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Matrix Optimal Mass Transport: A Quantum Mechanical Approach

Yongxin Chen

Abstract—In this paper, we describe a possible generalization of
the Wasserstein-2 metric, originally defined on the space of scalar
probability densities, to the space of Hermitian matrices with trace
one and to the space of matrix-valued probability densities. Our ap-
proach follows a control-theoretic optimization formulation of the
Wasserstein-2 metric, having its roots in fluid dynamics, and uti-
lizes certain results from the quantum mechanics of open systems,
in particular the Lindblad equation. It allows determining the gradi-
ent flow for the quantum entropy relative to this matricial Wasser-
stein metric.

Index Terms—Matrix optimal transport, quantum mechanics,
entropic flows, non-commutative Wasserstein.

|. INTRODUCTION

Optimal mass transport (OMT) is a rich area of research with ap-
plications to numerous disciplines including automatic control, trans-
portation, econometrics, fluid dynamics, statistical physics, shape opti-
mization, expert systems, and meteorology; see [1] and [2] for extensive
lists of references. The original problem was first formulated by Monge
in 1781 and concerned finding the optimal way, in the sense of minimal
transportation cost, of moving a pile of soil from one site to another.
Much later, the problem was extensively analyzed by Kantorovich [3]
with a focus on economic resource allocation and so is now known as
the Monge—Kantorovich or OMT problem.

In this paper, we develop a noncommutative counterpart of optimal
transport where density matrices p (i.e., Hermitian matrices that are
positive definite and have unit trace) replace probability distributions,
and where “transport” corresponds to a flow on the space of such matri-
ces that minimizes a corresponding action integral. In some recent work
[4], to which we refer for control and signal processing applications,
a certain approach was formulated that had its basis on Kantorovich’s
idea of regularization on a joint distribution in a suitable product space.
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In contrast, in the present work, we employ generalizations of the sem-
inal approach of Benamou and Brenier [5]. This latter work gives rise
to a control-theoretic optimization framework to transport theory. To
this end, in the present paper, we combine the control approach of [5]
with ideas from quantum mechanics [6] to derive version of noncom-
mutative transport theory, which may be regarded as a control version
of matrix-valued OMT.

In general, OMT induces a geometry on spaces of distributions,
which is relevant to a number of real-world applications [1], [2]. Most
notably, it induces the so-called Wasserstein-1 and Wasserstein-2 met-
rics, which correspond to the transport cost taken as the distance or
the square of the distance, respectively. One of our goals in seek-
ing theory for matrix-valued OMT (herein, one that is analogous to
the Wasserstein-2 geometry) is in modeling the dynamical evolution
of matrix-valued measures, e.g., power distributions of vector-valued
time series [4]. For instance, the entries of corresponding time series
may represent measurements of different modalities across an array
of sensors (e.g., frequency/color, polarization, spatial characteristics,
and other target attributes). Alternatively, they may simply represent
entries of a vectorial output process in the context of system identifi-
cation. Thus, we expect the present work to also have applications in
multivariable time series analysis, system identification, as well as in
quantum control and quantum information.

At about the same time as the present work was originally reported
in [7], closely related approaches were formulated independently and
simultaneously in [8] and [9]. While all three [7]-[9] begin with the
Lindblad equation, [7] differs in several important aspects. First, in
[7], presents several alternative options for the multiplication operator
in the quantum mechanical continuity equation; see (15), (16b), and
(17b). In contrast, the authors of [8] and [9] only consider (17b), which
leads to a linear heat equation for the gradient flow of the quantum
entropy. While we discovered this connection as well, our emphasis
has been on the anticommutator version (16b), which has the distinct
advantage of leading to computable convex optimization for the cor-
responding Wasserstein metric. Since we are interested in engineering
applications, this is obviously crucial. Furthermore, we also study the
case of spatially dependent densities and develop a matrix OMT theory
for this as well, not dealt with in either [8] or [9]. Spatially depen-
dent densities are important in applications—areas we have in mind
include diffusion tensor imaging (DTI) in which one encounters spa-
tially varying tensor fields and spectral analysis of multivariable time
series, in which one may need to interpolate, average/fuse, or regularize
matrix-valued power spectral distributions [4].

The framework that is introduced in the present paper has led to fur-
ther subsequent developments [10], [11]. In particular, Chen ez al. [11]
introduce an alternative matrix-valued Wasserstein-1 distance, whereas
Chen et al. [10] explore the possibility of relating matrix-valued dis-
tributions of unequal mass/trace (unbalanced). We point out that there
are fundamental differences and respective advantages between the
Wasserstein-1 theory (presented in [11]) and the Wasserstein-2 theory
presented herein. In particular, Wasserstein-2 induces a Riemannian
structure and a unique geodesic between matrices, which is not the
case in Wasserstein-1.

