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The Role of the Time-Arrow in Mean-Square
Estimation of Stochastic Processes

Yongxin Chen, Johan Karlsson, and Tryphon T. Georgiou

Abstract—The purpose of this letter is to point out a
certain dichotomy between the information that the past
and future values of a multivariate stochastic process carry
about the present. More specifically, vector-valued, second-
order stochastic processes may be deterministic in one
time-direction but not in the other. This phenomenon, which
is absent in scalar-valued processes, is deeply rooted in
the geometry of the shift-operator. The exposition and the
examples we discuss are based on the work of Douglas,
Shapiro, and Shields on cyclic vectors of the backward
shift and relate to classical ideas going back to Wiener and
Kolmogorov. We focus on rank-one stochastic processes
for which we obtain an explicit characterization of all reg-
ular processes that are deterministic in the reverse time-
direction. This letter builds on examples and the goal is
to provide insights to a control engineering audience with
interests in estimation theory and modeling of time-series.

Index Terms—Linear stochastic systems, estimation.

[. INTRODUCTION

HE VARIANCE of the error in predicting, one-step-
Tahead, the values of a scalar, second-order, stationary,
discrete-time stochastic process is given by a well-known
formula due to Grenander and Szegd [1] as the geometric
mean

] T
exp{E/ log(CD(@))dG} (D

-7

of its power spectral density ®(6). Reversal of the time direc-
tion does not impact this formula. Thus, the past and the
future of the process contain the same information about the
present, and the identical same formula provides the vari-
ance of the “postdiction” error when the present is estimated
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from future values. In contrast, for multivariable processes,
the matrix-covariance of the prediction error requires spectral
factorization and cannot be expressed explicitly in terms of
the matrix-valued power spectral density in a similar manner.
The closest to such a formula, given by Wiener and Masani
[2, p. 145, Main Theorem I], expresses the determinant of the
error matrix-covariance, herein denoted by €2, as the geometric
mean of the determinant of the power spectrum,

T
det(2) = exp{L/ log(det(@(@)))d@}. 2)
0

In a subtle way, when det(2) = 0, this formula leaves
out the possibility of a dichotomy between past and future,
and as it turns out this is indeed the case. More precisely, it
is perfectly possible for a (multivariable) stationary Gaussian
stochastic process to be purely deterministic in one time-
direction but not in the other. This issue has been noted in
classical works in prediction theory where it has been pointed
out that the information contained in the remote past and
the information contained in the remote future may differ,
see [3, Sec. 4.5]. Thus, one objective of the present work
is to highlight and elucidate this phenomenon with exam-
ples that are intuitively clear to an engineering audience
(Sections III and IV). By expanding on the insight gained,
we provide a characterization of rank-1 regular processes that
are completely deterministic in one time direction (Sec. V).

Broadly speaking, the manifestation of the time-arrow in
engineering and physics is hardly a new issue, yet it is one
that is not well understood. The paradox of the apparent
directionality of physics originating in physical laws that are
time-symmetric is a key conundrum; Feynman states that there
is a fundamental law which says, that “uxels only make wux-
els and not vice versa,” but that we have not found this yet.
Thus, the time reversibility of physical models, as well as the
lack of, remain of great scientific interest, see [4], [5]. In a
similar vain, we expect that issues related to the time-arrow
will draw increasing attention in modeling of control systems
as well, see [6].

Turning to time-series, the possible ways in which the time-
arrow is encoded in the statistics have also been studied in the
physics literature as well, see [7]. It is widely thought that
the time-direction and ‘“nonlinearities” are revealed by con-
sidering several-point correlations and higher order statistics.
While this may be so at times, it is surprising to most that
the time-arrow may already be clearly discerned in second-
order stationary processes as well, in that their predictability
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properties may dramatically differ depending on the time-
direction. The reason that this observation is often missed
(see [8], [9]) may be due to the fact that it is exclusively
a phenomenon of vector-valued processes. In fact, it is a
common misconception [10] that “temporal irreversibility is
important because it excludes Gaussian linear dynamics and
static transformations... from the set of possible generating
processes.” Thus, one of the aims of this letter is to explain
why this is not so. As noted, we provide an example of a
vector-valued moving-average process constructed so that the
prediction error differs substantially in the two time-directions
(Section III). A limit case of a stochastic process with infi-
nite memory allows it to be deterministic in one of the two
time-directions but not in the other (Section IV).

