecule Propagation: The hydrodynamic properties
of the fluid flow within the microchannel are governed by
a Reynolds number Re < 100, which results in a velocity
of the flow within the microchannel v(¢, p) according to
the Navier-Stokes equation.

4) Molecule Reception: The flow will create an advection
drift that drives the molecules toward the receive chamber.
The chamber will be a volume that receives the molecules,
and it is assumed that the space will be large enough to
capture the majority of the molecules (26).

5) Information Decoding: The molecules within the
chamber will be sampled to determine the information
that was transmitted. This will require synchronization
between the transmitters as well as the receivers.

6) Capacity: There are similarities in the Fokker-Planck
equation that was applied to the cardiovascular and the
microfluidic system. According to (73), the information
molecule distribution p(p,t) is dependent on the blood
velocity w,;(r,t). However, in the case of the microfluidic
system, the location of the molecules is depending on
the velocity along the z-axis us(a,b,l), where a, b, and [
are the microchannel height, width, and length, respec-
tively. The Navier—Stokes equation can be solved toward

an analytical solution for the flow velocity uz(a,b,l) of a
rectangular-shaped channel, which is represented as

2

ugz(a,b,l) = %ﬂlul (1 — 0.63%) Ap

(76)
where p is the viscosity of the fluid, and Ap is the pressure
drop for the length of the channel.

According to [74], the received signal is represented as

y:am+n (77)

where z is the number of transmitted encoded molecules
[equal to Ny (t) in the general framework], « is the channel
gain, and n is the channel noise. Since we are considering
multiple transmitters, the gain « in (77) is defined as an
end-to-end channel gain «;; for interfering signals from j
transmitters to receiver ¢ and is expressed as

(78)

N
Qij = Qg Ox/rx

where the gain of the transmitter and receiver i/ is

An? f2 . a
Qx/rx = €XP <— 02 fo DoTtx/rx> smc <utx/rx fO) (79)

t%/TX tX/TX

where a1y is the width of the transmitter and the receiver
chamber, wuw/x is the propagation velocity, 7/« is the
propagation delay from the chamber to the microchannel,
and fj is the rate of molecules release from the transmitter.
The signal gain of the channel ay, is represented as

47T2f2
Qe = €xp <— 2 0 D7e

(80)

where 7, is the propagation delay along the microchan-
nel, uq, is the propagation velocity, and D is the Taylor
dispersion adjusted diffusion coefficient for the rectangular
microfluidic channels.

According to [74], at low frequencies of emitted mole-
cules from the transmitter chamber, the spectral density
of the received molecule signal is assumed to be flat. This
means that the noise can be considered as additive white
Gaussian noise (AWGN), and this is represented as

D D
o2 = (204;;/“# + 4%043},0@/“) A2 3% (81)
Uch Utx/rx

The magnitude of the interference from the different
transmitters will also need to be considered. The variance
of the interference from transmitter j on the receiver i is
represented as

J\2 .4

¢ = (ag)” ctynd; - (82)
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There is also an induced noise from the interfering
transmitters within the microfluidic channel. The variance
of the intefering transmitter j on receiver s is represented
as

2 1j\2 4 2
&= (1= (agd)?) oy - (83)

Based on the above-mentioned equations, the capacity

for a microfluidic system with a single receiver 7 and

multiple transmitters, where certain transmitter can act as
interferers, is represented as follows:

2 2
a;; P;

84
U?"’Zﬁz@%"’f?j) ®

1
Ci = Tolog2 (1 +

where there are, in total, N transmitters, and ¢? is the
signal variance at the receiver ¢. This expression is for
the case where there is one transmitter (7'z;) and N — 1
interfering transmitters.

D. Pheromone Communication

Since the original vision of MC is to exploit biolog-
ical communication systems to enable nanomachines to
communicate, the majority of the distances considered is
between nano to centimeter scale. However, a form of MC
was studied that enables information to propagate up to
a few meters and beyond, i.e., through pheromones [57],
which is illustrated in Fig. 11. Pheromones are used as
chemical signaling by plants, insects, and animals. A good
example for insects is in bee colonies, where pheromones
are used by the queen to signal worker bees toward
reproduction. Pheromone communication is part of the
approaches brought out by evolution for maintaining the
vegetation ecosystems. In this MC system, molecules are
released into the atmosphere and propagate to the desti-
nation by means of turbulent diffusion, which is a form of
Brownian motion with drift, where the latter is stochastic
in nature.

