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Optimal Estimation With Missing Observations
via Balanced Time-Symmetric Stochastic

Models
Tryphon T. Georgiou , Fellow, IEEE, and Anders Lindquist , Life Fellow, IEEE

Abstract—We consider data fusion for the purpose of
smoothing and interpolation based on observation records
with missing data. Stochastic processes are generated by
linear stochastic models. The paper begins by drawing a
connection between time reversal in stochastic systems
and all-pass extensions. A particular normalization (choice
of basis) between the two time-directions allows the two to
share the same orthonormalized state process and simpli-
fies the mathematics of data fusion. In this framework, we
derive symmetric and balanced Mayne–Fraser-like formu-
las that apply simultaneously to continuous-time smooth-
ing and interpolation, providing a definitive unification of
these concepts. The absence of data over subintervals re-
quires in general a hybrid filtering approach involving both
continuous-time and discrete-time filtering steps.

Index Terms—Filtering theory, Kalman filters, missing
observations.

I. INTRODUCTION

DATA fusion is the process of integrating different datasets,
or statistics, into a more accurate representation for a quan-

tity of interest. A case in point in the context of systems and
control is provided by the Mayne–Fraser two-filter formula [1],
[2] in which the estimates generated by two different filters are
merged into a combined more reliable estimate in fixed-interval
smoothing. The purpose of this paper is to develop such a two-
filter formula that is universally applicable to smoothing and in-
terpolation based on general records with missing observations.

In [3] and [4], the Mayne–Fraser formula was analyzed in the
context of stochastic realization theory and was shown that it
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can be formulated in terms of a forward and a backward Kalman
filter. In a subsequent series of papers, Pavon [5], [6] addressed,
in a similar manner, the hitherto challenging problem of inter-
polation [7]–[10]. This latter problem consists of reconstructing
missing values of a stochastic process over a given interval. In
departure from the earlier statistical literature, Pavon [5], [6]
considered a stationary process with rational spectral density
and, therefore, reliazable as the output of a linear stochastic
system. Interpolation was then cast as seeking an estimate of
the state process based on an incomplete observation record.
A basic tool in these works is the concept of time-reversal in
stochastic systems, which has been central in stochastic real-
ization theory (see, e.g., [5], [6], [11]–[14], and [15]–[17]). For
a recent overview of smoothing and interpolation theory in the
context of stochastic realization theory see [18, Ch. 15].

In the present paper, we are taking this program several steps
further and providing a definitive treatment of the problem.
Given intermittent observations of the output of a linear stochas-
tic system over a finite interval, we want to determine the linear
least squares estimate of the state of the system in an arbi-
trary point in the interior of the interval, which may either be
in a subinterval of missing data or in one where observations
are available. Hence, this combines smoothing and interpola-
tion over general patterns of available observations. Our main
interest is in continuous-time (possibly time-varying) systems,
where, under the natural information pattern, the absence of
data over subintervals necessitates a hybrid filtering approach
involving both continuous-time and discrete-time filtering steps.

In studying the statistics of a process over an interval, it is
natural to decompose the interface between past and future in
a time-symmetric manner. This gives rise to systems represen-
tations of the process running in either time direction, forward
or backward in time. This point was fundamental in early work
in stochastic realization; see [18] and references therein. In a
different context [19], a certain duality between the two time-
directions in modeling a stochastic process was introduced in
order to characterize solutions to moment problems. In this new
setting the noise-process was general (not necessarily white),
and the correspondence between the driving inputs to the two
time-opposite models was shown to be captured by suitable dual
all-pass dynamics.

Here, we begin by combining these two sets of ideas to
develop a general framework where two time-opposite stochas-
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tic systems model a given stochastic process. We study the
relationship between these systems and the corresponding
processes. In particular, we recover as a special case certain
results of stochastic realization theory [4], [5], [6], [11] from
the 1970s1 using a novel procedure. This theory provides a
normalized and balanced version of the forward–backward
duality, which is essential for our new formulation of the
two-filter Mayne–Fraser-like formula uniformly applicable to
intervals with or without observations.

The paper is structured as follows. In Section II, we ex-
plain how a lifting of state-dynamics into an all-pass system
allows direct correspondence between sample-paths of driv-
ing generating processes, in opposite time-directions, via causal
and anticausal mappings, respectively. This is most easily un-
derstood and explained in discrete-time and hence we begin
with that. In Section III, we utilize this mechanism in the
context of general output processes and, similarly, introduce a
pair of time-opposite models. These two introductory sections,
Sections II and III, deal with stationary models for simplicity
and are largely based on [20]. The corresponding generaliza-
tions to time-varying systems are given in Section IV and in
the appendix, in continuous and discrete-time, respectively. In
Section V, we explain Kalman filtering for problems with miss-
ing information in the continuous-time setting. In this, we first
consider the case where increments of the output process across
intervals of no information are unavailable as a simplified pre-
liminary, after which we focus on the central problem where the
output process is the object of observation. Section VI deals with
the geometry of information fusion. In Section VII, we present
a generalized balanced two-filter formula that applies uniformly
over intervals where data are or are not available. Finally, we
highlight the use of the two-filter formula with a numerical ex-
ample given in Section VIII and provide concluding remarks in
Section IX.

II. STATE DYNAMICS AND ALL-PASS EXTENSION

In this paper, we consider discrete-time as well as continuous-
time stochastic linear state-dynamics. We begin by explaining
basic ideas in a stationary setting. In discrete-time, systems take
the form of a set of difference equations

x(t + 1) = Ax(t) + Bw(t) (1)

where t ∈ Z, A ∈ Rn×n ,B ∈ Rn×p , A has all eigenvalues in
the open unit disc D = {z | |z| < 1}, and w(t), x(t) are (cen-
tered) stationary vector-valued stochastic processes with w(t)
normalized white noise; i.e.,

E{w(t)w(s)′} = Ipδts (2)

where E denotes mathematical expectation. The system of equa-
tions is assumed to be reachable, i.e.,

rank
[
B, AB, . . . An−1B

]
= n. (3)

In continuous-time, state-dynamics take the form of a system
of stochastic differential equations

dx(t) = Ax(t)dt + Bdw(t) (4)

1For additional historical pointers see [4, p 506, 2nd column].

where, here, x(t) is a stationary continuous-time vector-valued
stochastic process and w(t) is a vector-valued process with
orthogonal increments with the property

E{dwdw′} = Ipdt (5)

where Ip is the p× p identity matrix. Reachability of the pair
(A,B) is also assumed throughout and the condition for this
is identical to the one for discrete-time given above (as is well
known). In continuous time, stability of the system of equations
is equivalent to A having only eigenvalues with negative real
part.

In either case, discrete-time or continuous-time, it is possible
to define an output equation so that the overall system is all-pass.
This is done next.

