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ABSTRACT | Over the past 10 years, molecular communication

(MC) has established itself as a key transformative paradigm in

communication theory. Inspired by chemical communications

in biological systems, the focus of this discipline is on the

modeling, characterization, and engineering of information

transmission through molecule exchange, with immediate

applications in biotechnology, medicine, ecology, and defense,

among others. Despite a plethora of diverse contributions,

which has been published on the subject by the research

community, a general framework to study the performance

of MC systems is currently missing. This paper aims at filling

this gap by providing an analysis of the physical processes

underlying MC, along with their information-theoretic

underpinnings. In particular, a mathematical framework is
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proposed to define the main functional blocks in MC, supported

by general models from chemical kinetics and statistical

mechanics. In this framework, the Langevin equation is utilized

as a unifying modeling tool for molecule propagation in MC

systems, and as the core of a methodology to determine the

information capacity. Diverse MC systems are classified on the

basis of the processes underlying molecule propagation, and

their contribution in the Langevin equation. The classifications

and the systems under each category are as follows: random

walk (calcium signaling, neuron communication, and bacterial

quorum sensing), drifted random walk (cardiovascular system,

microfluidic systems, and pheromone communication), and

active transport (molecular motors and bacterial chemotaxis).

For each of these categories, a general information capacity

expression is derived under simplifying assumptions and

subsequently discussed in light of the specific functional

blocks of more complex MC systems. Finally, in light of the

proposed framework, a roadmap is envisioned for the future

of MC as a discipline.

KEYWORDS | Fokker–Planck equation; information capacity;

Langevin equation; molecular communication (MC); nanonet-

works; Poisson noise; statistical mechanics.

I. I N T R O D U C T I O N

The genesis of molecular communication (MC) as

a discipline stands in the observation of the units

of life, i.e., biological cells, where information is
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generated, stored, and communicated through molecular

processes [1]. Molecules are the common substrates used

in cells to represent information, and their chemical reac-

tions and transport mechanisms are the key processes that

enable their encoding and propagation. MC aims to build

on top of these processes by modeling, characterizing, and

engineering communication systems and devices able to

tap into a previously uncharted territory, the biochemical,

to enable applications where classical communication sys-

tems show limitations, i.e., inside the human body and/or

directly interacting with biological cells [2]. Current and

future MC applications range from the engineering of com-

munication systems between microorganisms [19], to the

development and optimization of biomedical devices [12],

and the augmentation of the human body functionalities

through pervasive intrabody deployment of intercom-

municating nanotechnology- and biotechnology-enabled

devices, i.e., the Internet of Bio-Nano Things (IoBNT) [3].

Since the birth of this field, the research community,

largely driven by communication and networking engi-

neers, as well as computer scientists, has taken different

elements from the aforementioned biochemical commu-

nication processes and abstracted them into theoretical

models to assemble and characterize MC systems. This

has led researchers to develop communication channel

models based on a wide range of processes for propa-

gating information via molecules, ranging from passive

Brownian motion diffusion [17], [18], [60], [83], to the

transport, or advection, in fluid currents [10], [12], [76],

and to active processes that require a dedicated energy

source to move molecules from a transmitter to a

receiver [67], [72], [77]. Subsequent contributions have

explicitly addressed the estimation or expression of the

communication capacity with ad hoc studies for some of

these MC channels, such as time-slotted ON–OFF keying

(OOK) [20], one-shot [21], time-slotted [22], [23], and

continuous [24], [25] timing channels, and multiple sym-

bol transmission [26] with perfect transmitter–receiver

synchronization for passive Brownian motion and between

bacteria colonies [33], time-slotted transmission in the

cardiovascular system [11] and continuous transmission

in passive Brownian motion [15], [32], and microflu-

idic systems [74], [75]. Although these contributions

have validity for specific MC scenarios, a general

information-theoretic framework that captures the pecu-

liarities of an MC channel over classical communication

systems is currently missing.

This paper aims at filling the aforementioned research

gap by providing a mathematical framework rooted in

statistical mechanics to abstract any MC system and deter-

mine or estimate the information capacity of their commu-

nication channels. As shown in Fig. 1, by stemming from

the general formulation of the Langevin equation [9] of

a moving nanoscale particle subject to unavoidable ther-

mally driven Brownian forces, we build a general mathe-

matical abstraction of an MC system and its main elements.

Subsequently, we derive a methodology to determine

Fig. 1. Schematic of the framework proposed in this paper, which

stems from the Langevin SDE.

(or estimate, whenever closed-form analytical solutions

are intractable) the MC channel capacity based on the

decomposition of the Langevin equation into two con-

tributions, namely, the Fokker–Planck equation [7] and a

Poisson process. We classify any MC system on the basis of

their representation in terms of the Langevin equation as

follows. MC systems based on random walk, such as cal-

cium signaling in cell tissues [39], neuron communication

by means of neurotransmitters [49], and bacterial quorum

sensing [55], include only the contribution of the Brown-

ian stochastic force f. MC systems based on drifted ran-

dom walk, such as MC in the cardiovascular system [12],

microfluidic systems [74], and pheromone communication

between plants [57], include both f and a drift velocity

vn(t) as function of the time t for each molecule n, which

is independent of the Brownian motion. MC systems based

on active transport, such as those based on molecular

motors [72] and bacteria chemotaxis [67], include instead

a deterministic force Fn(t) added to f. For each of these cat-

egories of MC systems, and based on the aforementioned

Langevin equation decomposition, we provide a general

information capacity expression under simplifying assump-

tions and subsequently discuss these results in light of

the functional blocks of more specific MC system models,

including cases where a closed-form capacity expression

cannot be analytically derived.

The rest of this paper is organized as follows.

In Section II, we introduce the framework to model and

classify MC systems based on the Langevin equation,

and we introduce a general methodology to determine

their channel capacity. In Sections III–V, we detail general

capacity expressions and specific functional block mod-

els for MC systems based on a random walk, drifted

random walk, and active transport, respectively. Finally,

in Section VI, we conclude this paper and discuss the future

of MC as a discipline.

II. F R A M E W O R K T O A N A L Y Z E

M O L E C U L A R C O M M U N I C AT I O N

S Y S T E M S A N D T H E I R C A P A C I T Y

MC is defined as the transmission, propagation, and

reception of information by utilizing molecules and their
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Fig. 2. Fundamental processes and functional blocks of an MC

system.

propagation as the medium [1]. Molecules are the small-

est identifiable units of a substance, a form of matter with

specific homogeneous chemical composition and proper-

ties. Consequently, a molecule is the smallest unit that still

retains information on the substance identity and its ability

to take part in chemical reactions. The size of a molecule

ranges from that of diatomic hydrogen (0.074 nm), water

(0.275 nm), and carbon dioxide (0.232 nm), to the size

of a biological macromolecule, such as an average protein

(≈2 nm) or a deoxyribonucleic acid (DNA) chain (from

2 nm). In an MC system, their dimensions and the strong

forces of the chemical bonds that underlie their struc-

ture, and the information they carry, are manipulated by

chemical reactions, where molecule composition and struc-

ture are rearranged. Chemical reactions are the primary

processes underlying the MC transmission and reception.

Since a single chemical reaction involves single or a few

molecules of one or more (few) substances, an entire

MC system has nanoscale precision and can be contained

within nanoscale dimensions, and for this reason, MC is

identified as a nanocommunication paradigm [2].

To manipulate and propagate information-bearing mole-

cules, the components of an MC system should neces-

sarily be immersed in or include a substance in a fluid

state. Brownian motion is the random and independent

movement of molecules suspended in a fluid, and it is an

unavoidable consequence of the molecule vibrations for a

temperature higher than the absolute zero. An MC system

is, therefore, subject to Brownian motion as a fundamental

stochastic process underlying all its components, and the

Brownian motion effects are present in every possible

implementation of an MC system.

A. Mathematical Models of Fundamental
Processes in MC

With the goal of modeling information propagation

in MC, the aforementioned fundamental processes in

MC, sketched in Fig. 2, have the following analytical

formulation.

1) Molecules of the same substance, which carry infor-

mation in MC, are considered indistinguishable and

equivalent to spherical particles of radius r and

mass m, where r ≪ d, d being the distance between

the transmitter and the receiver in an MC system,

defined in the following, and s is the particular

substance. Consequently, from now on, we will indis-

tinguishably refer to molecules or particles.

2) Chemical reactions are processes that convert one or

more input molecules (reactants) into one or more

output molecules (products). A reaction j may pro-

ceed in forward or reverse directions, which are char-

acterized by forward (kf,j) and reverse (kr,j) reaction

rates, respectively. We assume to have, in general,

S chemical substances and M different chemical reac-

tions in their elementary form, i.e., each chemical

reaction happens without any intermediate product.

They can be expressed as follows:

R1,js1 + · · · + Rn,jsS

kf,j−−−⇀↽−−−
kr,j

P1,js1 + · · · + Pn,jsS (1)

where Ri,j and Pi,j are the number of molecules of

the substance si that participate in a single chemical

reaction j expressed in (1) as reactants or products,

respectively. This can be mathematically expressed

with the following reaction rate equation:

Vj = kf,j

S�
i=1

[si]
Ri,j − kr,j

S�
i=1

[si]
Pi,j (2)

where Vj is the rate of the reaction, i.e., the rate of

variation in the molecule concentration [sj ] of the

substance sj in number of molecules per unit space.

Following classical chemical kinetics, the evolution of

the M chemical reactions can be expressed as:

d[si]

dt
=

M�
j=1

vi.jVj , 1 ≤ i ≤ S (3)

where vi.j = Pi,j − Ri,j expresses the net change in

the concentration [si] of the substance sj due to the

jth reaction.

3) Particle motion in a physical system can be analyti-

cally formulated according to the Langevin stochastic

differential equation (SDE) [9], which states that the

location pn(t) = {pn,i(t)}i of the particle n at time t

along any space dimension i (e.g., one of the 3-D axes

X, Y, Z shown in Fig. 3) obeys the following equation:

m
d2 (pn(t) − vn(t)t)

dt2
= Fn(t)

− 6πµr
d (pn(t) − vn(t)t)

dt
+ f(t) (4)
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Fig. 3. Proposed framework to determine MC channel capacity.

where m is the molecule mass, ∂2(·)/∂t2 and ∂(·)/∂t

are the second and first time derivative operators,

respectively, vn(t) is a drift velocity of the fluid where

the particle n is located, Fn(t) is a force applied to

the particle n independently of its Brownian motion,

µ is the viscosity of the fluid, which we assume homo-

geneous in the propagation space, r is the radius of

the particle, and f(t) is a random process that models

the Brownian motion force, whose probability density

function is Gaussian and has correlation function

< fi(t)fj(t
′) > given by

< fi(t)fj(t
′) >= 12πµrkBTδi,jδ(t − t′) (5)

where fi(t) is the component of f(t) in the ith dimen-

sion, < · > is the average operator, i and j indi-

cate any of the space dimensions, kB is Boltzmann’s

constant, T is the absolute temperature of the fluid,

considered homogeneous throughout the space, and

δi,j is equal to 1 if i = j and zero otherwise, and

δ(t − t′) is the Dirac delta function.

B. Functional Blocks of a Molecular
Communication System

An MC system [38], defined as a set of natural or

engineered components that work together to receive

information from a source, encode this information into

properties of molecules emitted at a transmitter, propagate

the information-bearing molecules through a channel, and

reconstruct this information through a Receiver, includes

the following main functional blocks based on the afore-

mentioned fundamental processes.

