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Stochastic control and non-equilibrium
thermodynamics: fundamental limits

Yongxin Chen, Tryphon Georgiou and Allen Tannenbaum

Abstract—We consider damped stochastic systems in a controlled
(time-varying) potential and study their transition between specified
Gibbs-equilibria states in finite time. By the second law of thermody-
namics, the minimum amount of work needed to transition from one
equilibrium state to another is the difference between the Helmholtz
free energy of the two states and can only be achieved by a reversible
(infinitely slow) process. The minimal gap between the work needed
in a finite-time transition and the work during a reversible one, turns
out to equal the square of the optimal mass transport (Wasserstein-
2) distance between the two end-point distributions times the inverse
of the duration needed for the transition. This result, in fact, relates
non-equilibrium optimal control strategies (protocols) to gradient flows
of entropy functionals via the Jordan-Kinderlehrer-Otto scheme. The
purpose of this paper is to introduce ideas and results from the emerging
field of stochastic thermodynamics in the setting of classical regulator
theory, and to draw connections and derive such fundamental relations
from a control perspective in a multivariable setting.

I. INTRODUCTION

The quest to quantify the efficiency of the steam engine during
industrial revolution of the 19th century precipitated the development
of thermodynamics. While its birth predates the atomic hypothesis,
its modern day formulation makes mention of “macroscopic” systems
that consist of a huge number of “microscopic” particles (e.g., of the
order of Avogadro’s number), effectively modeled using probabilistic
tools. Its goal is to describe transitions between admissible end-
states of such macroscopic systems and to quantify energy and heat
transfer between the systems and the “heat bath” that they may be in
contact with. In spite of the name suggesting “dynamics,” the classical
theory relied heavily on the concept of quasi-static transitions, i.e.,
transitions that are infinitely slow. More realistic finite-time transi-
tions has been the subject of “non-equilibrium thermodynamics,” a
discipline that has not reached yet the same level of maturity, but one
which is currently experiencing a rapid phase of new developments.
Indeed, recent developments have launched a phase referred to as
stochastic thermodynamics and stochastic energetics [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], that aims to quantify non-
equilibrium thermodynamic transitions. The reader is referred to a
nice and detailed review article [12] for an overview of this subject.
Our goal in this paper is to develop such a framework, focusing
on the stochastic control of linear uncertain systems in a quadratic
(controlled) potential, in a way that is reminiscent of what is known as
covariance control [13], [14], [15], [16], and obtain simple derivation
of fundamental bounds on the required control and dissipation in
achieving relevant control objectives.

Specifically, we consider transitions of a thermodynamic sys-
tem, represented by overdamped motion of particles in a (time-
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varying) potential, from one stationary stochastic state to another over
a finite-time window [0, tf ]. The system is modeled by the (vector-
valued) Ornstein-Uhlenbeck process 1

dx(t) = −∇H(t, x(t))dt+ σdw(t) (1)

with x ∈ Rn and w a standard (Rn-vector-valued) Wiener process
representing a thermal bath of temperature T . The coefficient

σ =
√

2kBT ,

where kB is the Boltzmann constant [2]. In the case where the
Hamiltonian/potential

Ht(x) = H(t, x) =
1

2
x′Q(t)x (2)

is quadratic, the system becomes

dx(t) = −Q(t)x(t)dt+ σdw(t), x(0) = x0. (3)

The drift is now the Hookean force field −Q(t)x(t). The matrix
Q(t) = Q(t)′, t ∈ [0, tf ], represents a controlled parameter that is
to steer the system from a specified initial distribution for x0 to a
final one for xf , over the specified time window. In this quadratic
potential setting, the random variables x0, xf are taken to be Gaussian
with zero mean and covariances Σ0,Σf , respectively. That is, the
distributions of the state at the two end points have probability
densities are ρ0 = N (0,Σ0), ρf = N (0,Σf ), or more explicitly,

ρi(x) =
1

(2π)n/2|Σi|1/2
e−

1
2
x′Σ−1

i x, i ∈ {0, f},

and we seek to determine the minimum amount of work needed to
effect the transition.

From a controls perspective, the case of utilizing quadratic
potential amounts to covariance control of bilinear systems. Indeed,
the dynamics in this case are driven by the product of the control
input Q(t) times the state x(t). By adjusting the quadratic potential,
it is possible to steer the system from one Gaussian distribution to
another in finite time tf . When this is the case, we are interested
in the optimal control strategy (Q(t), t ∈ [0, tf ]) that minimizes
the required control energy. For more general time-varying potential
H(t, ·), the control protocol is considerably more involved and does
not fall into the bilinear control setting. Nevertheless, the optimal
protocol can be characterized using optimal transport (see Section
VII).

As noted in the abstract, this minimum control energy is greater
than the Helmholtz free energy difference ∆F between the two
states (second law of thermodynamics). Starting with the works by
Jarzynski [1], [2] and Crooks [3], great new insights began to shed
light on the precise amount of work required for such finite-time
transitions. Most famously, the Jarzynski equality

e−β∆F = E{e−βW}, (4)

1A similar stochastic model was adopted in [17] to study the second law
of thermodynamics.
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relates the equilibrium quantity ∆F (free energy difference be-
tween equilibrium states) to an averaged non-equilibrium quantity
(exponential of the work; see our discussion below) over possible
trajectories of the system in any finite-time transition. Throughout,
E{·} denotes the expectation on the path space of system trajectories
and

β = (kBT )−1,

where again T represents temperature of the heat bath and kB the
Boltzmann constant; β has units of “inverse-work.” The Jarzynski
identity holds for arbitrary time-dependent driving force and not
necessarily gradient of a quadratic potential. This type of result has
led to a number of so-called Fluctuation Theorems in the literature,
some of which have profound implications in biology and medicine
[12], [18], [19].

Although the Jarzynski equality is quite remarkable, it doesn’t
provide an explicit gap between the free energy difference ∆F and
the average work W = E{W}. This gap is essential if we would
like to find an optimal strategy with minimum work to move a
thermodynamical system from one state to another. Following up on
the Jarzynski equality, the authors of [6], [20] analyze the minimum
energy control problems in the cases of a Brownian particle dragged
by a harmonic optical trap through a viscous fluid, and of a Brownian
particle subject to an optical trap with time dependent stiffness, in
both overdamped and underdamped setting. Further, in [21], [11], the
authors provide an optimal solution that relates the work dissipation
to a Wasserstein distance. It can be viewed as a stronger version of
the Second Law of Thermodynamics for certain Langevin stochastic
processes in finite-time.