Il. BACKGROUND ON OPTIMAL TRANSPORT

In this section, we highlight concepts and constructs from the theory
of OMT for scalar-valued distributions (see [2] for details). We focus
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on the fluid dynamical formulation of Benamou and Brenier and the
Riemannian structure on the space of densities that originates in the
work of Otto and his coworkers. This background section is sketchy
but will allow us to draw analogies with the matrix-valued counterpart
that follows.

A. Control-Theoretic Approach to OMT

Here, the p s represent positive distributions (density functions') on a
space suchas R (assumed throughout this section). It was shown in [5]
that the Monge—Kantorovich problem [2] with a quadratic cost, i.e., the
problem to transfer mass which is initially distributed according to p,
to a final distribution” p;, optimally via a transfer map x — T'(z) that
minimizes the cost, may be given a computational fluid formulation.

Indeed, the mass transfer cost, which is referred to as the Wasserstein
distance W, between the two densities py and p1,

Wa (o, 1) :=nT1f{ [z = @I po(a)a|

po(x) = p1(T(x)) det(VT(x))}
can also be expressed as the infimum of the “action integral”

1
int [ [ ptt.olott, )| dedo ()
0

over all flows of time-varying densities p(¢,x) and velocity fields
v(t,z) € R™ (weakly) satisfying the continuity equation
dp

E+V~(pv):0 )

and the boundary conditions

p(0,+) = po, p(1,:) = p1.

This idea was transformative® in that it brought forth an elegant struc-
ture as a control problem to minimize kinetic energy by suitable choice
of the control (velocity) field v. The optimal solution may be charac-
terized by the following condition.

Theorem 1: The solution of the OMT problem (1) is

o(t, z) = Vo(t, ) (3a)
where ¢ and the corresponding flow p satisfy
o 1 5
T = 3b
C o 2Ivel =0 (3b)
and
0
9P LT (pVe) = 0. 3c)

ot

It is easy to recognize (3b) as a Hamilton—Jacobi equation and (3c)
as a Fokker—Planck equation. Also, it turns out that the functional (1)
can be conveniently expressed as

1
int [ [ plt.) futt. )| d do )
0

with u = pv being a momentum field, which is convex with respect
to the pair (p,w). Under fairly general conditions, the infimum is at-
tained and the minimizing velocity field v is unique. Moreover, the

'More generally, one may consider positive measures, but this is avoided for
simplicity and ease of correspondence with the matrix case.

>The two marginals py and p; are assumed to have finite second-order
moments.

3The approach has led to several new directions in stochastic control. See
[12] and [13] and the references therein.

minimizing velocity field is simply z + t(V(x) — x), where ¢ is a
convex function and 7T'(z) = V() is precisely the solution to the
Monge—Kantorovich problem [2]. Thus, the analysis in [5], with the
introduction of the action integral, provides a physically motivated
dynamical reinterpretation of the Monge—Kantorovich problem.

B. Riemannian Manifold Structure on Scalar Probability
Densities

Intuition into the problems we consider may be provided by consid-
ering certain physical insights. Indeed, there is an amazing connection
between entropy functionals, the heat equation, and the geometry in-
duced by the Wasserstein distance that has emerged in recent years [14].
We now briefly touch upon these as it will allow to draw analogies in
the matricial setting that follows.

Consider the manifold of densities on R integrating* to 1:

D::{p20|/p=1}.

The tangent space at a given point p may be identified with functions

¢ integrating to 0:
o) fs-)

The manifold D admits a Riemannian-type structure that induces the
Wasserstein distance. The key idea essentially originated in [15] and
was developed into a powerful geometric approach to OMT by Otto in
[14]; see also [2] and [16].

More specifically, under suitable assumptions on differentiability for
p € Dandd € T,, one solves the Poisson equation

0=-V-(pVyg). (©)

This allows identifying elements ¢ in the tangent space with functions
g, up to additive constant; thus, given J, we denote the solution of (5)
by ¢s and the corresponding vector field by vs := Vg;. Then, given
01,92 € T,, we can define the inner product

(51,8}, = / (s, s, ©)

where (-, -) denotes the standard inner product on R . An integration
by parts argument shows that this inner product will exactly induce
the Wasserstein distance W5 (pg, p1) given by (1). Thus, given two
“points” py, p1 € D, the minimizer of the Benamou—Brenier formula-
tion, which coincides with the displacement interpolating curve [17]
between the two densities, p(t, -), is precisely a Wasserstein geodesic.
Using integration by parts, we obtain

1612 = (5.8, = / Vs Vs

= —/gaV-(pVga) :/695. @)

The distance between p, and p; may be rewritten as

1
Wapu.pr) = min | 1(0)

:mﬂin/o1 \/mdt

where the minimum is taken over all the piecewise smooth curves
connecting py and p; on the manifold D.