1) Information encoding is the modulation of the mole-

cule properties according to the source information

X(t), either continuous-time signals or symbols at

discrete time instants t = tk, k ∈ N . These properties

can be classified into two main categories, namely,

intensive and extensive, following the ways physical

systems can be characterized. Intensive properties

do not depend on the quantity of the molecules,

such as their chemical composition and structure

(e.g., protein folding), concentration, density, pres-

sure, or temperature. Extensive properties are instead

proportional to the quantity of molecules, such as

their number, total mass, occupied volume, enthalpy,

or entropy. Some intensive properties can be assigned

to a single molecule, e.g., temperature or chemical

composition and structure, while others are derived

from the ratio between two extensive properties, e.g.,

concentration or density. Some of these properties

are continuous, e.g., concentration (at high molecule

number) or temperature, while others are discrete,

e.g., molecule number, chemical composition, and

structure. The information encoding results in values

of these properties as function of the source informa-

tion X(t). Consequently, the encoding of an intensive

property that can be assigned to a single molecule is,

here, formalized as

Intl,n(X(t)) = Al(X(t)) (6)

where Al(·) is the encoding function for the lth

intensive property, which determines the intensive

property for the nth molecule. The encoding of an

extensive property can be formalized as

Extl,m(X(t)) = bm(nl(t)), nl(t) = Cl(X(t)) (7)

where bm is a proportionality constant for the mth

extensive property, nl(t) is the number of molecules

with identical intensive property Al(X(t)) at the

transmitter at time t, and Cl(X(t)) is a function of

the source information X(t). One of the most used

intensive properties in MC, namely, the concentration

of a substance (characterized by molecules with

intensive property l corresponding to a specific

chemical composition and structure) can be derived

by dividing the number of molecules nl(t) by their

occupied volume Extl,m(X(t)), where m denotes a

specific occupied volume.

2) Molecule emission is the release of information-

bearing molecules to the molecule propagation

medium. In an MC system, this corresponds to

moving the molecules, whose properties compose

the encoded signal from inside to outside the space

occupied by the transmitter, into the propagation

medium. Realistic molecule emission processes

include free diffusion, evaporation, dilution,

osmosis/dialysis, pressure gradients (e.g., spray),

encapsulation, or release from vesicles/reservoirs.

The molecule emission results in molecule locations

pn(tn) at the boundary ST that separates the

transmitter from the rest of the space, expressed as

pn(tn) ∈ ST ∀tn, n : NT(tn) > 0, n ∈ NT(tn) (8)

where NT(tn) =
�

l nl(tn) is the number of molecules

emitted at time tn at the transmitter, and NT(t) is the

set containing all the indices of the emitted particles

from time 0 to time t

NT(t) =

�� t′

0

NT(τ )dτ

�����0 < t′ < t

�
. (9)
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3) Molecule propagation is the process whereby the

emitted molecules propagate through space from the

transmitter location to the receiver location by means

of a propagation medium. In an MC system, this

propagation is unavoidably affected by the aforemen-

tioned Brownian motion, i.e., the Brownian stochastic

force f, but other processes can be in place to further

control the molecule propagation over a completely

random walk, represented by the drift velocity vn(t)

and the force Fn(t) in (4), both independent of the

Brownian motion, where the former results from

currents in the fluid, and the latter from other deter-

ministic forces acting on each molecule n. Regardless

of the particular underlying process, the molecule

propagation can be expressed as the translation of

the spatial coordinates from the location pn(tn) at the

transmitter to a location pn(tn +∆T ) at time tn +∆T

pn(tn) → pn(tn + ∆T ), ∀n ∈ NT(tn) (10)

where ∆T is an arbitrary propagation time interval.

4) Molecule reception is the detection of the molecules

that propagated to the receiver. The most widespread

process for realizing this detection is through

chemical reactions between the information-bearing

molecules at the receiver and other molecules,

i.e., chemical receptors, which can be placed at

the receiver boundary or within the receiver space

SR. Upon detection, molecules can separate from

the chemical receptors and either degrade/be

degraded (absorbing receiver) or resume their

propagation (nonabsorbing receiver). The set NR(t)

of received molecules at the receiver at time t > tn is

represented as

NR(t) = {n|pn(t) ∈ SR} . (11)

5) Information decoding is the demodulation of the

properties of the received molecules to obtain an

estimate of the source information, which may

possibly include noise or errors in the recognition of

symbols. Upon effective collision of these molecules,

if a chemical reaction takes place, a specific molecule

with composition/structure complementary to

the chemical reception is recognized as being

received. By considering the result of chemical

reactions at multiple (different) receptors, in the

most general formulation where both intensive and

extensive properties are utilized to encode the source

information X(t), the reception process output is

composed of the estimated values �Intl(t) and Êxtm(t)

of the intensive and extensive properties of the

received molecules. This is expressed as

	Xl,n(t) = A−1
l (�Intl(t)) (12)

	Xl,m(t) =
Êxtm(t)

bm
(13)

where 	Xl,n(t) and 	Xl,m(t) are the estimated value of

the source information X(t) from the lth intensive

property of the received molecule n and from

the mth extensive property of molecules with lth

intensive property, respectively. A−1
l (·) is the inverse

of the encoding function Al(·) for the lth intensive

property, and bm is the proportionality constant

defined in (7). The received information Y (t) is then

obtained from 	Xl,n(t) and 	Xl,m(t). The expressions

in (12) and (13) are intended to be general and

include any possible information encoding scheme on

molecule properties. For example, information could

be encoded into the sequence of the nucleotides of

different DNA strands (intensive properties) and in

a different number of copies of each different DNA

strand (extensive properties). In the case where the

same source information has been encoded both in

intensive and extensive properties of the emitted

molecules, the received information can be obtained,

e.g., through averaging, as follows:

Y (t) =
1

L

L�
l=1


�NR(t)�
n=1

	Xl,n(t)

NR(t)
+

M�
m=1

	Xl,m(t)

M

�
 (14)

where we average over the total number L of

intensive properties used for encoding the source

information X(t). For the intensive properties,

we also average over the number of received

molecules NR(t) at time t, while for the intensive

properties, we average over the total number of

extensive properties M used for encoding.

C. General Principles of Molecular
Communication Channel Capacity

The capacity C of an MC channel in [bit/sec] is, here,

defined as the maximum rate of transmission between

the molecule emission process and the reception process,

where this maximum is with respect to all possible prob-

ability distributions of the emission process [14]. This is

expressed by the general formula from Shannon [6], which

defines the capacity as the maximum mutual information

I(E; P ) between the transmitted signal (emitted mole-

cules) E = {tn, pn(tn)}n, where n is the index of an emit-

ted molecule at time tn in the set NT(tn), and the received

signal (received molecules) P = {tnR , pnR
(tnR)}nR ,

where tnR is the time of reception of one or more mole-

cules, and nR is the index of a received molecule in the

set NR(t), with respect to the probability density function

fE(e) in all the possible values of the transmitted signal

C = max
fE(e)

{I(E;P )} . (15)

1234 PROCEEDINGS OF THE IEEE | Vol. 107, No. 7, July 2019



Akyildiz et al.: An Information Theoretic Framework to Analyze Molecular Communication Systems Based on Statistical Mechanics

The mutual information I(E;P ) in [bit/sec] is defined

as

I(E;P ) = H(E) − H(E|P ) = H(P ) − H(P |E)

= H(E) + H(P ) − H(E,P ) (16)

where H(E) is the entropy per second of the transmitted

signal E [6], H(E|P ) is the entropy per second of the

transmitted signal E, given the received signal P , H(P |E)

is the entropy per second of the received signal P , given

the transmitted signal E, and H(E,P ) is the joint entropy

per second of the transmitted signal E and the received

signal P .

The relationship between the transmitted signal E and

the propagated signal P in an MC system is expressed,

in general, by the aforementioned Langevin SDE (4).

According to statistical mechanics, this propagation model

can be separated into two distinct contributions, as shown

in Fig. 3. The Fokker–Planck equation [7], which is a deter-

ministic partial differential equation (PDE) to compute

the probability density of the particles in the propaga-

tion space, and a Poisson point process [15], which is a

stochastic process that results in the assignment of the

particle locations pn in the space based on the result of

the Fokker–Planck equation. In the following, we detail

how to exploit these properties of the molecule propaga-

tion process to define general principles to determine the

channel capacity in MC systems.

The Fokker–Planck equation describes the evolution of

the particle propagation in the space in the variable ρ(p, t),

which is the probability distribution of the location of a

particle as function of the space coordinates p = {pi} and

time t. The expression of this equation for MC systems

accounts for the aforementioned molecule emission as a

source of particles at the transmitter. This translates into

an additional term, namely, (1/n)δ(|p − pn(tn)|)δ(t − tn),

which corresponds to the contribution of one particle at

time tn and location pn(tn) to the total number n of

propagating particles up to time tn. We make the following

assumptions: 1) the diffusing particles have a spherical

shape; 2) the diffusing solute particles are in low con-

centration; 3) their dimension is much larger than the

particles of the solvent; and 4) their diffusion is isotropic

in the considered space. We express this formulation of the

Fokker–Planck equation as follows:

∂ρ(p, t)

∂t
= D∇2ρ(p, t) −∇v(p, t)ρ(p, t)

+

NT(t)�
n=1

1

n
δ(|p − pn(tn)|)δ(t − tn) (17)

where n is computed from NT(t) according to (8), v(p, t) =

(1/m)
�

F(p, t)dt [where F(pn, t) = Fn(t) from (4)], and D

is the particle diffusion coefficient, whose expression is as

follows:

D =
KbT

6πµr
(18)

where Kb is Boltzmann’s constant, T is the absolute tem-

perature of the system, µ and r are the aforementioned

viscosity of the fluid and the particle radius, respectively.

The Poisson point process is expressed through the sto-

chastic process that randomly assigns the location to each

transmitted particle according to the particle distribution

ρ(p, t) at each time instant t. This process is a spatial

Poisson point process where the expected value is the

particle distribution ρ(p, t), expressed as follows:

pn(t) ∼ Poiss (ρ(p, t)) ∀n ∈ NT (t) (19)

where NT (t) is given by (9). Although specific MC system

implementations will incorporate other stochastic sources,

as described in the next sections of this paper, which

will impact the performance of the system through noise,

we consider the noise generated by the stochastic process

in (19) as inevitably present in any MC system described

by our general information-theoretic framework.

The cascade of the aforementioned Fokker–Planck equa-

tion and the Poisson point process, as illustrated in Fig. 3,

defines a Markov chain [6] in the variables E, ρ, and P

following the order E → ρ → P . This is justified by

the property that E and P are conditionally independent

given ρ, which is expressed as follows:

fE,P |ρ(e, p) = fE|ρ(e) fP |ρ(p) (20)

since ρ is a function of E from (6)–(8) and the

Fokker–Planck equation in (17), and the distribution of

P is a function of ρ from [11]–[14] and [19]. The chain

rule applied to the joint entropy of E, ρ, and P states the

following [6]:

H(E, ρ,P )=H(E,P |ρ)+H(ρ)=H(E|ρ)+H(P |ρ)+H(ρ)

(21)

since ρ is a deterministic function of E through the infor-

mation encoding in (7) and (12), molecule emission (8),

and molecule propagation (17), then the joint entropy

per second of E, ρ, and P is equal to the joint entropy

per second of E and P

H(E,ρ, P ) = H(E,P ). (22)

By applying (21) and (22) to the third expression in (16),

we obtain that the mutual information I(E;P ) of the

transmitted signal E and the received signal P as the sum

of the mutual information of a communication system,
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which includes only the Fokker–Planck equation (mutual

information I(E;ρ) of the transmitted signal and the par-

ticle distribution) and conditional entropy H(ρ|P ) of the

particle distribution given the received signal

I(E; P ) = H(E) + H(P ) − H(E|ρ) − H(P |ρ) − H(ρ)

= I(E;ρ) + I(P ;ρ) − H(ρ)

= H(ρ)− H(ρ|E) + H(ρ) − H(ρ|P )− H(ρ)

= H(ρ)− H(ρ|P ) (23)

where we applied the first two definitions of mutual

information from (16) and we considered the fact that

H(ρ|E) = 0 since ρ is completely determined by E (deter-

ministic function of E).

As a consequence of (23), to determine the aforemen-

tioned capacity C, it is necessary to analytically express

(or estimate) the entropy H(ρ) of the particle distribu-

tion and the conditional entropy H(ρ|P ) of the particle

distribution given the received signal. The former depends

exclusively on the Fokker–Planck equation (17), while the

latter depends on the Poisson point process in (19). These,

in turn, depend on the processes underlying molecule

propagation in the particular MC system being consid-

ered. In particular, as illustrated in Fig. 1, the aforemen-

tioned propagation processes can be classified on the basis

of the randomness on the trajectory of the propagating

molecules, which impact the particular expression of the

Fokker–Planck equation (17). In the following, for each

class of MC systems, we present a general information

capacity expression under simplifying assumptions and

discuss the impact of specific functional block implemen-

tations in more realistic MC systems.