The present work is closely related to both [21], [11] as well
as [6], [20]. Compared to [21], [11], our approach gives a control-
theoretic account to the fluctuation type results in the case for
Gaussian distributions. In addition, we provide an alternative proof
for general cases with connections to the gradient flows with respect
to the Wasserstein geometry [22]. The major difference to [6], [20]
is that we consider the general matrix cases in this paper. We remark
that the problems studied in [21], [11] and [6], [20] are not equivalent.
These two can be connected through an relaxation step as discussed
in Section VI.

The rest of the paper is organized as follows. In Section II we
go over some key concepts in stochastic thermodynamics and optimal
mass transport. The minimum energy control problem between two
zero-mean Gaussian distributions is formulated and solved in Section
III. The results’ implication in the second law of thermodynamics
is discussed in Section IV. The result is extended to the nonzero
mean setting in Section V. A modification of our problem without
terminal constraint on distributions is solved in Section VI. After
that, in Section VII, by leveraging the optimal mass transport theory,
we solve the minimum energy control problem for the general
Orstein-Uhlenbeck dynamics and any marginal distributions. Last,
for comparison, we go over a simple proof of the Jarzynski equality
in Section VIII. We conclude with several numerical examples in
Section IX.

II. PRELIMINARIES

This work bridges stochastic control, stochastic thermodynam-
ics and optimal mass transport. Below we introduce some key
concepts in stochastic thermodynamics and optimal mass transport
that are relevant.

A. Stochastic thermodynamics

Stochastic thermodynamics [12], [23] is one approach to study
thermodynamical systems via stochastic calculus. A basic model in
this framework is

dx(t) = −∇H(t, x(t))dt+ σdw(t). (5)

Here H is the Hamiltonian of the system and the noise dw describes
the effect of the heat bath. When the Hamiltonian is fixed, the state
distribution converges to a Boltzmann distribution

ρB(x) =
1

Z
e−βH(x),

where Z is a partition function. This is known as the equilibrium
steady state. We denote the internal energy and Helmholtz free energy
in the equilibrium steady state by H and F respectively. They are
defined by [23]

H := H(ρB) :=

∫
H(x)ρB(x)dx,

and
F := F(H) = −kBT logZ.

Clearly, they satisfy the relation

F = H− TS(ρB) (6)

with the entropy being

S(ρ) = −kB
∫
ρ(x) log ρ(x)dx.

The above relation (6) may be used to extend the definition
of free energy to non-equilibrium states. More precisely, let ρ be
the probability distribution of the state, then we can define the free
energy through [24]

F(ρ;H) = H(ρ)− TS(ρ). (7)

Note that
F(ρ;H) ≥ F(ρB ;H) = F.

B. Optimal mass transport

We only cover concepts that are related to the present work. We
refer the reader to [25] for complete details. Consider two measures
ρ0, ρ1 on Rn with equal total mass. Without loss of generality, we
take ρ0 and ρ1 to be probability distributions. In the Kantorovich’s
formulation of optimal mass transport with quadratic cost, one seeks
a joint distribution π ∈ Π(ρ0, ρ1) on Rn × Rn, referred to as
“coupling” of ρ0 and ρ1, that minimizes the total cost, and so that
the marginals along the two coordinate directions coincide with ρ0

and ρ1, respectively, that is,

inf
π∈Π(ρ0,ρ1)

∫
Rn×Rn

‖x− y‖2π(dxdy). (8)

The above optimal transport problem has a surprising stochastic
control formulation, which reads as

inf
u

E
{∫ 1

0

‖u(t, x(t))‖2dt
}

(9a)

ẋ(t) = u(t, x(t)) (9b)

x(0) ∼ ρ0, x(1) ∼ ρ1. (9c)
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Briefly, we seek a feedback control strategy with minimum energy
that drives the state of an integrator from an initial probability
distribution ρ0 to a terminal probability distribution ρ1.

Both of the above problems have unique solutions under the
assumption that the marginal distributions are absolutely continuous.
The square root of the minimum of the cost ((8) or (9)) defines a
Riemannian metric on P2(Rn), the space of probability distributions
on Rn with finite second-order moments. This metric is known as the
Wasserstein metric W2 [22], [26], [25], [27]. On this Riemannian-
type manifold, the geodesic curve connecting ρ0 and ρ1 is given by
ρt, the probability density of x(t) under the optimal control policy.
This is called displacement interpolation [28] and it satisfies

W2(ρs, ρt) = (t− s)W2(ρ0, ρ1), 0 ≤ s < t ≤ 1. (10)

When both of the marginals ρ0, ρ1 are Gaussian distributions,
the problem has a closed-form solution [29], [30], [31]. Denote the
mean and covariance of ρi, i = 0, 1 by mi and Σi, respectively.
Let X,Y be two Gaussian random vectors associated with ρ0, ρ1,
respectively. Then the cost in (8) becomes

E{‖X − Y ‖2} = E{‖X̃ − Ỹ ‖2}+ ‖m0 −m1‖2, (11)

where X̃ = X−m0, Ỹ = Y −m1 are zero-mean versions of X and
Y . We minimize (11) over all the possible Gaussian joint distributions
between X and Y , which gives

min
S

{
‖m0 −m1‖2 + trace(Σ0 + Σ1 − 2S) |

[
Σ0 S
S′ Σ1

]
≥ 0

}
,

(12)
with S = E{X̃Ỹ ′}. The constraint is a semidefinite one, so the above
problem is one of semidefinite programming (SDP). The minimum
is achieved in closed-form by the unique minimizer

S = Σ
1/2
0 (Σ

1/2
0 Σ1Σ

1/2
0 )1/2Σ

−1/2
0 (13)

corresponding to the minimum value

W2(ρ0, ρ1)2 = ‖m0−m1‖2+trace(Σ0+Σ1−2(Σ
1/2
0 Σ1Σ

1/2
0 )1/2).

(14)
The resulting displacement interpolation ρt is a Gaussian distribution
with mean mt = (1− t)m0 + tm1 and covariance

Σt = Σ
−1/2
0

(
(1− t)Σ0 + t(Σ

1/2
0 Σ1Σ

1/2
0 )1/2

)2

Σ
−1/2
0 . (15)

III. REGULATION VIA A TIME-VARYING POTENTIAL

We consider the stochastic dynamical system in (3). As
mentioned earlier, it represents a thermodynamical system with a
quadratic Hamiltonian (2), overdamped and attached to a heat bath
that is modeled by the stochastic excitation dw. The initial state is a
Gaussian random vector x0 ∼ N (0,Σ0), i.e., one having covariance
Σ0 and mean E{x0} = 0. The initial distribution is usually taken
to be the stationary distribution with potential remaining constant
on (−∞, 0] by keeping Q(t) ≡ Q0 over t ∈ (−∞, 0], in which
case Q0 = σ2

2
Σ−1

0 , but this assumption is not required. We are
interested in steering the state to the terminal distribution N (0,Σf )
through selecting an optimal (least energy) time-varying control
matrix variable Q(·) = Q′(·) satisfying the boundary conditions
Q(0) = Q0, Q(tf ) = Qf .