A. All-Pass Extension in Discrete-Time

Consider the discrete-time Lyapunov equation

P = APA′ + BB′. (6)

Since A has all eigenvalues inside the unit disc of the complex
plane and (3) holds, (6) has as solution a matrix P , which is
positive definite. The state transformation

ξ = P−
1
2 x (7)

and

F = P−
1
2 AP

1
2 , G = P−

1
2 B (8)

brings (1) into

ξ(t + 1) = Fξ(t) + Gw(t). (9)

For this new system, the corresponding Lyapunov equation
X = FXF ′ + GG′ has In as solution, where In denotes the
(n× n) identity matrix. This fact, namely, that

In = FF ′ + GG′ (10)

implies that this [F,G] can be embedded as part of an orthogonal
matrix

U =
[

F G
H J

]
(11)

i.e., a matrix such that UU ′ = U ′U = In+p . Define the transfer
function

U(z) := H(zIn − F )−1G + J (12)

corresponding to

ξ(t + 1) = Fξ(t) + Gw(t) (13a)

w̄(t) = Hξ(t) + Jw(t). (13b)

This is also the transfer function of

x(t + 1) = Ax(t) + Bw(t) (14a)

w̄(t) = B̄′x(t) + Jw(t) (14b)

where B̄ := P−
1
2 H ′, since the two systems are related by a

similarity transformation. Hence,

U(z) = B̄′(zIn −A)−1B + J. (15)
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We claim that U(z) is a stable all-pass transfer function, i.e.,
that U(z) is a transfer function of a stable system and that

U(z)U(z−1)′ = U(z−1)′U(z) = Ip . (16)

To see this observe that

U ′
[

ξ(t + 1)
w̄(t)

]
=

[
ξ(t)
w(t)

]

since U ′U = In+p , and hence,

ξ(t) = F ′ξ(t + 1) + H ′w̄(t) (17a)

w(t) = G′ξ(t + 1) + J ′w̄(t) (17b)

or, equivalently,

x(t) = PA′P−1x(t + 1) + P
1
2 H ′w̄(t) (18a)

w(t) = B′P−1x(t + 1) + J ′w̄(t). (18b)

Setting

x̄(t) := P−1x(t + 1) (19)

(18) can be written

x̄(t− 1) = A′x̄(t) + B̄w̄(t) (20a)

w(t) = B′x̄(t) + J ′w̄(t) (20b)

with transfer function

U(z)∗ = B′(z−1In −A′)−1B̄ + J ′. (21)

Either of the above systems inverts the dynamical relation
w → w̄ [in (14) or (13)].

An algebraic proof of (16) is also quite immediate. In fact,

U(z)U(z−1)′

=
[
H(zIn − F )−1G + J

] [
H(z−1In − F )−1G + J

]′

= H(zIn − F )−1GG′(z−1In − F ′)−1H ′ + JJ ′

+ H(zIn − F )−1GJ ′ + JG′(z−1In − F ′)−1H.

Now, using the identity

In − FF ′ = (zIn − F )(z−1In − F ′)

+ (zIn − F )F ′ + F (z−1In − F ′)

(10) and GJ ′ = −FH ′, obtained from UU ′ = In+p , this yields
U(z)U(z−1)′ = HH ′ + JJ ′ = In+p , as claimed.

B. All-Pass Extension in Continuous-Time

Consider the continuous-time Lyapunov equation

AP + PA′ + BB′ = 0. (22)

Since A has all its eigenvalues in the left half of the complex
plane and since (3) holds, (22) has as solution a positive definite
matrix P . Once again, applying (7) and (8), the system in (4)
becomes

dξ(t) = Fξ(t)dt + Gdw(t). (23a)

We now seek a completion by adding an output equation

dw̄(t) = Hξ(t)dt + Jdw(t) (23b)

so that the transfer function

U(s) := H(sIn − F )−1G + J (24)

is all-pass (with respect to the imaginary axis), i.e.,

U(s)U(−s)′ = U(−s)′U(s) = Ip . (25)

For this new system, the corresponding Lyapunov equation
has as solution the identity matrix and hence,

F + F ′ + GG′ = 0. (26)

Utilizing this relationship, we note that

(sIn − F )−1GG′(−sIn − F ′)−1

= (sIn − F )−1(sIn − F − sIn − F ′)(−sIn − F ′)−1

= (sIn − F )−1 + (−sIn − F ′)−1

and we calculate that

U(s)U(−s)′

= (H(sIn − F )−1G + J)(G′(−sIn − F ′)−1H ′ + J ′)

= JJ ′ + H(sIn − F )−1(GJ ′ + H ′)

× (JG′ + H)(−sIn − F ′)−1H ′.

For the product to equal the identity, JJ ′ = Ip , H = −JG′.
Thus, we may take J = Ip , H = −G′, and the forward
dynamics

dξ(t) = Fξ(t)dt + Gdw(t) (27a)

dw̄(t) = −G′ξ(t)dt + dw(t). (27b)

Substituting F = −F ′ −GG′ from (26) into (27a), we obtain
the reverse-time dynamics

dξ(t) = −F ′ξ(t)dt + Gdw̄(t) (28a)

dw(t) = G′ξ(t)dt + dw̄(t). (28b)

Now defining

x̄(t) := P−1x(t) (29)

and using (7) and (8), (28) becomes

dx̄(t) = −A′x̄(t)dt + B̄dw̄(t) (30a)

dw(t) = B′x̄(t)dt + dw̄(t) (30b)

with transfer function

U(s)∗ = Ip + B′(sIn + A′)−1B̄ (31)

where

B̄ := P−1B. (32)

Furthermore, the forward dynamics (27) can be expressed in the
form

dx(t) = Ax(t)dt + Bdw(t) (33a)

dw̄(t) = B̄′x(t)dt + dw(t) (33b)
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Fig. 1. Realization (14) in the forward time-direction.

with transfer function

U(s) = Ip − B̄′(sIn −A)−1B. (34)

III. TIME-REVERSAL OF STATIONARY LINEAR STOCHASTIC

SYSTEMS

The development so far allows us to draw a connection be-
tween two linear stochastic systems having the same output and
driven by a pair of arbitrary, but dual, stationary processes w(t)
and w̄(t), one evolving forward in time and one evolving back-
ward in time. When one of these two processes is white noise
(or, orthogonal increment process, in continuous-time), then so
is the other. For this special case, we recover results of [5], [6],
and [11] in stochastic realization theory.

A. Time-Reversal of Discrete-Time Stochastic Systems

Consider a stochastic linear system

x(t + 1) = Ax(t) + Bw(t) (35a)

y(t) = Cx(t) + Dw(t) (35b)

with an m-dimensional output process y, and x, u,A,B are
defined as in Section II-A. All processes are stationary and the
system can be thought as evolving forward in time from the
remote past (t = −∞).

To formalize this, we introduce some notation. Let H be the
Hilbert space spanned by {wk (t); t ∈ Z, k = 1, 2, . . . , n}, en-
dowed with the inner product 〈λ, μ〉 = E{λμ}, and let H−t (w)
and H+

t (w) be the (closed) subspaces spanned by {wk (s); s ≤
t− 1, k = 1, . . . ,m} and {wk (s); s ≥ t, k = 1, . . . ,m}, re-
spectively. Define H−t (y) and H+

t (y) accordingly in terms of
the output process y. Then the stochastic system (35) evolves
forward in time in the sense that

H−t (z) ⊂ H−t (w) ⊥ H+
t (w) (36)

where A ⊥ B means that elements of the subspaces A and B
are mutually orthogonal, and where H−t (z) is formed as above
in terms of

z(t) =
[

x(t + 1)
y(t)

]
;

see [18, Ch. 6] for more details.
Next, we construct a stochastic system

x̄(t− 1) = A′x̄(t) + B̄w̄(t) (37a)

y(t) = C̄x̄(t) + D̄w̄(t) (37b)

which evolves backward in time from the remote future (t =∞)
in the sense that the processes x̄, x, w̄, w relate as in the previous
section. More specifically, as shown in Section II-A, H−(w̄) ⊂
H−(w) and H+(w) ⊂ H+(w̄) for all t, as examplified in Figs. 1
and 2.

