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Robust Transport Over Networks
Yongxin Chen, Tryphon Georgiou, Michele Pavon, and Allen Tannenbaum

Abstract—We consider transportation over a strongly con-
nected, directed graph. The scheduling amounts to selecting tran-
sition probabilities for a discrete-time Markov evolution which is
designed to be consistent with initial and final marginal constraints
on mass transport. We address the situation where initially the
mass is concentrated on certain nodes and needs to be transported
over a certain time period to another set of nodes, possibly disjoint
from the first. The evolution is selected to be closest to a prior mea-
sure on paths in the relative entropy sense–such a construction is
known as a Schrödinger bridge between the two given marginals. It
may be viewed as an atypical stochastic control problem where the
control consists in suitably modifying the prior transition mecha-
nism. The prior can be chosen to incorporate constraints and costs
for traversing specific edges of the graph, but it can also be selected
to allocate equal probability to all paths of equal length connect-
ing any two nodes (i.e., a uniform distribution on paths). This latter
choice for prior transitions relies on the so-called Ruelle-Bowen
random walker and gives rise to scheduling that tends to utilize
all paths as uniformly as the topology allows. Thus, this Ruelle-
Bowen law (MRB ) taken as prior, leads to a transportation plan
that tends to lessen congestion and ensures a level of robustness.
We also show that the distribution MRB on paths, which attains the
maximum entropy rate for the random walker given by the topolog-
ical entropy, can itself be obtained as the time-homogeneous solu-
tion of a maximum entropy problem for measures on paths (also a
Schrödinger bridge problem, albeit with prior that is not a proba-
bility measure). Finally we show that the paradigm of Schrödinger
bridges as a mechanism for scheduling transport on networks can
be adapted to graphs that are not strongly connected, as well as
to weighted graphs. In the latter case, our approach may be used
to design a transportation plan which effectively compromises be-
tween robustness and other criteria such as cost. Indeed, we explic-
itly provide a robust transportation plan which assigns maximum
probability to minimum cost paths and therefore compares favor-
ably with Optimal Mass Transportation strategies.

Index Terms—Markov, Ruelle-Bowen law, Schrödinger bridge
problem (SBP).
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I. INTRODUCTION

Transport over networks has been the focus of a rapidly expanding
literature due to its intrinsic relevance in a wide range of applica-
tions that include power transmission, traffic, financial transactions,
biological systems and so on [1]–[4]. Furthermore, the topic relates
to a host of other questions pertaining to the connectivity of graphs
and the relative significance of their nodes as in the Google PageRank
problem [5] and the study of interaction between genes in biological
networks [6].

Our starting point is an important insight on the relation between
the topological structure of a network and the entropy rate of a random
walker on the graph [7], [8]. As it turns out, there is a unique way to
specify transition probabilities at each node in such a way that all paths
of equal length joining any two particular nodes have equal probability.
Thereby, a measure is placed on the family of paths between graph
nodes that maximizes the entropy rate of a random walker, and this is
a characteristic of the network. So far, the use of this concept has been
to assign significance to each node in relation to the corresponding
occupancy stationary distribution (centrality measures).

The focus in our technical note is on how to schedule transportation
plans across a network. The novel framework that we propose is that of
the so-called Schrödinger bridge problem, where a flow is specified in
agreement with an initial and a final marginal distribution on the nodes
while, at the same time, the probability law on the paths is the closest
possible to a prior in the relative entropy sense. The Ruelle-Bowen
random walk provides a natural notion of “uniform” prior which gives
equal importance to all paths. As a result, the transportation flow that
is selected to agree with specified initial and final marginals tends to
spread across all available paths as much as possible given the topolog-
ical structure of the network. Thereby, such a flow leads to relatively
low probability of conflict and congestion, and ensures a certain degree
of inherent robustness of the transport plan. It is well appreciated that,
typically, robustness, efficiency and cost are conflicting criteria when
designing networks.

By extending our approach to weighted graphs, we show that the
choice of a prior distribution may be used to ensure that the resulting
transportation attains a satisfactory compromise between robustness
and other criteria such as cost. Indeed, we exhibit a robust transportation
plan which assigns maximum probability to all minimum cost paths.
It appears attractive when compared to Optimal Mass Transportation
strategies which are not necessarily robust and where the minimum cost
of transportation between any two nodes is supposed to be given. Thus,
the approach to scheduling transport based on Schrödinger bridges
affords great flexibility. Moreover, it appears computationally attractive
in view of the iterative algorithm proposed in [9].

The technical note is outlined as follows. In Section II, we present the
solution to a general Schrödinger bridge problem (SBP), where the prior
measure is not necessarily a probability measure, as a straightforward
extension of the results in [10], [9]. Section III is devoted to solutions
of the SBP with equal initial and final marginals which have a time-
invariant transition mechanism so that they admit invariant measures.
We establish the surprising result (Theorem 3.4) that there is only one
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such bridge. This measure on paths can be constructed generalizing a
classical result by Parry [11]. In Section IV, considering the special case
of a prior transition given by the adjacency matrix, we describe the most
important features of the Ruelle-Bowen random walker along the lines
of [7]. We observe that this measure MRB on trajectories can be viewed
as a solution to a “time-homogeneous” Schrödinger bridge problem
where the prior transition mechanism is given by the adjacency matrix.
Section V describes our procedure to produce a robust transportation
plan over a given strongly connected network: We take the Ruelle-
Bowen distribution MRB as prior in a Schrödinger bridge problem
with prescribed initial and final marginals. We also prove that the
optimal transportation can also be obtained in one step by taking the
adjacency matrix as prior transition mechanism (Proposition 5.2). In
Section VI, we outline our approach in the cases of weighted and not
strongly connected graphs. Finally, in Section VII we illustrate our
approach on a simple unweighted and weighted graph.