III. M O L E C U L A R C O M M U N I C AT I O N

V I A R A N D O M W A L K

In MC systems based on random walk, the molecules

emitted by the transmitter propagate to the receiver solely

by means of Brownian motion. Consequently, the molecule

propagation can be modeled by the Langevin equation

in (4), where the drift velocity vn(t) of the fluid and the

Brownian-motion-independent force Fn are set to zero.

MC based on random walk occurs naturally in a number

of biological systems, and it is considered the simplest and

most widespread molecule propagation process in nature.

In the following, we obtain a closed-form expression to

compute the capacity of the Brownian motion channel

through the aforementioned methodology by defining the

functional blocks of a basic abstraction of an MC system

via random walk. Subsequently, we provide more specific

functional block models of key diffusion-based implemen-

tations found in nature, namely, cell calcium signaling,

communication through chemical synapses between neu-

rons, and quorum sensing networks of bacteria.

Fig. 4. Basic abstraction of an MC system based on random walk.

A. Brownian Motion Channel Capacity

With reference to Fig. 4, we describe the functional

blocks of a basic abstraction of an MC system based on

random walk.

1) Information Encoding: One single molecule type is

modulated in its number NT(t) at time t proportionally to

the source information X(t), expressed as

NT(t) = KX(t), t > 0 (24)

which is derived from (6) and (7) by considering L = 1,

M = 1, and C1 = K.

2) Molecule Emission: Molecules are released in a con-

tinuous fashion by an ideal point-wise transmitter (size

equal to zero) at location pTx = {px,Tx, py,Tx, pz,Tx} in

an 3-D space, as shown in Fig. 2. At the time tn of emission

of the nth molecule, its location pn(tn) corresponds to the

location of the transmitter pTx, expressed as

pn(tn) = pTx (25)

where n is a function of NT(t) according to (8) and (9).

3) Molecule Propagation: Molecules propagate through

the Brownian motion in the 3-D space according to (4)

where Fn = vn = 0. For this basic abstraction model, and

to derive analytical expressions to determine the channel

capacity, we make the assumption to have a 3-D space with

infinite extent in every dimension.

4) Molecule Reception: The receiver detects the particles

that are present inside a spherical volume VR centered at

the receiver location and with radius RVR ≪ d, where d is

the distance between the transmitter and the receiver. This

choice makes the results of the Brownian motion channel

capacity accounting for the simplest ideal receiver possible

(e.g., chemical ligand-binding reception will be further

limited by a nonnegligible time of unbinding [16]), where
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the number of received molecules NR(t) is expressed as

NR(t) = {n|pn(t) ∈ VR} . (26)

5) Information Decoding: This is ideally based on the

count of the number of detected molecules expressed as

Y (t) = #NR(t), t > 0 (27)

where # stands for the cardinality (number of elements)

of the set NR(t) defined in (26).

6) Capacity: As a consequence of the aforementioned

functional blocks, the Fokker–Planck equation (17) for this

MC system corresponds to the inhomogeneous Fick’s sec-

ond law of diffusion, or diffusion equation [8], expressed

as follows:

∂ρ(p, t)

∂t
= D∇2ρ(p, t) + NT(t)δ(|p − pTx|), t > 0. (28)

As a consequence of the aforementioned molecule

reception and information decoding functional blocks,

the probability distribution of the output signal Y (t) can be

expressed from the aforementioned spatial Poisson point

process (19) as follows:

Pr{Y (t)|ρ̄(t)}(N) =
(ρ̄(t)VR)N

N !
exp−ρ̄(t)VR (29)

where ρ̄(t) is the average particle distribution inside the

receiver spherical volume VR, for which simplicity is con-

sidered equal to the value of the particle distribution at the

center pRx of VR, expressed as ρ(pRx, t), in agreement with

the aforementioned assumption on the receiver radius.

The entropy H(ρ) of the particle distribution ρ can be

analytically expressed by stemming from the solution to

the aforementioned Fick’s second law, which is expressed

as follows:

ρ(pRx, t) = hDiff(d, t) ∗ NT(t) (30)

where d = |p − pTx|, ∗ is the convolution operation, and

hDiff(d, t) is the impulse response of (28), expressed as

follows:

hDiff(d, t) =
e−

d2

4Dt

(4πDt)3/2
. (31)

As a consequence of (24), (30), and (31), Fick’s second law

corresponds to a linear and time-invariant filter applied

to the modulated number NT(t) of emitted molecules.

According to the formula to compute entropy loss in linear

filters [14], the entropy H ′(ρ) per degree of freedom of the

particle distribution as expressed in (30) is as follows:

H ′(ρ) = H ′(NT) +
1

W

�
W

log2 |HDiff(f)|2 df (32)

where H ′(NT) and W are the entropy per degree of

freedom and the bandwidth, respectively, of the number

of molecules NT(t), and HDiff(f) is the Fourier transform

of the impulse response in (28). The entropy H(ρ) can

be then computed by multiplying the entropy H ′(ρ) per

degree of freedom by twice the aforementioned band-

width W . The expression in (32) can be evaluated by

considering the following.

1) The modulated number of molecules NT(t) can be

defined as a band-limited ensemble of functions [14]

within a bandwidth W , with the following expression:

NT(t) =
∞�

k=0

NT

�
k

2W

�
sin [π(2Wt − k)]

π(2Wt − k)
, k ∈ N

(33)

where the bandwidth W is, here, defined as the maxi-

mum frequency contained in the time-continuous sig-

nal NT(t) (24), which corresponds to the modulated

number of molecules as function of the time t. The

entropy H ′(NT) per degree of freedom then equal

to the entropy of NT(t) sampled at time instants

k/(2W ), which is the first term of the sum in (33).

2) The Fourier transform HDiff(f) of the impulse

response in (28) has the following analytical

expression:

HDiff(f) =
e−(1−j)

�
2πf
2D

d

4πDd
. (34)

Consequently, the entropy H(ρ) of the particle distribution

ρ can be derived from (32) and (34)

H(ρ)=2WH ′(NT)− 4
√

πd

3 ln 2
√

D
W

3
2 −4W log2 4πDd. (35)

The conditional entropy H(ρ|P ) of the particle distribu-

tion given the received signal can be computed from (29)

as per time sample of a spatial Poisson counting process

with rate parameter equal to ρ. According to [15], this

becomes

H(ρ|P) ∼= 2

3

E [NT] RVR

Wd
+ ln

�
Γ

�
2

3

E [NT] RVR

Wd

��
+

�
1 − 2

3

E [NT] RVR

Wd

�
ψ

�
2

3

E [NT] RVR

Wd

�
(36)

where E [NT] is the average value of emitted molecules in

a time interval equal to 1/(2W ), W is the bandwidth of

the transmitted signal X, ψ(·) is the digamma function,
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D is the diffusion coefficient, d is the distance between

the transmitter and the receiver, and RVR is the radius of

the spherical receiver volume VR. The conditional entropy

H(ρ|P ) is then equal to (36) multiplied by two times

the bandwidth W of the modulated number of molecules

NT(t).

The capacity CBrown of the Brownian channel is then

obtained by substituting (35) and (36) multiplied by

2W into (23), and by maximizing it according to (15)

constrained to the average thermodynamic power P̄H,

defined in [15] as the energy necessary to emit the aver-

age number E
�
N̂T

�
of particles per time sample 1/(2W ),

divided by the duration of a time sample. The latter is

expressed as

P̄H =
3

2
KbTE [n̂T ] 2W (37)

where Kb is Boltzmann’s constant, T is the absolute

temperature of the system, and W is the bandwidth of

the modulated number of molecules NT(t). The capacity

CBrown results in the following expression [15]:

CBrown

∼= 2W

�
1 + log2

P̄H

3 WKbT

�
− 4

√
πd

3 ln 2
√

D
W

3
2

− 4W log2 4πDd − 2W
2P̄HRVR

9 W 2 dKbT

− 2W ln

�
Γ

�
2P̄HRVR

9 W 2 dKbT

��
− 2W

�
1 − 2P̄HRVR

9 W 2 dKbT

�
ψ

�
2P̄HRVR

9W 2dKbT

�
(38)

where ψ(·) is the digamma function, D is the diffusion

coefficient, d is the distance between the transmitter and

the receiver, and RVR is the radius of the spherical receiver

volume VR.

B. Calcium Signaling

Calcium signaling is at the basis of biological cell

signaling regulation, where it is one form of juxtacrine sig-

naling, which is found in numerous biological regulatory

functions in both animals as well as plants [39]. Juxtacrine

signaling is a form of close contact cell-to-cell or cell-to-

extracellular matrix information exchange. The regulation

of the cellular process resulting from the Ca2+ signaling

can range between millisecond (e.g., protein synthesis and

cell division) and minutes as well as hours. This form of

signaling can exist in both excitable as well as nonexcitable

cells, where the elevated Ca2+ concentration can result

from triggering of the internal pathways that are due to

the ligand-receptor chemical reaction of specific molecules

at the cell’s membrane. The analysis of Ca2+-based MC is

governed by biophysical models, which have been devel-

oped through experimental work [40], [41], [45]. Fig. 5

Fig. 5. Illustration of an MC system based on calcium signaling.

illustrates the block diagram of a calcium-signaling-based

MC system, where communication is established through

the diffusion of ions. The calcium propagates through the

gap junction to allow the ions to flow between the cells.

1) Information Encoding: The encoding process can be

achieved through the elevation of the Ca2+ ion concen-

tration NT from (7) within the cytoplasm of the cell. This

is achieved by releasing the Ca2+ from the organelles

(stores), which is controlled by the intracellular Ca2+

signaling pathway, as well as the intake from the extracel-

lular space. The increased concentration of the Ca2+ ions

within the cytoplasm is dependent on various chemical

reaction stimuli, which may include extracellular agonists

and intracellular messengers (for nonexcitable cells). One

of the most basic models was proposed in [45], and it con-

sists of three types of Ca2+ concentration: the cytoplasm

(Ccyt), the stores within the organelles (Cstr), and the Ca2+

buffer (B). The kinetic model of the type in (3) for these

three components is represented as follows:

∂Cstr

∂t
= −k1(h + h0)(Cstr − Ccyt) + V3

C2
cyt

k2
4 + C2

str

(39)

∂Ccyt

∂t
= k1(h + h0)(Cstr − Ccyt) − V3

C2
cyt

k2
4 + C2

str

+ k5(h + h0)(Cext − Ccyt) − V6
C2

cyt

k2
7 + C2

str

− k2CcytB + k2(Btotal − B) (40)

∂B

∂t
= −k2CcytB + k(Btotal − B) (41)

where k1 is the rate of Ca2+ release and influx for the

store, k2 is the binding constant of Ca2+ for the buffers,

V3 is the maximum rate of Ca2+ intake to the store,

k4 is the disassociation constant for the store calcium,

Btotal is the total calcium buffer concentration, k7 is the

disassociation constant of the plasma membrane calcium

pump (0.6 µm), k5 is the rate of calcium influx from the

external medium (0.000158 sec−1), V6 is the maximum

rate of the plasma membrane calcium pump (1.5 µm/sec),

h is the fractional activity of the channels in the store and

plasma membrane (h0 ≤ h ≤ 1), h0 is the basal fractional
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activity of the channels in the store and plasma membrane

(0.4), and Cext is the extracellular calcium concentration

(1500 µm). Equation (39) reflects the change in the Ca2+

in the stored organelles, and this is dependent on the stor-

age release as well as the recovery rate, and the quantity of

Ccyt; (40) reflects the relationship between the change in

Ccyt, concentration in the intracellular storage, buffer B in

the cytoplasm, extracellular matrix, as well as the release

and recovery rate; (41) is the process for the Ca2+ binding

to the buffer B in the cytoplasm.

Based on (7), the modulated concentration Ccyt of Ca2+

ion will result in NT(t) and is represented as

NT(t) = CcytX(t), t > 0 (42)

where L = 1, M = 1, and C1 = Ccyt.

2) Molecular Emission: Once the Ca2+ concentration is

elevated, this results in ion wave generation. A linear chan-

nel model can result from the Ca2+ concentration once it

reaches steady state [39]. The steady state can be achieved

when (39)–(41) becomes zero. At the steady-state point,

the concentration Cssp is less than the quantity of external

Ca2+ ions and is represented as follows:

Cssp = k7

�
k5(h + h0)Cext

V6 − k5(h + h0)Cext
. (43)

At the same time, the transient response of the Ca2+

wave is approximated as follows:

Ccyt(t) = C init
cyt +

�
Cssp − C init

cyt

�
(1 − e−tβ) (44)

where C init
cyt is the initial cytoplasmic calcium concentration,

and β is the elevation rate of cytoplasmic calcium [39].