“For brevity of notation, whenever there is no risk of confusion, the volume
element dx is omitted.
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C. Gradient Flow of the Entropy

We close by sketching the fact that the gradient flow with respect to
the Wasserstein geometry of the entropy functional

S(p) = —/plogp

with p € D, is given by the heat equation [14], [16]. Indeed, evaluating
S along a one-parameter family in D, p(¢, -), and taking the derivative
with respect to ¢, in view of [ p = 1, we obtain

as _ [ (9p 9p __/ 9p
ar /(atlog‘”at)* (atlogp) ®

where g—’t’ denotes partial derivative with respect to time. Now, noting
the characterization of the Wasserstein norm from (7), we see that the
steepest ascend direction (with respect to the Wasserstein metric) is
given by g = — log p. This gives
dp
ot

which is the linear heat equation.

V- (pVlogp) = Ap

Ill. MATRICIAL WASSERSTEIN GEOMETRY

For arange of problems in spectral analysis of vector-valued time se-
ries as well as in quantum mechanics, statistics of the underlying exper-
imental setting are encapsulated in matrix-based models. For instance,
in quantum mechanics, the statistical description of a system is via a
state p, which is a positive element in a corresponding C'*-algebra of
operators on a Hilbert space. For us, the Hilbert space will always be fi-
nite dimensional, and hence, p would simply be a positive-semidefinite
Hermitian matrix with trace one. Likewise, in multivariable time series
and vector-valued random variables (see, e.g., [4]), p may represent a
matrix-valued power spectral density or a covariance matrix. In those
cases, the integral of the trace or the trace, respectively, represent power
and can be normalized 1 for our purposes.

Our aim is to develop a geometric framework that will have bearing
on problems in quantum information theory as well as multivariable
time series. Throughout the rest of this paper, the p s represent density
matrices (positive-definite Hermitian matrices of trace one, or suitably
normalized positive-definite Hermitian-valued functions), and we de-
velop a noncommutative counterpart of the Wasserstein geometry by
building on Quantum Mechanical insights and constructs. The key is
to devise a suitable notion of a continuity equation as well as a matrix-
valued counterpart of the Benamou—Brenier action integral. These are
done next.

A. Quantum Continuity Equation

Our approach is based on the Lindblad equation, which describes the
evolution of open quantum systems. These are thought of as coupled
to a larger system (the environment, ancilla) and, thereby, cannot, in
general, be described by a wave function. The proper description is in
terms of a density operator p, which, in turn, obeys Lindblad’s equation
[6] (in diagonal form)

N
1 1
)= —i|H Li.pL;, — =pL;L;, — =L, L, 9
p i 7P}+I;( k PLog 2P kb = 5k ) )

where * denotes the conjugate transpose, H is a Hamiltonian, and
[H, p] := Hp — pH is the Lie bracket. The first term on the right-hand
side describes the evolution of the state under the effect of the Hamil-
tonian H, and it is unitary (energy preserving). The other terms on the
right-hand side model diffusion and, thereby, capture the dissipation of
energy—it is the quantum analog of Laplace’s operator A. The calculus
we develop next highlights and actually underscores the parallels.
Regarding notation, we denote by 7 and S the set of n x n Hermitian
and skew-Hermitian matrices, respectively. Since n is fixed throughout,

we dispense of n in the notation. We also denote the space of block-
column vectors consisting of IV elements in  and S as H" and SV,
respectively. We let ., and H ;. denote the cones of nonnegative and
positive-definite matrices, respectively, and

Dy :={peH,q |tr(p) =1} (10)
Clearly, the tangent space of D, atany p € D, , is now
T, ={0 € H|tr(0) = 0}. (11)

We use the standard notion of inner product
(X,)Y) =tr(X'Y)
for both  and S. For X,Y € HY (SV), we have

(X,V) = 3 t(Xi V).

k=1

Given X = [X},..., X5 € HY (SY), Y € H (S), denote
X,V YX,
XY = , YX = :
XyY Y Xy

Throughout, we make the assumption that L, = L;, ie., Ly € H
forall k € 1..., N. Under this assumption, we define