II. THE DISCRETE SCHRȮ̇DINGER BRIDGE PROBLEM

We first describe the “ingredients” of the discrete Schrödinger Bridge
problem (SBP) considered in [10], [9]. In fact, we will consider a slight
generalization, where the “prior” is not necessarily a probability law.
The goal is to determine a time-evolution of probability distributions
νt (·) having support on a discrete space

X = {1, . . . , n},

e.g., the nodes of a network, over a time-indexing set

T = {0, 1, . . . , N}

in a way such that it matches the specified marginal distributions ν0 (·)
and νN (·) and the resulting random evolution is closest to the “prior”
in a suitable sense. Regarding notation, we use μt (·), νt (·) for distri-
butions, where typically, μ relates to a “prior” law while ν represents
a “new” distribution with end-points specified and obtained by solving
the SBP.

The prior law is induced by the Markovian evolution

μt+1 (xt+1 ) =
∑

xt ∈X
μt (xt )mxt xt + 1 (1)

for nonnegative distributions μt (·) over X with t ∈ T . Throughout, we
assume that mij ≥ 0 for all indices i, j ∈ X and for simplicity, for the
most part, that the matrix

M = [mij ]
n
i,j=1

does not depend on t. In this case, we will often assume that all entries
of MN are positive. The rows of the transition matrix M do not
necessarily sum up to one, in which case the “total transported mass”
is not necessarily preserved. This is the case, in particular, of a Markov
chain with “creation” and “killing”. In fact, M may simply encode the
topological structure of a directed network with mij being zero or one,
depending whether a certain transition is allowed.

The evolution (1), together with measure μ0 (·), which we assume
positive on X , i.e.,

μ0 (x) > 0 for all x ∈ X , (2)

induces a measure M on XN +1 as follows. It assigns to a path1 x =
(x0 , x1 , . . . , xN ) ∈ XN +1 the value

M(x0 , x1 , . . . , xN ) = μ0 (x0 )mx 0 x 1 · · ·mxN −1 xN
, (3)

1 Here a path is a sequence of adjacent nodes, which is different to most
literature where a path does not pass through the same node more than once.

and gives rise to a flow of one-time marginals

μt (xt ) =
∑

x 0 ,x 1 , . . . ,x t−1 ,x t + 1 , . . . ,xN

M(x0 , x1 , . . . , xN ), t ∈ T .

The “prior” distribution M on the space of paths may be at odds
with a pair of specified marginals ν0 and νN in that one or possibly
both,

μ0 (x0 ) �= ν0 (x0 ), μN (xN ) �= νN (xN ).

We denote by P(ν0 , νN ) the family of probability distributions on
XN +1 having the prescribed marginals. We seek a distribution in this
set which is closest to the prior M in a suitable entropic sense. To this
end, let us first recall the definition of relative entropy for probability
distributions.

Definition 2.1: The Relative Entropy between the probability dis-
tributions P and Q is

D(P ‖Q) :=

⎧
⎨

⎩

∑
x P (x)log P (x )

Q (x ) , Supp (P ) ⊆ Supp (Q),

+∞, Supp (P ) �⊆ Supp (Q),

where, by definition, 0 · log0 = 0 and the summation is over the com-
mon set where they are supported.

As is well known, D(P ‖Q) is not symmetric and does not sat-
isfy the triangle inequality. It does, however, satisfy D(P ‖Q) ≥ 0 and
D(P ‖Q) = 0 if and only if Q = P , see, e.g., [12]. It can also be ex-
tended to positive measures that are not probability distributions. In
fact, it is quite common to consider Q to be a uniform measure that
may not be a probability measure, such as the Lebesgue measure or the
stationary Wiener measure [13]. Naturally, while the value of D(P ‖Q)
may turn out negative due to miss-match of scaling, the relative entropy
is always jointly convex. We view the prior M (specified by M and
μ0 ) in a similar manner, and consider the Schrödinger Bridge problem:

Problem 2.2: Determine

M∗[ν0 , νN ] = argmin{D(P ‖M) | P ∈ P(ν0 , νN )}. (4)

Provided all entries of MN are positive, the problem has a solution,
which is unique due to strict convexity. This is stated next.

Theorem 2.3: For a nonnegative square matrix M such that MN

has all positive entries and positive measures ν0 and νN on X , there
exist nonnegative functions ϕ(·) and ϕ̂(·) on [0, N ] ×X satisfying for
t ∈ [0, N − 1] the system

ϕ(t, i) =
∑

j

mij ϕ(t + 1, j), (5a)

ϕ̂(t + 1, j) =
∑

i

mij ϕ̂(t, i), (5b)

with the boundary conditions

ϕ(0, x0 ) · ϕ̂(0, x0 ) = ν0 (x0 ) (5c)

ϕ(N, xN ) · ϕ̂(N, xN ) = νN (xN ), (5d)

for all x0 , xN ∈ X . Moreover, the solution M∗[ν0 , νN ] to Problem 2.2
is unique and obtained by

M∗[ν0 , νN ](x0 , . . . , xN ) = ν0 (x0 )πx 0 x 1 (0) · · ·πxN −1 xN
(N − 1),

where2

πij (t) := mij
ϕ(t + 1, j)

ϕ(t, i)
. (6)

2 Here we use the convention that 0/0 = 0.
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Equation (6) specifies one-step transition probabilities that are well
defined.