The control energy/work (see [1], [2]) delivered to the system
along any particular sample path x(·) by the time-varying potential
(2) is2

W(Q, x) :=

∫ tf

0

∂H(t, x)

∂t
dt =

∫ tf

0

〈Q̇(t),
∂H(t, x)

∂Q
〉dt,

where 〈X,Y 〉 = tr(X ′Y ). Thus, by averaging over all possible
sample paths, we obtain

W := E{W(Q, x)} = E
{∫ tf

0

〈Q̇, ∂H
∂Q
〉dt
}

= E
{∫ tf

0

1

2
〈Q̇(t), x(t)x(t)′〉dt

}
=

1

2

∫ tf

0

〈Q̇(t),Σ(t)〉dt.

Here, Σ(·) is the state covariance which, according to standard linear
systems theory, evolves according to the Lyapunov equation

Σ̇(t) = −Q(t)Σ(t)− Σ(t)Q(t) + σ2I. (16)

The control may be discontinuous, reflecting instantaneous changes
in the Hamiltonian H, in which case, the expression for the work
becomes the Lebesgue-Stieltjes integral

W =
1

2

∫ t+
f

0−
〈dQ(t),Σ(t)〉, (17)

where 0−, t+f represent limits from below and above, respectively, so
as to account for the discontinuities.

Problem 1: Determine a control law

{Q(t) | t ∈ [0, tf ]}

that minimizes (17) subject to (16) and the boundary conditions
Q(0) = Q0, Q(tf ) = Qf ,Σ(0) = Σ0,Σ(tf ) = Σf .

Theorem 2: Problem 1 has a unique minimizer Qopt(·) as
follows:
(i) If Σ0 = Σf , then Wmin = 0 and

Qopt(t) =
σ2

2
Σ−1

0 ,

Σ(t) = Σ0, for all t ∈ (0, tf ).

(ii) If Σ0 6= Σf , then

Wmin = −σ
2

4
trace log(ΣfΣ−1

0 )

+
1

tf
trace(Σ0 + Σf − 2(Σ

1/2
0 ΣfΣ

1/2
0 )1/2) (18)

and

Qopt(t) =
σ2

2
Σ(t)−1 − (Λ(0)−1 + tI)−1 (19a)

Σ(t) = (Λ(0)−1 + tI)M−1(Λ(0)−1 + tI), (19b)

with

Λ(0) =
1

tf
(−I + Σ

−1/2
0 (Σ

1/2
0 ΣfΣ

1/2
0 )1/2Σ

−1/2
0 ) (20a)

M = Λ(0)−1Σ−1
0 Λ(0)−1. (20b)

2The specific expression for the work has been debated in detail in [32],
[33], [34], [35].
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Proof 1: Case (i) is trivial. We only discuss case (ii) in detail.
Applying integration by parts to (17), we obtain

W = −1

2

∫ t+
f

0−
〈Q(t), dΣ(t)〉+

1

2
trace

(
Q(t+f )Σf −Q(0−)Σ0

)
.

(21)
Notice that
1

2
trace

(
Q(t+f )Σf −Q(0−)Σ0

)
=

1

2
trace (QfΣf −Q0Σ0)

= Hf (ρf )−H0(ρ0)

is precisely the change in the average energy (expectation of the
Hamiltonian) and is independent of the control {Q(t), t ∈ [0, tf ]}.
More specifically,

Hf (ρf )−H0(ρ0) =

∫
Hf (x)ρf (x)dx−

∫
H0(x)ρ0(x)dx.

Substituting (16) into (21) yields

W =
1

2

∫ tf

0

(
2 trace(Q(t)Σ(t)Q(t))− σ2 trace(Q(t))

)
dt

+Hf (ρf )−H0(ρ0). (22)

We change variables, replacing Q by

Λ(t) :=
σ2

2
Σ(t)−1 −Q(t),

in both, the constraint (16) as well as (22). These now become

Σ̇(t) = Λ(t)Σ(t) + Σ(t)Λ(t) (23)

and

W =

∫ tf

0

trace(Λ(t)Σ(t)Λ(t))dt− σ2

2

∫ tf

0

trace(Λ(t))dt

+Hf (ρf )−H0(ρ0), (24)

respectively. From (23),

trace(Σ̇(t)Σ(t)−1) = 2 trace(Λ(t)).

It follows that

σ2

2

∫ tf

0

trace(Λ(t))dt =
σ2

4

∫ tf

0

trace(Σ̇(t)Σ(t)−1)dt

=
σ2

4

∫ tf

0

trace(
d

dt
log(Σ(t)))dt

=
σ2

4
trace log(Σ(tf )Σ(0)−1)

=
σ2

4
trace log(ΣfΣ−1

0 )

is independent of the choice of Q or Λ. Thus, minimization of (22)
(equivalently, minimization of (24)) is equivalent to minimization of

J :=

∫ tf

0

trace(Λ(t)Σ(t)Λ(t))dt (25)

subject to the choice of Λ(·) that satisfies (23) and the boundary
conditions Σ(0) = Σ0 and Σ(tf ) = Σf . Then,

W = J− σ2

4
trace log(ΣfΣ−1

0 ) + Hf (ρf )−H0(ρ0). (26)

Setting X := ΛΣ, the functional J becomes convex in X,Σ.
Then,

min
Λ

J = min
X

∫ tf

0

trace(X(t)Σ(t)−1X(t)′)dt,

subject to the linear constraint

Σ̇(t) = X(t) +X(t)′, Σ(0) = Σ0, Σ(tf ) = Σf , (27)

has a unique solution. In fact, a closed-form expression can be
obtained by considering the necessary conditions that are being
dictated by the stationarity of the Lagrangian

L(Σ, X, Λ̂) :=

∫ tf

0

trace(X(t)Σ(t)−1X(t)′)dt

+

∫ tf

0

trace(Λ̂(Σ̇(t)−X(t)−X(t)′))dt.

Specifically, the first variation with respect to X gives that

Λ̂ = XΣ−1 = Λ.

Then, the variation with respect to Σ gives

Λ̇ = −Λ2. (28)

Assuming that Λ(0) is nonsingular,

Λ(t) = (Λ(0)−1 + tI)−1.

From (23),

Σ(t) = (Λ(0)−1 + tI)M−1(Λ(0)−1 + tI)

for a suitable choice of a matrix M . Then, Λ(0),M are determined
from the boundary conditions,

Σ(0) = Λ(0)−1M−1Λ(0)−1 = Σ0,

Σ(tf ) = (Λ(0)−1 + tfI)M−1(Λ(0)−1 + tfI) = Σf .