1) Information Encoding: The emission of the
pheromones is produced in the secretory cells of the
plants, and they are usually stored before their emission,
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which is stimulated by excitation. The excitation process
in many cases is based on an external stimulus (e.g.,
an attack that is sensed by the plants). The storage of
the pheromone molecules is realized through both the
aqueous pools (S4) and lipid phase pools (.5;) inside each
cell. These are intermediate storage points, before they
diffuse to the intercellular air space on the plant leaves,
where they are stored in gas pools. From the gas pools,
they will diffuse through the leaf stomata into the air. The
encoding of the information can be achieved through the
stimulation of the secretory cells, and the consequent rate
of the emitted pheromone molecules. Although the way
pheromones are used to encode information in nature is
still an open question for most cases, this paper abstracts
information transmission through pheromones as an OOK
system, where secretory cells are stimulated according to
a digital bit stream.

2) Molecular Emission: The rate of release from the
aqueous storage pools (S4) is ka, and from the lipid phase
storage pools (S;) is k;. Based on this, the molecules will
be stored in the gas phase (S,), which is in the leaf inter-
cellular air space. The rate of release of the pheromone
flux from the gas phase storage is k4. The models for each
of these release processes, in the form of chemical kinetics
expressions (3), are as follows:

%t(t) = 05(t) — kaSa(t)
B (1 myst) — kesi)
dS;t(t) = kaSa(t) + kiSi(t) — kg Sy (1) (85)

where 7 is the ratio of the synthesized pheromones
between the aqueous and lipid phase. The emission rate
of the volatile pheromones from the leaf is q(t) = kqy.54(t),
where the ¢(t) is the emitted signal by the leaves of the
plants. Based on these models, in [57], the normalized
gain for the attenuated pheromone signal that is diffused
from the cells to the intercellular air space, and then to the
air, is developed, including the delay of the transmission
process. The release of pheromones is operated at the gas
pools, as defined in (8), where St is now the volume
of these pools, and Nr(¢) corresponds to the pheromone
emission rate ¢(t).

3) Molecular Propagation: Once the pheromones are
secreted from the plants, the propagation is assisted by
air flows, and this results in the aforementioned turbulent
diffusion. In [57], a 1-D flow of wind was considered
to derive tractable mathematical expression for the dis-
tribution p(p,t) of propagating pheromones. The model
considered the mass flux of pheromones due to both
advection caused by wind, as well as atmospheric diffusion
subject to turbulent eddy motion. A number of assump-
tions were considered in this model, and this includes:
1) wind velocity is consistent and aligns along the x-axis;
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2) diffusion is isotropic and the eddy diffusivities K in
(z;y; z) depend only on the downwind distance (K,(z) =
Ky(z) = K.(z) =: K(z)); 3) wind velocity is significantly
large so that the diffusion along the z-axis is negligible;
4) there is only one source of the pheromone emission;
and 5) the mass of the pheromones remains finite. Based
on these conditions, the distribution p(p, ¢) defined in [57]
is expressed as follows:

L (——ut?—y?)/ar

p(p;t) = q(t) * Sz

H)?/4r + ef(z+H)2/4r]

x [e” (86)

where ¢(t) is the pheromone distribution a time ¢, « is the
convolution operation, r = (1/u) [fK&dz, and H is the
height of the emitting leaf from the ground.

p(p,t) can be further adopted to consider anisotropic
eddy diffusivities for y- and z-directions, K,(z) # K.(z),
and this is represented as

1 (e—un?—y?) (—y?)

p(p7 t) = q(t) * W@ 4TyTz e 4y

><[6—(2—H)2/4r-z+e—(z+H)2/4rz]' (87)