Based on the general molecular emission of MC in (8),

the Ca2+ ion n released at time tn will have a location

pCa2+,n that corresponds to the location of the transmitter

pTx at the center of the cell and is expressed as

pCa2+,n(tn) = pTx. (45)

3) Molecular Propagation: The propagation of the wave

is established through physical connections between the

cells, where the generated waves will travel from the

cytoplasm through gap junctions [46]. The gap junctions

are composed of two connexons situated on each side

of the cell, and they are formed by six proteins called

connexins. The probability of the number of open gap

junctions sn out of Sn is modeled as a binomial distribution

and is represented as [39]

Pr(snopens) =

�
Sn

sn

�
ζsn

n (1 − ζn)Sn−sn . (46)

The opening of the gap junction is dependent on the

elevation of the Ca2+ concentration. The period for the

Ca2+ waves to travel through the gap junction is τgap.

The effective gap junctional transitional rate θn for cell n,

which depends on the level of Ca2+, is represented as

θn =
1

τgap

P
(n)
Ca

D
(n)
Ca

(47)

where PCa is the permeability of the gap junction and

DCa is the diffusion constant of Ca2+ ions. Based on this,

the received Ca2+ level at the end of the gap junction and

the cytoplasm entry of the next cell n is represented as

Cn
cyt

�
l
(n)

jct , τ
(n)

jct

�
=

sn

Sn
θnCn−1

cyt

�
l
(n−1)

jct , τ
(n−1)

jct

�
(48)

where n is the cell receiving the Ca2+ emitted from the

previous neighboring cell n − 1. ljct is the gap junction

position, and τjct is the time instant Ca2+ travels through

the gap junction between cells n− 1 and n. Once the Ca2+

wave enters the cytoplasm of cell n − 1, it will propagate

through diffusion. The modified Fick’s law for this diffusion

is represented as

Cn
cyt(x, t) =

1�
4πD

(n)
Ca τ

(n)
cyt

e−(x2/4DCaτ
(n)
cyt )

(49)

where x is the 1-D distance that is perpendicular to the

gap junction entry into the cytoplasm, and τcyt is the delay

propagation of Ca2+ in the cytoplasm. This is represented

as the inhomogeneous Fick’s second law of diffusion as

in (28), with boundary conditions that are defined by

the cell’s membrane. The boundary conditions of the cell

membrane ensure that the finite space contains the oscil-

lations of the Ca2+ ions within the cytoplasm. We also

assume that interference between these oscillations and

other components of the cell is negligible. From (28), ρ

is the distribution of Cn
cyt(x, t), p is the location of the ions

within the cell, D is the diffusion coefficient D
(n)
Ca , and NT

is the number of Ca2+ ions as in (42).

Although the models that have been presented are

between two cells, the channel can be extended to multiple

cells as the Ca2+ propagates through the tissue.

4) Molecular Reception: The Ca2+ that propagates into

each cell will be sensed, and the concentration changes will

invoke the subsequent wave generation. The regeneration

of the Ca2+ ion waves as it passes from one cell to the

next is based on the internal Ca2+-induced Ca2+ release

process, and this will depend on the increase in Ca2+

concentration that has been received. Once the number

NR(t) (11) of received Ca2+ ions binds to the organelles

of the receiving cell, this will invoke the intracellular Ca2+

signaling pathway to restart the generation of Ca2+ waves

for the next cell.
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5) Information Decoding: Depending on the approach

taken for encoding the information into the Ca2+ ion

concentration, the decoding process will sample the waves

that are received in the cytoplasm. In the case of amplitude

modulation, the receiver will sample the peak as well as

the duration of the arrived Ca2+ waves.

6) Capacity: Given the highly stochastic behavior of

calcium signaling, a closed-form expression for calcium

signaling has not been developed. In [39], the gain and

delay of Ca2+ waves traveling through a 1-D array of cells

were proposed. This was developed from extracting the

linear channel behavior of Ca2+ waves that are generated

from the cells, as well as a stochastic gap junction model

in (46). A capacity expression was developed in [43] for

a 1-D array of cells, using empirical measurements for

the entropy of the received Ca2+ wave that was used to

determine the mutual information. The same approach

was developed in [44] for a channel model of a multidi-

mensional array of cells representing a tissue. The analysis

considered the biophysical properties of three different

types of cells (e.g., smooth muscle cells, epithelial, and

astrocytes), and how these impact on the Ca2+ wave

propagation. The analysis also considered the reflective

behavior of the Ca2+ waves due to the boundary con-

ditions of the tissue. In [62], a channel model was also

developed between the two cardiomyocyte cells, based

on the electrochemical signaling that influences the Ca2+

propagation. The significance of this channel model was

the introduction of an electrochemical model for Ca2+

signals that are generated from excitable cells. The mutual

information was developed based on the OOK modulation

of Ca2+ waves, out of which the capacity was obtained.

An open issue for the future is the development of

a closed-form expression for the capacity model. This

closed-form expression must include the impact of interac-

tions between organelles (e.g., endoplasmic reticulum and

mitochondria) that contribute toward Ca2+ generation.

This model could then be utilized to understand the impact

of abnormalities between the intracellular to intercellular

signaling, and how disease can result from this.

C. Neuron Communications

One of the most complex regulatory systems within the

human body is the nervous system. The nervous system

mimics an information highway that interconnects a num-

ber of different organs as well as various physiological

subsystems to the brain. This information highway controls

and maintains homeostatic equilibrium while ensuring

adaptations as an organism faces varying environmental

changes [47]. This highly complex system communicates

through electrical stimulation based on a compound action

potential (AP). At a single-cell level, the nervous system as

well as the brain are constructed from neurons, which com-

municate through electrochemical impulse signals known

as AP spikes. Through the highly complex interconnection

of neurons, the brain is able to process information, create

Fig. 6. Sketch of an MC system based on neuron communications.

actions through the control of muscles, store information

for both short- and long-term memory, as well as control-

ling emotions, sensations, and perception.

1) Information Encoding: The discrete impulse signal,

or the AP, is established through both electrical and chemi-

cal impulses that occur in parallel. The electrical impulses,

i.e., electrical spikes, travel through the neuron, while the

chemical impulses propagate on the surface of the cell. The

information that is conveyed between the neurons depends

on the frequency of the electrical spikes that travel through

the cell. As the electrical spike propagates down the axon,

this will result in the chemical impulse that depolarizes and

repolarizes the chemical balance of the neuron. Fig. 6 illus-

trates this process. Before the electrical spike propagates

down the axon, there is a chemical balance in the quantity

of ions both inside and outside the neuron. At rest, there is

more potassium ions (K+) and negative ions (−ve) inside

the axon, while higher sodium ions (Na+) and positive

ions (+ve) outside. As the impulse propagates down the

axon, the depolarization process starts, where the K+ ions

will diffuse outwards from the axon, and the Na+ ions

will diffuse in the opposite direction into the axon. After a

short period, the repolarization process starts, and this will

result in the reverse process. This sequence will continue

until the impulse arrives at the terminal synapse. Since the

information traveling through the neuron is dependent on

the type of stimulated and train of spikes, the encoding

process can be established through the variations in the

electrical spike train. The train of spikes carries the infor-

mation to be projected onto the subsequent target neuron,

and this is considered as neural codes that are transmitted

through the network. The train of spikes that carry the

codes is not only affected by the types of neurons but also

by the synaptic connections to other neurons, which can be

either inhibitory or excitatory. This is one of the elements

of how physical changes in the environment due to sensory

changes (e.g., touch and hearing) can be processed in the

brain as unique information.

As the spike travels down the axon, this will lead

to the neuron–neuron communication process. Although

electrical synapse can also occur for neuron-to-neuron
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communication, where AP is transferred through the gap

junctions of the cells, in this paper, we only consider the

chemical synapse through the diffusion of neurotransmit-

ters (note that the chemical synapse is different from the

chemical signaling that occurs only along the axon of the

neuron). Once the spike arrives at the synaptic terminal,

the vesicles containing the neurotransmitters will bind to

the terminal membrane to release the neurotransmitters

into the synaptic cleft, by following a stochastic process.

A model for this process has been proposed in [61]. The

model considers the vesicles are packed in a pool, and

when a spike arrives at the synaptic terminal, a single

vesicle will be released. Two types of vesicle release process

are discussed, which are evoked and spontaneous. For the

evoked release, given that the spike time begins at t0 and

the duration ∆ts, the release occurs in the time interval

[t0, t0 + ∆ts]. During this period, the probability of evoked

release for NT vesicles within the pool is 1−exp(−NTαv∆t)

for ∆t ≤ ∆ts and 1 − exp(−NTαv∆ts) for ∆t > ∆ts

(this is for a release rate αs). We do not consider the

stochastic production of NT and assume a fixed quantity

of production as well as secretion, because this is highly

dependent on the type of cells as well as pattern of AP

signals. In the case of spontaneous release, the waiting

time before secretion is approximately 8 min, and for this

reason, the probability of release for Nv vesicles within

the pool during ∆t is 1 − exp(Nv∆t/480)). Based on a

maximum vesicle capacity Nv in the pool, the release in

ith time slot (time slot is ∆t larger than the refractory

period) is determined by the probability F (Nv), expressed

as follows:

Fi(Nv)=1−
�
exp(−Nvαv∆ts)ps+exp

�
−Nv∆t

480

�
(1−ps)

�
(50)

where ps is the probability of a spike arrival at the ith

time slot, which is a Poisson process with rate equal to the

source information X(t), with the following expression:

ps = 1 − exp{−X(t)∆t}. (51)

The model also considers one vesicle vacancy replen-

ishment G(τD, ∆t), where τD is the mean recovery time

for one vacancy after ∆t, and is modeled as a Poisson

process (G(τD, ∆t) = 1 − exp − τ−1
D ∆t)). After ∆t,

the vesicle recovery is governed by a binomial distribution

(B(NMAX − N, G(τD, ∆t))) [61].

2) Molecular Emission: When the released vesicle binds

onto the membrane, it will secrete NT(t) neurotransmitters

at the same time t. We assume the neurotransmitters

release to be point-wise, as defined in (8). This is expressed

as in (8), where pn = (pn,x, pn,y, pn,z) and ST corresponds

to points in the membrane surface of the neuron facing the

synaptic cleft.

3) Molecular Propagation: These neurotransmitters will

propagate through diffusion in the synaptic cleft (the dis-

tance of the synaptic cleft is approximately 20 nm). The

region of diffusion for the neurotransmitters is a confined

space. This means that at an initial stage, a number of neu-

rotransmitters will bind to the postsynaptic neuron, while

a short period later, a different number will arrive to bind.

This is modeled in [60] with the following expression:

ρ(NT, p, t) =
NT

(
√

4πDt)3
e

−(px−pn,x)2−(py−pn,y)2

4Dt�
−1�

k=−∞

(2 − Pu)(1 − Pu)−k+1e
−(pz−(2k+1)H)2

4Dt

+
∞�

k=0

(2 − Pu)(1 − Pu)ke
−(pz−(2k+1)H)2

4Dt

�
(52)

where ρ is the probability density of neurotransmitters at

location p = (px, py, pz) in the synaptic cleft, Pu represents

the uptake probability of the neurotransmitters (when

Pu = 0, none of the neurotransmitters have reached the

postsynaptic neuron for uptake, while Pu = 1, means all

have reached the target within a specified time), H is the

length of presynaptic cleft along the z-axis, and D is the

diffusion coefficient of the neurotransmitters. The location

pn of each neurotransmitter is based on a Poisson point

process as in (19).

4) Molecular Reception: As these neurotransmitters dif-

fuse and arrive at the postsynaptic neuron, they will bind

onto the receptors forming a ligand-receptor complex.

