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Likelihood Analysis of Power Spectra and
Generalized Moment Problems
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Abstract—We develop an approach to the spectral esti-
mation that has been advocated by [A. Ferrante et al., “Time
and spectral domain relative entropy: A new approach
to multivariate spectral estimation,” IEEE Trans. Autom.
Control, vol. 57, no. 10, pp. 2561-2575, Oct. 2012.] and,
in the context of the scalar-valued covariance extension
problem, by [P. Enqvist and J. Karlsson, “Minimal itakura-
saito distance and covariance interpolation,” in Proc. 47th
IEEE Conf. Decision Control, 2008, pp. 137-142]. The aim
is to determine the power spectrum that is consistent with
given moments and minimizes the relative entropy between
the probability law of the underlying Gaussian stochastic
process to that of a prior. The approach is analogous to
the framework of earlier work by Byrnes, Georgiou, and
Lindquist and can also be viewed as a generalization of
the classical work by Burg and Jaynes on the maximum
entropy method. In this paper, we present a new fast
algorithm in the general case (i.e., for general Gaussian
priors) and show that for priors with a specific structure
the solution can be given in closed form.

Index Terms—Maximum likelihood estimation, spectral
analysis, method of moments.

|. INTRODUCTION

ONSIDER a stationary, vector-valued, discrete-time,
C zero-mean, Gaussian stochastic process {y(t) |t € Z},
where y(t) € R™, and Z, R are the sets of integers and re-
als, respectively. We denote the corresponding probability law
(on sample paths of the process) by P [3, Ch. 1] and the power
spectral density, which we assume exists, by ®(e'?), 6 € [0, 27).
Further, we assume that the stochastic process is nondetermin-
istic in that the entropy rate is finite

/ log det ®(e?)df < oc. (1)
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This is a fairly general class that includes, e.g., all stochas-
tic processes with nonsingular rational power spectral densi-
ties. We study the basic problem to estimate ® from sample-
statistics of {y(t)}. Following [1], we view this problem in
a large-deviations framework where a prior law Q is avail-
able, and where this law corresponds to a power spectral den-
sity ¥ with finite entropy rate. We postulate that available
sample-statistics of the process are not consistent with the prior
law Q, and therefore, we seek the law P that is consistent
with these statistics and is the closest such law to the prior
in the sense of large deviations, which amounts to P being
such that the Kullback-Leibler (KL) divergence [4] between
‘P and Q is minimal. Our approximation problem was consid-
ered in [2] for the special case of comparing the Itakura—Saito
distance between scalar-valued time series since, in fact, the
Itakura—Saito distance between the corresponding power spec-
tra is precisely the KL-divergence between the two laws [3,
Ch. 10], [5]-[7].

The theme of the approach, namely, to obtain power spectra
that are consistent with empirical statistics and optimal with
respect to a suitable criterion, is a standard recurring theme in
works going back to Burg [8]. The problem to obtain empirical
statistics from data is discussed in [9]-[11] and will not be ad-
dressed in this paper. Statistics represent (generalized) moment
constraints and, in the past 30 years, a rich theory emerged that
made contact with analytic function theory and the classical
moment problem, see [12]-[38] and the references therein. A
detailed and rigorous exposition of related topics and ideas in
signal processing is given in [39].

Initially, following Burg, early researcher works focused on
the entropy rate (1) as such a suitable functional to analyze
geophysical time series. This eventually became dominant in
speech processing under the acronym LPC (Linear Predic-
tive Coding) [40]. The entropy rate relates to the variance of
one-step-ahead linear prediction and the problem reduces to
solving a linear set of equations, the normal equations [41].
In the context of autoregressive modeling these are solved by
the Levinson algorithm. It soon became apparent that Burg’s
method was a special case of the Itakura—Saito autocorrelation
approach, which in turn amounted to minimization of the dis-
crimination information between a nominal model and a prior
in the sense of the KL-divergence between their probability
laws.

Subsequent developments viewed spectral estimation as an
inverse problem to achieve consistency with estimated statis-
tics. Initial motivation was provided by a question of R.E.
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Kalman to identify spectra of low complexity [42]. Early results
were obtained using topological and homotopy methods and
the complete parametrization of solutions with generic minimal
degree was formulated in steps in [13], [43], and [44]. Subse-
quently, it was discovered that optimizers of weighted entropy-
like functionals (KL-divergence between power spectra as well
as various types of distance to priors [6], [7]) had a particu-
larly nice structure; they were rational and had small dimension
[16]-[34], [45]-[47]. In fact, it turned out that suitably specified
weighted entropy functionals contained the precise degrees of
freedom that were needed to efficiently parametrize and con-
struct these generic minimal degree solutions [16], [18]-[20],
[28]. The mathematical underpinnings of this latter theory were
largely based on optimization and duality, and closed the circle
to once again connect with the KL-divergence [22]. This work
is similar in spirit and technique but differs substantially in the
choice of criterion and interpretation.

More specifically, following [1], [2], we consider the KL-
divergence between Gaussian probability laws of stochastic
processes or, equivalently, the Itakura—Saito distance between
their power spectra. The interpretation as well as the structure
of optimizers have subtle differences from earlier constructions.
For one thing, the use of the KL-divergence in this way has
a very natural and appealing interpretation: The sought power
spectra represent the most likely statistical signature on the path
space of a time series that is in agreement with the estimated
sample statistics (see Section II-A). The structure of solutions
retains many of the attractive features of earlier works. In partic-
ular, it ensures reasonably good bounds on the dimensionality
of modeling filters (see Remark 5).

A comparison of the contributions of our paper to those in
[1] is in order. The authors of [1] consider a pair of dual opti-
mization problems, which we present in Section VI. Numerical
complications occur in the approach of [1] due to a redundancy
in the dual problem. One of the main contributions of this paper
is to remove this redundancy by expressing the dual functional
in a natural coordinate system that is based on our results in
Section III. The corresponding reformulation of the dual prob-
lem leads to the fast algorithm presented in Section IV. A second
main contribution is to provide a solution in closed form for cer-
tain choices of prior. These are analogous to the autoregressive
models that arise in the case of trigonometric moment problems
and all-pole priors. The results are presented for multivariable
time series and moment problems for the corresponding matri-
cial power spectra.