Proof: The argument in [10, Theorem 4.1] and [9, Section III]
applies verbatim to this setting which is slightly more general in that
M does not prescribe a probability kernel. The system (5a)–(5d) is
known as a Schrödinger system. The existence of solution is shown in
[9, Section III] by establishing that the composition

ϕ̂(0, x0 )
(M T )N

−→ ϕ̂(N, xN )
(5d)−→ ϕ(N, xN ) −→ . . .

. . .
M N

−→ ϕ(0, x0 )
(5c)−→ (ϕ̂(0, x0 ))next (7)

is contractive in the Hilbert metric [14], [15]. The fact that πij (t) in
(6) satisfy

∑
j πij (t) = 1 follows from (5a). �

Notice that ϕ and ϕ̂ are unique up to multiplication of ϕ by a
positive constant and division of ϕ̂ by the same constant. This is a
direct consequence of the proof above as the Hilbert metric is a metric
on the projective space. The statement of the theorem is analogous to
results for the classical Schrödinger system (5) of diffusions see [13].
The requirement that MN has only positive entries can be slightly
relaxed and replaced by a suitable condition that guarantees existence of
solution for the particular ν0 and νN . The case when M is time-varying
can also be readily established along the lines of [10, Theorem 4.1] and
[9, Theorem 2].

Finally, to simplify the notation, let ϕ(t) and ϕ̂(t) denote the column
vectors with entries ϕ(t, i) and ϕ̂(t, i), respectively, with i ∈ X . In
matrix form, (5a), (5b) and (6) read

ϕ(t) = Mϕ(t + 1), ϕ̂(t + 1) = MT ϕ̂(t), (8a)

and

Π(t) = [πij (t)] = diag (ϕ(t))−1M diag (ϕ(t + 1)). (8b)

III. TIME-HOMOGENEOUS BRIDGES

In this section, we consider the case of Schrödinger bridge problems
when the marginals are identical, namely, ν0 = νN = ν . In particu-
lar, we are interested in the case when the solution of the SBP cor-
responds to a time-homogeneous Markov evolution. Note that, from
Theorem 2.3, M∗[ν, ν] is in general time inhomogeneous. We first
recall the following celebrated result on the spectral properties of non-
negative matrices [16].

Theorem 3.1 (Perron-Frobenius): Let A = (aij ) be an n × n ma-
trix with nonnegative entries. Suppose there exists N such that AN has
only positive entries, and let λA be its spectral radius. Then

i) λA > 0 is an eigenvalue of A;
ii) λA is a simple eigenvalue;

iii) there exists an eigenvector v corresponding to λA with strictly
positive entries;

iv) v is the only non-negative eigenvector of A;
v) let B = [bij ] be an n × n matrix with nonnegative entries. If aij ≤

bij , ∀i, j ≤ n and A �= B, then λA < λB .
Since the nonnegative matrix M is such that MN has only positive

entries, by the above Perron-Frobenius Theorem, M has a unique
positive eigenvalue λM which is equal to the spectral radius. Let φ
and φ̂ be the corresponding right and left eigenvectors and denote their
entries by φ(x) and φ̂(x) with x ∈ X , respectively. Then both have
only positive entries. We normalize φ and φ̂ so that

∑

x∈X
φ(x)φ̂(x) = 1.

This leads to a special probability distribution

ν̄(x) = φ(x)φ̂(x). (9)

It turns out that ν̄ is the only probability measure such that the as-
sociated SBP has a time-homogeneous solution; we shall name it the
time-homogeneous bridge associated with M . It admits the following
variational characterization.

Proposition 3.2: Let M be a nonnegative matrix such that MN has
only positive entries, and M the measure on XN +1 given by (3) with
μ0 satisfying (2). Then the solution to the Schrödinger bridge problem

M∗[ν̄, ν̄] = argmin{D(P ‖M)|P ∈ P(ν̄, ν̄)}, (10)

where ν̄ is as in (9), has the time-invariant transition matrix

Π̄ = λ−1
M diag (φ)−1Mdiag (φ) (11)

and invariant measure ν̄ .
Proof: Since φ and φ̂ are the right and left eigenvectors of M

associated with eigenvalue λM , the nonnegative functions ϕ and ϕ̂
defined by

ϕ(t, x) = λt
M φ(x), ϕ̂(t, x) = λ−t

M φ̂(x)

satisfy the Schrödinger system (5). By Theorem 2.3, the solution
M∗[ν̄, ν̄] of the Schrödinger bridge problem (10) then has the tran-
sition matrix (see (8b))

Π̄ = diag (ϕ(0))−1M diag (ϕ(1))

= λ−1
M diag (φ)−1M diag(φ),

which is exactly (11). Moreover, since

Π̄T ν̄ = λ−1
M diag(φ)MT φ̂ = ν̄,

it follows that ν̄ is the corresponding invariant measure. �
In particular, notice that M∗[ν̄, ν̄], and its extension to infinite paths

x = (x0 , x1 , x2 , . . .) through (11), is stationary. Indeed, we have the
following more general result which is of independent interest.

Proposition 3.3: Let P ∈ P(ν, ν) be a Markovian measure on
XN +1 having time-invariant transition matrix Π. Then ν is invariant
for Π, i.e. ΠT ν = ν .