According to [61], the binding probability is based on an

expected neurotransmitter flux that will bind to vacant

receptors during the sampling time t. This means that as

the neurotransmitters arrive at the postsynaptic neuron,

the number of vacant receptors will also reduce. This will

also reduce the binding probability as the sampling time

increases. Therefore, at the kth sampling time, the binding

probability will be represented as

Pb(k∆t) = a(k∆t)[1 − (1 − Pe(k∆t)N(k∆t))] (53)

where the probability Pe of finding the neurotransmitters

inside the effective volume Ve is as follows:

Pe(t) =

���
Ve

ρ(NT, p, t)dp (54)

where ∆t is the duration of the sampling period, and a is

the availability of a receptor [0, 1]. The probability of the

neurotransmitters within the volume space of the synaptic

cleft will be the basis of the prediction of the quantity

of neurotransmitters that will bind to the receptors of

the postsynaptic neuron. This results in a relationship

between the binding process and the patterns of spike
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trains generated to carry the information between the

neurons. a is also adjusted for the next step and expressed

as follows:

a((k + 1)∆t) = a(k∆t) − Pb(k∆t). (55)

Therefore, the expected number NR of neurotransmit-

ters bindings in each sampling period is the summation of

binding probabilities of all the receptors and is represented

as follows:

NR(k∆t) = M0Pb(k∆t) (56)

where M0 is the number of receptors at the receiver.

5) Information Decoding: When sufficient neurotrans-

mitters bind onto the receptors of the postsynaptic neuron,

it will invoke an impulse that will again travel along the

neuron, which will open a channel that allows the positive

ions to flow into the cell, starting another impulse, which

was described in the information encoding.

6) Capacity: A physical channel model was developed

in [49] for two neurons, considering the mutual informa-

tion of the AP and the diffusion of neurotransmitters in the

synaptic cleft. In [51], an upper bound information capac-

ity model was developed for both bipartite and tripartite

neural connections using results from optical Poisson chan-

nels. The Poisson channel model was used to represent

the impulse of AP that is generated from the presynaptic

neurons, and how this varies depending on the feedback

control from the astrocytes. A multiple access model for

neural connections was also developed in [48] based on a

sequence of spike timings from the presynaptic neurons.

This is based on multiple presynaptic neurons that form

connections to the postsynaptic neuron and specifically on

the capacity that is impacted from the variations in the

AP. The limitations in all these capacity models are that

there are no closed-form solutions proposed. This is an

open research problem that needs to be investigated for the

future. The closed-form expression should also consider

the impact of different types of biophysical properties

of the neurons, and how this impacts the capacity. This

can lead to applications of neuron communication models

that can be applied to understanding neuronal disease,

such as the correlation between impairments of the sig-

naling process and changes in the AP signaling sequences.

An extension toward neuronal networks will also need to

be investigated, by understanding how the MC varies as

signals propagate through heterogeneous neurons (e.g.,

pyramidal and fusiform) in the network.

D. Bacterial Quorum Sensing

Besides the communication process through the transfer

of DNA, bacteria also have another form of natural commu-

nication that uses molecules. This communication is based

Fig. 7. Scheme of an MC system based on bacterial quorum

sensing.

on the simple secretion of molecules, and this could be

cooperative between all the bacteria in the vicinity. This

form of communication is found in both Gram-negative

and Gram-positive bacteria. One bacterial functionality

that results from this simple communication is known

as quorum sensing, where the bacteria communicates

through molecules known as autoinducers and results in

synchronized gene expression of the bacterial population

(the autoinducers are known as messenger molecules).

This communication is ineffective when the bacterium

is on its own; however, as a population, this leads to

numerous powerful functionalities, and hence the name

“quorum.” A number of diverse physiological activities

can emerge from quorum sensing, and examples include

biofilm formation, antibiotic production, and biolumines-

cence. Fig. 7 illustrates an MC system that is based on the

bacterial quorum sensing communication process.

1) Information Encoding: The encoding process can

be achieved by stimulating the bacterial population

with an external chemical signal, in order to produce

autoinducers. For example, in [56], signaling molecule

N-(3-Oxyhexanoyl)-L-homoserine lactone, or C6-HSL, was

injected into engineered E. coli bacteria and in response,

this resulted in the cells activating a genetic program to

produce green fluorescent protein (GFP). In this simple

setup, OOK was achieved, where the application of C6-HSL

produced a pulse that represents a single bit. Another

example is the generation of pulse-amplitude modula-

tion (PAM) using a similar excitation approach [55].

Molecule emissions by the bacteria are initiated from

stimuli excitation, either through the influence of exter-

nal chemicals applied to the population such as C6-HSL

described above or initiated from a bacterium within the

quorum, which will result in a chain reaction of other cells

within the vicinity to produce the molecules collectively.

In this paper, we will only focus on the first case, where

external stimuli are applied to the bacterial population.

The assumption for this case is that external stimuli, which

correspond to administrations of a chemical agent, can

be assumed evenly distributed throughout the population,

resulting in all bacteria equally producing the autoinducer

molecules to be emitted.
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The following equations define the collective production

of molecules by the bacterial population [64], where the

source information X(t) is the basis for the production of

autoinducers A(t), expressed through a chemical kinetic

model (3) as follows:

dA(t)

dt
= cA+

kAC(t)

KA+C(t)
−k0A(t)−k1R(t)A(t)+k2RA(t)

−poutA(t)+pinE(t) (57)

dR(t)

dt
= cR+

kRC(t)

KR+C(t)
−k3A(t)−k1R(t)A(t)+k2RA(t)

(58)

dRA(t)

dt
= k1R(t)A(t)−k2RA(t)−2k4RA(t)2+2k5C(t)

(59)

dc(t)

dt
= k4RA(t)2+k5C(t) (60)

dE(t)

dt
= (poutA(t)−pinE(t))−DA(t). (61)

Equation (57) is the production rate of internal autoin-

ducer AT (t) within the bacterium, and this is used to

further produce more molecules; (58) is the production

rate of receptors inside the bacterium, which will bind to

the internal autoinducers to transform the complex into

a receptor-bound autoinducer (RA) monomer; (59) is the

production rate of RA monomers, and this depends on

the number of autoinducers (A), receptors (R), as well

as the dimers (C); (60) is the production rate of the

RA dimers. A dimer is an association of two monomers,

and in this case, it is the association of two RA complex.

Equation (61) is the production rate of the autoinducer

secreted from each bacterium membrane, which will freely

diffuse into the environment and result in a spatially

homogeneous concentration.

2) Molecular Emission: A concentration of autoinducers

A(t) is released collectively from the bacterial population,

as defined in (8), where ST is now the volume of the

colony.

3) Molecular Propagation: The autoinducers concentra-

tion A(t) emitted by the transmitter bacteria will diffuse

into the environment. The diffusion process will follow the

inhomogenous second Fick’s law similar to (28), this time

expressed as:

∂ρ(p, t)

∂t
= D∇2ρ(p, t) +

A(t)�
n=1

1

n
δ(|p − pn(tn)|)δ(t − tn)

(62)

where ρ(p, t) is the distribution of autoinducers at

location p and time t.

4) Molecular Reception: The bacteria receives the autoin-

ducer molecules, which leads to an internal signal path-

way process in response. The probability of the molecules

binding to a bacterium’s ith receptors is represented as a

chemical kinetic model (3) and expressed as follows [63]:

dpi

dt
= −κpi + ρ(p, t)|p∈SRi

γ(1 − pi) (63)

where ρ(p, t)|p∈SRi
is the distribution of autoinducers

within the receiver ith bacterium volume SR, γ is the input

gain, and κ is the rate at which the molecules that have

bound to the receptor will detach from the receptors.

There is also randomness in the binding process of the

molecules to the receptors of the bacterium. According

to [59], for each bacterium i, the number of activated

receptors Xi is a Binomial random variable with para-

meters (Mo, pi), where Mo is the number of receptors

and p is the probability of binding for the ith bacterium

as defined in (63). Based on this, NR will be the total

number of activated receptors, where NR =
�Mo

i=1 Xi.

However, a reporter mechanism is required in response

to receiving the molecules. This could be through the

expression of GFP, where the fluorescence proteins will

reflect a green light when illuminated by an ultraviolet

light that can be detected through a photodetector or even

imaging technologies on board of a microscope.

5) Information Decoding: Depending on the reporting

mechanism taken, the approach for decoding will be

through sampling. In the event of fluorescence using GFP,

sampling can be performed on the intensity pulse that is

generated. Sampling efficiency for GFP generated pulse

was investigated in [55] based on the peak value, the total

response duration, the ramp-up slope, as well as the

ramp-down slope.

6) Capacity: Although there has not been any

closed-form expression for the capacity of bacterial

quorum sensing, there has been a number of channel

models developed based on numerical expressions using

mutual information. In [55] and [56], an experimental

MC model was developed between two populations

of bacteria that communicate through the diffusion

of autoinducers, which was part of the National

Science Foundation MoNaCo project [58]. In [56],

the capacity was defined based on the mutual information

in communication-by-silence of bacterial quorum sensing.

Communication-by-silence was originally proposed for

noisy wireless channels, and this suits the high latency

propagation of molecules for bacterial quorum sensing.

The capacity model was based on the delay between

two-pulses representing the start and stop bits that are

transmitted, where the counting process between the

delay represents the information. In [59], a mutual

information expression for capacity was defined for

multihop bacterial network using quorum sensing. The

expression considers the intracellular to intercellular

signaling that produces the diffused molecules between

separate bacterial populations. The next evolutionary

step that is required is a closed-form solution for the

bacterial quorum sensing. The closed-form model should
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Fig. 8. Basic abstraction of an MC system based on drifted random

walk.

integrate the types of bacteria as well as molecules that are

produced, and the interactions between different bacteria

species, which, to date, have not been investigated in

the MC community. Applications can result from the

communication process of the bacterial quorum sensing,

such as the impact of attacks from different species that

can be detected from variations of the communication

performance. An example application is in [54], where

a synchronization between nanomachines was proposed

using the quorum sensing.

IV. M O L E C U L A R C O M M U N I C AT I O N V I A

D R I F T E D R A N D O M W A L K

In MC systems based on drifted random walk, the mole-

cules emitted by the transmitter not only propagate via

Brownian motion but their locations change with a velocity

vn(t) independent of the Brownian motion or the viscosity

of the fluid. Consequently, this propagation is modeled

by the Langevin equation in (4) with Brownian-motion-

independent force Fn(t) set to zero. In the following,

we revise the Brownian motion capacity expressed in

Section III-A through the definition of a basic abstraction

of an MC system via based on Brownian motion with drift.

Subsequently, we exemplify more realistic functional block

models of system based on drifted random walk, which

have been studied in recent years, namely, MC based on

the cardiovascular system or microfluidic platforms and

pheromone communication between plants.

A. Capacity of the Brownian Motion
Channel With Drift

The basic abstraction of an MC system via Brownian

motion with drift is shown in Fig. 8. In the follow-

ing, we describe the differences in the channel model

with respect to the Brownian motion channel detailed in

Section III-A.

1) Molecule Propagation: Molecules propagate by sum-

ming the Brownian motion components with a constant

and homogeneous drift velocity v = {vx, vy , vz} in the

3-D space according to (4) where Fn(t) = 0, and vn(t)

is constant and equal to v for every particle n. As in

Section III-A, we make the assumption to have a 3-D space

with infinite extent in every dimension.

2) Capacity: As a consequence of the aforementioned

molecule propagation, the Fokker–Planck equation (17)

for this MC system corresponds to the inhomoge-

neous Smoluchowski equation, or advection–diffusion

equation [7], expressed as follows:

∂ρ(p, t)

∂t
= D∇2ρ(p, t) − v∇ρ(p, t) + NT(t)δ(|p − pTx|).

(64)

Since this MC system utilizes the same functional blocks

for the molecule reception and information decoding

as those described in Section III-A, the Poisson point

process (19) again becomes a Poisson counting process as

expressed in (29).