Below, in Section II, we begin by discussing in some detail
the motivation for choosing the particular functional to guide
identifying suitable power spectra that reproduce sample statis-
tics. We then explain how sample statistics impose moment
constraints on sought power spectra. In Section III, we present
a geometric framework for input-to-state filters that provides
basic tools for building a fast algorithm to solve the basic esti-
mation problem. Section IV gives the problem formulation and
presents the main results. Section V provides a simple example
and connections with the earlier literature. Proofs of the main
results are given in Sections VI-VIIIL. In particular, Section VII
is devoted to deriving the fast algorithm and Section VIII to

deriving the closed-form solution, respectively. In the conclud-
ing Section IX we provide some final thoughts.

Il. PRELIMINARIES
A. Likelihood Framework

The rationale for the framework adopted herein has been used
to justify maximum likelihood methods [48]-[50] and comple-
ments the original reasoning by E.T. Jaynes [51]-[53]. It can
be presented as follows. If sample paths of a time series are
drawn out of the given prior Q, they have a small probabil-
ity of giving rise to sample statistics that are not consistent
with Q. If that were to happen, and thereby, the sample paths
represent a rare event, i.e., a departure from what is expected,
one is motivated to seek out of the many possible sample-path
distributions that are consistent with the observed statistics the
one that is most likely. It is known that, asymptotically, the
probability of rare events that suggest an (empirical) distribu-
tion P depends exponentially on the KL-divergence between
the prior Q and P [54], [55]. There exists a vast literature
on applications of such a large deviations viewpoint to system
identification, primarily with emphasis on parameter estima-
tions and stochastic approximation, see e.g., [56] and references
therein.

The KL-divergence between two laws P and Q is

D(P||Q) = lim

N o0 mD(PH*NW] 1Ql-~vn) (@

where P|_y n) denotes the restriction of P to the subset of
random variables

{y(fN)v cee 7y(71)7y(0)7y(1)a cee ay(N)}

and similarly for Q|;_y y1. In turn, the KL-divergence between
the finite-dimensional probability densities p(y(—N),...,
y(N)) and q(y(—=N),...,y(N)), corresponding to P
l—v.~n and Qf(_y w1, is

/st\"ﬂ plog(q/p) dy(=N)--- dy(N).

Provided both laws represent purely nondeterministic pro-
cesses, as is assumed herein, the limit in (2) exists. Using
Szego-Wiener-Masani’s formula (see e.g., [57, Lemma 5.1],
[58, formula (E.12)], [59, Th. 11.3.5]), D(P||Q) can be ex-
pressed in terms of the corresponding power spectral densities as
follows:

DP9 -4 [
— D(®[ V) 3)

™

tr (PU~" —log @V~ — 1) df

where tr(-) denotes trace. Since P is completely specified by
® we only need to determine ®, based of course on empiri-
cal statistics. Thus, we are interested in determining a power
spectral density ® that is consistent with given statistics and
minimizes D(®||¥) for a given power spectrum ¥. The pre-
cise formulation of the problem requires expressing statistics
in terms of power spectra, which is done next. The problem is
stated precisely in Section I'V.
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Fig. 1. Bank of filters.

B. Filter Banks and Statistics

Time-series represent samples of a stochastic process, and
available statistics consist of sample covariances. We now ex-
plain the setting and nature of the covariance data.

In time-series analysis as well as in antenna array process-
ing it is customary to assume that recorded data are scaled
by a frequency-dependent vector/matrix-valued gain G(e')
where the frequency 6 corresponds to time, space, angle, or
even a vector-valued combination, see e.g., [39, Ch. 6], [60],
[61], [27, Sec. II-B]. For instance, a window of observations
{y(k), y(k —1),..., y(k — n)} of a time-series can be thought
as the vectorial output of a “tapped delay line” represented by
the vector-valued Fourier vector [1 e 0 . eint ]l, i.e., the
Fourier vector is the transfer function of the tapped delay line.
Likewise, in the array processing literature, a model of an equis-
paced array of n 4+ 1 omnidirectional sensors registering signals
that are emitted from afar is again the same Fourier vector [39,
Sec. VI]. Such a vector-valued gain G, for general arrays, is
often referred to as the array manifold and can be thought as a
bank of filters that capture the relative dependence of the sen-
sor outputs to signals from afar (see Fig. 1). Often, for a large
equispaced array of sensors, a smaller output is selected that cor-
responds to GG being a linear combination of Fourier components
(beamspace techniques)

G’y =m| @)

ef'i(nfl)()

for a suitable matrix M. Other times, processing of time series
or sensor-array data involves a suitably designed bank of filters
Gk(em), k=1,2,...,n,

in which case

G(e?) = [Gi(e) Ga(e?), ..., Gu(e?)]

with {y(¢)} the common input and general dynamics, see e.g.
[21], [62]. The filters may also encapsulate attenuation from the
coordinate 6 of “sources” generating {y(¢)} to the respective
outputs of sensor array (cf. [27, Sec. II]). In all these cases, it is
natural to estimate covariance of the vectorial time series

z(t) = [ (t) za(t), ..., xn(t)]/.

This is typically the form of available statistics that we consider
henceforth.

We assume that G is a square-integrable, stable n x m trans-
fer function. Then, the n-dimensional output process {z(t) | t €
7} assumes a representation as a stochastic integral

x(t) :/ e MGy W(e?) diw(6)
o —_———
dj(6)
where @ is a Wiener process such that E{dwdw*} = Idf /2.
Here, I is the identity matrix, E{ } is the expectation oper-
ator, and W is a (minimum-phase) spectral factor of P, i.e.,
W (e YW (e!?)* = ®(e'?), and therefore, dj is the stochastic
Fourier transform of y; see e.g., [59, Ch. 3]. It follows that the
n x n covariance of the (zero-mean) vectorial output z(¢) is

= B{z()a(t)} = / GOG" )

where, for economy of notation, we have suppressed the limits
of integration and the normalized Lebesgue measure df /27, i.e.,
J denotes ffﬂ %. The value ¥ represents a matricial moment
constraint on . The problem that we consider below is, given
G and Y, to determine suitable & satisfying (5).