Proof: Let ΠT ν = m. Then

dH (ν, m) = dH ((ΠT )N ν, (ΠT )N m) ≤ λdH (ν, m)

where dH is the Hilbert distance [14], [9] and λ < 1 is the contraction
ratio of the map (ΠT

ν )N . Since both ν and m are probability distribu-
tions, it follows that m = ν and ν is invariant. �

We show next that, under mild assumptions, there is only one time-
homogeneous bridge between equal marginals. In the following result,
we shall use the following notation. As before, let M be given by (3)
with μ0 satisfying (2). We denote by M(2N ) the unique extension of
M to all of the discrete interval [0, 2N ] by its time-invariant transition
mechanism. We also denote by M∗[ν, ν](2N ) the Schrödinger bridge
with prior M(2N ) and equal marginals ν at times t = 0 and t = 2N .

Theorem 3.4: Let M be a nonnegative matrix such that MN has
only positive entries. Let ν be a probability measure. Suppose N > 1
and that the transition matrix Πν of M∗[ν, ν](2N ) does not depend on
time. Then ν = ν̄ as in (9) and Πν = Π̄ as in (11).

Proof: Let ϕν (t) = Mϕν (t + 1) be the space-time harmonic func-
tion associated to the minimizer M∗[ν, ν]. Suppose first that M has only
positive entries and consider times t = N − 2, N − 1, N . By (8) and
the time invariance of Πν , we must have

Πν = diag(ϕν (N − 2))−1Mdiag(ϕν (N − 1))

= diag(ϕν (N − 1))−1Mdiag(ϕν (N )).

It follows that

M = Dν (N − 1)MDν (N )−1 ,
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where

Dν (t) = diag(ϕν (t)) diag(ϕν (t − 1))−1

= diag(dν
1 (t), . . . , dν

n (t))

is diagonal for all t. Hence,

mij = eT
i Mej = di (N − 1)mij dj (N )−1 , ∀i, j.

Varying j for a fixed i, since mij �= 0, we get that D(N ) is a scalar
matrix, say λI , not dependent on t and ϕ(N ) is a right eigenvector
of M . By the Perron-Frobenius Theorem, it follows that ϕ(N ) corre-
sponds to λM . It readily follows that ϕ̂(0) is an eigenvector of MT

with positive entries corresponding to the same eigenvalue λM . By
(5c)–(5d), ν is equal to ν̄ .

A similar argument establishes the result when M has merely
nonnegative entries. Indeed, looking at the N -step transition matrix
Π(N )

ν = ΠN
ν on the time intervals [0, N ] and [N, 2N ] the same argu-

ment as in the full positive case gives that ϕ(2N ) is a right eigenvector
of MN with positive entries. But so is ϕ. By Theorem 3.1, iv), they
can be taken to be equal. �

Consider now the following special case. We have a strongly
connected, aperiodic directed graph (V, E) with vertex set V =
{1, 2, . . . , n} and edge set E ⊆ V × V . Let A be the adjacency ma-
trix of the graph so that aij = 1 if there is an edge from i to j and
aij = 0 otherwise. Then, there exists N such that AN has all positive
entries. As we shall see in the next section, the Schrödinger bridge
problem (10) just considered with M = A as prior transition turns out
to have as solution the Ruelle-Bowen measure MRB [7, Section III].
This probability measure has a number of useful properties, in partic-
ular it gives the same probability to paths of the same length between
any two given nodes. All of this is discussed in the next section.

IV. THE RUELLE-BOWENS RANDOM WALK

In this section, we follow closely the beautiful technical note [7] by
Delvenne and Libert, which explains the Ruelle-Bowens (RB) random
walk. The RB random walk amounts to a Markovian evolution on a di-
rected graph that assigns equal probabilities to all paths of equal length
between any two nodes. The motivation of [7] was to assign a natural
invariant probability to nodes based on relations that are encoded by
a graph, and thereby determine a centrality measure, akin to Google
Page ranking, yet more robust and discriminating. Our motivation is
quite different. The RB random walk provides a uniform distribution
on paths. Therefore, it represents a natural distribution to serve as prior
in the SBP in order to achieve a maximum spreading of the mass trans-
ported over the available paths. In this section, besides reviewing basics
on the RB random walk, we show that the RB distribution is itself a
solution to the Schrödinger bridge Problem 2.2.

We consider a strongly connected, directed graph

G = (V, E).

The idea in Google Page ranking the nodes is based on a random walk
where a jump takes place from one node to any of its neighbors with
equal probability. The alternative proposed in [7] is an entropy ranking,
based on the stationary distribution of the RB random walk [11], [17].
The transition mechanism is such that it induces a uniform distribu-
tion on paths of equal length joining any two nodes. This distribution
is characterized as the one maximizing the entropy rate [12] for the
random walker. Let us briefly recall the relevant concept. The Shannon
entropy for paths of length t is at most

log|{ paths of length t}|.

Hence, the entropy rate is bounded by the topological entropy rate

HG = lim supt→∞[log|{ paths of length t}|/t].

Here |{·}| denotes the cardinality of a set. Notice that HG only depends
on the graph G and not on the probability distribution on paths. More
specifically, if A denotes the adjacency matrix of the graph, the number
of paths of length t is the sum of all the entries of At . Thus, it follows that
HG is the logarithm of the spectral radius of A, namely the maximum
of the absolute values of the eigenvalues of A, that is

HG = log(λA ). (12)

We next construct the Rulle-Bowen random walk. Let A as in the
Perron-Frobenius Theorem 3.1 and let u and v be its left and right
eigenvectors3 with positive entries corresponding to λA , so that

AT u = λA u, Av = λA v. (13)

Suppose u and v are chosen so that

〈u, v〉 :=
∑

i

ui vi = 1.