The entropy H(ρ) of the particle distribution ρ can be

analytically expressed similar to Section III-A, but this time

based on (64), which is expressed as follows:

ρ(pRx, t) = hAdv(pTx, pRx, t) ∗ NT(t) (65)

where hAdv(pTx, pRx, t) is the impulse response of (64),

expressed as follows:

hAdv(pTx, pRx, t) =
e−

|pRx−pTx−vt|2

4Dt

(4πDt)3/2
. (66)

As for Fick’s second law in Section III-A, also the

advection–diffusion described in (30), (64), and (66) cor-

responds to a linear and time-invariant filter applied to

the modulated number NT(t) of emitted molecules. Conse-

quently, we can apply the formula in (32) where the term

HDiff(f) is substituted with HAdv(f), which is the Fourier

transform of the impulse response in (66). The latter does

not have analytical solution such as (31), and the following

expression has to be solved numerically:

HAdv(f) =

�
hAdv(pTx, pRx, t))e−j2πftdt. (67)

Consequently, the entropy H(ρ) of the particle distribu-

tion ρ can be expressed as follows:

H(ρ) = 2WH ′(NT) +

�
W

log2 |HAdv(f)|2 df. (68)

The conditional entropy H(ρ|P ) of the particle distrib-

ution given the received signal can be derived similar to

Section III-A, and expressed as in (36)

The capacity CDBrown of the Brownian channel with drift

is then obtained by substituting (36) and (68) multiplied

by 2W into (23), and by maximizing it according to
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Fig. 9. MC functional blocks based on the cardiovascular system.

(15) constrained to the average thermodynamic power P̄H

expressed in (37). The maximum value expression can be

obtained similarly as in [15] even without an analytical

expression for HDiff(f), since the latter does not depend

on the probability distribution of the modulated number

of molecules NT(t). The capacity CDBrown results in the

following expression [15]:

CDBrown

∼= 2W

�
1 + log2

P̄H

3 WKbT

�
+

�
W

log2 |HAdv(f)|2 df − 2W
2P̄HRVR

9 W 2 dKbT

− 2W ln

�
Γ

�
2P̄HRVR

9 W 2 dKbT

��
− 2W

�
1 − 2P̄HRVR

9 W 2 dKbT

�
ψ

�
2P̄HRVR

9W 2dKbT

�
(69)

where ψ(·) is the digamma function, D is the diffusion

coefficient, d is the distance between the transmitter and

the receiver, and RVR is the radius of the spherical receiver

volume VR.

B. Cardiovascular System

The cardiovascular system is a molecule propagation

network in the human body composed of the heart,

the blood, and the blood vessels, where the heart

pumps the blood through the blood vessels, resulting into

a drift of the molecules that are subject to Brownian

motion within the blood. An MC system has been mod-

eled around the cardiovascular system as an MC channel,

with the final goal of studying the body distribution of

drug molecules within particulate drug delivery systems

(PDDSs) [10]–[12], and this is illustrated in Fig. 9. In such

systems, drug molecules are injected into a blood ves-

sel at a specific location of the cardiovascular system,

they propagate through drifted random walk along the

blood vessels, while they distribute through bifurcations

to their branches, until reaching the diseased location of

the body in need of the drug, where the drug molecules

are absorbed by the tissues. Such a study demonstrates a

direct application of MC theory to personalized nanomedi-

cine, where the final goal is to provide a methodology

to optimize the PDDSs parameters, such as the injection

location and time evolution, according to cardiovascular

system parameters, where many of those are patient-

specific. Moreover, these system models will be essential

to design future communication links to realize pervasive

networks of nanoscale wearable and implantable devices,

i.e., the IoBNT [3]. In the following, we detail the specific

functional blocks.

1) Information Encoding: The source information X(t)

is encoded into a proportional amount of information (or

drug in PDDS context) molecules ND(t) present in the

solution to be injected in the cardiovascular system, similar

to (24).

2) Molecule Emission: The information molecules are

emitted in the blood vessel at a predefined location

of injection pTx (point-wise transmitter) by following a

sequence of impulses emitted at a specific time inter-

val Ts. According to [11], this models the behavior of a

computer-controlled pump infusion syringe and, in gen-

eral, expresses a molecule emission according to pulses

(where δ(·) might have a different shape than the Dirac’s),

e.g., emitted by engineered cells [13] in an IoBNT sce-

nario. This is expressed as

pn(tn) = pTx, n∈
�
0,

� tn

0

Q−1�
q=0

ND(t)δ(t−qTs)dt

�
(70)

where Q is the total number of injection impulses.

3) Molecule Propagation: The emitted molecules prop-

agate through the cardiovascular system according to

Brownian motion with a drift velocity v(t, p) (4), which

is a function of the time t and the location p. The time

dependence is a function of the heart pumping action while

each molecule propagates, while the location dependence

is a function of the location of the molecule at each time

instant.

4) Molecule Reception: The emitted molecules propagate

until reaching the location in the cardiovascular system

where the receiver is located (in the PDDSs case, a blood

vessel is in contact with the targeted tissue to be healed).

The received signal corresponds to the particles present

within a volume VR surrounding the receiver, with a simi-

lar expression as in (26).

5) Information Decoding: The received molecules are

recognized and absorbed by the receiver (diseased tissue

in PDDSs, where the information they carry corresponds to

the final healing action at the tissue itself). This is modeled

as a quantity proportional to the number of received
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molecules according to the molecule reception rate pD(t)

as function of the time t, expressed as follows:

Y (t) = pD(t)NR(t) (71)

where pD(t) is expressed as [11]

pD(t) = πr2
omRmLe

−
χaβw(t)

kB Tpr0mR

��
a
γ

+ψ
�

Fs+ a2

r0
Rs

�
(72)

where r0 is the radius of the section of an informa-

tion molecule, mR is the density of chemical receptors

at the surface of the receiver, mL is the density of lig-

and/biomarkers at the surface of the molecules that can

bind the receptors, kB is Boltzmann’s constant, Tp is the

blood absolute temperature, Fs is the blood molecule drag

force, Rs is the rotational moment of force on the molecule

due to the blood flow, and βw(t) is the blood vessel wall

sheer stress as function of the time t. Values or expressions

of these parameters are detailed in [11].

6) Capacity: Given the generally accepted assumption

that the blood flow in the vessels is laminar [12], the inho-

mogeneous advection–diffusion equation of this MC sys-

tem is simplified into the Navier–Stokes equation. To deter-

mine if the flow is laminar, a metric known as the Reynolds

number Re is used, where a laminar flow is characterized

by Re < 2300. For blood flow in vessels, Re ≤ 2000. The

advection–diffusion equation in this scenario relates the

information molecule distribution ρ(p, t) in every location

of the cardiovascular system to the blood velocity ul(r, t)

as a function of the radial coordinate r and the time t

in the artery l of the cardiovascular system, expressed as

follows [12]:

∂ρ(p, t)

∂t
= −∇. [−D∇ρ(p, t) + ul (r , t)ρ(p, t)]

+ ND(t)δ(|p − pTx|). (73)

The solution to (73) is found by applying the harmonic

transfer matrix (HTM) theory [36] and transmission line

theory [35] to express the transfer function of each artery

and bifurcation in the cardiovascular system, as explained

in [12]. Under the aforementioned assumption of laminar

blood flow, as well as the assumptions that the blood

velocity is homogeneous along the longitude of an artery,

and that it only depends on the time variable t and

the radial coordinate r in the artery, this corresponds to

solving the Navier–Stokes equation [34], which relates the

blood velocity vector ul(r, t) to the blood pressure p(t) as

functions of the time t. This is expressed as follows [12]:

ρB

�
∂ul(r, t)

∂t
+ ul(r, t) · ∇ul(r, t)

�
= −∇p(t)

+µ∇2ul(r, t) + f

(74)

where ρB is the blood density, which we assume homo-

geneous, µ is the blood viscosity, and f represents the

contribution of blood vessel wall properties [37].

As a consequence of the aforementioned molecule

reception and information decoding functional blocks,

the probability distribution in the number of received

molecules NR is a Poisson counting process as in (29),

where in this case, VR is the volume surrounding the target

tissue, as mentioned above.

The capacity CCV of this MC system is computed in [11]

by stemming from the aforementioned models. The final

expression is as follows:

CCV = TS

R�
r=1

ψm

�
Q�

q=1

αq,rAqpr

�
(75)

where αq,r summarizes the probability to successfully

receive and decode an information molecule emitted at the

qth interval, defined above, and received at the rth inter-

val. An is the maximum nontoxic number of information

molecules at the time qTs, pD is a coefficient depending on

the aforementioned drug reception rate pD(t) that takes

into account a full reception interval, R is the duration of

the reception, divided into time intervals of duration Ts,

Q is the aforementioned total number of injection pulses,

and ψm takes into account noise sources at the injection,

as described in [11].

C. Microfluidic Systems

Microfluidics is a technology that enables analysis and

characterization of fluid dynamics at submillimeter-scale.

Through the use of microchannels that allow a mixture

of fluid to flow, the technology can allow integration

of both chemical assay as well as molecular biology

operations [80]. Examples of these operations include the

ability to detect as well as separate out specific types of

molecules on a Lab-on-Chip. MC systems have also been

proposed for microfluidic systems [74], [76], [79]. Net-

works of microfluidic channels integrated with MC have

been proposed to allow multiple steps of automated chem-

ical analysis [74]. In [78], microfluidic-based MC was pro-

posed for Network-on-chip communication, building on

integrated microchannels that were cooling the computer

processors.

Since the microfluidic system is considered as a simple

version of a cardiovascular system, and it is known to be

utilized for mixing different molecule types, the microflu-

idic structure considered has multiple transmitters and a

single receiver, as illustrated in Fig. 10 [74]. The trans-

mitters release molecules, which will diffuse through the

microchannel, where the molecules will propagate under

the influence of a flow with a constant drift velocity v = vx

according to (4) (we only consider a unidirectional flow

along the x-axis). Therefore, multiple transmitters that

do not have a centralized controller, such as a droplet

register proposed in [78], can result in interference at
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Fig. 10. Illustration of MC based on microfluidic systems.

the receiver, impacting the capacity. This specific structure

will be analyzed and discussed in this section, where the

capacity will be derived based on the model proposed

in [74].

1) Information Encoding: The encoding is achieved

when a concentration of molecules is released to repre-

sent the source information X(t). In this particular case,

an OOK modulation scheme is used, where each of the

transmitter chamber will produce NT(t) molecules, which

is based on (24).

2) Molecule Emission: The production rate of the mole-

cules will depend on the frequency f0 of NT(t) production

from a point source pTx
. This could be a population of

cells that will coordinate to produce the molecules and

diffuse into the environment [74]. For example, in [56],

genetically engineered bacteria are placed in the transmit-

ter chamber, and will collectively release molecules upon

an external stimulus.

3) Molecule Propagation: The hydrodynamic properties

of the fluid flow within the microchannel are governed by

a Reynolds number Re ≪ 100, which results in a velocity

of the flow within the microchannel v(t, p) according to

the Navier–Stokes equation.

4) Molecule Reception: The flow will create an advection

drift that drives the molecules toward the receive chamber.

The chamber will be a volume that receives the molecules,

and it is assumed that the space will be large enough to

capture the majority of the molecules (26).

5) Information Decoding: The molecules within the

chamber will be sampled to determine the information

that was transmitted. This will require synchronization

between the transmitters as well as the receivers.

6) Capacity: There are similarities in the Fokker–Planck

equation that was applied to the cardiovascular and the

microfluidic system. According to (73), the information

molecule distribution ρ(p, t) is dependent on the blood

velocity ul(r, t). However, in the case of the microfluidic

system, the location of the molecules is depending on

the velocity along the x-axis ux(a, b, l), where a, b, and l

are the microchannel height, width, and length, respec-

tively. The Navier–Stokes equation can be solved toward

an analytical solution for the flow velocity ux(a, b, l) of a

rectangular-shaped channel, which is represented as

ux(a, b, l) =
a2

12µl
µl
�
1 − 0.63

a

b

�
∆p (76)

where µ is the viscosity of the fluid, and ∆p is the pressure

drop for the length of the channel.

According to [74], the received signal is represented as

y = αx + n (77)

where x is the number of transmitted encoded molecules

[equal to NT(t) in the general framework], α is the channel

gain, and n is the channel noise. Since we are considering

multiple transmitters, the gain α in (77) is defined as an

end-to-end channel gain αij for interfering signals from j

transmitters to receiver i and is expressed as

αij = αij
chα2

tx/rx (78)

where the gain of the transmitter and receiver αtx/rx is

αtx/rx = exp

�
−4π2f2

0

u2
tx/rx

D0τtx/rx

�
sinc

�
atx/rx

utx/rx
f0

�
(79)

where atx/rx is the width of the transmitter and the receiver

chamber, utx/rx is the propagation velocity, τtx/rx is the

propagation delay from the chamber to the microchannel,

and f0 is the rate of molecules release from the transmitter.