C. Input-to-State Filters

A special case of a filter bank of great interest is when this
represents an input-to-state (stable) linear system

x(t)=Ax(t—1)+ By(t), t€ Z (6)
where A € R"*" and B € R"*™. In that case, the transfer
function of the filter bank is

G(z) = 2(2I — A)'B. (7

Throughout, we assume that all the eigenvalues of A are located
in the open unit disc. Then

Giz)=I—-2'A)"'B
=B+ ABz ' + A’Bz? + A*Bz7 + ..
for all z such that |z| > 1. Throughout, to insure that the com-

plete state space is being reached and to avoid trivialities we
assume that (A, B) is a reachable pair, i.e.

rank [B, AB,--- A" 'B] =n

and that B is full column rank. The use of such filter banks
is the basis of a tunable method of spectral analysis that was
introduced in [21] and is referred to as THREE.

The input-to-state structure in (7) encompasses Fourier vec-

tors where Gy, (z) := 21k =1,2,...,n, in that case
(00 --- 0 0] (17
10 --- 0 O 0
A=|01 -~ 0 0 , B=|: 8)
|00 -~ 1 0] 10

and the n x n state covariance is Toeplitz, i.e.

%= E{z(t)e(t)} =[]y, ©)
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where ¢;, := E{y(t + k)y(t)}. Identifying a power spectral den-
sity @ thatis consistent with 3 and the process model is precisely
the problem that underlies subspace identification [59] and co-
incides with the classical “covariance extension” or “trigono-
metric moment” problem.

On the other hand, first-order filters G, (2) := =, k=
1,2,...,n, (with p; # py for k # ¢) lead to

P1 1
b2

—_

(10)

Pn 1

and a state covariance matrix X that has the structure of a Pick
matrix; see [22].

Finally, it is also seen that (7) is of the form (4) where
M =[B, AB, ...]. This matrix is finite when A is nilpotent
corresponding to “moving average” dynamics.

Ill. GEOMETRY OF INPUT-TO-STATE FILTERS

The (rational) input-to-state structure of G(z) in (7) imposes
structural algebraic constraints on the covariance of z(t). In
addition to positive definiteness, X is completely characterized
by belonging to the range of the integral operator

F:<I>|—>Z:/G<I>G*. (11)

This is a linear operator that takes m x m integrable matrix-

valued functions ® on the unit circle to symmetric matrices
3.

The range of I" admits an algebraic characterization. In fact,

it is shown in [63] that a symmetric n X n matrix ¥ belongs to
range(T") if and only if

Y- AYA =BH + H'B’ (12)
for some m x n matrix H. Equivalently,
Y- A¥A'B 0 B
rank = rank (13)
B’ 0 B0

where 0 denotes a zero-matrix of appropriate size, is necessary
and sufficient for solvability of (12). Moreover, there is a co-
ercive, continuous spectral density ® satisfying the generalized
moment condition (5) if and only if ¥ is positive definite! and
satisfies (12) or, the equivalent condition (13).

The adjoint operator I'* maps symmetric matrices intom X m
integrable Hermitian matrix-valued functions on the unit circle,
namely

' : A— G'AG.

The inner product in these two spaces, symmetric matrices
and integrable Hermitian matrix-valued funct f ions on the unit

IThe case where ¥ is only nonnegative definite is discussed fully in [64]. In
that case the spectral content may correspond to a singular spectral measure.

circle, relate as

(A, YD) :=tr(AY)
:tr/G*AGfI)

=: (G"AG, D).
We also consider the operator
©: H—A=BH+HDB
which maps R™*" to symmetric n X n matrices and its adjoint
0* : A — 2B'A. (14)

We are interested in nonredundant representations of range(I")
and range(I'*) by identifying the minimal degrees of freedom
in suitable matrix representations. The first proposition deals
with range(T").
Proposition 1: The map
Y H=(B'B)'[B(X - A%A) —

Y B/ (152)

where Y is the symmetric solution of the Lyapunov equation
(B'B)YY +Y(B'B) = B'(X — AXA"B (15b)

establishes a bijective correspondence between % € range(T)
and H € range(©*).
Proof: Set A := % — AXA'. Since we have X € range(T")
A=BH+ H'B (16)

can be solved for H € R™*" and A = O(H). We seek a par-
ticular solution of minimal Frobenius norm

|H || = /w(HH).

Then, this solution will be in range(©*), a fact that will be
verified below. The Lagrangian of the problem is

tr(HH') + 2tr(ABH) — tr(AA)

where A = A’ is the symmetric matrix-valued Lagrange multi-
plier. It follows that the unique optimal solution is of the form

H=DBA (17)

and therefore, H € range(©*) in view (14). Then, HB =
B'AB =:Y is symmetric. Further, it satisfies the Lyapunov

equation
(B'B)YY +Y(B'B) = B'AB (18)

as can be seen by premultiplying (16) by B’ and postmultiplying
by B. Since B has full column rank by assumption, the eigen-
values of B’B are positive and (18) has a unique solution Y. By

premultiplying (16) by B’ we can now solve for
H=(B'B)"(BA-YB). (19)

Finally, suppose that (12) has two solutions H; and H; in
range(©*). Then

H, — H; € ker © = (range(©*))"

and hence H| = Hs, proving uniqueness.
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The essence is that (12) has many solutions in general when
m > 1. In that case, © has a nontrivial null space, and Proposi-
tion 1 provides the solution to (12) of minimal Frobenius norm.

The next proposition deals with range(T™*). Since the orthog-
onal complement of the range of I' is the null space of I'*,
elements in range(I'*) can always be written in the form G*AG
where A € range(T").