Fig. 2. Realization (20) in the backward time-direction.

In fact, the all-pass extension (14) of (35a) yields

w̄(t) = B̄′x(t) + Jw(t). (38)

It follows from (20b) that (38) can be inverted to yield

w(t) = B′x̄(t) + J ′w̄(t) (39)

where x̄(t) = P−1x(t + 1), and that we have the reverse-time
recursion

x̄(t− 1) = A′x̄(t) + B̄w̄(t). (40a)

Then inserting (39) and

x(t) = P x̄(t− 1) = PA′x̄(t) + PB̄w̄(t)

into (35b), we obtain

y(t) = C̄x̄(t) + D̄w̄(t) (2)

where D̄ := CPB̄ + DJ ′ and C̄ := CPA′ + DB′. Then, (40)
is precisely what we wanted to establish.

The white noise w is normalized in the sense of (2). Since
U, given by (15), is all-pass, w̄ is also a normalized white noise
process, i.e.,

E{w̄(t)w̄(s)′} = Ipδt−s .

From the reverse-time recursion (37a)

x̄(t) =
∞∑

k=t+1

(A′)k−(t+1)B̄w̄(k).

Since, w̄ is a white noise process, E{x̄(t)w̄(s)′} = 0 for all
s ≤ t. Consequently, (37) is a backward stochastic realization
in the sense defined above.

Moreover, the transfer functions

W(z) = C(zIn −A)−1B + D (41)

of (35) and

W̄(z) = C̄(z−1In −A′)−1B̄ + D̄ (42)

of (37) satisfy

W(z) = W̄(z)U(z). (43)

In the context of stochastic realization theory, U(z) is called
structural function (see [13] and [14]).

B. Time-Reversal of Continuous-Time Stochastic
Systems

We now turn to the continuous-time case. Let

dx = Axdt + Bdw (44a)

dy = Cxdt + Ddw (44b)
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be a stochastic system with x,w,A,B as in Section II-B, evolv-
ing forward in time from the remote past (t = −∞). Now, let
H be the Hilbert space spanned by the increments of the com-
ponents of w on the real line R, endowed with the same inner
product as above, and let H−t (du) and H+

t (du) be the (closed)
subspaces spanned by the increments of the components of U on
(−∞, t] and [t,∞), respectively. Define H−t (dy) and H+

t (dy)
accordingly in terms of the output process y. All processes have
stationary increments and the stochastic system (44) evolves
forward in time in the sense that

H−t (dz) ⊂ H−t (dw) ⊥ H+
t (dw) (45)

where H−t (dz) is formed in terms of

z(t) =
[

x(t)
y(t)

]
. (46)

The all-pass extension of Section II-B yields

dw̄ = dw − B̄′xdt (47)

as well as the reverse-time relation

dx̄ = −A′x̄dt + B̄dw̄ (48a)

dw = B′x̄dt + dw̄ (48b)

where x̄(t) = P−1x(t). Inserting (48b) into

dy = CPx̄dt + Ddw

yields dy = C̄x̄dt + Ddw̄, where

C̄ = CP + DB′. (49)

Thus, the reverse-time system is

dx̄ = −A′x̄dt + B̄dw̄ (50a)

dy = C̄x̄dt + Ddw̄. (50b)

From this, we deduce that the system (44) has the backward
property

H+
t (dz̄) ⊂ H+

t (dw̄) ⊥ H−t (dw̄) (51)

where H+
t (dz̄) is formed as above in terms of

z̄(t) =
[

x̄(t)
y(t)

]
.

We also note that the transfer function

W(s) = C(sIn −A)−1B + D

of (44) and the transfer function

W̄(s) = C̄(sIn + A′)−1B̄ + D

of (50) also satisfy

W(s) = W̄(s)U(s)

as in discrete-time.
Note that the orthogonal-increment process w is normalized

in the sense of (5). Since U(s) is all-pass,

dw̄ = du− B̄′xdt (52)

also defines a stationary orthogonal-increment process w̄ such
that

E{dw̄(t)dw̄(t)′} = Ipdt.

It remains to show that (50) is a backward stochastic realization,
that is, at each time t the past increments of w̄ are orthogonal to
x̄(t). But this follows from the fact that

x̄(t) =
∫ ∞

t

e−A ′(t−s)B̄dw̄(s)

and w̄ has orthogonal increments.

IV. TIME REVERSAL OF NONSTATIONARY STOCHASTIC

SYSTEMS

In a similar manner nonstationary stochastic systems admit
unitary extensions which in turn allows us to construct dual time-
reversed stochastic models that share the same state process. The
case of discrete-time dynamics is documented in the appendix,
whereas the continuous-time counterpart is explained next as
prelude to smoothing and interpolation that will follow.

A. Unitary Extension

The covariance matrix function P (t) := E{x(t)x(t)′} of the
time-varying state representation

dx = A(t)x(t)dt + B(t)dw, x(0) = x0 (53)

with x0 a zero-mean stochastic vector with covariance matrix
P0 = E{x0x

′
0}, satisfies the matrix-valued differential equation

Ṗ (t) = A(t)P (t) + P (t)A(t)′ + B(t)B(t)′ (54)

with P (0) = P0 . Throughout we assume total reachability [18,
Sec. 15.2], and therefore P (t) > 0 for all t > 0.

A unitary extension of (53) is somewhat more complicated
than in the discrete time case. In fact, differentiating

ξ(t) = P (t)−
1
2 x(t) (55)

we obtain

dξ = F (t)ξ(t)dt + G(t)dw (56)

where

F (t) = P (t)−
1
2 A(t)P (t)

1
2 + R(t), (57a)

G(t) = P (t)−
1
2 B(t) (57b)

with

R(t) =
[
d

dt
P (t)−

1
2

]
P (t)

1
2 . (58)

In fact,

dξ = P (t)−
1
2 dx + R(t)ξ(t)dt. (59)

Differentiating P (t)−
1
2 P (t)P (t)−

1
2 = In , we obtain

P (t)−
1
2 ṖP (t)−

1
2 = −R(t)−R(t)′

and hence (54) yields

F (t) + F (t)′ + G(t)G(t)′ = 0. (60)
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Using (60) to eliminate F in (56), we obtain

dξ = −F (t)′ξ(t)dt + G(t)dw̄ (61)

where

dw̄ = dw −G(t)′ξ(t)dt (62)

which can also be written

dw̄ = dw − B̄(t)′x(t)dt (63)

where B̄(t) := P (t)−1B(t).
Proposition 1: A process w̄ satisfying (62) has orthogonal

increments with the normalized property (5). Moreover,

E{[w̄(t)− w̄(s)]ξ(t)′} = 0 (64)

for all s ≤ t.
Proof: As is well known, the solution of (56) can be written

in the form

ξ(t) = Φ(t, s)ξ(s) +
∫ t

s

Φ(t, τ)G(τ)dw (65)

where Φ(t, s) is the transition matrix with the property

∂Φ
∂t

(t, s) = F (t)Φ(t, s), Φ(s, s) = In (66a)

∂Φ
∂s

(t, s) = −Φ(t, s)F (s), Φ(t, t) = In . (66b)

Let s ≤ t. Then, in view of (62), a straight-forward calculation
yields

w̄(t)− w̄(s) = w(t)− w(s)

−M(t, s)ξ(s)−
∫ t

s

M(t, τ)G(τ)dw (67)

where

M(t, s) =
∫ t

s

G(τ)′Φ(τ, s)dτ. (68)

Therefore,

E{[w̄(t)− w̄(s)][w̄(t)− w̄(s))′} = Ip(t− s) + Δ(t, s)

where

Δ(t, s) = M(t, s)M(t, s)′ +
∫ t

s

M(t, τ)G(τ)G(τ)′M(t, τ)′dτ

−
∫ t

s

[M(t, τ)G(τ) + G(τ)′M(t, τ)′] dτ.