4) Molecular Reception: Once the pheromones arrive at
the destination plant, they will be absorbed by the leaves
of plants that are from the same species as the transmitting
plant. As a first step, there is a gas exchange through minia-
ture openings in the leaves known as the stomata. The net
flux of pheromones for the gas exchange is represented as

® = Aglp(p, t)lpesp — Cr(t)/Kra (88)

where A is the area of the leaf surface Sg, g is the
conductance, K4 is the partition coefficient and repre-
sents the concentration ratio between air and leaves at
thermodynamic equilibrium, p(p,¢) is the concentration
of the pheromones in the air that arrives at the leaves,
while C(t) is the concentration of pheromones in the
leaves [57]. By considering the mass in the pheromones on
the aerial side and the volume V;, of the leaves, the change
in concentration of the pheromones inside the leaves can
be represented as

der(t) A A
2 ,-(KL;VL)OL@H(V—z)pmmpesR- (89)

5) Information Decoding: Once the pheromones enter
the stomata of the leaves, they will diffuse through Brown-
ian motion into different layers that include the spongy and
palisade layers of the leaves [57]. At this point, the dif-
fused pheromones will be transformed into a number of
different chemicals, where they may result in cell phys-
iological responses. The decoding process can therefore

be abstracted as the interpretation of the changes in the
concentrations of the pheromones in relation to these
physiological responses.

6) Capacity: To date, there has been no capacity model
developed for pheromone communications. The work
in [57] defined the channel model by expressing the chan-
nel gain as well as the delay. This analysis was developed
for the gain and delay of the molecular emission (I'r,
7r(f)), propagation (I'p, 7p(f)), as well as the absorption
into the leaves at the receiver (I'r, 7r(f)). Based on
these, the normalized gain of the system is determined
@T(f) = T'e(f) - Tp(f) - Tr), as well as the end-to-end
delay (v(f) = 7r(f) + 7p(f) + 7r(f)). The limitations
of this model are the consideration of only a 1-d flow of
drift. Besides the requirements for closed-form capacity
expressions, there are numerous research issues that need
to be considered. This includes the impact on the types
of pheromones that are generated from different types
of leaves and plants. Numerous research projects have
focused on understanding plant communication as they
face varying environmental impact (e.g., effects of drought
and pathogen attacks). However, an open research for the
future is the understanding of how these environmental
changes impact the capacity of pheromone communica-
tion, which could lead to new approaches for monitoring
the ecological changes.

V. MOLECULAR COMMUNICATION
VIA ACTIVE TRANSPORT

Although the MC systems that have been presented so
far have focused on random walk, and drifted random
walk under the influence of an independent velocity,
in MC systems based on active transport, the molecules
emitted by the transmitter propagate by means of the
Brownian-motion-independent force F,, (¢) and the Brown-
ian motion f(¢). This is modeled by the Langevin equation
in (4) where the drift velocity v, (¢) of the fluid is set
to zero. In the following, we revise the Brownian motion
capacity expressed in Section III-A through the definition
of a basic abstraction of an MC system via active transport.
Subsequently, we detail the functional block models of MC
systems based on active transport that have been studied,
namely, MC based on bacteria chemotaxis and molecular
motors.

A. Ornstein-Uhlenbeck Channel Capacity

The basic abstraction of an MC system via active trans-
port is shown in Fig. 12. In the following, we describe
the differences in the channel model with respect to the
Brownian motion channel detailed in Section III-A.

1) Molecule Propagation: Molecules propagate by virtue
of the Brownian motion and an external force F,(¢) =
0 |p — pr,| thatis proportional with respect to the distance
of the particle itself to a location in space, here considered
as the location of the receiver p,, where 6 is a constant
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Basic abstraction of an MC system based on active

parameter that controls the strength of the system to react
to perturbations. This propagation process is known as the
Ornstein—Uhlenbeck (OU) process [70]. As in Section III-A,
we make the assumption to have a 3-D space with infinite
extent in every dimension.

2) Capacity: As a consequence of the aforementioned
molecule propagation, the Fokker-Planck equation (17)
for this MC system corresponds to the inhomogeneous QU
Fokker—Planck equation [7], expressed as follows:

dp(p,t
Op(p,t) _ DV?p(p,t) — 0V |p — pr.| p(p,1)

ot
+ Ne(£)(lp = Prol)- (90)

Similarly to what was stated in Section IV-A, the Poisson
point process (19) that models the particle location dis-
placement p,, (t) becomes a Poisson counting process, as
expressed in (29).