It follows that

Σ−1
0 = (I + Λ(0)tf )Σ−1

f (I + Λ(0)tf ),

from which we deduce that I + Λ(0)tf is the geometric mean
(Σ−1

0 ]Σf ) of Σ−1
0 and Σf (see [36]), viz.,

I + Λ(0)tf = Σ
−1/2
0 (Σ

1/2
0 ΣfΣ

1/2
0 )1/2Σ

−1/2
0 .

Thus, we conclude (20).

Finally, plugging the optimal solution into (25) yields

Jmin = tf trace(M−1)

= tf trace(Λ(0)Σ0Λ(0))

=
1

tf
trace(Σ0 + Σf − 2(Σ

1/2
0 ΣfΣ

1/2
0 )1/2), (29)

which completes the proof. 2

Remark 3: The optimal control Q(t) in (19a) is continuous
function on (0, tf ). The limit values at t = 0, tf are

Q(0+) =
σ2

2
Σ−1

0 +
1

tf
(I − Σ

−1/2
0 (Σ

1/2
0 ΣfΣ

1/2
0 )1/2Σ

−1/2
0 )

and

Q(t−f ) =
σ2

2
Σ−1
f +

1

tf
(−I + Σ

1/2
0 (Σ

1/2
0 ΣfΣ

1/2
0 )−1/2Σ

1/2
0 )

respectively. These may not be consistent with the boundary condi-
tions Q(0) = Q0, Q(tf ) = Qf , which dictates the discontinuities of
the optimal control at t = 0, tf . When both the initial and terminal
states are stationary, namely, Q0 = σ2

2
Σ−1

0 , Qf = σ2

2
Σ−1
f , such

discontinuities go to zero as the length of time tf goes to infinity.
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IV. SECOND LAW OF THERMODYNAMICS AND OPTIMAL

TRANSPORT

The problem to minimize J in (25) is in fact a Monge-
Kantorovich optimal transport problem with marginals ρ0 and ρf ,
and quadratic cost functional [25], [27]. Specifically,

min
Λ

J =
1

tf
W2(ρ0, ρf )2. (30)

This follows directly from (29) and (14). Alternatively, consider the
stochastic control formulation (9) of optimal transport. The optimal
solution, see e.g., [37], [38], is in the linear state feedback form
u(t, x) = Λ(t)x. With E{x(t)x(t)′} = Σ(t),

E{‖u‖2} = trace(Λ(t)Σ(t)Λ(t)′)

and
Σ̇(t) = Λ(t)Σ(t) + Σ(t)Λ(t)′.

The optimal Λ is symmetric and therefore coincides with the mini-
mizer of J up to a scaling in time. The factor 1/tf shows up due to the
fact that the time window in standard optimal transport is [0, 1] while
in our problem it is [0, tf ]. Naturally, it follows from this equivalence
that the probability density flow of x(t) under optimal control Qopt

is a (scaled) geodesic (displacement interpolation) between ρ0 and ρf
with respect to the Wasserstein metric W2. Indeed, it can be verified
that Σ in (19b) is

Σ(t) = Σ
−1/2
0

(
(1− t

tf
)Σ0 +

t

tf
(Σ

1/2
0 ΣfΣ

1/2
0 )1/2

)2

Σ
−1/2
0 ,

which is consistent with the geodesic formula in (15). Thus, we obtain
the following:

Theorem 4: The probability density flow of x(t) in Problem
1 with optimal control Q is the (scaled) displacement interpolation
between ρ0 and ρf .

From (30) and Theorem 2, the minimum of W is

1

tf
W2(ρ0, ρf )2 − σ2

4
trace log(ΣfΣ−1

0 ) + Hf (ρf )−H0(ρ0).

Using the “log det = trace log” equality, and the fact that the entropy
of Gaussian distributions is

S(ρ) = −kB
∫
ρ log ρ

=
kB
2

log det(Σ) +
kB
2

log det(2πI) +
kB
2

trace I,

and, in view of σ2 = 2kBT , we get that the minimum value of W
is

Wmin =
1

tf
W2(ρ0, ρf )2−TS(ρf )+TS(ρ0)+Hf (ρf )−H0(ρ0)

=
1

tf
W2(ρ0, ρf )2 − T∆S+Hf (ρf )−H0(ρ0). (31)

Next note that the change in the Helmholtz free energy (see (7)) is

∆F = F(ρf ;Hf )− F(ρ0;H0) = Hf (ρf )−H0(ρ0)− T∆S.

Putting all this together, we get that

Theorem 5:

Wmin = ∆F +
1

tf
W2(ρ0, ρf )2. (32)

Recall that for reversible processes, one has

W = ∆F,

and for general processes

W ≥ ∆F.

These are equivalent to the second law of thermodynamics, which
says that the total entropy of an isolated system is nondecreasing.
Theorem 5 provides a stronger lower bound for entropy production
of a finite-time process, and this bound connects thermodynamics and
optimal mass transport!

The difference W − ∆F is the entropy production, or work
dissipation, and denoted Wdiss. This is the same as J in the proof of
Theorem 2. Theorem 5 provides a fundamental lower bound of work
dissipation

Wdiss ≥
1

tf
W2(ρ0, ρf )2

for an irreversible process evolving in a finite time-interval [0, tf ].
As we discussed earlier, this lower bound is achieved by the optimal
protocol (19a) and the corresponding probability density flow is the
displacement interpolation between ρ0 and ρf .

In general, for any feasible protocol Q(t), t ∈ [0, tf ], the work
dissipation depends only on the probability density flow ρt from ρ0

to ρf .

Theorem 6:

Wdiss =

∫ tf

0

trace(Λ(t)Σ(t)Λ(t))dt (33a)

Σ̇(t) = −Q(t)Σ(t)− Σ(t)Q(t) + σ2I (33b)

Λ(t) =
σ2

2
Σ(t)−1 −Q(t). (33c)

Indeed, once the probability density flow ρt is fixed, we can get
Q,Λ through (33b)-(33c) and then Wdiss through (33a). In fact, this is
nothing but the length (scaled by tf ) of the curve ρt on the manifold
of probability densities equipped with the Wasserstein metric W2

[27].

Remark 7: Minimizing the work W is equivalent to minimizing
the work dissipation Wdiss = W − ∆F as ∆F relies only on the
boundary conditions. When there is no constraint on the choice
of Hamiltonian H, the optimal strategy is given by Theorem 2,
which leads to a probability density flow that is the displacement
interpolation between ρ0 and ρf . On the other hand, when there
exist constraints on H, in view of the above argument, we can lift
the problem to the space of probability densities, and seek a feasible
time-varying Hamiltonian such that the resulting density flow ρt has
minimum length on the manifold of probability densities equipped
with the Wasserstein metric W2. This may lead to a promising
direction to solve constrained thermodynamical control problems.