Prediction theory of second-order processes overlaps with
that of analytic functions on the unit disc and the shift
operator. Thus, the exposition and technical results of this
letter rely heavily on this connection and on the work of
Douglas et al. [11] who obtained a characterization of cyclic
vectors of the “backward shift”” Our analysis and examples
include processes generated by filters whose transfer func-
tions are cyclic with respect to the backward shift, or in
a time-symmetric situation, processes generated by suitable
acausal filters that are predictable from the infinite remote past.
Besides explaining the dichotomy between past and future,
and on how this relates to factorizability of the power spec-
trum [12], [13], we also study regular rank-one processes and
explicitly characterize all such processes that are deterministic
in the reverse-time direction.

II. NOTATIONS AND PRELIMINARIES
A. Function Theory

The notation used in this letter is now briefly defined as
it is standard. We denote by R, C, Z real numbers, complex
numbers, and integers, respectively, by D ={z € C : |z] < 1}
the unit disc and by T = {z € C : |z| = 1} the unit circle on
the complex plane. We denote by L(T) the Hilbert space of
square-integrable functions on T, by H> C L,(T) the Hardy
space of functions whose negative Fourier coefficients vanish,
by £2(Z4+) the space of square summable sequences on the
nonnegative integers Z., and by ||-||> the norm in the respec-
tive spaces. As is well known, H, can be identified with the
space of analytic functions f(z) with z € D having squarely
integrable radial limits. In fact, the correspondence

f@ =) At (fo.fi,-)

k>0

is a Hilbert space isomorphism between H, and €>(Z.y).
Likewise, L, (T) and €5 (Z) are Hilbert isomorphic. The orthog-
onal complement of H, in Ly(T) is denoted by Hy =
{3 io0fid¥ € Lx(T)} while H; is a short for sz,L =
{Zk<0 szk € Lr(T)}. We use A* to denote the adjoint of the
operator A. Conformably, if A is a matrix and f(z) a function
of z, A* is the conjugate transpose and f*(z) = f(z~!) where
~ denotes complex conjugation.

The forward shift U is a linear operator on H, defined by
Uf (2) = zf(z). We use the same symbol for the shift in £,(Z):

U: (f09f19f27 .. ) - (va()vflv .. )

The backward shift U* is the adjoint operator of U [14]. On
Ha, itis Uf(z) = (f(z) — f(0))/z, and on £2(Z)

U*: (fo.fi.for .. ) = (i, f3, .. ).

A vector f (or, a function if we are dealing with H>) is a
cyclic vector of A if the closure of the span of {A"f : n > 0}
is the complete space; if f is not cyclic then the closure of the
span is a proper A-invariant subspace. Cyclic vectors of U are
precisely the outer functions in Hp [14]; in the engineering
literature these are referred to as stable and minimum phase
(or, loosely, stable and stably invertible). When f is not outer,
it lies in a closed invariant subspace of U, i.e., one of the form
@H> for some inner' function ¢. An invariant subspace of U*
is of the form (pH,)". Therefore f fails to be cyclic under
U* if and only if it is orthogonal to one of the spaces ¢H>
with ¢ inner. This is a property that is difficult to verify in
general. An explicit characterization for the failure of f € H»
to be cyclic with respect to U* is provided next (see [11]).

Theorem 1 (Douglas-Shapiro-Shields): A necessary and
sufficient condition that a function f in H, be U* non-cyclic
is that there exists a pair of inner functions ¢ and i such that

f e

- = J almost everywhere on T.