As in the previous section, it is readily seen that their entrywise multi-
plication

νRB (i) = uivi (14)

defines a probability distribution which is invariant under the transition
matrix

R = [rij ], rij =
vj

λA vi

aij . (15)

that is,

RT νRB = νRB . (16)

If A in (13) represents the adjacency matrix A of a graph, then the
transition matrix R in (15) together with the stationary measure νRB

in (14), define the Ruelle-Bowen path measure

MRB (x0 , x1 , . . . , xN ) := νRB (x0 )rx 0 x 1 · · · rxN −1 xN
. (17)

Proposition 4.1: The measure MRB (17) assigns probability
λ−t

A uivj to any path of length t from node i to node j.
Proof: Starting from the stationary distribution (14), and in view

of (15), the probability of a path ij is

uivi

(
1

λA

v−1
i vj

)
=

1
λA

uivj ,

assuming that node j is accessible from node i in one step. Likewise,
the probability of the path ijk is

uivi

(
1

λA

v−1
i vj

)(
1

λA

v−1
j vk

)
=

1
λ2

A

uivk

independent of the intermediate state j, and so on. Thus, the claim
follows. �

The striking property of MRB is that induces a uniform probability
measure on paths of equal length between any two given nodes. We
quote from [7] “Since the number of paths of length t is of the order of
λt

A (up to a factor) the distribution on paths of fixed length is uniform
up to a factor (which does not depend on t). Hence the Shannon entropy
of paths of length t grows as tlogλA , up to an additive constant. The
entropy rate of this distribution is thus logλA which is optimal” by the
expression for HG in (12).

3 We are now conforming to notation in [7] for ease of comparison. Hence
we use u and v rather than φ̂ and φ.
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The analysis also shows that the Ruelle-Bowen distribution is the
solution of the particular SBP where the “prior” transition mechanism
is given by the adjacency matrix! This observation is apparently
new and beautifully links the topological entropy rate to a maximum
entropy problem on path space. We state next this special case of
Proposition 3.2.

Proposition 4.2: Let A be the adjacency matrix of a strongly
connected aperiodic graph G. Let M the nonnegative measure on
XN +1 given by (3) with M = A and μ0 satisfying (2). Then, the
Ruelle-Bowen measure MRB (17) solves the SBP (10) with marginals
ν0 = νN = νRB .

V. ROBUST TRANSPORT OVER NETWORKS

Once again we consider a strongly connected, directed graph G =
(V, E) with n vertices. We identify node 1 as a source and node n
as a sink and seek to transport a unit mass from 1 to n in at most N
steps. The task is formalized by setting an initial marginal distribution
ν0 (x) = δ1 (x) Kronecker’s delta. Similarly, the final distribution is
νN (x) = δn (x). Generally, we seek a transportation plan which is
robust and avoids congestion as much as the topology of the graph
permits. This latter feature of the transportation plan will be achieved
in this section indirectly, without explicitly bringing into the picture the
capacity of each edge (this is done in Section VI). With these two key
specifications in mind, we like to control the flux so that the initial mass
spreads as much as possible on the feasible paths joining vertices 1 and
n in N steps before reconvening at time N in vertex n. We shall achieve
this by constructing a suitable Markovian transition mechanism. As we
want to allow for the possibility that all or part of the mass reaches
node n at some time less than N , we always include a loop in node
n so that our adjacency matrix A always has an n = 1. We observed
in the previous section that the Ruelle-Bowen MRB measure on paths
can be obtained as the solution of the maximum entropy problem when
the “prior transition matrix” is the adjacency matrix. Since MRB gives
equal probability to paths joining two specific vertices, it is natural to
use it as a prior in a new maximum entropy problem with marginals
δ1 , δn so as to achieve the spreading of the probability mass on the
feasible paths joining the source with the sink. Thus, we consider the
following maximum entropy problem.

Problem 5.1: Determine

M∗[δ1 , δn ] = argmin{D(P ‖MRB )|P ∈ P(δ1 , δn )}.

By Theorem 2.3, the optimal, time varying transition matrix Π∗(t)
of the above problem is given, recalling the notations in (8), by

Π∗(t) = diag(ϕ(t))−1Rdiag(ϕ(t + 1)), (18)

where

ϕ(t) = Rϕ(t + 1), ϕ̂(t + 1) = RT ϕ̂(t),

with the boundary conditions

ϕ(0, x)ϕ̂(0, x) = δ1 (x), ϕ(N, x)ϕ̂(N, x) = δn (x) (19)

for all x ∈ X . In view of (15), if we define

ϕv (t) := λ−t
A diag(v)ϕ(t), ϕ̂v (t) := λt

A diag(v)−1 ϕ̂(t),

then we have

ϕv (t) = Aϕv (t + 1), ϕ̂v (t + 1) = AT ϕ̂v (t), t = 0, . . . , N − 1.

Moreover,

ϕv (t, x)ϕ̂v (t, x) = ϕ(t, x)ϕ̂(t, x), t = 0, . . . , N − 1, x ∈ X .

Here, again, A is the adjacency matrix ofG and v is the right eigenvector
corresponding to the spectral radius λA .

The above analysis provides another interesting way to express
M∗[δ1 , δn ]; it also solves the Schrödinger bridge problem with the
same marginals δ1 and δn while different prior transition matrix A, the
adjacency matrix. Thus, we can replace the two-step procedure by a
single bridge problem. This is summarized in the following proposition.