V. HAMILTONIAN WITH NONZERO CENTER

In this section, we extend our framework to the cases when
the centers of the Hamiltonian potentials are allowed to change over
time. Specifically, consider the stochastic thermodynamical system

dx(t) = −Q(t)(x(t)− p(t))dt+ σdw(t), (34)

which corresponds to the Hamiltonian

H(t, x) =
1

2
(x− p(t))′Q(t)(x− p(t))
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with time-varying center p(t). Assume the initial and terminal
Gaussian distributions are ρ0 = N (m0,Σ0), ρf = N (mf ,Σf ). Our
goal is to drive the system from initial distribution ρ0 to terminal
distribution ρf with minimum cost via changing the strength Q as
well as the center p of the potential well at the same time.

The mean and covariance of x(t) evolve according to

Σ̇(t) = −Q(t)Σ(t)− Σ(t)Q(t) + σ2I (35a)

and
ṁ(t) = −Q(t)m(t) +Q(t)p(t). (35b)

The average work is

W = E

{∫ t+
f

0−

∂H(t, x)

∂t
dt

}

= E

{∫ t+
f

0−

1

2
〈Q̇(t), (x(t)− p(t))(x(t)− p(t))′〉

−(x(t)− p(t))′Q(t)ṗ(t)dt
}

=

∫ t+
f

0−
[
1

2
〈Q̇(t),Σ(t)〉+

1

2
(m(t)− p(t))′Q̇(t)(m(t)− p(t))

−(m(t)− p(t))′Q(t)ṗ(t)]dt

=

∫ t+
f

0−
[
1

2
〈dQ(t),Σ(t)〉+ ‖ṁ(t)‖2dt

+d(
1

2
(m(t)− p(t))′Q(t)(m(t)− p(t)))].

Problem 8: Find a time-varying Q(t) from Q(0) = Q0 to
Q(tf ) = Qf and a time-varying p(t) from p(0) = p0 to p(tf ) = pf
such that x(t) has ρ0, ρf as the marginal distributions and the average
work is minimized.

Theorem 9: The optimal Q and Σ are as in the zero-mean case,
and the optimal m, p satisfy

m(t) =
tf − t
tf

m0 +
t

tf
mf , (36)

and

p(t) =
tf − t
tf

m0 +
t

tf
mf +

1

tf
Q(t)−1(mf −m0). (37)

The corresponding work is

Wmin = −σ
2

4
trace log(ΣfΣ−1

0 ) +
1

tf
‖mf −m0‖2

+
1

2
(mf − pf )′Qf (mf − pf )− 1

2
(m0 − p0)′Q0(m0 − p0)

+
1

tf
trace(Σ0 + Σf − 2(Σ

1/2
0 ΣfΣ

1/2
0 )1/2). (38)

Proof 2: We first simplify the work to

W =

∫ t+
f

0−
[
1

2
〈dQ(t),Σ(t)〉+ ‖ṁ(t)‖2dt

+d(
1

2
(m(t)− p(t))′Q(t)(m(t)− p(t)))]

=

∫ t+
f

0−
[
1

2
〈dQ(t),Σ(t)〉+

∫ tf

0

‖ṁ(t)‖2dt]

+
1

2
(mf − pf )′Qf (mf − pf )− 1

2
(m0 − p0)′Q0(m0 − p0).

The last two terms depend only on the boundary conditions. The first
two terms are totally decoupled; one depends only on Q,Σ while

the other on m. Therefore, we can minimize these two terms inde-
pendently. Clearly, the optimal Q,Σ are identical to that in the zero-
mean case (Theorem 2). To obtain m, p, we minimize

∫ tf
0
‖ṁ(t)‖2dt

subject to the boundary conditions m(0) = m0,m(tf ) = mf .
Thus, the optimal m is the linear interpolation between m0 and mf .
Plugging it into (35b) concludes the optimal p. 2

As we have already seen in Section III, the optimal strength
Q of the potential usually has discontinuities at the boundary points
t = 0, tf . We next argue that similar phenomenon happens for the
center p of the potential. From (37) we get

p(0+) = m0 +
1

tf
Q(0+)−1(mf −m0),

p(t−f ) = mf +
1

tf
Q(t−f )−1(mf −m0).

These usually don’t match the boundary conditions p(0) =
p0, p(tf ) = pf . When both the initial and terminal states are
stationary, in which case m0 = p0,mf = pf , the discontinuity gaps
at t = 0, tf go to zero as tf goes to infinity.

Comparing (38) and (14) we again conclude the relation

Wmin = ∆F +
1

tf
W2(ρ0, ρf )2. (39)

Here we have employed the property that entropy is invariant with
respect to translation. Moreover, the resulting density flow ρt is the
(scaled) displacement interpolation between ρ0 and ρf .

VI. RELAXATION

In this section, we consider a modified version of Problem 1.
We specify a terminal value for the potential by fixing Qf while
we relax the terminal constraint Σ(tf ) = Σf , which is commonly
set to be σ2

2
Q−1
f . This value for the covariance will be then

attained asymptotically since, even if we do not specify the terminal
distribution, it will converge to the Boltzmann distribution due to
fluctuation-dissipation effects. Therefore, if our goal is to simply
minimize the work, there is no need to insist on setting Σ(tf ) = Σf .
More precisely, we address the following.

Problem 10: Find a function Q(·) from Q(0) = Q0 to Q(tf ) =
Qf over time [0, tf ] that minimizes the average work (17) subject to
constraint (16) as well as the boundary condition Σ(0) = Σ0.

There are several possible approaches to solve the above prob-
lem. One of them is applying standard calculus of variations, just
like what we did in the proof of Problem 1. Here, we adopt an
alternative idea which solves the problem in two steps. We first
find the solution for a given terminal value Σ(tf ) = Σf and then
minimize the cost function over all possible Σf ≥ 0. Evidently, the
first step is equivalent to solving Problem 1. The optimal cost is given
by (32), which is

F(ρf ;Hf )− F(ρ0;H0) +
1

tf
W2(ρ0, ρf )2,

where ρ0, ρf are the zero-mean Gaussian distributions with covari-
ances Σ0,Σf . The free energy is

F(ρf ;Hf ) =
1

2
trace(QfΣf )− σ2

4
log det Σf + constant.
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By (12), the distance between two Gaussian distributions is given by
the solution of the SDP

min
S

{
trace(Σ0 + Σf − 2S) |

[
Σ0 S
S′ Σf

]
≥ 0

}
.