There are several easy but quite surprising properties of U*
cyclic functions as noted in [11], in particular, i) a function
is U* cyclic if and only if its outer factor is, and ii) if f is
U* cyclic and g is non-cyclic, then f + g, fg and f/g are
all cyclic as long as they are in H,. Throughout the rest of
this letter, “cyclic” means cyclic with respect to U* unless
otherwise stated.

The shift operator extends to a unitary operator on L, (T).
For this we use the same symbol as that for the shift on
H>, namely Uf(z) = zf(z). Evidently, U is invertible with
U'f(z) = z7'f(z). A characterization of simply invari-
ant subspaces of Lr(T) (i.e., invariant with respect only
one of U™! and U) will be needed and is as follows (see
[15, p. 8, Th. 3]).

Proposition 1: If a subspace M C L, is U~! invariant but
not U invariant, then it has the form M = gH, for some
unimodular? function g.

B. Second-Order Stochastic Processes

For {x; | k € Z}, a zero-mean discrete time second order
stochastic process, we use span,.z{xx} to denote the space
of all finite linear combinations of elements in {xi}rez —
these are random variables on a suitable probability space,
and we use

H(x) = Spafi;ez ()

to denote the closure of the span. This is a Hilbert space
where, as usual, the inner product between random variables
is (x,y) = E{xy} and E is the expectation operator, see
[1, p. 167]. For Gaussian zero-mean random variables, orthog-
onality (i.e., E{xy} = 0) is equivalent to being independent.

A function f(z) € Hj is inner [14] if it has radial limit lim,_, | [f(rei9)| =1
for almost all & € [0, 27). Such functions are known in the engineering
literature as all-pass.

2A function q € Ly(T) is unimodular if |g(z)] =1 a.e. on T.
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The correspondence between function theory on the unit
disc and discrete-time, stationary stochastic processes is
well known, see [1, Ch. 10] for a concise exposition. The
basis of this correspondence is the Kolmogorov isomorphism
between the linear space generated by second-order stochas-
tic processes and functions on the unit circle. In particular,
consider {wy | k € Z} to be (complex-valued) Gaussian, zero-
mean, unit-variance, white noise, i.e., a stochastic process such
that E{wywyi} = 1, and E{wgw,} = 0 for k # £. The map

Hw) > Lo(T) : Y fiwi > Y _fid 3)
k k

is a Hilbert space isomorphism. For a non-white process, {x},
H(x) corresponds to squarely integrable functions on T with
respect to a suitable spectral measure (see [1, p. 175]) but
this will not be needed in the sequel.

As is evident from the above, f(z) € H, corresponds to a
random variable ), fiw_x which can be thought as the output

Xn = kawn—k
k

at n = 0, of a linear system with {f;} as its impulse response
and input the white noise process. The shift operator U in £;
corresponds to multiplication by z or ¢ in Ly(T) and to a
unit time-delay in H(w).

1. COMPARISON OF PREDICTOR/POSTDICTOR ERROR
FOR A MOVING-AVERAGE PROCESS

It is often suggested that for Gaussian stationary processes,
the time direction does not have an impact on the error vari-
ance (see [8], [9]). Also, as already noted in the introduction,
it is also a common misconception [10, p. 1912] to believe that
temporal irreversibility excludes Gaussian linear dynamics as
a possible generating mechanism. The purpose of this letter
is to explain that this is not so. However, in order to produce
such a counterexample of a Gaussian stochastic process that
has distinctly different features in the two time directions, one
needs to consider multivariable processes. We illustrate the
mechanism of how this can happen by an example that we
present next.

Consider the moving-average bivariate process & =
(X%, yi)T defined by the filter equations

(4a)
(4b)

Xk = Wk + 0Wg—1

yk = Wk’

where « # 0 and the process {wy | k € Z} is complex-
valued Gaussian, zero-mean, unit-variance and white. We are
interested in one-step ahead linear prediction.> Thus, we seek
to minimize the (matrix) error-variance

E{(SJ‘O - éOIpast)@O - éOIpast)*}

in the positive-semidefinite sense. Here, &gjpast is a function
of past measurements x_1,x_2, ..., and y_1,y_o,.... In the
forward time-direction, since wq is independent of x_g, y_g¢