The entropy H(p) of the particle distribution p
can be analytically expressed as in (65), where this
time hagy(Pry, Pre t) i substituted with hoy(Pry, Pra»t)s
which is equal to the impulse response of (90), expressed
as follows [7]:

hou (pT:c » PRa> t)

p e [((‘pTxprzl)eiet)z
3D .20t
“\ 2D —e )¢

As for Fick’'s second law in Section III-A, and the
advection—diffusion in Section IV-A, also the OU
Fokker—Planck equation in (90) and (91) corresponds to a
linear and time-invariant filter applied to the modulated
number Ny(¢) of emitted molecules. Consequently, we can
apply the formula in (32) where the term Hpg(f) is
substituted with Hoy(f), which is the Fourier transform
of the impulse response in (91), which does not have an
analytical solution, but has to be computed numerically

oD
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as in (67). With a similar derivation as in (68) and (36),
and since Hoy(f) does not depend on the probability
distribution of the modulated number of molecules Ny (t),
the capacity Coy of the OU channel is then obtained
similar to Section IV-A, resulting into the same expression
as in (38) with Hoy(f) in place of Hagy(f).

B. Bacterial Chemotaxis

The bacterial chemotaxis differs from the previous MC
systems, given that it utilizes an organism to carry the
information to deliver to a target [65]-[67]. The bacte-
rial chemotaxis enables a communication system to be
constructed for a medium-range nanonetwork. Fig. 13
illustrates the communication process for a bacterial
chemotaxis. The information is encoded into a DNA plas-
mid, which is inserted into a bacterium cell (bacterium
transformation) through the process of conjugation. The
bacterium will then move toward the receiver by har-
nessing chemical energy to deliver the DNA plasmid. The
bacterium can direct its motion according to chemical
trails created by other diffusing molecules, i.e., chemoat-
tractants, emitted from the receiver location. Examples of
chemotaxis from nature are bacteria in search of food,
or environmentally favorable locations. The distribution
of chemoattractant when continuously emitted by the
receiver can be modeled as follows:

__@ r
U(r,t) = 5Dy erfc ( 4Dt)

where erfc(z) = (2//7) [2° e~ dt, r is the distance from
the source of chemoattractant emission, ¢ is the time,
and D is the chemoattractant diffusion coefficient. The
assumptions taken for the chemoattractant gradient are
an even spatial homogeneity as the concentration diffuses
into the environment, and no obstacles present in the
space.

92)

1) Information Encoding: The information to be trans-
mitted is encoded into a DNA plasmid, which lies inside
the transmitter. Encoding digital data into DNA is a

A
v
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Fig. 13. [lllustration of an MC system based on bacterial
chemotaxis.
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well-studied area that gained particular attention in recent
years [69]. The simplest form of encoding is using two
bit/nucelotide. Based on this, a message that can be
encoded per plasmid is approximately 600 Kbits (which
is 300K base pairs for two bit/nucleotide encoding).
This corresponds to encoding an intensive property as
follows (6):

nug = Ay(X(ty) k=1,2...,K (93)

where K defines the length of the encoded DNA plasmid,
nuy, defines the kth plasmid encoded with the source infor-
mation value X (¢) at time ¢, and A, abstracts encoding
technique that is used to convert the source information
into DNA nucleotide values.

2) Molecular Emission: The motile bacterium can pick
up the encoded DNA plasmid through the process of
transformation [66], which enables the DNA plasmid to be
adsorbed into the membrane of the cell. Another technique
is through conjugation [67], where bacteria form physical
connections to share copies of the DNA plasmids. As a
result, the plasmid molecule is emitted at the transmitted
location p;, at the transmission time ¢,, expressed as

p(to) = Pr, (94)

where p(to) is the location of the plasmid molecule at time
of emission t¢. The assumptions taken are similar to those
underlying (17), where the emitted plasmid molecules are
considered spherical, at low concentration, and subject to
free diffusion.