Plugging them into the cost yields the convex optimization formula-
tion of Problem 10

min
S,Σf

1

2
trace(QfΣf )−σ

2

4
log det Σf+

1

tf
trace(Σf−2S), (40a)

subject to
[
Σ0 S
S′ Σf

]
≥ 0. (40b)

After solving (40), we can obtain the solution of Problem 10 via that
of Problem 1 with the optimal Σf as a boundary condition.

Theorem 11: The convex optimization problem (40) has a
unique minimizer at

Σf =
σ2

4
(
1

2
Qf +

I

tf
+X)−1 (41a)

S = Σ
1/2
0 (Σ

1/2
0 ΣfΣ

1/2
0 )1/2Σ

−1/2
0 (41b)

with

X=
2

σ2t2f
Σ0−

2

σtf
Σ

1/2
0

(
Σ
−1/2
0 (

1

2
Qf+

I

tf
)Σ
−1/2
0 +

I

σ2t2f

)1/2

Σ
1/2
0 .

Proof 3: First we construct a Lagrangian

L(S,Σf ,Ψ) =
1

2
trace(QfΣf )− σ2

4
log det Σf

+
1

tf
trace(Σf − 2S) + trace

([
Σ0 S
S′ Σf

]
Ψ

)
with Lagrange multiplier

Ψ =

[
Ψ11 Ψ12

Ψ′12 Ψ22

]
≤ 0.

Minimizing L over S leads to the constraint

Ψ12 = I/tf ,

and over Σf yields as minimizer

Σf =
σ2

4

(
1

2
Qf +

I

tf
+ Ψ22

)−1

. (42)

Therefore, we obtain the dual problem

max
Ψ

trace(Σ0Ψ11) +
σ2

4
log det(

1

2
Qf +

I

tf
+ Ψ22) (43a)

subject to

[
Ψ11

I
tf

I
tf

Ψ22

]
≤ 0. (43b)

For fixed Ψ22, the above expression is maximal for Ψ11 = 1
t2
f

Ψ−1
22 .

Thus, (43) is equivalent to the convex optimization problem

max
Ψ22≤0

trace(
1

t2f
Σ0Ψ−1

22 ) +
σ2

4
log det(

1

2
Qf +

I

tf
+ Ψ22). (44)

Its first order optimality condition is

− 1

t2f
Ψ−1

22 Σ0Ψ−1
22 +

σ2

4
(
1

2
Qf +

I

tf
+ Ψ22)−1 = 0,

or equivalently

−σ
2

4
t2fΨ22Σ−1

0 Ψ22 + Ψ22 +
1

2
Qf +

I

tf
= 0.

Let X = Σ
−1/2
0 Ψ22Σ

−1/2
0 , then

σ2

4
X2 −X = Y := Σ

−1/2
0 (

1

2
Qf +

I

tf
)Σ
−1/2
0 .

It follows that

(
σ

2
X − I

σtf
)2 = Y +

I

σ2t2f
.

If we pick the solution

σ

2
X =

I

σtf
− (Y +

I

σ2t2f
)1/2 ≤ 0, (45)

then Ψ22 = Σ
1/2
0 XΣ

1/2
0 satisfies the constraint Ψ22 ≤ 0. Thus,

in view of the strong convexity of (44), we conclude that Ψ22 =
Σ

1/2
0 XΣ

1/2
0 with X in (45) is the unique solution to (44). The

optimal S,Σf follow from (13) and (42). This completes the proof.

We establish similar results when the centers of the potentials
are nonzero. Denote by p0, pf the centers of the initial and target
potentials. We seek an optimal control for the following problem.

Problem 12: Find Q(·) from Q(0) = Q0 to Q(tf ) = Qf and
p(·) from p(0) = p0 to p(tf ) = pf over time [0, tf ] that minimize
the total work subject to constraint (35) as well as boundary condition
Σ(0) = Σ0,m(0) = m0.

The idea is the same as in the zero-mean case. Straight forward
calculation gives

F(ρf ;Hf ) =
1

2
trace(QfΣf )− σ2

4
log det Σf

+
1

2
(mf − pf )′Qf (mf − pf ).

This together with (12) and (39) points to the convex optimization
formulation

min
S,Σf ,mf

1

2
trace(QfΣf )− σ2

4
log det Σf +

1

tf
trace(Σf − 2S)

+
1

2
(mf − pf )′Qf (mf − pf ) +

1

tf
‖m0 −mf‖2 (46a)

subject to
[
Σ0 S
S′ Σf

]
≥ 0. (46b)

We note that in (46) the minimization over S,Σf and that over mf are
decoupled. Thus, we have two independent optimization problems.
The solution to the former is given by Theorem 11 and the solution
to the latter is given in closed-form as

mf = (Qf +
2

tf
)−1(Qfpf +

2

tf
m0). (47)

Next we use the above results to recover two scalar cases that have
been solved in Schmiedl and Seifert [6].

A. Case study I: Moving laser trap

Suppose the strength Q of the potential H is fixed to be Q ≡ 1.
Our goal is to choose proper function p(·) from p(0) = p0 = 0 to
p(tf ) = pf such that the work is minimized. The initial state is
assumed to be at equilibrium, i.e., m0 = 0,Σ0 = σ2/2.

When Q0 = Qf and Σ0 = σ2

2
Σ−1

0 , it can be easily seen
from Theorem 11 that the optimal strategy is Q(t) ≡ Q0. Thus the
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assumption Q ≡ 1 is consistent with the optimality. Regarding the
centers p(t), from (47) we obtain

mf =
tfpf

2 + tf
.

Substituting it back to Theorem 9 we obtain that the optimal p(t) is

p(t) =
t

tf
mf +

1

tf
mf =

(1 + t)pf
2 + tf

,

and the corresponding work is

Wmin =
1

tf
m2
f +

1

2
(mf − pf )2 =

p2
f

2 + tf
.

B. Case study II: Time-dependent strength of the trap

The means p0, pf ,m0 are set to be zero. The task is to drive the
linear system (3) from an initial “strength” Q0 to a terminal Qf . The
initial state is assumed to be zero stationary, namely, Σ0 = σ2

2
Q−1

0 .
Applying Theorem 11 we obtain

Σf =
σ2

2

[√
QfQ0 + 2Q0/tf + 1/t2f − 1/tf

]−2

.

This together with Theorem 2 points to the optimal solution

Q(t) =
Q0 − Λ(1 + Λt)

(1 + Λt)2

Σ(t) = Σ0(1 + Λt)2

with

Λ =
1

tf
(−1 +

√
Σf/Σ0)

=

√
QfQ0t2f + 2Q0tf + 1− 1−Qf tf

(2 +Qf tf )tf
.