Proposition 2: The map

G*AG — X = MB (20a)

where M is the unique solution of the Lyapunov equation

M=AMA+A (20b)

establishes a bijective correspondence between G*AG €
range(I'™) and X € range(©*).

Proof: We first note that the dimension of range(I"*), which
coincides with the dimension of range(I"), is equal to the di-
mension of range(©*) by Proposition 1. Since M is symmetric,
it also follows that X’ = B'M € range(©*). Thus, in order to
establish that the correspondence G*AG — X' is a bijection, it
suffices to prove that X’ = 0 only when A = 0. To see this note
that, since AG(z) = z(G(z) — B), (12) yields

G'AG =G*MG -G AMAG

=G"MG — |G — B]"M[G — B] 21
=G X+ X'Gy
with G given
Go(2) =G(z) —$B=1B+A(zI - A)"'B
(22)

=1B+ABz '+ A*Bz? + A’Bz " + ...

But, since A € range(I"), G*AG = 0 only when A = 0. Thus,
X = 0 implies that A = 0 and this completes the proof. |

V. MAIN RESULTS

We are now in a position to formulate the main problem that
we consider. As noted earlier this problem was first formulated
and studied in [1].

Problem 1: Given an m X m matrix-valued power spectral
density W, and given the parameters A, B of the input-to-state
filter (filter bank) in (6) and the covariance X of the state process
x(t), determine

® € argmin{D(®||¥) | such that (5) holds}.

We provide a solution to this problem under fairly general

conditions on the prior spectral density W, namely,
i) W is coersive on the unit circle, and
i) W(e'”)~! is Lipschitz continuous in 6 € [—, 7).

In the theorem below we describe the structure of solutions.
The expressions we give provide an alternative to those in [1]
and require fewer variables in general. This nonredundant struc-
ture of solutions is analogous to the reduction in the number
of variables enabling the fast algorithms for Kalman filtering
in [65].

As in our previous work on the moment problem, e.g., [18],
[20], [21], solving Problem 1 reduces to convex optimization.
With G given by (22), the optimization criterion is the strictly
convex functional

J(X) = tr{(HX + X'H')
(23)
- /log (T + Gy X + X’Go)}

defined on the open set X of matrices X € R"*" such that
X' € range(©*), i.e., B'X is symmetric, and

Q(2) == U(2)" + Go(2)"X + X'Go(2) 24

is positive definite at each point z = ¢’ on the unit circle.

Theorem 3: Let 3 be a symmetric, positive definite n x n
matrix in the range of I', and let H be given by (15). Suppose
that the prior spectral density W satisfies conditions (i and ii)
above. Then Problem 1 has the unique solution

o=0Q! (25a)

where

Q=U"'"4+GX+X'G (25b)
for some X € Xy

The matrix X is the unique minimizer of the functional J(X),
and it is also the unique solution of the stationarity condition

/ (U + Gy X + X'Gy) Gy = H. (26)

Remark 1: In particular, conditions (i and ii) on the prior are
satisfied by power spectra ¥ that are rational and have nonsin-
gular determinants on the unit circle. In the case where U is
rational, the solution to Problem 1 is also rational, and thereby
corresponds in general to an autoregressive moving-average
(ARMA) model. On the other hand, ¥ can equally well be
taken to be nonrational as this often arises in physical problems,
e.g., when representing various types of scattering interference.
|

The solution provided in the theorem can be obtained numer-
ically by a Newton method to compute the minimizer of J. To
this end, we compute the gradient

10J
——— =H-— Gy 27
20X /Q Gy (27a)
where @ is given by (24), and the Hessian
1
5H(X) = /GOQ’QG(*) > 0. (27b)

The positivity of the Hessian indeed shows that the functional
J is strictly convex. A possible starting point is X = 0.

Remark 2: Unlike the situation in [1], we have explicit ex-
pressions (27) for the Hessian and the gradient in the param-
eter space X, . Therefore, we can apply Newton’s method di-
rectly, whereas in [1, Sec. VI-A] the search direction needs
to be determined implicitely to keep the iteration point in the
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space range(I"). Moreover, the variable X in the above theo-
rem and expressions (27) belongs to X, , which has dimension
nm — $(m? —m), since X’ € range(©*). This should be com-
pared with the $n(n + 1) variables in the dual functional (34)
used in [1]. This is the reason for referring to our procedure as
a fast algorithm. [ ]

In the next theorem, we consider the special case where the
prior ¥ has the form ¥ = (G*A¢G)~!. Then the solution to
Problem 1 can be given in closed form.

Theorem 4: Let X be a positive definite n x n matrix in the
range of I, and suppose that the prior ¥ is given by

U= (G*AG) L. (28)
Then Problem 1 has the unique solution
b = (a*Aa)™ (29)

where
A= 'B(BE'B)'Bx!

and does not depend on \,.

The proofs of Theorems 3 and 4 are given in Sections VII and
VIII, respectively.

Remark 3: It is interesting to point out that the solution P to
Problem 1 shares the same zeros as the prior . To see this note
that at any value on the complex plane where ¥ becomes singu-
lar, Q becomes infinity along suitable direction, and therefore,
d becomes singular as well. This property is also present in so-
lutions to moment problems that minimize alternative entropy
functionals and has been explored in our earlier work. It is quite
instructive to consider Problem 1 in the scalar case (m = 1).
Then the optimal solution takes the form

d(e’) = ()
1+ 2W(eif)Re{Gy(e?)* X}

(30)

Any zeros of the prior W will, therefore, be zeros also of ®.
However, in the special case of rational ¥, the dimension of
modeling filters corresponding to P is enlarged as compared
with alternative formulations in our earlier works, e.g., [20],
[21]. |

Remark 4: Since the closed-form solution (29) does not de-
pend on Ay, we may in particular choose Ay = I. Then, in
the important case when G, (2) := 2 1k =1,2,...,n, we
have U = I, leading to an autoregressive (maximum-entropy)
model. |