3) Molecular Propagation: The motility process of the
bacterium loaded with the emitted plasmid is based on a
repetitive series of Run and Tumble phases [65]. During
the running period, the bacterium swims at a constant
speed of 20 pym for a random period ¢mn. During this
period, the bacterium will change its angle 6§ based on
a Gaussian probability density function where E[§?] =
2 Drott, Where t is the swimming time within ¢run and Droc
is the rotational diffusion coefficient and represented as

(95)

where 7 is the fluid viscosity, a is the bacterium’s radius,
T is the temperature. After ¢wn, the bacterium switches to
a tumbling phase. The distribution of ¢, is expressed as
follows:

=t
L o

P(trun, 1/a(u)) = (96)

a(u)

where «(u), as function of the chemoattractant distribu-
tion u(t) = U(r,t)|,—pr), where p(t) is the location of

the bacterium/DNA plasmid at time ¢, can be formalized
as [65]

ao—g /OOO W)h(t — 7)dr, u(t) % h(t) > 0,

u(t) « h(t) <0
o7

aU) =

o,

where «p is the base run duration of 1 s, and g is the
bacterium sensitivity, and x is the convolution operator.
During the tumbling period, the bacterium will change its
angle 6 as follows [65]:

9n+1 = Hn + v (98)

where 6,41 is the angle at the nth tumbling phase, and ~ is
a random variable with the following distribution:

1 Y
roy = {3 (3) b= (99)
0,

Iyl > .

The tumble phase duration ¢,y is based on the following
probability:

1 —tumble

p(ttumblev ,LL) = ;6 " (100)

where i =1 s. This, effectively, results in the bacterium
switching the phases based on a two-state Markov chain,
and in the propagation of the encoded DNA plasmid.

4) Molecular Reception: Once the bacterium approaches
the receiver, it will offload the DNA plasmid. In a similar
approach taken by the information encoding, this can be
through conjugation, where the physical connection will
transfer copies of the DNA plasmid to the receiver. This will
happen when the bacterium/DNA plasmid location will be
equal to the receiver location, namely, p(t) = pg,. The
probability of successful conjugation will highly depend on
the species of the bacteria as well as the types of plasmids
used.

5) Information Decoding: The DNA plasmid that is
retrieved from the bacterium will be sequenced in order
to obtain the encoded information, expressed as

(X (t1), X (t2), X (tx)] = AT ([nur, nua, . .., nuk]). (101)

6) Capacity: The capacity of an MC system based on
chemotaxis was estimated in [65]. This capacity calcu-
lation considers the stochastic nature of the aforemen-
tioned emission process, as well as mutation effects that
can distort the information encoded in the DNA plasmid.
As an extension, the estimation of a multihop nanonetwork
capacity was also proposed in [65]. However, there is
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still a requirement for a closed-form expression for the
capacity of bacterial chemotaxis, and in particular for
a population of bacteria. A closed-form expression can
also result in new models that can be used to develop
novel applications, such as accurate novel gene therapies.
Impact of bacterial social structures on the end-to-end
capacity is also required. To date, only the attenuation has
been considered for a simple bacterial chemotaxis system,
which only considers competition and cheating for a small
population [68]. A major contribution is how the social
dynamics between the different species can impact DNA
transfer between the bacteria, and how this, in turn, impact
the stability of the microbiome, which is an environment of
multiple bacterial species coexisting together.

C. Molecular Motors

A good example of MC based on active transport
occurs within a cell [72], [77]. Cells contain rails known
as filaments or microtubules that connect the membrane
and the nucleus, and they are flexible structures. The
microtubules contain a mobile unit that walks on the
rail and carries cargoes between the cell membrane and
the nucleus. These mobile units are known as molec-
ular motors and harness chemical energy from adeno-
sine triphosphate (ATP) hydrolysis to produce mechanical
motion [71]. Fig. 14 illustrates an MC system that uti-
lizes molecular motors to realize multiple communication
links, where encoded information are inserted into vesicles
that are placed on molecular motors, which walk along
the molecular rail that connect different nodes, until the
delivery of the cargo to the receiver. This energy con-
version enables the molecular motor to walk as well as
rotate on the microtubule rails. The size of each molecular
motor ranges from few nanometers to tens of nanometers
and carry cargo using a vesicle that encapsulates mole-
cules. Specific examples are myosin molecular motors,
which walk on filaments tracks or the pull these fila-
ments to enable muscle motion, while kinesinand dynein
move along microtubules. Molecular motors are able to
mobilize cargoes of varying sizes, and examples include
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entire cell organelles (e.g., mitochondria) and vesicles
(e.g., lysosomes and endosomes) [71].