Proposition 5.2: Let A be the adjacency matrix of a strongly con-
nected aperiodic graph G, M the nonnegative measure on XN +1 given
by (3) with M = A and μ0 satisfying (2), then, the solution M∗[δ1 , δn ]
of Problem 5.1 also solves the Schrödinger bridge problem

min{D(P ‖M)|P ∈ P(δ1 , δn )}. (20)

The iterative algorithm of [9, Section III] can now be based on (20) to
efficiently compute the transition matrix of the optimal robust transport
plan M∗[δ1 , δn ].

Remark 5.3: Finally, observing that if AN has also zero entries, the
robust transport described in this section may still be feasible provided
there is at least one path of length N joining node 1 with node n, i.e.,
(AN )1n > 0.

As we discussed in the beginning of this section, the intuition to use
MRB as a prior is to achieve the spreading of the probability on all the
feasible paths connecting the source and the sink. It turns out this is
indeed the case; the solution M∗[δ1 , δn ] of Problem 5.1 assigns equal
probability to all the feasible paths of lengths N joining the source 1
with the sink n. To see this, by (18), the probability of the optimal
transport plan M∗[δ1 , δn ] assigns on path x = (x0 , x1 , . . . , xN ) is

M∗[δ1 , δn ](x) = δ1 (x0 )
N −1∏

t=0

rxt x t + 1

ϕ(t + 1, xt+1 )
ϕ(t, xt )

= δ1 (x0 )
ϕv (N, xN )
ϕv (0, x0 )

N −1∏

t=0

axt x t + 1 .

Observing that
∏N −1

t=0 axt x t + 1 = 1 for feasible path and 0 otherwise,
and δ1 (x0 )ϕv (N, xN )/ϕv (0, x0 ) depends only on the boundary points
x0 , xN , we conclude that M∗[δ1 , δn ] assigns equal probability to all
the feasible paths. Moreover, there are (AN )1n feasible paths of length
N connecting nodes 1 and n. Thus we establish the following.

Proposition 5.4: M∗[δ1 , δn ] assigns probability 1/(AN )1n to each
of all the feasible paths of length N connecting 1 and n.

VI. GENERALIZATION: NOT STRONGLY CONNECTED AND

WEIGHTED GRAPHS

Consider again a directed graph G = (V, E) with n vertices. We
associate to the edge ij an “energy” Uij ≥ 0. We study the following
two specific cases (and their combination):

a) Graphs that are not strongly connected: We consider the same
problem as in the previous section but the graph is not strongly con-
nected. Following [7], we can give a large positive energy U0 to non
existing links (this kind of “teleportation” is employed in the random
walk of the Google Page rank algorithm to avoid getting stuck in ab-
sorbing states) and energy Uij = 0 to existing links. Then the adjacency
matrix A is replaced by the matrix

B = [bij ] = [exp(−Uij )] .

The matrix B has all positive entries. Hence, we can apply the Perron-
Forbenius theorem. Let u and v be left and right eigenvectors with
positive entries of the matrix B corresponding to the spectral radius
λB of B, so that

BT u = λB u, Bv = λB v.
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Suppose that u and v are chosen so that 〈u, v〉 =
∑

i ui vi = 1. Then
μU given by

μU (i) = ui · vi (21)

is a probability distribution which is invariant for the transition matrix

RU = λ−1
B diag(v)−1Bdiag(v), (22)

namely

RT
U μU = μU . (23)

The corresponding path space measure MU is no longer uniform
on paths of equal length. Indeed, the probability of the path (i =
x0 , x1 , . . . , xt−1 , j = xt ) is

λ−t
B exp

(
−

t−1∑

�=0

Ux� x� + 1

)
uivj .

However, it is the minimum free energy rate (topological pressure in
thermodynamics) distribution attaining the maximum value of −F =
−Ū + S given by logλB and has therefore the form of a Boltzmann
distribution, see [7, Section IV] for details. Notice that, as soon as there
are virtual links, B �= A. By statement v) in Theorem 3.1, we then
have logλA < logλB . Namely, the topological entropy has increased
in accordance to our intuition. The expected total path energy of a path
of length t is precisely t · Ū .

Again, as in Proposition 4.2, we have a special case of Proposi-
tion 3.2. Namely, the measure MU is the solution of a SBP where the
prior M is a Markovian measure on XN +1 as in (3) but with transition
mechanism given by M = B. If U0 is very large, most of the trans-
portation will occur on the real edges. We can then take MU as the
prior distribution in a maximum entropy problem as in Section V ob-
taining again through the solution M∗

U [δ1 , δn ] a robust transportation
plan from node 1 to node n.

b) Weighted graphs: The quantities Uij may represent the cost of
transporting a unit of mass on that edge or may be inversely proportional
to capacity of the link, etc. The measure MU in this case may be far from
uniform since it takes into account costs/capacities of the links. Again
we can set up a maximum entropy problem with MU as prior obtaining
a transport M∗

U which compromises between the need to be robust and
the cost/capacities of the different paths joining the source and the sink.
For instance, if Uij = cij , the cost of transporting a unit of goods on
the link ij, is large, the solution to the maximum entropy problem with
send less mass through this link provided the topology of the graph
allows for alternative routes. In this case, low cost and robustness
of the transportation plan may be effectively conjugated. Indeed, we
have the following striking result which generalizes Propositions 4.1
and 5.4.