Remark 5: Going back to [42], the original motivation was to
identify and characterize solutions to moment problems having
low degree. It is instructive to consider the scalar trigonometric
moment problem with data (8) and (9), that is, the problem
to match the n covariance samples {cg, ¢1,...,¢,-1} with a
rational power spectrum @, in the sense that

ck:/eikeéforkzo, 1,...,n—1

holds, or, equivalently, (5) holds for the n x n covariance matrix
3. There is a generic set of covariance samples (i.e., a set with an
open interior) for which the minimal degree solution has spectral

factors of degree n — 1 [43]. (For a more general result of this
type; see [66, Th. 2.2].) The family of all power spectra with the
same dimensionality can be parametrized by a set of arbitrarily
selected n — 1 spectral zeros (i.e., zeros of the corresponding
minimum-phase spectral factor)—existence of power spectra
corresponding to each such choice was shown in [13], [43] and
uniqueness was shown in [44]. Likewise, in the case of m-
vector valued time series where an n X n covariance matrix X
is available, the family of generically minimal degree solutions
has spectral factors of degree n — m, parametrized accordingly
for a choice of spectral zeros [67, Sec. IV and Corollary 2]).
On the other hand, a direct approach of constructing solutions
based on the THREE framework gives a family of solutions
with spectral factors of degree n [27, Sec. IV-B] (instead of
the generic minimum n — m in [67]) likewise parametrized
by a suitable choice of spectral zeros. The current framework
allows constructing solutions (29) with spectral factors of degree
n only when the zero-structure is trivial (i.e., identical to the
eigenvalues of the matrix A), while in general the best bound
one can provide from (25) for the dimension of spectral factors
isn+ %x(degree of U); cf. [1, Sec. IV]. |

V. SIMPLE EXAMPLE

In this example, we consider as data a particular matrix %
that originates as the state covariance of a filter (6). Evidently,
there is a plethora of power spectra @ that are all solutions to
the moment equation (5), i.e.

Y= /G@G*.

In the absence of particular knowledge about the power spec-
trum of the underlying process one would normally assume the
uniform prior leading to the “maximum entropy” solution. In-
stead, if one begins with a reasonably good prior, the power
spectrum that is closest and agrees with the particular > seems
a more logical alternative. The theory in this paper and in the
papers [1], [2] deal precisely with this situation. Thus, in this
section we present and compare the two power spectra, one
labeled & that is based on a prior U with low-pass character
and the maximum entropy solution ®y;r. The covariance X is
intentionally chosen to correspond to a power spectrum that has
a triple zero at = 7. As a result, although both power spectra
® and d\ g are consistent with the covariance data, the former
is closer to the low pass character of the generating spectrum
by virtue of a similar character of the prior. The point of the
example is not compare the “performance” of the two methods
since either matches the moments, but rather their dramatically
different behavior and to suggest how this can be influenced by
the availability of a prior.

We consider the case where X is a Toeplitz matrix as given
in (9) with covariance lags ¢ := E{y(t + k)y(t)} of a scalar
stationary process y. Then G is given by (4) with M = I. More-
over, A and B are given by (8), and hence B'(X — AYA) =
(co,c1,-..,cn—1)and B'B = 1. Consequently, it follows from
(18) that Y = J¢ and from (19) that H = ($cg,¢1,...,¢1).
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Then, setting X' := (g0, ¢1,--+,¢n—1), We have

n—1

> o

k=—(n-1)

HX—I—X/H/ = <c7q> =

and

n—1

Q) =w() ! + Z qre™?. (3la)
k=—(n-1)
Problem 1 then amounts to minimizing
I(q) = (¢, q) */logQ (31b)

over all ¢ := (qo,q1,...,qn_1) such that Q(¢’®) > 0 for all 6.
In this notation the stationarity condition (26) becomes

T do
/ 62k9Q717 = Ck,

Remark 6: Tt is interesting to compare the functional J(q)
and the form of solution above to those in the framework of,
e.g., [18], [20], [21]. There, the corresponding functional is
J(q) = (¢,q) — [ ¥log Q instead of (31b), with

.o,n—1. (31c)

n—1
Q(eie) _ Z qkeik:G
k=—(n—-1)
and moment conditions fe”“e%% =c¢,k=0,1,...,n—1,

instead of (31). We see that the present framework is analogous
to the maximum-entropy solution in these earlier works except
for the absence of W(e?)~! in the corresponding expression
for @), which is traded off with the direct presence of ¥ in
functional and the stationarity conditions. The optimal solution
is ®(e) = W(e?) /> qre’™® in this case instead of (') =
U(e?)/1 4+ U(e?) > gre’™ in our present framework. [ |

We proceed with our numerical example. To this end, we
select

D(z) =(z+ 1)z + P (32)
=23 462241521 +20+ 152+ 622 + 23

that corresponds to a moving average filter with transfer func-
tion W(z) =1+ 32z + 3272 + 273, In Fig. 2, we first com-
pare the “true” (or, rather, reference) power spectral den-
sity @ in (32), evaluated at z = ¢!’ for § € [0, 7], with a
prior ¥ = 10(1 + 0.9 cos(#)(1 + 0.9 cos(f))?) that is selected
to have a low pass characteristic. We seek to match eight mo-
ments, namely, ¢ = (20, 15, 6, 1, 0, 0, 0, 0). Next, in Fig. 3,
we compare ¢ with the optimal solution d to Problem 1 for
the given V. Finally, in Fig. 4, we compare ® with the solution
corresponding to the choice ¥ = 1. The power spectral density
obtained in this way, using either the Newton algorithm based
on Theorem 3 or the closed-form expression in Theorem 4, is
an all-pole power spectrum that agrees with the given moments,
i.e., an autoregressive (AR) model. In contrast, 1) corresponds
to an ARMA model.

- : true spectrum
== : prior

Fig. 2. Reference spectrum (solid line) versus prior (dashed).

- : true spectrum
== optimal

o 0.5 1 1.5 2 25 3

Fig. 3. Reference spectrum (solid line) versus optimal (dashed).