However, Δ(t, s) is identically zero. To see this, first note that

∂M

∂s
(t, s) = −M(t, s)F (s)−G(s)′. (69)

Then, in view of (60), a simple calculation shows that

∂Δ
∂s

(t, s) ≡ 0.

Since Δ(t, t) = 0, the assertion follows. Hence the incremental
covariance is normalized.

Next, we show that w̄(t) has orthogonal increments. To this
end, choose arbitrary times s ≤ t ≤ a ≤ b on the interval [0, T ],
where we choose a and b fixed, and show that

Q(t, s) := E{[w̄(b)− w̄(a)][w̄(t)− w̄(s))′}
is identically zero for all s ≤ t. Using (67) and

w̄(b)− w̄(a) = w(b)− w(s)−M(b, a)Φ(a, s)ξ(s)

−M(b, a)
∫ b

s

Φ(a, τ)G(τ)dw −
∫ b

a

M(b, τ)dw

computed analogously, we obtain

Q(t, s) = M(b, a)
[
Φ(a, s)M(t, s)′ −

∫ b

s

Φ(a, τ)G(τ)dτ

+
∫ b

s

Φ(a, τ)G(τ)G(τ)′M(t, τ)dτ

]
.

Then, again using (60), we see that

∂M

∂s
(t, s) ≡ 0

so, since Q(t, t) = 0, we see that Q(t, s) is identically zero,
establishing that w̄(t) has orthogonal increments.

Finally, we use the same trick to show (64). In fact, for s ≤ t,
(65) and (67) yield

E{[w̄(t)− w̄(s))ξ(t)′} = −M(t, s)Φ(t, s)′

+
∫ t

s

G(τ)′Φ(t, τ)′dτ −
∫ t

s

M(t, τ)G(τ)G(τ)′)Φ(t, τ)′dτ

the partial derivative of which with respect to s is identical zero;
this is seen by again using (60). Therefore, since (64) is zero
for s = t, it is identical zero for all s ≤ t, as claimed. This
concludes the proof of Proposition 1.

Consequently, (56) and (63) form a forward unitary system

dx = A(t)x(t)dt + B(t)dw (70a)

dw̄ = dw − B̄(t)′x(t)dt. (70b)

The corresponding backward unitary system is obtained through
the transformation

x̄(t) = P (t)
1
2 ξ(t) (71)

which yields

dx̄ = P (t)−
1
2 dξ + R(t)ξ(t)dt. (72)

This together with (61) and (62) yields

dx̄ = −A(t)′x̄(t)dt + B̄(t)dw̄ (73a)

dw = B(t)′x̄(t)dt + dw̄. (73b)

B. Time Reversal in Continuous-Time Systems

Next, we derive the backward stochastic system correspond-
ing to the nonstationary forward stochastic system

dx = A(t)x(t)dt + B(t)dw, x(0) = x0 (74a)

dy = C(t)x(t)dt + D(t)dw, y(0) = 0 (74b)
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defined on the finite interval [0, T ], where x0 (with covariance
P0) and the normalized Wiener process w are uncorrelated. To
this end, apply the transformation

x̄(t) = P (t)−1x(t) (75)

together with (73b)–(74b) to obtain

dy = C̄(t)x̄(t) + D(t)dw̄

where

C̄(t) = C(t)P (t) + D(t)B(t). (76)

This together with (73a) yields the backward system correspond-
ing to (74), namely

dx̄ = −A(t)′x̄(t)dt + B̄(t)dw̄ (77a)

dy = C̄(t)x̄(t)dt + D(t)dw̄ (77b)

with end-point condition x̄(T ) = P (T )−1x(T ) uncorelated to
the Wiener process w̄.

The backward realization (77) was derived in [3], but in cum-
bersome way, requiring the proof that w̄(t) is a normalized
process with orthogonal increments to be suppressed. What is
new here is imposing the unitary map between w and w̄, making
the analysis much simpler and more natural.

V. KALMAN FILTERING WITH MISSING OBSERVATIONS

We consider the linear stochastic system (74) which does
not have a purely deterministic component that enables exact
estimation of components of x from y, an assumption that we
retain in the rest of the paper. In the engineering literature it is
often the case that the stochastic system (74) is represented as

ẋ(t) = A(t)x(t) + B(t)ẇ(t), x(0) = x0 (78a)

ẏ(t) = C(t)x(t) + D(t)ẇ(t) (78b)

where the formal “derivative” ẇ is white noise, i.e.,
E{ẇ(t)ẇ(s)′} = Iδ(t− s) with δ(t− s) being the Dirac “func-
tion.” Of course ẋ, ẏ, and ẇ are to be interpreted as generalized
stochastic processes. From a mathematically rigorous point of
view, observing ẏ makes little sense since, for any fixed t, ẏ(t)
has infinite variance and contains no information about the state
process x. However, observations of ẏ could be interpreted as
observations of the increments dy of y in a precise meaning to
be defined next. On the other hand, one can think of (74) as a
system of type

dz = M(t)z(t)dt + N(t)dw(t), where z(t) =
[

x(t)
y(t)

]

and one would like to determine the optimal linear least squares
estimate of x(t) given past observed values of y.

Generally this distinction between observing y or dy is not
important. However, when there is loss of information over an
interval (t1 , t2), there are two different information patterns de-
pending on whether dy or y is observed. The difference consists
in whether Δy := y(t2)− y(t1) is part of the observation record
or not. These two cases will be dealt with separately in sections
below. In fact, the former, which is common in engineering ap-
plications, is provided as a simplified preliminary, whereas our

main interest is in the latter. To this end, we first introduce some
notation.

Consider the stochastic system (74) on a finite interval [0, T ].
As before, let H be the Hilbert space spanned by {wk (t)−
wk (s); s, t ∈ [0, T ], k = 1, 2, . . . ,m}, endowed with the inner
product 〈λ, μ〉 = E{λμ}. For any λ ∈ H and any subspace A,
let EA denote the orthogonal projection of λ onto A. We denote
by H[t1 ,t2 ](dy) the (closed) subspace generated by the compo-
nents of the increments of the observation process y over the
window [t1 , t2 ]. In particular, we shall also use the notations
H−t (dy) := H[0,t](dy) and H+

t (dy) := H[t,T ](dy).
Suppose that the output process or its increments are available

for observation only on some subintervals of [0, T ], namely

Ik , k = 1, 2, . . . , ν. Next, we want to define
◦
H as the proper

subspace ofH[0,T ](dy) spanned by the observed data. In the case
that only the increments dy or, equivalently, the “derivative” ẏ
is observed, we simply define

◦
H := HI1 (dy) ∨HI2 (dy) ∨ · · · ∨HIν (dy).