VII. GENERAL POTENTIAL AND THE CONNECTION TO JKO
GRADIENT FLOW

The result (32) is closely related to the celebrated Jordan-
Kinderlehrer-Otto (JKO) flow [22]. In fact, we obtain an alternative
proof of Theorem 5 for general marginal distributions based on the
results in [22].

The JKO scheme gives that the Fokker-Planck equation as the
gradient flow of the free energy with respect to the Wasserstein metric
W2. Indeed, according to [22], the Fokker-Planck equation

∂ρ

∂t
−∇ · (∇H(x)ρ)− σ2

2
∆ρ = 0 (48)

can be viewed as the gradient flow of the free energy

F(ρ;H) = H(ρ)− TS(ρ) =

∫
H(x)ρ(x) +

σ2

2

∫
ρ log ρ (49)

with respect to the Wasserstein metric W2 on the manifold of
probability densities. More specifically, discretizing the above in the
time domain, we obtain the celebrated JKO scheme. This amounts to
the fact that ρk+1(x) := ρ((k + 1)h, x), where ρ is the solution to
(48) and h is the step size, minimizes

1

2h
W2(ρ, ρk)2 + F(ρ;H)− F(ρk;H) (50)

over ρ as h goes to 0. This is akin to our result (32). Next we discuss
the connection between the two.

Since ρk+1 minimizes (50), we have

1

2h
W2(ρk+1, ρk)2 + F(ρk+1;H)− F(ρk;H)

= − 1

2h
W2(ρk+1, ρk)2 + o(h). (51)

This is the Wasserstein counterpart of

1

2h
‖x− x0‖2 + f(x)− f(x0) = − 1

2h
‖x− x0‖2 + o(h)

when x minimizes the left-hand side (LHS), which follows from the
approximation

LHS ≈ 1

2h
‖x− x0‖2 +∇f(x0) · (x− x0).

Rearranging (51) leads to

1

h
W2(ρk+1, ρk)2 = F(ρk;H)− F(ρk+1;H) + o(h). (52)

Now summing up the above we obtain

1

h

N−1∑
k=0

W2(ρk+1, ρk)2 ≈ F(ρ0)− F(ρf ) (53)

where N = tf/h is the number of steps. Applying both Cauchy-
Schwarz and the triangular inequality yields

F(ρ0;H)− F(ρf ;H) ≈ 1

tf
N

N−1∑
k=0

W2(ρk+1, ρk)2

≈ 1

tf

(
N−1∑
k=0

W2(ρk+1, ρk)

)2

≥ 1

tf
W2(ρ0, ρf )2. (54)

Finally, by letting h goes to 0 we establish

1

tf
W2(ρ0, ρf )2 + F(ρf ;H)− F(ρ0;H) ≤ 0,

which is a special case of (32) when W = 0. Indeed, when the
potential H is time-invariant, there is no work being done.

When H is time-varying, the analysis is similar. The Fokker-
Planck equation is

∂ρ

∂t
−∇ · (∇Ht(x)ρ)− σ2

2
∆ρ = 0 (55)

and the approximation (51) becomes

1

2h
W2(ρk+1, ρk)2 + F(ρk+1;Hk+1)− F(ρk;Hk)

= − 1

2h
W2(ρk+1, ρk)2 + h

∫
∂Ht

∂t
ρkdx+ o(h),

where Hk := Hkh. Following the same steps as in the time-invariant
case, we conclude

1

tf
W2(ρ0, ρf )2+F(ρf ;Hf )−F(ρ0;H0)≤

∫ tf

0

∫
∂Ht

∂t
ρdxdt=W.

Thus, the amount of work W needed is always lower-bounded
by the change of free energy plus the optimal transport cost between
the marginal state distributions ρ0, ρf . Moreover, in view of (54),
the equality holds when the density flow ρt is the displacement
interpolation between ρ0 and ρf . The optimal Hamiltonian is

Ht = −φt −
σ2

2
log ρ,
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where φt is the unique solution (under the constraint that
∫
φt = 0)

to
∂ρt
∂t

+∇ · (ρt∇φt) = 0,

which, by standard optimal mass transport theory [39], always exists.

Therefore, we conclude that Theorem 5 holds for general
marginal distributions ρ0, ρf providing we are free to change the
Hamiltonian in whatever way we like. The above analysis also reveals
that, for general time-varying Hamiltonian, we can calculate the work
using the solution ρt to (55).

Theorem 13:

W−F(ρf ;Hf )+F(ρ0;H0) =

∫ tf

0

∫
ρt(x)‖∇φt(x)‖2dxdt

∂ρt
∂t

+∇ · (ρt∇φt) = 0.

We note that this is a generalization to Theorem 6 to general marginal
distributions.

Remark 14: Finally, we note the counterpart of the above result
for gradient dynamics

ẋ(t) = −∇f(t, x(t))

in a Euclidean space. In general,

1

tf
‖x(tf )−x(0)‖2+f(tf , x(tf ))−f(0, x(0)) ≤

∫ tf

0

∂f

∂t
(t, x(t))dt.

In the special case when f is independent of time,

1

tf
‖x(tf )− x(0)‖2 + f(x(tf ))− f(x(0)) ≤ 0.

VIII. THE JARZYNSKI EQUALITY

Different from the above results, the Jarzynski equality [1], [2]
provides an alternative way to compare work and free energy. It reads,

E{exp(−βW(Q, x))} = exp(−β∆F), (56)

under the assumption that the initial state is at equilibrium. Here ∆F
is the difference of free energy at equilibrium, viz.,

∆F = F(ρB ;Hf )− F(ρB ;Hf ).

Note that the Jarzynski equality implies W = E{W} ≥ ∆F by
Jensen’s inequality. Indeed,

exp(−βW) ≤ E{exp(−βW(Q, x))} = exp(−β∆F).

The relation W ≥ ∆F then follows from the monotonicity of the
exponential function. In addition to the intrinsic value of the Jarzynski
equality in relating equilibrium to nonequilibrium quantities, it may
also be used to estimate the free energy of a thermodynamic system;
see [40] for an interesting related sampling approach.

We next recall a simple derivation of the Jarzynski equation.
Let ρ(t, ·) be the density of x(t), and let

g(t, y) = E{exp(−β
∫ t

0

∂Hs

∂s
ds) | x(t) = y}. (57)

We have that

∂g

∂t
+(−∇Ht−σ2∇ log ρ)·∇g−σ

2

2
∆g+β

∂Ht

∂t
g = 0, g(0, ·) ≡ 1.