It is interesting to observe the oscillatory character of the all-
pole power spectral density. In contrast, the use of a prior with
a low pass character alleviates the oscillations (see Fig. 3).

Remark 7: We stress again that the “true” spectral density
plays a subordinate role in this example. Indeed, if instead the
maximum-entropy solution in Fig. 4 was the “true” spectral
density, it would produce exactly the same covariance data as
used in the example. In that case, the ARMA solution in Fig. 3,
constructed with the now misleading prior, would entirely miss
the ripples in the true spectrum. On the other hand, if we were
told that the data originates from an all-pole spectrum, and
thereby used an antireflection (AR) spectrum as a prior instead,
the solution to the optimization problem would produce the
unique AR power spetrum shown in Fig. 4, which is consistent
with the given covariance data.

VI. DUAL PROBLEM AND THE FORM OF THE MINIMIZER

Suppose that 3 belongs to the range of the operator I, defined
by (11). Then, Problem 1 amounts to minimizing

1
D(®||¥) = 5 /tr (@¥ ! —log®+1log¥ — 1)  (33a)
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Fig. 4. Reference spectrum (solid line) versus ME spectrum (dashed).

over all spectral densities ® satisfying the moment condition

5 - / oG, (33b)

Proceeding along the lines of [22], it was shown in [1] that
the dual of (33) is the problem to minimize

J(A) :tr{AE—/logQ}

over all real, symmetric n X n matrices A in the range of I such
that

(34a)

Q(z) :=U(2) ' + G(2)"AG(2)

is positive on the unit circle. For the convenience of the reader,
we also review some steps in the proof in our present notation.
We denote the class of feasible A by £, i.e.

L, ={A crange(T) | A" = A; Q(e') > 0, VO}.
We note in passing that the rationality of G is not needed
at this point; in fact, an interesting example with G(e'?) =
[1, €, ¢V20)' is motivated in the context of sensor array pro-

cessing in [27].
The Lagrangian for the problem above becomes

(34b)

L(®,A) = D(®|| V) +tr {A (/ GOG* — 2)}

=—tr(AX) + [ r {®(V ' + G*AG)

—log® +1logW¥ — I}

where A is a symmetric 7 X n matrix of Lagrange multipliers.
Since tr {A (f GOG* — Z)} is simply the inner product of A
with elements in the range of I', we can restrict A to the same
space, and therefore, assume that

A € range(T).

The function ® — L(®, A) is strictly convex for each A such
that (), defined by (34b), is positive semidefinite on the unit

circle. If ) fails to be positive semidefinite, L(P, A) can be
made arbitrarily small for some &, and hence such a A is not a
candidate in the dual problem. Hence, we may restrict A to the
class L . Setting the directional derivative

SL(®,A;6®) = [ w{(T + G'AG — & ')5d)}

equal to zero, we obtain

O = (U +GAG)! (35)

which inserted into the Lagrangian yields the dual functional

p(A) = —tr(AY)

+ /tr{log(\I!*1 + G*AG) +log ¥}

=-JA)+ /trlog .

Since this dual functional should be maximized, the dual prob-
lem is equivalent to minimizing J overall A € £ . It was shown
in [1] that this problem has a unique solution. This problem dif-
fers from the one in [22] in that the prior ¥ in [22] does not
occur in () but instead multiplies log (). Unlike the situation in
[22], tr(AX) might be negative in the present setting that com-
plicates the analysis somewhat. Nevertheless, the functional J
is bounded from below, as stated next, a fact that will be used in
Section VII.

Lemma 5: If ¥ belongs to the range of T', then the functional
J is bounded from below.

Proof: The condition that - belongs to the range of I" ensures
the existence of a spectral density @ satisfying (5). Then, in
view of the construction above, p(A) < L(®g, A) = D (P || T)
or equivalently

J(A) > /trlog U —D(PP)
which establishes the required bound.

VIl. REDUX ON THE DUAL PROBLEM: THE FAST ALGORITHM

Next we turn to the proof of Theorem 3. One of the difficulties
dealing with the dual problem in Section VIis the redundancy in-
troduced by the integral operator I', which has the consequence
that only the part of A belonging to the range of I' affects the
value of J(A). To remove this redundancy we reformulate the
problem by defining R"*"* matrix-valued variable

X =MB (36)
where M is the unique solution of the Lyapunov equation
M=AMA+A (37)

and A € range(T") is the matrix-valued variable in the dual prob-
lem in Section VI. By Proposition 2, there is a one—one corre-
spondence between A and X. In view of (21)

G(2)'AG(z) = Go(2)"X + X'Gy(2)
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where G| is given by (22). Therefore, (34b) takes the form
Q(2) =U(2) +Go(2)" X + X'Gy(2).
Moreover, in view of (37) and (12)
tr(AY) = r(MX) — tr(M AT A')

(38)

=tr(MBH) + tw(B'MH')
=uw(HX + X'H).

Consequently, the dual functional can be expressed in terms of
X to obtain the functional J(X) : X — R defined by (23),
where X, is a convex set.

To prove that the functional (23) has a unique minimizer
in X, we could now appeal to the proof in [1] that the dual
problem in Section VI has a unique solution. However, since
now the redundancy in the dual problem has been removed, we
can offer a more straightforward alternative proof. We denote
by X, the closure of X, .

Lemma 6: Suppose that > belongs to the range of I'. Then
any nonempty sublevel set

{(XeX, [J(X)<r} (39)

is bounded.

Proof: Let X € X, be arbitrary, and define A := || X||. We
want to show that X cannot remain in the level set (39) as
A — oo. To this end, it is no restriction to assume that A > Ay >
0. Next set X := A 'X and Q; := (A 0)~' + G5 X + X'Gy.
Then

J(X) zvk—logk—tr/logéx

where 7 := tr(HX + X'H’), and where Q, depends on A but
is bounded for A > A¢. First suppose v > 0. Then comparing
linear and logarithmic growth, J(X) — oo as A — oo, which
contradicts J(X) < r. Next, suppose that v < 0. Then J(X
—00 as A — oo, which contradicts Lemma 5, since J(X) =
J(L(A)B) = J(A), where L(A) is the unique solution of the
Lyapunov equation (37). Hence, the sublevel set (39) is bounded
as claimed.