In the case that the process y is observed, we need to expand
◦
H

by adding the subspaces spanned by the increments Δy over the
complementary intervals without observation. In either case, we
define

◦
Ht
− :=

◦
H ∩H−t (dy) and

◦
Ht

+ :=
◦
H ∩H+

t (dy). (79)

Then Kalman filtering with missing observations amounts to
determining a recursion for x− where

a′x−(t) = E
◦

H t
−
a′x(t), for all a ∈ Rn . (80)

A. Observing dy Only

When observations are available on the interval [0, t1 ], the
Kalman filter on that interval is given by

dx− = A(t)x−(t)dt + K−(t)(dy(t)− C(t)x−(t)dt) (81a)

K− = (Q−C ′ + BD′)R−1 (81b)

Q̇−(t) = AQ− + Q−A′ −K−RK ′− + BB′ (81c)

with R(t) = D(t)D(t)′ and initial conditions x−(0) = 0 and
Q(0) = P0 . Here, Q−(t) is the error covariance

Q−(t) := E{[x(t)− x−(t)](x(t)− x−(t)]′} (82)

which, by the nondeterministic assumption, is positive definite
for all t.

Next, suppose the observation process becomes unavailable
over the interval [t1 , t2) ⊂ [0, T ]. Then the Kalman filter needs
to be modified accordingly. In fact, for any t ∈ [t1 , t2), (80)

holds with the space of observations
◦
Ht
− := H−t1

(dy), and con-
sequently

a′x−(t) = EH−
t 1

(dy ) a′x(t) = a′Φ(t, t1)x−(t1).

This corresponds to setting K−(t) = 0 in (81) on the interval
[t1 , t) so that

dx− = A(t)x−(t)dt (83a)
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with initial condition x−(t1) given by (81a). The error covari-
ance Q− is then given by the Lyapunov equation

Q̇−(t) = AQ− + Q−A′ + BB′ (83b)

with initial the condition Q−(t1) given by the value produced
in the previous interval.

Then suppose observations of dy become available again on
the interval [t2 , t3). Then, for any t ∈ [t2 , t3), we have

◦
Ht

+ = H[0,t1 ] ∨H[t2 ,t]

so the Kalman estimate is generated by (81) but now with initial
conditions x−(t2) and Q−(t2) being those computed in the
previous step without observation. In the case there are more
intervals, one proceeds similarly by alternating between filters
(81) and (83) depending on whether increments dy are available
or not.

In an identical manner, a cascade of backward Kalman filters
generates a process x̄+(t) based on the backward stochastic
realization (77) and the observation windows [t, T ]. Assuming
that there are observations in a final interval ending at t = T , on
that interval the Kalman estimate

a′x̄+(t) = E
◦

H t
+

a′x̄(t) (83)

with initial observation space
◦
Ht

+ := H[t,T ] is generated by the
backward Kalman filter

dx̄+ = −A(t)′x̄+(t)dt

+ K̄+(t)(dy(t)− C̄(t)x̄+(t)dt) (85a)

K̄+ = −(Q̄+ C̄ ′ − B̄D′)R−1 (85b)

˙̄Q+ = −A′Q̄+ − Q̄+A + K̄+R(t)K̄+(t)′ − B̄B̄′ (85c)

and initial conditions x̄+(T ) = 0 and Q̄+(T ) = P̄ (T ) for x̄+
and the error covariance

Q̄+(t) := E{[x̄(t)− x̄+(t)][x̄(t)− x̄+(t)]′} (86)

which like Q−(t) is positive definite for all t. During periods of
no observations of dy, we then set the gain K̄+ = 0. This update
is obtained from the backward time stochastic model (73) in an
identical manner to that of (83).

Consequently, both the underlying process as well as the
filter can run in either time-direction. This duality becomes
essential in subsequent sections where we will be concerned
with smoothing and interpolation.

B. Observing y

Now consider the case that y, and note merely dy, is available
for observation on all intervals Ik , k = 1, 2, . . . , ν. Under this
scenario and with a continuous-time process the dynamics of
Kalman filtering become hybrid, requiring both continuous-time
filtering when data are available as well as a discrete-time update
across intervals where measurements are not available.

Then on the first interval [0, t1 ] the Kalman estimate (81) will
still be valid. However, when t reaches the endpoint t2 of the
interval of no information and an observation of y is obtained

again, the subspace of observed data becomes
◦
Ht2
− = H−t1

∨H(Δy)

where Δy := y(t2)− y(t1). Computing x(t2) across the win-
dow (t1 , t2 ] as a function of x(t1) and the noise components we
have that

x(t2) = Φ(t2 , t1)︸ ︷︷ ︸
Ad

x(t1) +
∫ t2

t1

Φ(t2 , s)B(s)dw(s)
︸ ︷︷ ︸

u1 (t1 )

while

y(t2) = y(t1) +
∫ t2

t1

C(t)x(t)dt +
∫ t2

t1

D(t)dw(t).

Therefore,

Δy =
∫ t2

t1

C(t)Φ(t, t1)dt

︸ ︷︷ ︸
Cd

x(t1) + u2(t1)

where

u2(t1) =
∫ t2

t1

C(t)
∫ t

t1

Φ(t, s)B(s)dw(s)dt

+
∫ t2

t1

D(s)dw(s)

=
∫ t2

t1

(∫ t2

s

C(t)Φ(t, s)dtB(s) + D(s)
)

︸ ︷︷ ︸
M (s)

dw(s).

Thus, we obtain the discrete-time update

x(t2) = Adx(t1) + Bdv(t1) (87a)

Δy = Cdx(t1) + Ddv(t1) (87b)

where

u(t1) =
(

u1(t1)
u2(t1)

)
=

(
Bd

Dd

)
v(t1)

and Bd and Dd are chosen so that
(
Bd

Dd

)
(B′d ,D

′
d)=

∫ t2

t1

(
Φ(t2 , s)BB′Φ(t2 , s)′ Φ(t2 , s)BM(s)′

M(s)B′Φ(t2 , s)′ M(s)M(s)′

)
ds

while E{v(t1)v(t1)′} = I .
Hence, across the window of missing data the Kalman state

estimate x− is now generated by a discrete-time Kalman-filter
step

x−(t2) = Adx−(t1) + Kd(Δy − Cdx−(t1)) (88a)

Kd = (AdQ(t1)C ′d + BdD
′
d)

× (CdQ(t1)C ′d + DdD
′
d)
−1 (88b)

with initial conditions x−(t1) and Q(t1) given by (81) and the
error covariance at t2 by

Q(t2) = AdQ(t1)A′d −Kd(CdQ(t1)C ′d

+ DdD
′
d)K

′
d + BdB

′
d . (88c)
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In the next interval [t2 , t3 ], where observations of y are available,
the new Kalman estimate (80) with

◦
Ht

+ = H[0,t1 ] ∨H(Δy) ∨H[t2 ,t]

is again generated by the continuous-time Kalman filter (81)
starting from x−(t2) and Q(t2) given by (88).