The signal gain of the channel αch is represented as

αch = exp

�
−4π2f2

0

u2
ch

Dτch

�
(80)

where τch is the propagation delay along the microchan-

nel, uch is the propagation velocity, and D is the Taylor

dispersion adjusted diffusion coefficient for the rectangular

microfluidic channels.

According to [74], at low frequencies of emitted mole-

cules from the transmitter chamber, the spectral density

of the received molecule signal is assumed to be flat. This

means that the noise can be considered as additive white

Gaussian noise (AWGN), and this is represented as

σ2 =

�
2α4

tx/rx
Dτch

u2
ch

+ 4
D0τtx/rx

u2
tx/rx

α2
chα

2
tx/rx

�
4π2f2

0 φ2. (81)

The magnitude of the interference from the different

transmitters will also need to be considered. The variance

of the interference from transmitter j on the receiver i is

represented as

ζ2
ij =

�
αij

ch

�2
α4

tx/rxφ
2
j . (82)
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Fig. 11. Illustration of MC based on pheromone communication.

There is also an induced noise from the interfering

transmitters within the microfluidic channel. The variance

of the intefering transmitter j on receiver i is represented

as

ξ2
ij =

�
1 − (αij

ch)
2
�
α4

tx/rxφ
2
j . (83)

Based on the above-mentioned equations, the capacity

for a microfluidic system with a single receiver i and

multiple transmitters, where certain transmitter can act as

interferers, is represented as follows:

Ci =
1

T0
log2

�
1 +

α2
iiφ

2
i

σ2
i +

�N
j=2 ζ2

ij + ξ2
ij

�
(84)

where there are, in total, N transmitters, and φ2
i is the

signal variance at the receiver i. This expression is for

the case where there is one transmitter (Tx1) and N − 1

interfering transmitters.

D. Pheromone Communication

Since the original vision of MC is to exploit biolog-

ical communication systems to enable nanomachines to

communicate, the majority of the distances considered is

between nano to centimeter scale. However, a form of MC

was studied that enables information to propagate up to

a few meters and beyond, i.e., through pheromones [57],

which is illustrated in Fig. 11. Pheromones are used as

chemical signaling by plants, insects, and animals. A good

example for insects is in bee colonies, where pheromones

are used by the queen to signal worker bees toward

reproduction. Pheromone communication is part of the

approaches brought out by evolution for maintaining the

vegetation ecosystems. In this MC system, molecules are

released into the atmosphere and propagate to the desti-

nation by means of turbulent diffusion, which is a form of

Brownian motion with drift, where the latter is stochastic

in nature.

1) Information Encoding: The emission of the

pheromones is produced in the secretory cells of the

plants, and they are usually stored before their emission,

which is stimulated by excitation. The excitation process

in many cases is based on an external stimulus (e.g.,

an attack that is sensed by the plants). The storage of

the pheromone molecules is realized through both the

aqueous pools (SA) and lipid phase pools (Sl) inside each

cell. These are intermediate storage points, before they

diffuse to the intercellular air space on the plant leaves,

where they are stored in gas pools. From the gas pools,

they will diffuse through the leaf stomata into the air. The

encoding of the information can be achieved through the

stimulation of the secretory cells, and the consequent rate

of the emitted pheromone molecules. Although the way

pheromones are used to encode information in nature is

still an open question for most cases, this paper abstracts

information transmission through pheromones as an OOK

system, where secretory cells are stimulated according to

a digital bit stream.

2) Molecular Emission: The rate of release from the

aqueous storage pools (SA) is kA, and from the lipid phase

storage pools (Sl) is kl. Based on this, the molecules will

be stored in the gas phase (Sg), which is in the leaf inter-

cellular air space. The rate of release of the pheromone

flux from the gas phase storage is kg. The models for each

of these release processes, in the form of chemical kinetics

expressions (3), are as follows:

dSa(t)

dt
= ηs(t) − kaSa(t)

dSl(t)

dt
= (1 − η)s(t) − klSl(t)

dSg(t)

dt
= kaSa(t) + klSl(t) − kgSg(t) (85)

where η is the ratio of the synthesized pheromones

between the aqueous and lipid phase. The emission rate

of the volatile pheromones from the leaf is q(t) = kgSg(t),

where the q(t) is the emitted signal by the leaves of the

plants. Based on these models, in [57], the normalized

gain for the attenuated pheromone signal that is diffused

from the cells to the intercellular air space, and then to the

air, is developed, including the delay of the transmission

process. The release of pheromones is operated at the gas

pools, as defined in (8), where ST is now the volume

of these pools, and NT(t) corresponds to the pheromone

emission rate q(t).

3) Molecular Propagation: Once the pheromones are

secreted from the plants, the propagation is assisted by

air flows, and this results in the aforementioned turbulent

diffusion. In [57], a 1-D flow of wind was considered

to derive tractable mathematical expression for the dis-

tribution ρ(p, t) of propagating pheromones. The model

considered the mass flux of pheromones due to both

advection caused by wind, as well as atmospheric diffusion

subject to turbulent eddy motion. A number of assump-

tions were considered in this model, and this includes:

1) wind velocity is consistent and aligns along the x-axis;
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2) diffusion is isotropic and the eddy diffusivities K in

(x; y; z) depend only on the downwind distance (Kx(x) =

Ky(x) = Kz(x) =: K(x)); 3) wind velocity is significantly

large so that the diffusion along the x-axis is negligible;

4) there is only one source of the pheromone emission;

and 5) the mass of the pheromones remains finite. Based

on these conditions, the distribution ρ(p, t) defined in [57]

is expressed as follows:

ρ(p, t) = q(t) ∗ 1

8(πr)3/2
e(−(x−ut)2−y2)/4r

× [e−(z−H)2/4r + e−(z+H)2/4r] (86)

where q(t) is the pheromone distribution a time t, ∗ is the

convolution operation, r = (1/u) ∫x
0 Kξdx, and H is the

height of the emitting leaf from the ground.

ρ(p, t) can be further adopted to consider anisotropic

eddy diffusivities for y- and z-directions, Ky(x) 
= Kz(x),

and this is represented as

ρ(p, t) = q(t) ∗ 1

8(πr)3/2
e

(−(x−ut)2−y2)
4
√

ryrz e
(−y2)
4ry

× [e−(z−H)2/4rz + e−(z+H)2/4rz ]. (87)

4) Molecular Reception: Once the pheromones arrive at

the destination plant, they will be absorbed by the leaves

of plants that are from the same species as the transmitting

plant. As a first step, there is a gas exchange through minia-

ture openings in the leaves known as the stomata. The net

flux of pheromones for the gas exchange is represented as

Φ = Ag[ρ(p, t)|p∈SR − CL(t)/KLA] (88)

where A is the area of the leaf surface SR, g is the

conductance, KLA is the partition coefficient and repre-

sents the concentration ratio between air and leaves at

thermodynamic equilibrium, ρ(p, t) is the concentration

of the pheromones in the air that arrives at the leaves,

while CL(t) is the concentration of pheromones in the

leaves [57]. By considering the mass in the pheromones on

the aerial side and the volume VL of the leaves, the change

in concentration of the pheromones inside the leaves can

be represented as

dcL(t)

dt
= −

�
Ag

KLAVL

�
CL(t) +

�
Ag

VL

�
ρ(p, t)|p∈SR . (89)

5) Information Decoding: Once the pheromones enter

the stomata of the leaves, they will diffuse through Brown-

ian motion into different layers that include the spongy and

palisade layers of the leaves [57]. At this point, the dif-

fused pheromones will be transformed into a number of

different chemicals, where they may result in cell phys-

iological responses. The decoding process can therefore

be abstracted as the interpretation of the changes in the

concentrations of the pheromones in relation to these

physiological responses.

6) Capacity: To date, there has been no capacity model

developed for pheromone communications. The work

in [57] defined the channel model by expressing the chan-

nel gain as well as the delay. This analysis was developed

for the gain and delay of the molecular emission (ΓT ,

τT (f)), propagation (ΓP , τP (f)), as well as the absorption

into the leaves at the receiver (ΓR, τR(f)). Based on

these, the normalized gain of the system is determined

(Γ(f) = ΓT (f) · ΓP (f) · ΓR), as well as the end-to-end

delay (τ (f) = τT (f) + τP (f) + τR(f)). The limitations

of this model are the consideration of only a 1-d flow of

drift. Besides the requirements for closed-form capacity

expressions, there are numerous research issues that need

to be considered. This includes the impact on the types

of pheromones that are generated from different types

of leaves and plants. Numerous research projects have

focused on understanding plant communication as they

face varying environmental impact (e.g., effects of drought

and pathogen attacks). However, an open research for the

future is the understanding of how these environmental

changes impact the capacity of pheromone communica-

tion, which could lead to new approaches for monitoring

the ecological changes.

V. M O L E C U L A R C O M M U N I C AT I O N

V I A A C T I V E T R A N S P O R T

Although the MC systems that have been presented so

far have focused on random walk, and drifted random

walk under the influence of an independent velocity,

in MC systems based on active transport, the molecules

emitted by the transmitter propagate by means of the

Brownian-motion-independent force Fn(t) and the Brown-

ian motion f(t). This is modeled by the Langevin equation

in (4) where the drift velocity vn(t) of the fluid is set

to zero. In the following, we revise the Brownian motion

capacity expressed in Section III-A through the definition

of a basic abstraction of an MC system via active transport.

Subsequently, we detail the functional block models of MC

systems based on active transport that have been studied,

namely, MC based on bacteria chemotaxis and molecular

motors.

A. Ornstein–Uhlenbeck Channel Capacity

The basic abstraction of an MC system via active trans-

port is shown in Fig. 12. In the following, we describe

the differences in the channel model with respect to the

Brownian motion channel detailed in Section III-A.

1) Molecule Propagation: Molecules propagate by virtue

of the Brownian motion and an external force Fn(t) =

θ |p − pRx| that is proportional with respect to the distance

of the particle itself to a location in space, here considered

as the location of the receiver pRx, where θ is a constant
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Fig. 12. Basic abstraction of an MC system based on active

transport.

parameter that controls the strength of the system to react

to perturbations. This propagation process is known as the

Ornstein–Uhlenbeck (OU) process [70]. As in Section III-A,

we make the assumption to have a 3-D space with infinite

extent in every dimension.

2) Capacity: As a consequence of the aforementioned

molecule propagation, the Fokker–Planck equation (17)

for this MC system corresponds to the inhomogeneous OU

Fokker–Planck equation [7], expressed as follows:

∂ρ(p, t)

∂t
= D∇2ρ(p, t) − θ∇ |p − pRx| ρ(p, t)

+ NT(t)δ(|p − pTx|). (90)

Similarly to what was stated in Section IV-A, the Poisson

point process (19) that models the particle location dis-

placement pn(t) becomes a Poisson counting process, as

expressed in (29).

The entropy H(ρ) of the particle distribution ρ

can be analytically expressed as in (65), where this

time hAdv(pTx, pRx, t) is substituted with hOU(pTx, pRx, t),

which is equal to the impulse response of (90), expressed

as follows [7]:

hOU(pTx, pRx, t)

=

�
θ

2πD(1 − e−2θt)
e
− θ

2 D

�
((|pTx−pRx|)e−θt)2

1−e−2θt

�
. (91)

As for Fick’s second law in Section III-A, and the

advection–diffusion in Section IV-A, also the OU

Fokker–Planck equation in (90) and (91) corresponds to a

linear and time-invariant filter applied to the modulated

number NT(t) of emitted molecules. Consequently, we can

apply the formula in (32) where the term HDiff(f) is

substituted with HOU(f), which is the Fourier transform

of the impulse response in (91), which does not have an

analytical solution, but has to be computed numerically

as in (67). With a similar derivation as in (68) and (36),

and since HOU(f) does not depend on the probability

distribution of the modulated number of molecules NT(t),

the capacity COU of the OU channel is then obtained

similar to Section IV-A, resulting into the same expression

as in (38) with HOU(f) in place of HAdv(f).