3Without loss of generality we consider estimating xg, yg, i.e., for k = 0,
since all processes in this letter are stationary.

for £ > 0, the solution is easily seen to be

o _ )%O\past _ [ ®Y-1
SOlpast <y0past) < 0 )

with a corresponding forward error variance

. ~ S 1 1
Qf = min E{(é0 — EO\past)(éfO - EOlpast)*} = < 1 1)-
Eolpasl
In the reverse time direction, since Xy4| — yi+1 = &Wg, We
can write the dynamics (4) as

X = (X1 — Yk+1)/@ + awg_q
Vi = (g1 — Yrt+1) /0

Similar to the above argument for the forward time-direction,
w_1 is orthogonal to future measurements xj, x2,..., and
Y1, ¥2,. .., and hence, given future values, the optimal estimator
for xg, yo is

éOlf e = %Olfuture _ (x1 —y1)/a
e YO|future (x1 —y1)/a
with corresponding minimal backward error variance

2
= min E{ — Gojure) (60 — Sojfure) "} = (°g, 8)
0|future

The prediction problem is clearly not symmetric with respect
to time, yet detQr = detQp = 0 in agreement with the
Wiener-Masani formula [2, p. 145, Main Theorem IJ.

The above example is sufficient to underscore the
dichotomy. The forward and reversed processes have similar
realizations (see [5]). Indeed, we can easily see that

Xi = QWg + Wi
Yk = Wi,

is a backward-in-time realization of the process, where wy
is a standard Gaussian white-noise process. The forward and
backward realizations can be derived and correspond to the
left and the right analytic factors

-1
®(2) = (1 +1‘”>(1 tar 1) = (Z fo a)(z—i—a, D6

of the power spectrum ®(z). It is possible to go one step
further and construct examples where this factorization is not
possible in one direction and, then, in the corresponding time-
direction the process is completely deterministic.

IV. A NON-REVERSIBLE STOCHASTIC PROCESS

The following example presents a case where the
power spectrum does not admit one of the two spectral
Jfactorizations. As a consequence, the process is completely
deterministic in one of the time-directions and not in the
other. The stochastic process we consider is generated by

— 1
xk:Wk+Z Wk—£5
peril

Yk = Wk.

(6a)

(6b)

The modeling filter g(z) = Y s %_Mze for the x; component
has as impulse response the harmonic series. Interestingly,
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while this is not a stable system in an input-output sense,
when driven by a white-noise process, it generates a well-
defined stochastic process with finite variance since the har-
monic series is square-summable. Further, the function g(z)
is cyclic [11] and, as we will see, a direct consequence is
that the process is completely deterministic in the backward
time-direction.

Since wy is orthogonal to x_;, y_¢ for £ > 0, the optimal
predictor is given by

. o
Eopast =  20P) = D=1 Tyt
P Y0|past 0

with a corresponding (forward) error variance

1 1
a1 )

In the reverse time-direction, we estimate xo, yo given future
observations, x¢, y¢, for £ > 0. Since wy = yg, the infi-
nite sequence of random variables w1, w», ... is available for
estimating xo and yg. Define X; = x1, and

k—2 oo

- 1 1
X = Xx — KZ; 1 +£Wk—£ 23—21{21 1 _i_ng—z,

for k > 2. It follows that span;. {yk, xx} = span-{yk, Xx}.
Now, notice that span;.  {yx} is orthogonal to xo, yo, y1 as well
as spang. o{xx}. This is due to the fact that wy for k > 2
is orthogonal to xo, yo, y1, X1, X2, .... Hence the estimation
problem given above is equivalent to estimating xp, yo based
on y; and X for k > 1. In fact, y; is not needed and as we
will see next, xg, yo can be predicted with arbitrary precision
based only on X; for k > 1.