X -XIL,
Ve H—-8", X+ : (12)
LyX — XLy

as a gradient operator. Note that V , acts just like the standard gradient
operator and shares many useful properties such as’
V(XY +YX)= (V. X)Y + X(V.Y)
+(ViY)X+Y(V, X) VX, Y e H. (13)

The dual of V, which is an analog of the (negative) divergence
operator, is given by
Y,
N
Vi SV S H Y =| | =) LYYl (14)
vl o F

Hence, the duality (V; X,Y) = (X, V;Y) is straightforward.
With these definitions, we can easily calculate the (matricial) Lapla-
cian as

N
A X =-V; V. X = Z(2LkXL’,; — XLy L, — L, Ly X)
k=1
which is exactly (after scaling by 1/2) the diffusion term in the Lindblad

equation (9). Therefore, the Lindblad equation (under the assumption
that L, = L} ) can be rewritten as

, 1
p=—i[H,p]+ SALp.

Moreover, using the gradient operator (12) and its adjoint (14), we can

now introduce a corresponding matricial continuity equation and, in

fact, a family of such equations
p=ViM,(v) (15)

5The domain of Vj is the space of Hermitian matrices; hence, we write
XY + Y X, instead of simply XY in (13).
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where M, (v) can be any noncommutative multiplication between p
and v that maps the “velocity field” v € SV to a “momentum field”
M,(v) € S¥.

Usually, in the Lindblad equation (9), N is taken to be n? — 1.
However, in general, we may choose N < n? — 1, as needed, possibly
large enough such that, in (15), we are able to cover the whole tangent
space T}, at p for all p € D, . In particular, we need V, to have the
property that the identity matrix / spans its null space. For instance,
one can choose Ly, ..., Ly to be a basis of the Hermitian matrices H,
in which case N = n(n + 1)/2. Obviously, this construction ensures
that the null space of V|, is spanned by /. Throughout this paper, the
basis L1, ..., Ly is assumed to be fixed.

We will consider two interesting cases of noncommutative multipli-
cation and the corresponding continuity equation, each of which has
its own distinct properties.® The first case will be for

1
M,(v): = §(Up+pv) (16a)

which gives

R
p=5Vi(vp+pv)
(16b)

andv = [v},...,vy]" € 8. Clearly, vp + pv € SV, which is consis-
tent with the definition of V7 . We will refer to this as the anticommu-
tator case, as it is standard to refer to

vp+ pv =: {p,v}

as the anticommutator when applied to elements of an associa-
tive algebra. The second case will be for the Feynman—Kubo—-Mori
[18]-[20] product

1
M,(v) = / piup' ds (17a)
0
which leads to a continuity equation
1
p=Vi / plupt *ds (17b)
0

that we will refer to as the logarithmic case. This is the case that was
extensively analyzed in [8] and [9] as alluded to in Section I. Here too,
fol p*vp'~*ds € S, which is consistent with the definition of V7 .
The terminology “logarithmic” will become clearer in Section IV-B.
The analysis of both equations and the resulting Wasserstein metrics is
quite similar. Both give a fluid dynamic formulation of optimal transport
on the space D, of density matrices, thereby extending the work of
Benamou and Brenier [5]. We will begin with the anticommutator case
and then sketch the logarithmic one, both in the next section.

B. Matricial OMT

We treat separately the anticommutator and logarithmic cases of the
two alternative noncommutative products M, (v) between p and v. The
developments are completely analogous.

1) Anticommutator Formulation: Given two density matrices
po,p1 € Dy, one can formulate the optimization problem

1
Wa.a(po,p1)® := min / tr(pv*o)dt (18a)
peDy wesSN Jo
R
pP= §VL(UP+PU) (18b)
p(0) = po, p(1) =p1 (18¢)

®An interesting third case that is not discussed herein is M, (v) :=
pl/2ypl/2

and define the (matricial, “anticommutator”) Wasserstein distance
Wa u(po, p1) between py and p; to be the square root of the mini-
mum of the cost (18a). More precisely, the minimum is taken over all
the piecewise smooth paths connecting py and p;. Note here we have
adopted the notation that v*v = Zi\:l vivy forv € SV,

Let A(-) € H be a smooth Lagrangian multiplier for the constraints
(18b) and construct the Lagrangian

Lipyv, ) = /0l {%tr(pv*v) +r (A (p - %V}: (vp+ m)) } it

-/ {300 = S22 (00 + )~ wli) |

x dt + tr(A(1)p1) — tr(x(0)po).
Pointwise minimizing the above over v yields
Uopl(t) = VL)\.(t)

The corresponding minimum is

+tr((1)p1) — t(2(0)p0)

from which we conclude the following sufficient conditions for opti-
mality. This optimality condition should be compared with (3).