Theorem 6.1: M∗[δ1 , δn ](x) assigns equal probability to paths x ∈
XN +1 of equal cost. In particular, it assigns maximum and equal
probability to minimum cost paths.

Proof: For a path x = (x0 , x1 , . . . , xN ), we have

M∗[δ1 , δn ](x) = δ1 (x0 )
ϕv (N, xN )
ϕv (0, x0 )

N −1∏

t=0

bxt x t + 1

= δ1 (x0 )
ϕv (N, xN )
ϕv (0, x0 )

exp

[
−

N −1∑

t=0

Uxt xt + 1

]
. (24)

Observe once more that δ1 (x0 )
ϕ v (N ,xN )
ϕ v (0 ,x 0 ) does not depend on the par-

ticular path joining x0 and xN . Since
∑N −1

t=0 Uxt xt + 1 is the total cost
of the path, the conclusion now follows. �

Fig. 1. Network topology.

In the discrete optimal mass transport (OMT) problem, one usu-
ally (e.g., see [18]) seeks to first identify the least costly path(s)
(x0 , x

∗
1 , . . . , x

∗
N −1 , xN ) from any starting node x0 ∈ X to any end-

ing node xN , along with the corresponding end-point cost for a unit
mass4,

Cx 0 xN
= minx ∗

1 , . . . ,x ∗
N −1

(
Ux 0 x ∗

1
+ . . . + Ux ∗

N −1 xN

)
.

This is a combinatorial problem but can also be cast as a linear program
[19]. Having a solution to this first problem, the OMT problem can then
be recast as the linear program

minq

⎧
⎨

⎩
∑

x 0 ,xN

qx 0 ,xN
Cx 0 xN

| qx 0 ,xN
≥ 0, (25)

∑

x 0

qx 0 ,xN
= νN (xN ),

∑

xN

qx 0 ,xN
= ν0 (x0 )

⎫
⎬

⎭ .

The solution to (25) is the transport plan qx 0 ,xN
which dictates the

portion of mass that is to be sent from x0 to xN along the correspond-
ing least costly path (x0 , x

∗
1 , . . . , x

∗
N −1 , xN ). Alternatively, the OMT

problem can be directly cast as a linear program in as many variables
as there are edges [19].

An apparent shortcoming of the OMT formalism is the “rigidity” of
the transportation to utilize only paths with minimal cost from start-
ing to ending node. The transport provided by Theorem 6.1, which
readily generalizes to any two marginals ν0 and νN , provides an at-
tractive alternative to the OMT approach: Minimum cost paths all have
maximum probability, but some of the mass is also transported on al-
ternative paths thereby ensuring a certain amount of robustness of the
transportation plan. Also notice that the Schrödinger bridge measure
M∗

U [δ1 , δn ] determines, as a by-product, the minimum cost paths!
The argument provided at the end of the previous section (see Propo-

sition 5.2) shows once more that M∗
U [δ1 , δn ] can be obtained in both of

the above cases in one step as solution to the Schrödinger bridge prob-
lem with the same marginals δ1 and δn and prior transition matrix B.

VII. EXAMPLES

We present a simple academic example to illustrate our method.
Consider the graph in Fig. 1. We seek to transport a unit mass from
node 1 to node 9 in N = 3 and 4 steps. We add a self loop at node 9,
i.e., a99 = 1, to allow for transport paths with different step sizes.

The shortest path from node 1 to 9 is of length 3 and there are three
such paths, which are 1 − 2 − 7 − 9, 1 − 3 − 8 − 9 and 1 − 4 − 8 −
9. If we want to transport the mass with minimum number of steps,
we may end up using one of these three paths. This is not so robust.

4 We assume a self loop for each node with zero cost, i.e., Uxx = 0 for each
x ∈ X .



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 9, SEPTEMBER 2017 4681

On the other hand, if we apply the Schrödinger bridge framework with
the RB measure MRB as the prior, then we get a transport plan with
equal probabilities using all these three paths. The evolution of mass
distribution is given by

⎡

⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 1/3 1/3 1/3 0 0 0 0 0

0 0 0 0 0 0 1/3 2/3 0

0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎦
,

where the four rows of the matrix show the mass distribution at time
step t = 0, 1, 2, 3 respectively. As we can see, the mass spreads out
first and then goes to node 9. When we allow for more steps N = 4,
the mass spreads even more before reassembling at node 9, as shown
below

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 4/7 2/7 1/7 0 0 0 0 0

0 0 1/7 1/7 2/7 0 1/7 2/7 0

0 0 0 0 0 1/7 1/7 2/7 3/7

0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Now we change the graph by adding a cost on the edge (7, 9) so that
the weighted adjacency matrix B has b79 = 0.5 and coincides with the
adjacency matrix in the other entries. When N = 3 steps are allowed
to transport a unit mass from node 1 to node 9, the evolution of mass
distribution for the optimal transport plan is given by

⎡

⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 1/5 2/5 2/5 0 0 0 0 0

0 0 0 0 0 0 1/5 4/5 0

0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎦
.