Lemma 7: The functional J : X, — R U {oc} has a unique
minimizer X in X,

Proof: We first prove that J, which is continuous on X, ,
can be extended as a lower semicontinuous function J : X, —
R U {o0}. To this end, let (X} ) be a sequence converging to X
in L., norm, and let (Qy,) and @ be the corresponding functions
(24), which are continuous on the compact interval [—, 7], and
hence uniformly continuous. Consequently, there is a bound
such that, for § € [—7, 7], Q(e?) < &, and Q. (e'?) < & for all
k, and hence, by Fatou’s lemma

—/log (g) < 1igrii£f—/log (%)

since @ — @ pointwise. Consequently, J(X) < liminfj_ .,
J(X)), which shows that that J, extended to the boundary X', , is
lower semicontinuous. Therefore, it follows from Lemma 6 that
the sublevel set (39) is closed and hence bounded. Consequently,

) —

by Weierstrass’ Theorem, J has a minimum XinX , which must
be unique by strict convexity.

It remains to prove that X is not the boundary 0X. To this
end, following [16], [18], consider the directional derivative

0J(X,6X) =tr { (HSX +0X'H')
= /Q’l (G5oX + 5X’Go)}

—tr{(H5X+5X’H’) /QlaQ}.

Now, for any X € X, and X € 0X, take 6X = X — X
and X, = X + AdX and, correspondently, form 6Q = Q(z) —
Q(2) and Q,(z) = Q(2) + 1dQ;(z), where det Q(e'?) for
some 0y € [—m,w]. Then

0J(X;,—6X) = —tr(H6X + 6X'H') +/fx

where f; is the scalar function
Fule”) = u{Qu(e"”)T0Q(e)}.

Taking the derivative with respect to A we have
d 1 10\ * i0\— i
(") = o {6Q(e) Qu(e"") *6Q(e)} 2 0

and consequently f;(e’?) is a monotonically nondecreasing
function of A for all @ € [—m, 7]. Therefore, as 1 — 0, f tends
pointwise to

fo=u{@(Q-Q)}=u{Q7'Q -1}
=tr{Q'Q} —n.

If [ f, would tend to a finite value as A — 0, (f) would be
a Cauchy sequence in L!'(—7,7) and hence have a limit in
L' (-7, 7) equal almost everywhere to f. However, since there
isad > 0 such that Q(e'?) > §

[z [u@?)-n

which is infinite by Proposition 10. Consequently
§J(X;, X —X) —»o00 asi—0

so there could be no minimum in X. This concludes the proof.

Since the unique minimizer X belongs to the interior X', , the
gradient (27a) is zero there. This proves (26). Then, by (35), the
optimal solution of Problem 1 is given by (25). This concludes
the proof of Theorem 3.

VIIl. CLOSED-FORM SOLUTION FOR A SPECIAL CASE
OF PRIOR

Next we prove Theorem 4, and hence we now consider the
special case where the prior power spectral density is of the
particular form

U = (G(2)"AG(2)) L.
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Then the matrix function @) defined by (34b) is given by
Q(z) = G(2)" (Ao + M)G(2)

which must be positive on the unit circle and hence, by Lemma

12 there exists a constant matrix C' such that
Q(z) = G(z)"CC'G(2). (40)

We first change the dual functional (34a) by adding the con-
stant tr(ApX), and compute

tr((A+ Ag)Y) = tr/(A + Ay)GOG*

:tr/th

= tr/C’G(bG*C’

(41)

=uC'sC
where @ satisfies (5). In view of (40), the modified functional
becomes
J(C) == J(A) + trAy 2
(42)
=tr (C’ZC — /1og G*CC’G)

which is now a function of C. Recall the following result from
Wiener-Masani-Helson-Lowdenslager.

Proposition 8: 1If F(z) is a square outer matrix-valued func-
tion, then

/1og det FF* = log det F(0)F(0)*".

Proof: The result follows by Jensen’s formula after noting
that f = det F is outer ([68, p. 184]).

We now consider once again the functional J(C) and deter-
mine stationarity conditions that provide a form of the optimal
C. First

J(C) = tr (C"SC) — log det(B'CC'B)
=tr(C'SC — log(B'CC'B)).
The gradient with respect to C' is
0J

— =20'> —2(B'C)"'B
3C (B'C)

and hence the stationary point is given by C'S = (B'C) "' B'.
This yield the equation

B'CcC' =Byt (43)

for the optimal C, and we readily see that
C=x"'B(B'x!B)'/?

satisfies (43). Thus, the optimal @) is

Q(2) = G(z)'S'B(B'Y'B) 'B'S1G(z)

and therefore
d(2) = (G(z)'S'B(B'Y'B)'B271G(2)) L

This concludes the proof of Theorem 4.

IX. CONCLUSION

The topic of the paper is to construct power spectral densi-
ties that are consistent with specified moments and are closest
to a prior in a suitable sense. The spirit of the work is similar
to a long line of contributions going back to [8], including a
series of papers [16]-[34] where the emphasis was in identi-
fying and parametrizing power spectra of minimal complexity
(i.e., dimensionality of modeling filters). A key tool in these
earlier works was a choice of entropy functional that allowed
parametrizing solutions via selection of a suitable prior power
spectrum. The moment constraints were cast in the form of the
state covariance of an input-to-state filter.

In departure from this early work, Ferrante et al. [1] proposed
to use the KL-divergence between Gaussian probability laws—a
formulation that is quite natural from a probabilistic standpoint.
The KL-divergence between Gaussian probability laws coin-
cides with the Itakura Saito distance between their respective
power spectral densities, and thus, the problem turns out to be
equivalent to one studied by Enqvist and Karlsson [2] in the con-
text of scalar processes. The purpose of this paper is to present
a simplified alternative optimization procedure that is based on
a detailed analysis of the geometry of input-to-state filters and
related moment problems. Indeed, the power spectral densities
are now parametrized more conveniently by a nonredundant co-
efficient matrix (X in Theorem 3) containing minimal number
of parameters that are necessary. Sections III and IV as well as
the proofs later in the paper contain the main contributions.