Theorem 2: Suppose that there exist A(-) € H,p(-) € Dy
satisfying
1
bt 5(VEa) (Ved) =0 (19a)
1
p— 5V2(VL)\P+PVL)~) =0 (19b)

together with the boundary conditions p(0) = pg, p(1) = py; then, the
pair (p, v) with v = V1, A solves (18).
The Wasserstein distance W, , gives a Riemannian structure

1
<($1 5 52>/J = 5 tr(pV)C{ v)\.g + pV)»j V)\.l)

on the tangent space (11). Here, A;, j = 1,2, is the solution to the
“Poisson” equation

1 *
(Sj = §VL (VL)xj p+ va A,]').
The proof of existence and uniqueness of the solution of (20) follows
exactly along the same lines as in [21, Sec. 3.2]. See also [22] for
details. In fact, given a tangent vector §, VA is the unique minimizer
of tr(pv*v) over all the velocities v € S satisfying

(20)

1
§=5Vi(vp+pu).

Therefore, with the above definition of Riemannian structure,
W3 4 (-, -) indeed defines a metric on D, . Moreover, the distance be-
tween two given pg, p1 € D, can be rewritten as

Waa (o) = min /G50, (000

where the minimum is taken over all the piecewise smooth paths on
the manifold D, .

The Wasserstein distance W5 , can be extended to the closure of
D, , i.e., the space (denoted by D) of all positive-semidefinite ma-
trices with trace 1, by continuity. For any two matrices pg, p; € D,
we can construct sequences {pj },{p7} in D, converging to p, and
p1, respectively, in the Frobenius norm. It can be shown that the
definition W5 (po, p1) := lim;_... W5 (py, p;) makes sense; see [21,
Proposition 4.5].



2616

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 63, NO. 8, AUGUST 2018

Remark 1: For computational purposes, it is important to note that
Problem (18) can be cast as a convex optimization problem in a manner
analogous to that in the scalar case [5]; cf., (4). Define u := vp =
[uf,...,uy]"and @ := [ug,...,uy]"; then

Z tr(pvgoy)

k=1

N
=> tr(vspp

k=1

r(pv*v)

(0ep)") = tr(up™'u’)

and we readily arrive at the equivalent convex optimization problem

1
Waa(po,p1)? = min/ tr(uptu”)dt (21a)
puJo
R _
p= ng (u—1a) (21b)
p(0) = po, p(1) = p1. (21c)

The minimum is taken over all the piecewise smooth functions p and
u. Even though we do not put any structure constraint on u, the optimal
u satisfies u = vp for some v € S [22]. An efficient algorithm is
presented in [23].

2) Transport With Spatial Component: In applications, it is
often the case that one has to deal with matrix-valued distributions
along spatial or frequency axes. Thus, in this case, the p s may be
‘H. -valued functions on a subdomain £ C R™. For instance, in the
context of multivariable time-series analysis, it is natural to consider
m =1, and E = [0, 7]; see, e.g., [4]. For simplicity, we assume E to
be a (convex) connected compact set. Therefore, in this section

D ={p(-) | p(z) € H, for z € E such that / tr(p(z))dz = 1}.

E

Let D, denote the interior of D, and in order to avoid proliferation of
notation, we use the same symbol D (D..) as above. By combining the
standard continuity equation on the Euclidean space and the continuity
equation for density matrices (16b), we obtain a continuity equation on
D, for the flow p(t, x) as

0 1
875 + V (wp + pw) — ivz (vp+ pv) = 0. (22)
Here, V.- is the standard (negative) divergence operator on R,

w(t,z) € H™ is the velocity field along the space dimension, and
v(t,x) € SV is the quantum velocity as before.

A dynamic formulation of matrix-valued OMT between two given
marginals py, p1 € D, ensues, namely,

1
Wa.a(po,p1)* = min/ / {tr(pw*w) + v tr(pv*v)} dedt
0o JE

(23a)
9p 1,
ot + V (wp+pw)—§VL(vp+pv):0 (23b)
p(0,) = po, p(1,:) = p1. (23¢)

The minimum is taken over piecewise smooth functions p(-) €
D, ,w(-) € H™,v(-) € SV under zero-flux condition on the bound-
ary OF. The coefficient y > 0 is arbitrary and weighs in the relative
significance of the two velocity fields. It is anticipated that, in ap-
plications, a suitable choice of v will provide appropriate flows that
reflect the underlying physics (trading off the two alternative mecha-
nisms for transferring mass, i.e., via “flow along x” or via the available
“noncommutative flow”). Once again, we are in a position to define a
Wasserstein distance W5 , (py, p1) between p, and p; via (23a).