The mass travels through paths 1 − 2 − 7 − 9, 1 − 3 − 8 − 9 and 1 −
4 − 8 − 9, but unlike the unweighted case, the transport plan doesn’t
take equal probability for these three paths Since we added a cost on
the edge (7, 9), the probability that the mass takes this path becomes
smaller. The plan does, however, assign equal probability to the two
minimum cost paths 1 − 3 − 8 − 9 and 1 − 4 − 8 − 9 in agreement
with Theorem 6.1. Suppose now we allow for more steps N = 4 and
change the B matrix as follows: for all existing links, the “energy” is

0.7 excepting that b79 = 0.5 and b99 = 0.9. Here, transporting on any
edge is expensive. It is, however, more expensive to transverse link
(7, 9) and less expensive to let the mass sit at the sink node 9. The
evolution of the mass distribution is now
⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 0.5042 0.3173 0.1785 0 0 0 0 0

0 0 0.1388 0.1388 0.2380 0 0.1275 0.3569 0

0 0 0 0 0 0.1388 0.0992 0.2776 0.4844

0 0 0 0 0 0 0 0 1.0000

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

We observe that almost one half of the mass (0.4844) reaches node 9 in
three steps, and then sits there, travelling on the three shortest paths 1 −
2 − 7 − 9, 1 − 3 − 8 − 9 and 1 − 4 − 8 − 9. As before, more mass
(0.1785) travels on the two minimum cost paths 1 − 3 − 8 − 9 and
1 − 4 − 8 − 9 in agreement with Theorem 6.1, whereas 0.1275 travels
on the more expensive, minimum length path 1 − 2 − 7 − 9. There are
now several other ways the mass can reach node 9 in 4 steps. Our robust
transportation plan takes full advantage of them, transporting more that
one half of the total mass along these alternative paths.

Finally, we consider the case where the graph is not strongly con-
nected deleting links (1, 4), (2, 7) and (9, 1) in Fig. 1. Again we want
to transport a unit mass from node 1 to node 9. In order to do this,
we add an artificial energy U0 to each non existing link as discussed
in Section VI. We display the results for N = 4 steps. When we take
U0 = 2, the evolution of mass is given by the first unnumbered equa-
tion shown at the botttom of the page. We can see that there is quite
a portion of mass traveling along virtual (non existing) edges. If we
increase the value to U0 = 8, then the mass evolution is given by the
second unnumbered equation shown at the botttom of this page. The
portion of mass traveling along non existing edges is negligible. Even-
tually, all the mass would be transported along feasible paths and in the
limit the mass evolution (flow) is given by the rows of

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 3/5 2/5 0 0 0 0 0 0

0 0 1/5 1/5 2/5 0 0 1/5 0

0 0 0 0 0 1/5 1/5 2/5 1/5

0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0.0415 0.4079 0.3416 0.0326 0.0462 0.0326 0.0326 0.0326 0.0326

0.0270 0.0349 0.1740 0.1477 0.2330 0.0603 0.0603 0.1614 0.1014

0.0116 0.0152 0.0199 0.0242 0.0163 0.1709 0.1709 0.2641 0.3069

0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0 0 0 0 0 0 0 0

0.0001 0.5995 0.4000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0000 0.0000 0.2000 0.1999 0.3994 0.0002 0.0002 0.1999 0.0004

0.0000 0.0000 0.0000 0.0001 0.0000 0.1999 0.1999 0.3995 0.2007

0 0 0 0 0 0 0 0 1.0000

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.
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VIII. CONCLUSION

In this technical note, we have proposed a novel approach to design
a robust transportation plan on a given directed graph. It is based on
a sort of generalized maximum entropy problem (Schrödinger bridge)
for measures on paths of the given network. Taking as prior measure
the Ruelle-Bowen-Parry random walker, the solution naturally tends to
spread the mass on all available routes joining the source and the sink.
Hence, the resulting transport appears robust with respect to links/nodes
failure. This approach can be adapted to graphs that are not strongly
connected, as well as to weighted graphs. In the latter case, it can be used
to effectively compromise between robustness and cost. Indeed, we
exhibit a robust transportation plan which assigns maximum probability
to minimum cost paths and therefore appears attractive when compared
with Optimal Mass Transportation approaches. Since the transport plan
is computed as a Schrödinger bridge, for which an efficient iterative
algorithm is available, our procedure also appears to be computationally
attractive.

In this technical note, in order to avoid obscuring the fundamental
ideas and to keep the technical note at a reasonable length, we have cho-
sen to present the essential features of our approach without touching
on a number of related fascinating topics. For instance, in this technical
note robustness of a transport plan simply means that, in case of failure
of certain links (e.g. due to congestion) or nodes, most of the mass
will anyway reach the target nodes. There are, however, other notions
of robustness in graph theory [1], [20], [21], [6], [22], some related to
entropic principles [23], [24].

When weights represent costs, our approach of Section VI compro-
mizing between minimization and robustness can be further compared
to Optimal Mass Transport (OMT) over graphs [25], where only cost
matters, and entropically regularized OMT-schemes [26], [27]. In dis-
crete OMT, however, the cost function is supposed to be given, although
computing it is typically an intractable problem for large networks.

Also, it is apparent that choosing the uniform as prior distribu-
tion in the maximum entropy problem such as in Section V we
obtain a spreading of trajectories over which the transport occurs
similar to the one in Optimal Mass Transport (OMT) on manifolds
with positive Ricci-Curbastro curvature [28]. On discrete spaces and
graphs, similar notions of curvature have been defined by Ollivier
[29], [30]. They capture robustness and connectedness, convexity of
entropy, and are related to the spectral gap [31], [32]. Their rele-
vance in applications is discussed in, e.g., [33], [21], [6], [22]. It is
therefore natural to investigate the precise connection between the
role of the prior in random evolutions such as those studied in this
technical note and deterministic evolution on discrete curved spaces.
These fascinating topics deserve investigation and will be addressed
elsewhere.
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