The relation between X; and wy for k € 7Z can be
expressed as

~ 1 1 1

7! 11

X = S S w

X2 2 3 i !
~ ) . X wo
x=|:1=1: - : wop | = Hw, (7)

X 1 1 1

n n n+2 :

=
g

where H denotes the (infinite) Hilbert matrix, or equivalently,
the representation of a Hankel operator with symbol the har-
monic series. Note that the (k+ 1)th row of H corresponds to
the backward shifted input responses

o0

l K
E L , fork=0,1,...,
: X 1Z g2 or

and since g(z) is cyclic [11, Th. 22.3], we have
Mk>O{U*kg(z)} = H,. Thus, linear combinations of X; for
k= 1,2, ... can approximate with arbitrarily small error any
linear combination of wg, w_1, ... having finite norm. Hence,
in particular, linear combinations of X; for k = 1,2,... can
also approximate* with arbitrarily small error xq and yo, since
these correspond to elements in H> (i.e., linear combinations of
wg, W_1, . . . having finite norm). The infimum of the backward

4Note that this approach is non-constructive and does not give an explicit
expression for the linear combination.

error variance is therefore

0 0
=5 7)

and the time series {£x} is uniquely determined by the infinite
future (see [1], [3]).

V. CHARACTERIZATION OF BACKWARD DETERMINISTIC
RANK-ONE PROCESSES

An n-dimensional Gaussian stochastic process is regular if
its spectrum admits a (right) analytic factorization (see [13])
and, thereby, can be represented in the form

o
&= Gowi
=0

where wy € C™ is a white-noise process, and the sequence
{Gilk=0 € €57 [2], [13]. Rank-one regular processes are
those where the white-noise process wy may be taken as a
scalar process (m = 1).

Building on the example from the previous section and
using results from [11], we characterize all the regular rank-
one processes that are backward deterministic. We start by
identifying a subclass of bivariate processes that contains the
example from Section IV. Below we take G, = (g¢, he)! €
C2, that is g¢, he € C.

Theorem 2: Consider the stochastic processes

o

X = Zgzwk—e, (8a)
=0
o

Yo=Y hewi g (8b)
=0

where g(z) = Y 7o, g¢z" is cyclic and h(z) = Y 0o hezt #0
is non-cyclic. Then the backward-in-time realization of the
process is deterministic.

To show this, we need the following lemma.

Lemma 1: If h is a non-cyclic function, then there exists an
inner function v such that

span..o(z *¥h) D Hs-.

Proof: See the Appendix. |

Proof of Theorem 2: Let the inner function ¢ be selected
according to Lemma 1 so that Span.(z “yh) D Hs. The
backward prediction error for xg is bounded by

\/E(HXO — Xojfuwrel|?) = lla*g + b*hll2 = ¥ (a*g + b*h)|I>

< 1P, (Ya*g)ll2 + Y b*h + PHZL(xﬁd*g)lb )
where a and b are polynomials with a(0) = 1 and 5(0) = 0,
corresponding to the predictor Xofuture = — 22’:1 (aexe+beye).

The inequality in (9) follows from the triangle inequality. Since
g is cyclic, so is U*(gy), hence spangle*ewg is dense in
H>, and therefore the first term of (9) which equals

1P, (W 9)l2 = 1¥g + Y aU Wg)la,

=1
can be made arbitrarily small by selecting the polynomial a
properly. Since span,.,(z ¥y¥h) D Hy, the polynomial b can
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be selected so that the second term of (9) is arbitrarily small
as well.

A similar argument can be used to show that yp can be
estimated with arbitrarily small error, by considering polyno-
mials with a(0) = 0 and 5(0) = 1 in (9). This completes the
proof. |

Following the same line of reasoning as in the proof of
Theorem 2, one can in fact show that

span.o{z *g} + Span o{z *h} = Lo,

and therefore, the backwards prediction error is zero as a result
of the correspondence in (3). Thus, in this case, the input
sequence wg, for k € Z, may be reconstructed arbitrarily well
from the future output, xi, yx for k > 0.

As stated in Theorem 1 [11], a function g € Hj is
cyclic if and only if g/g belong to J, the set of unimod-
ular functions that are quotients of inner functions,’ i.e.,
J = {@/¥ : ¢, ¥ inner}. This result is central to our charac-
terization of backward deterministic rank-one processes, and
leads to our main result.