A sufficient condition for optimality can be obtained in a similar
manner as before. Here, we let A(+,-) € H be a smooth function and

define the Lagrangian

1
L(p,v,w,A) = / / {ltr(pw*u;) + ltr(pv*v)
o Je L2 2
dp
+ tr <)\ <a + =V,
1 *
—§VL (vp + pv) dzdt.

Integration by parts yields

/ 1 / {%tr(pw*wngtr(w*v)

¢ O
i [ ZZ

ot
Here, we have discarded the terms on py, p;. Minimizing the above

pointwise over w, v gives expressions for the optimal values as

V. A(t,x)

(wp + pw)

1 1
p) = 5 (Vakswp + pw) = S(Vidvp + Pv)} dadt.

Wope(t, ) =

and
1
Vopt(t, ) = ;VL Alt, ).

Substituting these back to the Lagrangian, we obtain

/Ol/E{f%troa(

,% b (p(VrA) (V2h)) — tr (p%) } dedt

Var) (Vi)

and the sufficient conditions for optimality given below follow.

Theorem 3: Suppose that there exist smooth A(-,-) € H, p(+,-) €
D. satisfying

ak 1 1

T (V 2)(Ved) + %(VL)“)*(VL)‘) = (24a)

Op 1,

(24b)

together with boundary conditions p(0,-) = pg, p(1,-) = p1; then,
(p,w,v) = (p, Vih, #VL 1) solves (23).

The Wasserstein distance W5 , defines a Riemannian-type structure
on the tangent space of D at p. Given any two tangent vectors d; , o at
p, we can associate them with A; , A, by solving the “Poisson” equations

1 _., 1
0; = ZVL (Virjp+pVid;) — §Vz (Vekjp+pVekj) (25)
for j = 1,2. Similar to the argument we had before the case (20)
without a spatial component, the above Poisson equation (25) has an

unique solution. The proof relies on the fact that the null space of the
gradient operator
Vi
Vie= |:VT :|

is spanned by the constant matrix function I.
The Riemannian metric can then be defined as

' 1 * *
p — 5 T T z z
<61,62> / {2 tr(p(V )\.1) \Y% Ao +p(V )\Q) \Y }xl)
JE

1
+ﬂ tr(p(VLkl)*VLAQ + p(vag)*vL)\.l)} dx.
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Therefore, W5 , (-, -) is a metric on D and can be rewritten as

Ve =min [ (5250)
Here, the integral is minimized over all the piecewise smooth curves
in D, connecting p, and p;. As in Section III-B1, the Wasserstein
distance W, , can be extended to the closure D of D, by continuity.
Remark 2: As noted earlier, (23) can again be cast as a convex
optimization problem: define ¢ = wp to obtain the equivalent form

min/ / {tr(gp™"q¢") + v tr(up ' u*)} dadt (26a)
pigou

9 | 1 5V D) =iV (=) =0 (26b)
ot qgT4q o VL =

p(0,:) = po, p(1,) = p1. (26¢)

3) Logarithmic Case: We now briefly discuss the case where
the noncommutative multiplication of p and v is taken to be (17a):

1
]Wp(v)z/ piup'tds.
0

For the purposes of defining a corresponding Wasserstein geometry, we
proceed in a manner entirely analogous to that for the anticommutator
case. Hence, we only highlight the key elements.

The corresponding Wasserstein metric between py, p1 € D, is ob-
tained via

min

1 1
in / / tr(v*piup' *)dsdt  (27a)
peD, wesN Jo Jo

1
p=V / piup'tds
0

W2.b(ﬂ07 ,01)2 =

(27b)

p(0) = po, p(1) = pi. (27¢)
Employing a similar argument as in Theorem 2 (see also [21, Th.
5.3]), we establish the following optimality condition.
Proposition 4: Suppose that there exist A(-) €H,p(-) €D,

satisfying
a - * 11—«
/ / / { 1—s 1+SP(VM) p
p
e — 2
x Vi, (1fs)I+sp}dﬁdads (28a)
1
=V / P Vi aptds (28b)
0

together with the boundary conditions p(0) = py, p(1) = py; then, the
pair (p,v) with v = V1, A solves (27).

The above optimality condition should be compared with (3) in the
scalar case and Theorem 2 in the anticommutator case. Unlike the
other two, where p does not affect A directly; here, the two differential
equations (28) are coupled in both directions.