Again given an observation pattern where intermittently y
becomes unavailable for observation, the Kalman estimate (80)
can be generated in precisely this manner by a cascade of con-
tinuous and discrete-time Kalman filters. In the same way, a
similar hybrid filter can be constructed for the backward Kalman
estimate (84).

Remark 2: Kalman filtering of a hybrid stochastic model,
where a continuous-time diffusion is punctuated by discrete-
time transitions, has been considered in [21]. This leads to a
hybrid Kalman filter inheriting precisely the same structure as
the original system. By contrast, we start from a continuous-
time stochastic model (74), and it is the fact that y becomes
unavailable over particular time-windows which produces a hy-
brid filter. Indeed, merely applying the theory of [21] to (74)
would just produce an ordinary (nonhybrid) continuous-time
Kalman filter.

Remark 3: A model for random intermittency (Bernoulli
dropouts) has been considered in [22] in the context of discrete
time stochastic processes and Kalman filtering. It is natural and
of, potentially, significant practical interest to extend the results
of [22] to continuous-time stochastic systems, where the filters
now would be hybrid. A natural model that should be of interest
in communications is to assume exponentially distributed start
and end points (possibly with different exponents) delineating
time intervals where data are unavailable.

Remark 4: As noted by an anonymous referee, fusion of
data is essential in many engineering fields [23], and in those
cases optimal smoothing and interpolation of missing data are
of central importance.

Remark 5: A common engineering scenario is the case
where the signal is lost while the observation noise is still
present. This amounts to having C ≡ 0 over the correspond-
ing window, and the Kalman estimates are obtained by merely
running the filters (81) and (85) in the two time directions
with the modified condition on C. This situation does not
cover the information patterns discussed above since, when-
ever BD′ �= 0, the Kalman gains do not vanish and infor-
mation about the state process is available even when C is
zero.

C. Smoothing

Given these intermittent forward and backward Kalman esti-
mates, we shall derive a formula for the smoothing estimate

a′x̂(t) := E
◦
H a′x(t), a ∈ Rn (89)

valid for both the cases discussed above, where
◦
H :=

◦
H−t ∨

◦
H+

t ⊂ H[0,T ](dy) (90)

is the complete subspace of observations. This is discussed next.

VI. GEOMETRY OF FUSION

Consider the system (74), and let X(t) be the (finite-
dimensional) subspace in H spanned by the components of the
stochastic state vector x(t). Then it can be shown [18, Ch. 7]
that H[0,t](dy) ⊥ H[t,T ](dy) | Xt , where A ⊥ B | X denotes
the conditional orthogonality

〈α− EX α, β − EX β〉 = 0 for all α ∈ A, β ∈ B. (91)

Next, let X−(t) and X+(t) be the subspaces spanned by the
components of the (intermittent) Kalman estimates x−(t) and

x̄+(t), respectively. Then since X−(t) ⊂ ◦
H−t ⊂ H[0,t](dy) and

X+(t) ⊂ ◦
H+

t ⊂ H[t,T ](dy), we have

X−(t) ⊥ X+(t) | X(t)

which is equivalent to

EX+ (t) a′x−(t) = EX+ (t) EX(t) a′x−(t), a ∈ Rn (92a)

[18, Proposition 2.4.2]. Therefore the diagram

X−
EX + |X −−→ X+

EX |X −↘ ↗EX + |X
X

(92b)

commutes, where the argument t has been suppressed.
Lemma 6: Let x(t), x̄(t), x−(t), and x̄+(t) be defined as

above. Then, for each t ∈ [0, T ],
1) E{x(t)x−(t)′} = P−(t)
2) E{x̄(t)x̄+(t)′} = P̄+(t)
3) E{x̄+(t)x−(t)′} = P̄+(t)P−(t)

where P−(t) := E{x−(t)x−(t)′} is the state covariance of the
Kalman estimate x−(t) and P+(t) := E{x̄+(t)x̄+(t)′} is the
covariance of the backward Kalman estimate x̄+(t).

Proof: By the definition of the Kalman filter, (80) holds, and
consequently the components of the estimation error x(t)−
x−(t) are orthogonal to H−t and hence to the components of
x−(t). Therefore,

E{x(t)x−(t)′} = E{x−(t)x−(t)′} = P−(t)

proving condition 1). Condition 2) follows from a symmetric
argument. To prove 3), we use condition (92). To this end, first
note that, by the usual projection formula,

EX+ (t) a′x−(t) = E{a′x−(t)x̄+(t)}P̄+(t)−1 x̄+(t)

= a′ E{x−(t)x̄+(t)′}x+(t) (93)

where x+(t) := P̄+(t)−1 x̄+(t) is the dual basis in X+(t) such
that E{x+(t)x̄+(t)′} = I . Moreover,

EX(t) a′x−(t) = E{a′x−(t)x(t)′}P (t)−1x(t)

= a′ E{x−(t)x(t)′}x̄(t) = a′P−(t)x̄(t)

where we have used condition 1) and (75). Next, set b := P−a
and form

EX+ (t) b′x̄(t) = E{b′x̄(t)x̄+(t)}P̄+(t)−1 x̄+(t)

= b′ E{x̄(t)x̄+(t)}x+(t)

= b′P̄+(t)x+(t)
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by condition 2), and consequently

EX+ (t) EX(t)a′x−(t) = a′P−(t)P̄+(t)x+(t). (94)

Then condition 3) follows from (92a), (93), and (94).
Remark 7: The proof of condition 3) in Lemma 6 could be

simplified if x̄+ were a regular backward Kalman estimate with-
out intermittent loss of information. In this case, x+ = P̄−1

+ x̄+
would be generated by a forward stochastic realization be-
longing to the same class as (74) and E{x̄+(t)x−(t)′} =
P̄+(t) E{x+(t)x−(t)} = P̄+(t) E{x−(t)x−(t)}.

Lemma 8: For each t ∈ [0, T ], the smoothing estimate x̂(t),
defined by (89), is given by

a′x̂(t) = EH�
t a′x(t), a ∈ Rn (95)

where H�
t is the subspace

H�
t = X−(t) ∨X+(t). (96)

Proof: Following [3], [14], and [18], define N−(t) :=
◦
H−t �

X−(t) and N+(t) :=
◦
H+

t �X+(t). Then

◦
H = N−(t)⊕H�

t ⊕N+(t).

Now, a′(x(t)− x−(t)) is orthogonal to
◦
H−t and hence to N−(t).

Also a′x−(t) ⊥ N−(t). Hence a′x(t) ⊥ N−(t) as well. In the
same way we see that a′x(t) ⊥ N+(t). Therefore, (95) follows.

Consequently, the information from the two Kalman filters
can be fused into the smoothing estimate

x̂(t) = L−(t)x−(t) + L̄+(t)x̄+(t) (97)

for some matrix functions L− and L̄+ .