Theorem 3: Let g, h € Hj, then the following conditions
are equivalent
(a) The system (8) is backward deterministic,

(b) Spamq(z "¢} +Spano{z ") = Lo,
(c) gh/(gh) ¢ J.

Proof: See the Appendix. |

Note that Theorem 2 follows as a special case, from the
equivalence between (a) and (c) and by using the fact that
g/g ¢ J and h/h € J (see Theorem 1). In view of Theorem 3,
we define backward deterministic processes generated by a set
of functions as follows.

Definition 1: The functions g1, g®, ... ¢™ e H, are
called backward deterministic if

n
> spang.ofz g} = L. (10)
j=1

As a corollary to Theorem 3 we also obtain an analogous
result for general vector-valued rank-one processes.

Corollary 1: The non-zero functions g, ¢@® ... ¢™ ¢
H> are backward deterministic if and only if
g gl
for some j=2,...,n.
Proof: This follows using Theorem 3. |

VI. CONCLUSION

In this letter we pointed out a certain dichotomy in stochas-
tic models where a process can be deterministic in one time
direction and not the other. This appears counterintuitive and
requires considerable mathematical sophistication to explain.
Our goal in this letter has been to provide an analysis as well
as insights aimed at a control audience with interests in esti-
mation theory. In particular, we provided concrete examples of
non-reversible processes where the remote past is trivial while
the remote future spans the entire process. The essence of these

5The set J is dense in the set of all unimodular functions with respect to
Lyr-norm. See [16] for more discussion on 7.

examples (Sections IV and V and also see [3, Sec. 4.5]) is that
the power spectrum of the vector-valued stochastic process

L3
() = (%;)(g* @ W),

fails to have a co-analytic spectral factorization, i.e., a factor-
ization of the form F*(z)F(z) with F analytic in ID; an equiv-
alent statement is that the backward-in-time process is not
regular [13]. This can be shown using Theorem 1. The power
spectrum also fails to satisfy condition 3 of [13, Th. 2]. This
absence of co-analytic factorization renders the backward-in-
time realization of the process deterministic.

While the issues pointed out are quite technical, they impact
in significant ways the relevance of certain models for time-
series. Naturally, past and future are important in smoothing.
Hence, the time asymmetry of stochastic models can be of
great interest from an engineering standpoint. As noted, this
asymmetry manifests itself in the absence of left or right
analytic factorizations for the corresponding (necessarily irra-
tional) power spectra. But even when factorizations exist (e.g.,
when the power spectrum is nonsingular at all frequencies), the
limiting case where spectral factors fail to exist requires fur-
ther understanding. In particular, in such cases, it is of interest
to quantify the different rates that information accrues with
increasing amount of data in the past or future of a particular
point in time for estimation purposes (i.e., smoothing utiliz-
ing fixed window of observations). We expect that these rates
relate to mixing rates for stochastic processes in corresponding
time directions—a subject of independent interest.

APPENDIX

Proof of Lemma 1: Since h is non-cyclic there exists an
inner function ¢ such that span,_,U**h = ((sz)IJ;Z, hence

span;_o 2 “h C ((sz)f2
Span.o 2 h@z C H, .

Since the left hand side is invariant with respect to it
is on the form ¥ H, where ¥ is inner. From Beurling-Lax
theorem [15], [18] it follows that

Span.( 2 ‘hgz = VwH;
Spany.o 2 “hyr D Span. z “hy@ = Hy.

Proof of Main Theorem (Theorem 3): In order to prove the
main theorem we will use the following lemmas.

Lemma 2: For any function g € H, the subspace
Spmkzo{zikg} is equal to qH, , where g = g/&outer and gouter
is the outer part of g.