Similarly, for matrix-valued densities, the corresponding metric is
obtained via

mln/ // {trwpwp Y+ ytr(viptupt }dsdxdt

pow

% + V, - (/ pswplfsds) -V (/ psvplfsds) =0
ot o 0

p(0,-) = po, p(1,-) = pi.

IV. GRADIENT FLOW OF THE ENTROPY

We close by presenting the matricial counterpart of the classical
result of [14] for the case of scalar-valued distributions that the gra-
dient flow of the entropy is the heat equation; see Section II-C. Thus,
in the following, we derive gradient flows for the entropy functional
on density matrices with respect to the two alternative Wasserstein
geometries.

A. Anticommutator Case
The entropy of density matrices is defined by
S(p) = —tr(plogp).

The gradient with respect to W5 , may be calculated as follows. For a
given flow p(-), we have

ds(p(t)) _

7 tr((logp+ 1)p)

1 *
—tr((log p + 1) 5 Vi (vp + pv))

_% tr((Vi log p)*(vp + pv))

1
=3 tr(pv*Vy log p + p(Vy log p)™v).

In view of the definition of W5 ,, we conclude that the steepest ascent
direction is

v= -V logp.

Substituting back to the continuity equation (16b), we obtain the gra-
dient flow

1
—5VL {p. V1 logp}
(29)

. 1 *
p=—5Vi(Vilogpp+pVyilogp) =

where {-, -} denotes the anticommutator as before.
Similarly, we may consider the entropy function for matrix-valued
densities

S(p) = */m tr(plog p)dz

and the associated gradient flow with respect to W5 . The total deriva-
tive of S over a flow p(t, -) is

dS(p(t, |

it ) :—/m ((logp+1)g )dz

t

1
- / {_5 tr(pw*V, log p + p(V, log p)"w)

1
—5 t(pv"Vy log p + p(Vy log p)*v)} da
which indicates, in view of (23), that the steepest ascent direction is
1
w=—-V,logp, v= —;VL log p.

Therefore, the gradient flow is now given by

0 1 1
aiﬁ = §v11 ) {pa VJL Ing} - ZVL {p7 vL Ing}
Remark 3: Note that in both of the above cases, the gradient flow
of the entropy is nonlinear, which should be contrasted with the linear
heat equation that arises in the scalar case (as noted in Section II-
C following [14] and [15]). Indeed, (29) is a second-order nonlinear
equation, which is quite different from the linear Lindblad equation,
and gives the direction of maximal dissipation of quantum information
relative to the Wasserstein metric W, , defined above.
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B. Logarithmic Case

In this section, we will see that in the logarithmic case, i.e., when
using the noncommutative multiplication and corresponding continuity
equation in (17), the gradient flow with respect to the corresponding
Wasserstein geometry of the matricial entropy now gives the quantum
version of the heat equation p = Ay p, which is the “dissipative part”
of the Lindblad equation. The linear heat equation for the gradient flow
of entropy in the logarithmic case was independently derived in [8]
and [9].

A key property of, and our choice of the terminology “logarithmic”
for, the noncommutative multiplication (17a) can be traced in the rather
remarkable identity (see [8] for details)

1
Vip= / p* (V1 log p)p' *ds. (30)
0
It represents a logarithmic averaging, although, at first surprising, the
identity itself may be readily proven using the product rule [see (13)]
and the fact that

1 .
p = lim (I + Elogp)”
j—oo

The relation (30) works just as well for general gradient operators

1

V.p= / p*(V, log p)p' *ds. (31)
0

With this in mind, we move onto the gradient flow of the entropy S(p)

with respect to W, . For the case where p(t) € D, , i.e., p does not

depend on spatial coordinates, taking the total derivative of S(p) over

a flow p(-) gives

dS(p(t .
# = —tr((logp+1)p)
dt
1
= —tr((Vy logp) / pvop'~*ds)
Jo
which points to the greatest ascent direction v = —V, log p. Now,

using (30), we obtain

1
p=—V; / P (Vi logp)ptds = ~ViVip=Arp  (2)
0

which is a linear heat equation, just as in the scalar case.
Similarly, employing (31), we see (arguing as above) that the gradient
flow of S(p) with respect to W, ;, with spatial dimension is

o _
ot

Remark 4: First and foremost, (32) and (33) are indeed quite in-
triguing because of their similarity to the scalar case. But, more impor-
tantly, (32) implies that the dissipation part of the Lindblad equation
gives a direction in which quantum information (negative of quantum
entropy) is decreasing as rapidly as possible with respect to the specific
Wasserstein geometry (W5 ;) on the space of density matrices.