VII. UNIVERSAL TWO-FILTER FORMULA

To obtain a robust and particularly simple smoothing for-
mula that works also with an intermittent observation pattern,
we assume that the stochastic system (74) has already been
transformed via (57) so that, for all t ∈ [0, T ],

x(t) = x̄(t) (98)

and therefore

P (t) = E{x(t)x(t)′} = I = P̄ (t). (99)

We note that these normalizations make the state process dimen-
sionless. Then the error covariances in the filtering formulas of
Section V are

Q− = I − P− and Q̄+ = I − P̄+ . (100)

Consequently, x(t), x̄(t), P−(t), and P̄+(t) are all bounded in
norm by one for all t ∈ [0, T ]. We have the following result.

Theorem 9: Suppose that (98) holds. For every t ∈ [0, T ],
we have the formula

x̂(t) = Q(t)
(
Q−(t)−1x−(t) + Q̄+(t)−1 x̄+(t)

)
(101)

for the smoothing estimate (89), where the estimation error

Q(t) := E
{
(x(t)− x̂(t)) (x(t)− x̂(t))′

}
(102)

is given by

Q(t)−1 = Q−(t)−1 + Q̄+(t)−1 − I (103)

and where x−, x̄+ , Q− and Q̄+ are given by (81) and (85)
with boundary conditions x−(0) = x̄+(T ) = 0 and Q−(0) =
Q̄+(T ) = I .

Proof: Clearly the matrix functions L− and L̄+ in (97) can
be determined from the orthogonality relations

E{[x(t)− x̂(t)]x−(t)′} = 0 (104a)

and

E{[x(t)− x̂(t)]x̄+(t)′} = 0. (104b)

By Lemma 6, (104) yields

P− − L−P− − L̄+ P̄+P− = 0

P̄+ − L−P−P̄+ − L̄+ P̄+ = 0

which, in view of the fact that P− and P̄+ are positive definite,
yields

L− + L̄+ P̄+ = I (105a)

L−P− + L̄+ = I. (105b)

Again by orthogonality and Lemma 6,

Q = E {(x− x̂) x′} = I − L−P− − L̄+ P̄+

which, in view of (105) and the relations (100), yields

L− = QQ−1
− and L̄+ = QQ̄−1

+ . (106)

Then (101) follows from (97) and (106). To prove (103) elimi-
nate L̄+ in (105) to obtain

L−(I − P−P̄+) = Q̄+

which together with (106) yields

Q−1 = Q−1
− (I − P−P̄+)Q̄−1

+ .

However,

I − P−P̄+ = Q̄+ + Q− −Q−Q̄+

and hence (103) follows.
In the special case with no loss of observation this is a nor-

malized version of the Mayne–Frazer two-filter formula given
in [1] and [2], where, however, it was formulated in terms of
x− and x+ rather than x̄+ , with x+ being the state process of
the forward stochastic system corresponding to the backward
Kalman filter. (For the corresponding formula in terms of x−
and x̄+ , see [3] and [18]; also cf. [24], where an independent
derivation was given.) With a single interval of loss of observa-
tion the formula (101) reduces to a version of the interpolation
formulas in [6]. The remarkable fact, discovered here, is that
the same formula (101) holds for any intermittent observations
structure and by a cascade of continuous and discrete-time for-
ward and backward Kalman filters, as needed depending on the
assumed information pattern.

For the convenience of the reader, we now summarize the
computational steps: Given a system (74) with state covariance
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Fig. 3. Forward stochastic system (35).

(54), make the normalizing substitution

A(t)← P (t)−
1
2 A(t)P (t)

1
2 + R(t)

B(t)← P (t)−
1
2 B(t) (107)

C(t)← C(t)P (t)
1
2

with R(t) =
[

d
dt P (t)−

1
2

]
P (t)

1
2 . Next, we compute the inter-

mittent forward and backward Kalman filter estimates x− and
x̄+ , respectively, along the lines of Section V, where, due to
the normalization, Q−(0) = Q̄+(T ) = In . Then the smoothing
estimate is given by (101), i.e.,

x̂(t) = Q(t)
(
Q−(t)−1x−(t) + Q̄+(t)−1 x̄+(t)

)

where

Q(t) =
(
Q−(t)−1 + Q̄+(t)−1 − I

)−1
.

VIII. EXAMPLE

We now illustrate the results of the paper on a specific nu-
merical example. We consider the continuous-time diffusion
process

dx1(t) = x2(t)dt

dx2(t) = −0.3x1(t)dt− 0.7x2(t)dt + dw(t)

dy(t) = x1(t)dt + dv(t)

where w and v are thought to be independent standard
Wiener processes. Here, x1 is thought of as position and
x2 as velocity of a particle that is steered by stochastic ex-
citation in dw, in the presence of a restoring force 0.3x1
and frictional force 0.7x2 . Then dy/dt represents measure-
ment of the position and dv/dt represents measurement noise
(white).

Numerical simulation over [0, T ] with T = 45 (units of time)
produces a time-function y(t), which is sampled with integer
multiples of Δt = 0.01 (units). The interval [0, T ] is partitioned
into

[0, T ] = ∪9
i=1[ti−1 , ti ]

where t0 = 0 and ti − ti−1 = i (units). Measurements of y are
made available for purposes of state estimation over the intervals
[ti−1 , ti ] for i = 1, 3, 5, 9. Over the complement set of intervals,
data are not made available for state estimation; these intervals
where data are not to be used are marked by a thick blue baseline
in the figures. InFig. 5, we display sample paths of the output
process y, increments dy, and state-processes x1 and x2 .

The process increments dy over [ti−1 , ti ] for i = 1, 3, 5, 9 as
well as the increments Δy across the [ti−1 , ti ] for i = 2, 4, 6, 8
are used in the two-filter formula for the purpose of smoothing.

Fig. 4. Backward stochastic system (37).

Fig. 5. Sample paths of output process, increment, and state pro-
cesses.

Fig. 6. Kalman estimates in the forward time direction.

The Kalman estimates for the states in the forward and back-
ward in time directions, x−(t) and x̄+(t) are shown in Figs. 6
and 7, respectively. The fusion of the two using (101) is shown
in Fig. 8. It is worth observing the nature and fidelity of the esti-
mates. In the forward direction, across intervals where data are
not available, x− becomes increasing more unreliable whereas
the opposite is true for x̄+ , as expected. The smoothing esti-
mate is generally an improvement to those of the two Kalman
filters as seen in Fig. 8. In particular, it is worth noting x2 (in
subplot 2), where, over windows of available observations, es-
timates have considerably less variance in the middle of the
interval where the weights (Q(t)Q−(t)−1 and Q(t)Q̄+(t)−1) in
(101) are equalized, whereas sample paths become increasing



GEORGIOU AND LINDQUIST: OPTIMAL ESTIMATION WITH MISSING OBSERVATIONS VIA BALANCED 5601

Fig. 7. Kalman estimates in the backward time direction.

Fig. 8. Interpolation/smoothed estimates by fusion of Kalman forward
and backward estimates.

rugged at the two ends where one of the two Kalman estimates
has significantly higher variance, and the corresponding mixing
coefficient becomes relatively smaller.

IX. CONCLUDING REMARKS

Historically the problem of interpolation has been considered
from the beginning of the study of stochastic processes [25],
[26]. Early accounts and treatments were cumbersome and non-
explicit as the problem was considered difficult [7]–[10]. In a
manner that echoes the development of Kalman filtering, the
problem became transparent and computable for output pro-
cesses of linear stochastic systems [5], [6], and [18].