Proof: Clearly M = spﬁbo{z_kg} C Ly is a invariant sub-
space for U~! while not for U, so by Proposition 1 it has the
form M = gH, for some unimodular function ¢ and hence
M = q@®z 'M. The function ¢ is determined by the subspace
up to a constant factor. We next compute one such g. Since
g € M, we have that ¢ = gf for some analytic function f. We
claim that one feasible f is given by

S =1/gouter
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where gouer 1S the outer factor of g. Since the inner-
outer factorization of g iS ¢ = gouter&inner> it follows that
|g(Z)/§’outer(Z)| = |gmer(2)] = 1 for z € T and therefore
q = gf = g&/8outer 1S @ unimodular function. To see M = gH, ,
note that ¢ € M hence it is enough to show g L z~'M, which
is equivalent to ¢ L z %g for all k > 1. This follows from

(q, Z_kg) = (g8/8outer: Z_k) = (8outer&outer/ &outer Z_k)
= (gouter, Z_k) = 07 for k > 17

which completes the proof. |

Lemma 3: A function g € H» is non-cyclic if and only if
q € J, where q is a unimodular function satisfying gH, =
spany {z g}

Proof: Lemma 2 implies that the unimodular function g is
on the form g = Aﬁ for some constant |[A| = 1. A function
g € Hy is non-cyclic 1f and only if there exists a pair of inner
functions ¢ and v such that

E§_¢ almost everywhere on T.

By combining these two facts, it follows that if g € H» is non-

cyclic, then ¢ = Ag/g&inner = A9/ V¥ ginner € J. Conversely, if
q € J, then

= %

= AZinner = —
g8&inner "
for some inner functions ¢, i, and hence g is non-cyclic. H

Lemma 4: Let g; and g be unimodular functions, then
qH, C qH, if and only if ¢gq1 = ¢q for some inner
function ¢.

Proof: The sufficiency follows from the fact that any
g € q1H, is on the form q\f for some f € H», and hence
satisfies g = gfp € gH, . To see the necessity, we note that
q1H, C qH, implies q1 € gH, . It follows that gq; = g¢ for
some unimodular ¢ € H», that is, ¢ is a inner function. This
completes the proof. |

Lemma 5: Let q1H, and g2H, be subspaces of L, where
q1 and g> are unimodular, then g1 H, + g2H, = L, holds if
and only if q1/q2 ¢ J.

Proof: We use proof by contradiction. Assume first that
q1/q2 € J, i.e., there exist inner functions V¥, ¥, such
that g1/q2 = ¥>/¢1. Now, let g be the unimodular function
q = q1¥1 = q2V». Then by Lemma 4 we have g;H, C qH,
for j = 1, 2, and by linearity it follows that

oQ1 |0

qiHy + qH, C qH, # L.

Note that gH, # L, holds since, e.g., gz ¢ qH, .

Conversely, assume that g1 H, +q2H, # L, then g1H, +
q2H, C L is an invariant subspace for U~! while not for U
(this follows since it contains an analytic function [15]). As
a consequence of this there is an unimodular function ¢ such
that g1H, + qoH, = gqH, . This implies that ¢;H, C qH,,
for j = 1,2. By Lemma 4 there exists inner functions vy, ¥»
such that ¢ = q1v¥1 = g2y, and hence ¢q1/q> € J. [ |

Proof of Theorem 3: The equivalence between (a) and
(b) follows directly from the Kolmogorov isomorphism. In
particular, due to the Kolmogorov isomorphism, (b) implies
that any linear combination of {wy} can be approximated by

a combination of elements in {xg, x1,...} and {yo,y1,...}
with arbitrary accuracy; this is exactly (a). Conversely, if
the system (8) is backward deterministic, then any linear
combination of {wi} can be approximated arbitrarily by ele-
ments in {xg, x1, ...} and {yo, y1, ...}, and therefore (b) holds.
We next show the equivalence between (b) and (c). Using
Lemma 2, it follows that (b) is equivalent to

qH, +@H, =1, (12)

where g1 = g/8outer and q» = h/ljlouler' By Lemma 5,
Equation (12) holds if and only if g1/g2 ¢ J. Since

q1/q2 = gilhinner/ (ghginner), where  ginner, hinner are the
inner parts of g and h respectively, the equivalence with
Theorem 3 (c) follows.
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