B. Bacterial Chemotaxis

The bacterial chemotaxis differs from the previous MC

systems, given that it utilizes an organism to carry the

information to deliver to a target [65]–[67]. The bacte-

rial chemotaxis enables a communication system to be

constructed for a medium-range nanonetwork. Fig. 13

illustrates the communication process for a bacterial

chemotaxis. The information is encoded into a DNA plas-

mid, which is inserted into a bacterium cell (bacterium

transformation) through the process of conjugation. The

bacterium will then move toward the receiver by har-

nessing chemical energy to deliver the DNA plasmid. The

bacterium can direct its motion according to chemical

trails created by other diffusing molecules, i.e., chemoat-

tractants, emitted from the receiver location. Examples of

chemotaxis from nature are bacteria in search of food,

or environmentally favorable locations. The distribution

of chemoattractant when continuously emitted by the

receiver can be modeled as follows:

U(r, t) =
Q

2Dπr
erfc

�
r√
4Dt

�
(92)

where erfc(x) = (2/
√

π) ∫∞x e−t2dt, r is the distance from

the source of chemoattractant emission, t is the time,

and D is the chemoattractant diffusion coefficient. The

assumptions taken for the chemoattractant gradient are

an even spatial homogeneity as the concentration diffuses

into the environment, and no obstacles present in the

space.

1) Information Encoding: The information to be trans-

mitted is encoded into a DNA plasmid, which lies inside

the transmitter. Encoding digital data into DNA is a

Fig. 13. Illustration of an MC system based on bacterial

chemotaxis.
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well-studied area that gained particular attention in recent

years [69]. The simplest form of encoding is using two

bit/nucelotide. Based on this, a message that can be

encoded per plasmid is approximately 600 Kbits (which

is 300K base pairs for two bit/nucleotide encoding).

This corresponds to encoding an intensive property as

follows (6):

nuk = A1(X(tk)) k = 1, 2 . . . , K (93)

where K defines the length of the encoded DNA plasmid,

nuk defines the kth plasmid encoded with the source infor-

mation value X(tk) at time tk, and A1 abstracts encoding

technique that is used to convert the source information

into DNA nucleotide values.

2) Molecular Emission: The motile bacterium can pick

up the encoded DNA plasmid through the process of

transformation [66], which enables the DNA plasmid to be

adsorbed into the membrane of the cell. Another technique

is through conjugation [67], where bacteria form physical

connections to share copies of the DNA plasmids. As a

result, the plasmid molecule is emitted at the transmitted

location pTx at the transmission time t0, expressed as

p(t0) = pTx (94)

where p(t0) is the location of the plasmid molecule at time

of emission t0. The assumptions taken are similar to those

underlying (17), where the emitted plasmid molecules are

considered spherical, at low concentration, and subject to

free diffusion.

3) Molecular Propagation: The motility process of the

bacterium loaded with the emitted plasmid is based on a

repetitive series of Run and Tumble phases [65]. During

the running period, the bacterium swims at a constant

speed of 20 µm for a random period trun. During this

period, the bacterium will change its angle θ based on

a Gaussian probability density function where E[θ2] =

2Drott, where t is the swimming time within trun and Drot

is the rotational diffusion coefficient and represented as

Drot =
kBT

8πηa3
(95)

where η is the fluid viscosity, a is the bacterium’s radius,

T is the temperature. After trun, the bacterium switches to

a tumbling phase. The distribution of trun is expressed as

follows:

p(trun, 1/α(u)) =
1

α(u)
e

−trun
α(u) (96)

where α(u), as function of the chemoattractant distribu-

tion u(t) = U(r, t)|r=p(t), where p(t) is the location of

the bacterium/DNA plasmid at time t, can be formalized

as [65]

α(U) =

� !α0−g

� ∞

0

u(t)h(t − τ )dτ, u(t) ∗ h(t) > 0,

α0, u(t) ∗ h(t) ≤ 0

(97)

where α0 is the base run duration of 1 s, and g is the

bacterium sensitivity, and ∗ is the convolution operator.

During the tumbling period, the bacterium will change its

angle θ as follows [65]:

θn+1 = θn + γ (98)

where θn+1 is the angle at the nth tumbling phase, and γ is

a random variable with the following distribution:

f(γ) =

� !
1

4
cos
�γ

2

�
, |γ| ≤ π

0, |γ| > π.
(99)

The tumble phase duration ttumble is based on the following

probability:

p(ttumble, µ) =
1

µ
e

−ttumble
µ (100)

where µ =1 s. This, effectively, results in the bacterium

switching the phases based on a two-state Markov chain,

and in the propagation of the encoded DNA plasmid.

4) Molecular Reception: Once the bacterium approaches

the receiver, it will offload the DNA plasmid. In a similar

approach taken by the information encoding, this can be

through conjugation, where the physical connection will

transfer copies of the DNA plasmid to the receiver. This will

happen when the bacterium/DNA plasmid location will be

equal to the receiver location, namely, p(t) = pRx. The

probability of successful conjugation will highly depend on

the species of the bacteria as well as the types of plasmids

used.

5) Information Decoding: The DNA plasmid that is

retrieved from the bacterium will be sequenced in order

to obtain the encoded information, expressed as

[ 	X(t1), 	X(t2), 	X(tK)] = A−1
1 ([nu1, nu2, . . . , nuK ]) . (101)

6) Capacity: The capacity of an MC system based on

chemotaxis was estimated in [65]. This capacity calcu-

lation considers the stochastic nature of the aforemen-

tioned emission process, as well as mutation effects that

can distort the information encoded in the DNA plasmid.

As an extension, the estimation of a multihop nanonetwork

capacity was also proposed in [65]. However, there is
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Fig. 14. Scheme of an MC sytem based on molecular motors.

still a requirement for a closed-form expression for the

capacity of bacterial chemotaxis, and in particular for

a population of bacteria. A closed-form expression can

also result in new models that can be used to develop

novel applications, such as accurate novel gene therapies.

Impact of bacterial social structures on the end-to-end

capacity is also required. To date, only the attenuation has

been considered for a simple bacterial chemotaxis system,

which only considers competition and cheating for a small

population [68]. A major contribution is how the social

dynamics between the different species can impact DNA

transfer between the bacteria, and how this, in turn, impact

the stability of the microbiome, which is an environment of

multiple bacterial species coexisting together.

C. Molecular Motors

A good example of MC based on active transport

occurs within a cell [72], [77]. Cells contain rails known

as filaments or microtubules that connect the membrane

and the nucleus, and they are flexible structures. The

microtubules contain a mobile unit that walks on the

rail and carries cargoes between the cell membrane and

the nucleus. These mobile units are known as molec-

ular motors and harness chemical energy from adeno-

sine triphosphate (ATP) hydrolysis to produce mechanical

motion [71]. Fig. 14 illustrates an MC system that uti-

lizes molecular motors to realize multiple communication

links, where encoded information are inserted into vesicles

that are placed on molecular motors, which walk along

the molecular rail that connect different nodes, until the

delivery of the cargo to the receiver. This energy con-

version enables the molecular motor to walk as well as

rotate on the microtubule rails. The size of each molecular

motor ranges from few nanometers to tens of nanometers

and carry cargo using a vesicle that encapsulates mole-

cules. Specific examples are myosin molecular motors,

which walk on filaments tracks or the pull these fila-

ments to enable muscle motion, while kinesinand dynein

move along microtubules. Molecular motors are able to

mobilize cargoes of varying sizes, and examples include

entire cell organelles (e.g., mitochondria) and vesicles

(e.g., lysosomes and endosomes) [71].

1) Information Encoding: The encoding process can

be conducted on a DNA or messenger ribonucleic

acid (mRNA), and this is inserted into a 200-nm vesicle.

The encoding process can be conducted using (93). Given

that the DNA or mRNA can hold a large quantity of

information, this means that the majority of transmitted

information can be carried by a single molecular motor.

2) Molecular Emission: Once a vesicle is loaded onto a

molecular motor, it will detach from the membrane of the

cell and align itself onto the microtubule rail to start is

motility. The rate of emission will depend on the vesicle

loading process onto the molecular motor. The molecule

location will be abstracted with the transmitted location,

similar to (94).

3) Molecular Propagation: The molecular motor con-

verts energy to mechanical movement as it walks along

the microtubule rails [71]. The speed of the molecular

motor, which is estimated to amount up to νmax = 0.1 µs,

can be expressed as a function of the chemical energy as

follows [72]:

ν =
νmaxcATP

cATP + KATP
(102)

where cATP and KATP are a form of ATP energy. There is a

certain amount of stochastic randomness as the molecular

motors walk along the rails, which is a repetitive forward

and backward motion. In this paper, we only consider a

single-link model of the molecular motor mobility. In [72],

a 1-D Fokker–Planck equation was used to evaluate the

probability density function ρ(x, t), which models the ran-

dom location of the molecular motor on the rail (along the

coordinate x) as function of the time t. The Fokker–Planck

equation is represented as

∂ρ(x, t)

∂t
= −V

∂ρ(x, t)

∂x
+ D

∂2ρ(x, t)

∂x2
− Λρ(x, t) (103)

where D is the diffusion coefficient, V is the drift term,

and Λ is the reaction term. The diffusion coefficient D is

expressed as

D =
2ν2

γ3β2
+β2

−α2
(β2

− − 4α2 + 2αβ− + αβ+ + αβ−) (104)

where γ = 1/β+ + 1/β− + 1/α, β is the detachment rate

(when the molecular motor is in the backward motion,

the rate is β−, and in the forward motion, it is β+), κ is

the rate of detachment from the rail, α is the rate of going

either forward or backward in the case of a reattachment.

The diffusion component D plays a role when the molecu-

lar motor detaches from the rails. Given that their weight

is extremely low, their motion can be affected from the
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turbulence of the fluids within the environment. Once they

detach off the rails, they can randomly land on a separate

rail and continue walking. The detachment process is

proportional to the distance traveled from the cell mem-

brane, and this is based on an exponential distribution

with a mean of 100 µm. The aforementioned drift term

V represents the walking motion of the molecular motors

and is expressed as

V =
ν

γ

�
1

β+
− 1

β−

�
(105)

and the reaction term Λ is expressed as

Λ =
κ

γα
(106)

4) Molecular Reception: Once the molecular motor

arrives at the receiver, it will be detached from the rail and

will unload the vesicles. This will happen when the vesicle

location will be equal to the receiver location, namely,

p(t) = pRx. One approach for addressing at the receiver is

to use the concept of DNA hybridization proposed in [82].

5) Information Decoding: The decoding process will be

sequencing of the DNA or mRNA to retrieve the encoded

information, as in (101).

6) Capacity: In [72] an impulse response was validated

numerically to determine the position of the molecular

motor along a rail, which was compared to simulations.

The simulations were also conducted on a bipartite tree

network, in order to evaluate the presence of the molec-

ular motors in links with a number of separating nodes.

This simulation considered the network topology of the

microtubule rails within the neurons. A capacity model

was proposed in [77], for both unicast as well as broadcast

molecular motors communication. However, this was not

a closed-form expression, but rather empirical measure-

ments that were used to define the mutual information.

Therefore, a step forward would be the development of

a closed-form expression. The closed-form model should

consider how the vesicle cargo can impact the communica-

tion performance, and how this can dynamically change a

cell’s functionality.

VI. C O N C L U S I O N

In this paper, we have proposed a general framework

to analyze the information-theoretic performance of MC

systems. In particular, we have defined a theoretic view of

diverse implementations of MC based on their underlying

physical and chemical processes. In this direction, we have

classified known MC systems into three different categories

on the basis of the way molecules are propagated between

the transmitter and the receiver. For each category, we have

provided a general methodology to compute or estimate

information capacity, as well as a discussion of the impact

of the functional block of each specific system on the

overall performance.

The multidisciplinary nature of MC will require close

collaborations with fields in natural science, particularly

molecular biology, medicine, and chemistry. This collabo-

ration will foster this field and, at the same time, provide

a testing ground for validating as well as refining the

models that have been proposed in more than a decade

of MC-focused research. The future will also require new

medical and biotechnology applications that can utilize

MC as a supporting tool, complementing existing prac-

tices, such as in [10]–[12]. The statistical-mechanics-based

framework that has been proposed in this paper provides a

common ground that not only allows existing researchers

in this field to recap the direction that has been taken in

the last decade but also provides future researchers with a

well-defined methodology to evaluate the performance of

MC systems. This will enable novel investigation directions

and research results that build on the developed capacity

models. We believe this contribution will be foundational

for this discipline, and an important milestone for the

engineering of future MC systems.
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