This paper builds on developments in stochastic realization
theory [11], [27] and presents a unified and generalized two-
filter formula for smoothing and interpolation in continuous time
for the case of intermittent availability of data over an operat-
ing window. The analysis considers two alternative information
patterns where increments of the output process or the output
process itself is recorded when information becomes available.

The second information pattern appears most natural to us in
this continuous-time setting, and this is our main problem. Nev-
ertheless, in either case, two Kalman filters run in opposite
time-directions, designed on the basis of a forward and a back-
ward model for the process, respectively. Fusion of the respec-
tive estimates is effected via linear mixing in a manner similar
to the Mayne–Fraser formula and applies to both smoothing and
interpolation intermixed. In earlier works, smoothing and inter-
polation have been considered separate problems [18, Ch. 15].
The balancing normalization also simplifies the mixing formula
and makes it completely time symmetric.

The theory relies on time-reversal of stochastic models. We
provide a new derivation of such a reversal which has the conve-
nient property of being balanced. It is based on lossless imbed-
ding of linear systems and effects the time reversal through a
unitary transformation. Interestingly, time symmetry in statisti-
cal and physical laws have occupied some of the most promi-
nent minds in science and mathematics. In particular, closer to
our immediate interests, dual time-reversed models have been
employed to model, in different time-directions, Brownian or
Schrödinger bridges [28], [29], a subject which is related to re-
ciprocal processes [30]–[32]. A natural extension of the present
paper in fact is in the direction of general reciprocal dynamics
[31], [32] and the question of whether similar two-filter formula
are possible.

APPENDIX

TIME REVERSAL OF NONSTATIONARY DISCRETE-TIME

SYSTEMS

Next, instead of (1), consider the nonstationary state dynamics

x(t + 1) = A(t)x(t) + B(t)w(t), x(0) = x0 (108)

on a finite time-window [0, T ], where, for simplicity we now
assume that the covariance matrix P0 := P (0) of the zero-mean
stochastic vector x0 is positive definite, i.e., P0 = E{x0x

′
0} >

0. Then the state covariance matrix P (t) := E{x(t)x(t)′} will
satisfy the Lyapunov difference equation

P (t + 1) = A(t)P (t)A(t)′ + B(t)B(t)′. (109)

The state transformation

ξ(t) = P (t)−
1
2 x(t) (110)

brings the system (108) into the form

ξ(t + 1) = F (t)ξ(t) + G(t)w(t) (111)

where now E{ξ(t)ξ(t)′} = In for all t and

F (t) = P (t + 1)−
1
2 A(t)P (t)

1
2 , (112a)

G(t) = P (t + 1)−
1
2 B. (112b)

The Lyapunov difference equation then reduces to

In = F (t)F (t)′ + G(t)G(t)′ (113)

allowing us to embed [F,G] as part of a time-varying orthogonal
matrix

U(t) =
[

F (t) G(t)
H(t) J(t)

]
. (114)
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This amounts to extending (111) to

ξ(t + 1) = F (t)ξ(t) + G(t)w(t) (115)

w̄(t) = H(t)ξ(t) + J(t)w(t) (116)

or, in the equivalent form
[

ξ(t + 1)
w̄(t)

]
= U(t)

[
ξ(t)
w(t)

]
. (116)

Hence, since E{ξ(t)ξ(t)′} = In and E{w(t)w(t)′} = Ip , and
assuming that E {ξ(t)w(t)′} = 0,

E
{[

ξ(t + 1)
w̄(t)

] [
ξ(t + 1)

w̄(t)

]′}
= U(t)U(t)′ = In+p (117)

which yields

E{ξ(t + 1)w̄(t)′} = 0, (118a)

E{w̄(t)ū(t)′} = Ip . (118b)

Moreover, from (115), we have

ū(t + k) = H(t + k)Φ(t + k, t)ξ(t)

+
t+k−1∑

j=t

H(t + k)Φ(t + k, j + 1)G(j)w(j) + J(t)w(t)

for k > 0, where

Φ(s, t) =
{

F (s− 1)F (s− 2) · · ·F (t) for s > t
In for s = t.

Therefore, since F (t)H(t)′ + G(t)J(t)′ = 0 by the unitarity of
U(t),

E{ū(t + k)ū(t)′}
= H(t + k)Φ(t + k, t + 1)[F (t)H(t)′ + G(t)J(t)′] = 0.

Consequently, ū is a white noise process. Finally, premultiplying
(116) by U(t)′, we then obtain

ξ(t) = F (t)′ξ(t + 1) + H(t)′w̄(t) (119a)

w(t) = G(t)′ξ(t + 1) + J(t)′w̄(t) (119b)

which, in view of (118), is a backward stochastic system.
Using the transformation (110), (115) yields the forward rep-

resentation

x(t + 1) = A(t)x(t) + B(t)w(t) (120a)

w̄(t) = B̄(t)′x(t) + J(t)w(t), (120b)

where B̄(t) := P (t)−
1
2 H(t)′. Likewise (119) and

x̄(t) = P (t + 1)−1x(t + 1) (121)

yields the backward representation

x̄(t− 1) = A(t)′x̄(t) + B̄(t)w̄(t) (122a)

w(t) = B(t)′x̄(t) + J(t)′w̄(t). (122b)

Remark 10: When considered on the doubly infinite time
axis, (116) defines an isometry. Indeed, assuming that the input

is squarely summable, the fact that U(t) is unitary for all t
directly implies that

N∑

−∞
‖w̄‖2 + ‖ξ(t + 1)‖2 =

N∑

−∞
‖w(t)‖2 .

Then, ξ(t)→ 0 as t→∞, provided Φ(t, s)→ 0 as s→ −∞.
It follows that

∞∑

t=−∞
‖w̄(t)‖2 =

∞∑

t=−∞
‖w(t)‖2 .

We are now in a position to derive a backward version of a
nonstationary stochastic system

x(t + 1) = A(t)x(t) + B(t)w(t), x(0) = x0 (123a)

y(t) = C(t)x(t) + D(t)w(t) (123b)

where x0 and the normalized white-noise process w are uncorre-
lated and E{x0x

′
0} = P0 . In fact, inserting the transformations

(121) and (122a) into (123b) yields

y(t) = C̄x̄(t) + D̄w̄(t)

where

C̄ = C(t)P (t)A(t)′ + D(t)B(t)′ (124)

D̄ = C(t)P (t)B̄(t) + D(t)J(t)′. (125)

From that we have the backward system

x̄(t− 1) = A(t)′x̄(t) + B̄(t)w̄(t) (126a)

y(t) = C̄(t)x̄(t) + D̄(t)w̄(t) (126b)

with the boundary condition x̄(T − 1) = P (T )−1x(T ) being
uncorrelated to the white-noise process w̄.
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[17] G. Michaletzky and A. Ferrante, “Splitting subspaces and acausal spectral
factors,” J. Math. Syst. Estimation Control, vol. 5, no. 3, pp. 1–26, 1995.

[18] A. Lindquist and G. Picci, Linear Stochastic Systems: A Geometric
Approach to Modeling, Estimation and Identification. Berlin Germany:
Springer-Verlag, 2015.
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