Remark 5: 1t should be noted that both heat equations (29) and (32)
can be written in the form

p=—VyM,(Vylogp)

App+DAup. (33)

(34)

but with different noncommutative multiplications. This formula of
gradient flow of the entropy S even holds for the cases of other more
general noncommutative multiplications. The fact that the heat equa-
tion becomes linear in the logarithmic case is due to the remarkable
relation (30).

V. EXAMPLE

We now highlight the relevance of our results with an illustrative
example. In this, we use the matricial Wasserstein-2 to compare and

Fig. 1. Interpolation of power spectra. (a) p(1,1). (b) p(2,2).

interpolate two multivariate power spectra. Thus, the data of the ex-
ample consist of two 2 x 2 matrix-valued densities, specified at ¢ = 0
and t = 1, respectively, and distributed over a frequency interval [0, 7].
Fig. 1 depicts the interpolation of these two distributions using (23).
The entry p(1,1) represents the energy density in the first channel,
while p(2,2) represents the energy density in the second. The fig-
ure exemplifies how the energy transfers gradually from channel 1
to channel 2, while, at the same time, the dominant frequency mode
shifts smoothly between the respective two peak frequencies. This is
a characteristic of our matricial-OMT interpolation. Evidently, linear
interpolation of the two end-point spectra fails to show such a shift in
power and frequency, which is natural and highly desirable. Indeed,
linear interpolation is plagued by the push-pop effect, where the peak
power at one frequency reduces, while power appears and increases at
another frequency at the same time. Push-pop effects are inconsistent
with the underlying physics, where energy density shifts with change
in position of the underlying cause.

The intent of such interpolation is to be used in modeling and mor-
phing time-varying signals and power distributions. Also, since the
dynamics of multi-input multi-output (MIMO) systems are closely re-
lated to the power spectrum of the input—output process when driven
by noise, the approach is expected to be relevant comparing, approxi-
mating, and interpolating MIMO system dynamics as well.

VI. CONCLUSION AND FURTHER RESEARCH

In this paper, we proposed a possible extension of the Benamou—
Brenier control-theoretic approach to OMT to the noncommutative case
of probability density matrices using ideas from quantum theory. We
discussed two cases where the noncommutative multiplication is taken
to be the anticommutator and logarithmic multiplication between den-
sity matrices and matricial velocity fields, respectively. Each of them
has certain advantages relative to one another. The anticommutator
case can be formulated as a convex optimization problem, where the
optimality condition resembles the one in the scalar setting, while the
logarithmic mean case leads to a linear heat equation as the gradient
flow of the entropy.

An immediate application of the Wasserstein distance that we define
to matrix-valued distribution as in [4] provides a computable metric to
compare matrix-valued power spectral densities and, thereby, compare
multivariable time series. However, the need to compare matrix-valued
distributions in a quantitative manner is evident in many other areas of
current interest in the field of controls, such as image-based analysis,
information and quantum control, and the study of networks.

Specifically, in medical image processing, a key technique is DTI,
which is used extensively in white matter tractography [24]. Here, one
assigns a tensor to each point in space in order to track the diffusion
of water molecules in neuronal fibers and, thus, image the white mat-
ter tracts of the brain. Such imagery is used in surgical planning as
well as in studying various neurological disorders such as Parkinson’s,
Alzheimer’s disease, and schizophrenia. Understanding the white mat-
ter connections allows us to visualize the complex circuitry of the brain.
Thus, the geometry and distances described in this paper are directly
applicable to the type of matrix-valued fields encountered in DTI and
promises a potentially important research direction where tracking of
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neuronal fiber information could be approached via suitable matrix-
flow control problems as suggested herein.

On the topic networks and network dynamics, it is interesting to
point out that “network robustness™ is intimately related to entropy
[25] and thus via the work of [26] and [27] to curvature. Network
robustness is also closely related to feedback redundancy for systems
modeled by weighted graphs with important implications for analyzing
the mechanisms of resistance in cancer [28], [29]. The conceptual basis
of robustness of networks, at the scales that one needs to consider, is
intimately related to OMT via Ollivier—Ricci curvature, as discussed in
these references.

It is, thus, natural from a control as well as an applications perspec-
tive to consider generalization of transport problems to vector-valued
as well as matrix-valued quantities across relevant underlying spaces,
e.g., networks, and thereby suitable generalization of curvature along
the matrix-valued framework of the current paper. We feel that this
is a promising direction of research. Finally, we expect that (34) will
have applications to quantum information theory and quantum net-
works. The gradient flows proposed in this paper identify directions
in which entropy is increasing in the steepest manner (relative to the
given Wasserstein distance) and consequently in which information is
decreasing the fastest.
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