APPENDIX
A. Behavior of J on the Boundary

Lemma 9: Let® — M (¢'?) be amatrix-valued function with
Lipschitz-continuous components, and suppose that M (¢'?) is
positive semidefinite for all # and identically zero for 6 = 6.
Then

! “1qioyy 99
| oty -
where M ! is defined to have infinite value on any subset of
[—7, 7] where it is identically zero.

Proof: Without loss of generality we can assume that
M(e"”) =0 in an isolated point fy. By assumption, we can
choose a common Lipschitz constant KX and an € > 0 such that
the components 1/ (¢’?) of M have the bounds

‘mkg(em)‘ < K‘Q — 90‘
for |0 — 6y| < e.If N(e'?) := M~ (e'?), its components satisfy

Z mye(e)ng(e?) =1 forall @ and k
¢
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which then implies that

Z nok (eiﬁ)

4

K6 — 0| = 1

forall § € (6 —e,0p +¢) and k.

Consequently, since N (e'?) > 0, there mustbe a k andan L > 0
such that
1

> forallf e (6 —¢,0
= To—gy fora € (0 —e.60h+e)

g (e?)

and therefore

” aoodf 1 [ftE 1 4o
t M—l i0 7>7/ - 7
/ M5 = 7 b 10— 6o 2r  °°

—T

as claimed.

Proposition 10: Let — Q(e') be amatrix-valued function
with Lipschitz-continuous components, and suppose that Q(¢?)
is positive semidefinite for all § and singular for = 6,. Then

/ QT —

Proof: After applying a constant unitary transformation we
can write ) on the form

@1 @2
9= [Q; Qs]
where Q; (¢%) = Q2 (e'”) = 0 and Q3 (') > 0. Then
o — [[Ql - 2:0:'Q5] ]

* *

where the Schur complement

M :=Q - Q2Q§1Q§

is positive semidefinite and has Lipschitz-continuous compo-
nents. Then the statement of the proposition follows from
Lemma 9.

B. Coinvariant Subspaces

Let H4' represent row vector-valued functions in the Hardy
space of square integrable functions on the circle that have an
analytic continuation in the interior of the unit disc—a stan-
dard notation Hy or Hz (D). The forward shift S amounts to
multiplication by z. The backward shift is precisely its adjoint

S HE — HE a(2) o Ty, 27 L a(2).

Subspaces, which are invariant under S*, are those that are
orthogonal to invariant subspaces of the forward shift 5, i.e., of
the form

K= H%xm o H%an V(Z)

with V() an inner (matrix-valued) function, and they are often
referred to simply as “coinvariant subspaces.” The orthogonal

projection onto K is

i : Hy ™ — K

2(2) (HWW )Lx(z)V(z)*) V(z).

To see this, note that since V'(z) is inner, ITx defined above
is idempotant and Hermitian—hence a projection. It is easy to
verify that its kernel is precisely 3"V (), and therefore, TTx
is the orthogonal projection onto K as claimed.

Let A € C"*" with eigenvalues in D, B € C"*™ with
(A, B) controllable. Without loss in generality we can al-
ways normalize (A, B) so that the corresponding controllability
Grammian is the identity /; when this is true

AA*+ BB =1
and [A, B] can be competed to a unitary matrix

AB
CD

It follows that
V(z)=D+2C(I —2A)"'B

is an inner matrix-valued function, i.e., it is analytic in D and
VV*=V*V = I, where V* := V(2) :== V*(z~!). Now, con-
sider

G(z):=(—-zA)'B

and the coinvariant subspace KC as noted above. The following
statement is known (see [63, Proposition 4]).
Proposition 11: The rows of G(z) form a basis for K.
Proof: The proof is again from [63, Proposition 4]. We first
claim that any element in /C is of the form

v(zl — ATICHV (2) 44)
where v € C1*", To see this note that
I : 2+t x124+...—
[H(H%xm ye(@o + oz +..)
x (D*+ 2z 'B*C* +...)]V(2)
= vz 'CF + 2 PACT + . )V (2)

where v = 1o B* + 1 B*A* + .. .. Next, it can be shown [63,
Eq. (36)] that

G(2) = (21 — AH'C*V(2). (45)

In view of (44), the rows of G(z) span K. Finally, if vG(z) = 0
for some v € C'*", then necessarily v = 0 because (A, B) is
controllable. Hence, the rows of G(z) are linearly independent
and form a basis for X as claimed.

Lemma 12: Let A be a Hermitian n x n-matrix such that

Q(z) :=G(2)"AG(z) >0
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forz = €, and § € [0, 27). There exists A, = CC, withC, €
C™>*™ guch that

G(2)*AG(z) = G(2)*"A,G(z)

and C,G(z) is outer (i.e., minimum phase, that is, stable and
stably invertible).

Proof: Since ()(z) is Hermitian and positive definite on the
unit circle of the complex plane, it can be factored as

Q(2) = a(z)"a(z)

with a(z) outer. But V(2)G(2)*"AG(z) = V(z)a(z)*a(z) has
allits elements in Hs, since already V' (2)G(z)* does. Since a(z)
is outer, V' (2)a(z)* is in Hy as well. Now, note that G(z)V (z)*
is orthogonal to H,. Therefore, the zeroth term of G(z)V (2)*
vanishes. It follows that V(z)a(z)*a(z), which has only posi-
tive power of z has no Oth term either. Therefore, V(z)a(z)*
has only positive powers of z and no Oth term. So, finally, we
conclude that all elements of a(z)V(2)* are orthogonal to Ho
and, therefore, the rows of a(z) are in K. Thus, there exists a
C € C™*" such that

a(z) = CG(z).

This completes the proof. |
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