1) Information Encoding: The encoding process can
be conducted on a DNA or messenger ribonucleic
acid (mRNA), and this is inserted into a 200-nm vesicle.
The encoding process can be conducted using (93). Given
that the DNA or mRNA can hold a large quantity of
information, this means that the majority of transmitted
information can be carried by a single molecular motor.

2) Molecular Emission: Once a vesicle is loaded onto a
molecular motor, it will detach from the membrane of the
cell and align itself onto the microtubule rail to start is
motility. The rate of emission will depend on the vesicle
loading process onto the molecular motor. The molecule
location will be abstracted with the transmitted location,
similar to (94).

3) Molecular Propagation: The molecular motor con-
verts energy to mechanical movement as it walks along
the microtubule rails [71]. The speed of the molecular
motor, which is estimated to amount up to vmax = 0.1 us,
can be expressed as a function of the chemical energy as
follows [72]:

Vmax CATP
= =0 102)
carp + Karp (

where carp and Karp are a form of ATP energy. There is a
certain amount of stochastic randomness as the molecular
motors walk along the rails, which is a repetitive forward
and backward motion. In this paper, we only consider a
single-link model of the molecular motor mobility. In [72],
a 1-D Fokker-Planck equation was used to evaluate the
probability density function p(z,t), which models the ran-
dom location of the molecular motor on the rail (along the
coordinate z) as function of the time ¢. The Fokker—Planck
equation is represented as

Op(z,t) _ V@p(:mt) +D82p(x7t) — Ap(z,t)

ot ox Ox?

(103)

where D is the diffusion coefficient, V' is the drift term,
and A is the reaction term. The diffusion coefficient D is
expressed as

212

D=—"——
VBB

(B2 —4a® + 203 + afy +aB_) (104)

where v = 1/8+ + 1/6- + 1/a, (3 is the detachment rate
(when the molecular motor is in the backward motion,
the rate is 5, and in the forward motion, it is 34), « is
the rate of detachment from the rail, « is the rate of going
either forward or backward in the case of a reattachment.
The diffusion component D plays a role when the molecu-
lar motor detaches from the rails. Given that their weight
is extremely low, their motion can be affected from the
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turbulence of the fluids within the environment. Once they
detach off the rails, they can randomly land on a separate
rail and continue walking. The detachment process is
proportional to the distance traveled from the cell mem-
brane, and this is based on an exponential distribution
with a mean of 100 ym. The aforementioned drift term
V represents the walking motion of the molecular motors
and is expressed as

v 1 1
v=_(—-— (105)
v (5+ B )
and the reaction term A is expressed as
A= (106)
Yo

4) Molecular Reception: Once the molecular motor
arrives at the receiver, it will be detached from the rail and
will unload the vesicles. This will happen when the vesicle
location will be equal to the receiver location, namely,
p(t) = pg,- One approach for addressing at the receiver is
to use the concept of DNA hybridization proposed in [82].

5) Information Decoding: The decoding process will be
sequencing of the DNA or mRNA to retrieve the encoded
information, as in (101).

6) Capacity: In [72] an impulse response was validated
numerically to determine the position of the molecular
motor along a rail, which was compared to simulations.
The simulations were also conducted on a bipartite tree
network, in order to evaluate the presence of the molec-
ular motors in links with a number of separating nodes.
This simulation considered the network topology of the
microtubule rails within the neurons. A capacity model
was proposed in [77], for both unicast as well as broadcast
molecular motors communication. However, this was not
a closed-form expression, but rather empirical measure-
ments that were used to define the mutual information.
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