(58)

To see this, first rewrite (3) in the reverse direction utilizing Doob’s
h-transform,

dx(t) = (−∇Ht − σ2∇ log ρ)dt+ σdw−. (59)

This is quite standard. Here, dw− is a reverse Wiener process, whose
current increment is independent with the future. We deduce that

g(t, x) = E
{

exp(−β
∫ t

0

∂Hs

∂s
(x(s))ds) | x(t) = x

}
≈ E

{
E
[
exp(−β

∫ t−dt

0

∂Hs

∂s
(x(s))ds) | x(t− dt) = x+ dx

]
× (1− β ∂Ht

∂t
(x)dt) | x(t) = x

}
= E

{
g(t− dt, x+ dx)(1− β ∂Ht

∂t
(x)dt) | x(t) = x

}
≈ E

{
g(t, x)− ∂g

∂t
dt−∇g · (−∇Ht − σ2∇ log ρ)dt

+ σ∇g · dw− +
σ2

2
∆gdt− βg ∂Ht

∂t
(x)dt | x(t) = x

}
= g(t, x)− ∂g

∂t
dt−∇g · (−∇Ht − σ2∇ log ρ)dt

+
σ2

2
∆gdt− βg ∂Ht

∂t
(x)dt,

from which (58) follows. Combining (58) and the Fokker-Planck
equation

∂ρ

∂t
+∇ · (−∇Htρ)− σ2

2
∆ρ = 0,

we establish that
f(t, x) := g(t, x)ρ(t, x) (60)

satisfies

∂f

∂t
=

∂g

∂t
ρ+ g

∂ρ

∂t

= ∇ · (∇Htf) +
σ2

2
∆f − β ∂Ht

∂t
f.

Finally, we claim that

f(t, x) =
1

Z0
exp(−βHt(x))

with Z0 =
∫

exp(−βH0(x))dx. To see this, we just need to notice

∂f

∂t
= −β ∂Ht

∂t
f

as well as

∇ · (∇Htf) +
σ2

2
∆f = 0.

Clearly the boundary condition g(0, ·) ≡ 1 also holds as

f(0, x) =
1

Z0
exp(−βH0(x)) = ρ0.

Therefore, in view of the definition of (57) and (60),

E{exp(−βW(Q, x))} =

∫
f(tf , x)dx

=

∫
1

Z0
exp(−βHf (x))dx

= Zf/Z0

= exp(−β∆F),

establishing (56).
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IX. NUMERICAL EXAMPLES

Consider a laser trap in one dimensional space whose strength
and center location can both vary over time. The initial Hamiltonian
H0 and terminal Hamiltonian Hf are set to be quadratic with
parameters

Q0 = 1, p0 = 0.3,

Qf = 4, pf = −1,

respectively. The initial state distribution is assumed to be stationary,
that is,

Σ0 =
σ2

2
Q−1

0 =
σ2

2
, m0 = p0 = 0.3.

We further choose σ to be 1 and f to be 1 to simplify the calculation.
Our goal is to drive the state distribution to the stationary distribution
corresponding to H1, which is

Σ1 =
1

2
Q−1

1 =
1

8
, m1 = p1 = −1,

via adjusting the Hamiltonian Ht. The optimal strategy is given in
Section III if we want to achieve this distribution at t = 1. Plugging
the above parameters into Theorem 2, we get the optimal strategy
and density flow being

Q(t) =
6− t

(t− 2)2
,

p(t) = 0.3− 1.3t− 1.3(t− 2)2

6− t ,

and

Σ(t) =
(t− 2)2

8

respectively for all t ∈ (0, 1). The minimum work is 2.162. The
Hamiltonian jumps from (Q(1) = 5, p(1) = −1.26) to (Q1, p1) at
the terminal time point t = 1, after which, both the Hamiltonian and
state density remain time-invariant. Figure 1 depicts the evolution of
the probability density of the state. Several typical sample paths are
plotted in Figure 2. Clearly the sample paths are consistent with the
density flow.

Fig. 1: Density evolution

Next we move to another scenario discussed in Section VI
where the constraint on the terminal state distribution doesn’t exist.
Following the discussion in Section VI, we obtain the optimal
terminal distribution at t = 1 to be

Σ1 = 0.3273, m1 = −0.35.

The corresponding optimal strategy and density flow can be again
obtained using Theorem 2. The minimum work is 0.9692, which

Fig. 2: Sample paths over t ∈ [0, 1]

is less than 2.162 in the previous setting. In this case, the terminal
distribution is not stationary with respect to H1 anymore, therefore,
the state density will vary after the terminal time t = 1. Eventually,
due to fluctuation, the state density will converge to the stationary
distribution N (−1, 1/8). In Figure 3, we can see clearly that the
evolution of the state distribution doesn’t match the terminal condition
N (−1, 1/8). This can also be seen from the sample paths in
Figure 4. However, if we run the system long enough, then the state
distribution will converge to the stationary one, as shown in Figure 5,
due to fluctuation.

Fig. 3: Density evolution

Fig. 4: Sample paths over t ∈ [0, 1]



0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2939625, IEEE
Transactions on Automatic Control

11

Fig. 5: Sample paths over t ∈ [0, 3]

X. CONCLUSION

We described the problem of controlling non-equilibrium ther-
modynamical systems with time-varying Hamiltonian, from a given
initial state to a final state, by adjusting the parameter specifying the
Hamiltonian in finite time. This led to some interesting connections to
optimal mass transport theory, and gave a new twist to understanding
the second law of thermodynamics building on the seminal results
of Jarzynski and the recent advances in stochastic thermodynamics,
e.g., see [12]. We expect that the theory will lead to insights in the
case of potentials with several wells and to connections with the
theory of large deviations and information theory with optimal mass
transport [41], [24], [42], [43]. We anticipate interesting connections
to the celebrated Landauer principle [44], [45], which provides a
fundamental lower bound of the energy consumption to erase one
bit of information. In recent years, many experiments have been
performed aiming to achieve the bound kBT ln 2 [46], [47], [48]. This
bound, however, theoretically can only be achieved through reversible
processes. The constraint to erase a bit in finite time, unavoidably,
introduces a gap. Our aim is to gain insights into such a gap using
optimal transport theory and stochastic control.

ACKNOWLEDGEMENTS

This project was supported by NSF under Grant 1665031,
Grant 1807664, Grant 1839441, and Grant 1901599, AFOSR grants
(FA9550-15-1-0045 and FA9550-17-1-0435), ARO grant (W911NF-
17-1-049), grants from the National Center for Research Re-
sources (P41-RR-013218) and the National Institute of Biomed-
ical Imaging and Bioengineering (P41-EB-015902), NCI grant
(1U24CA18092401A1), NIA grant (R01 AG053991), and a grant
from the Breast Cancer Research Foundation (BCRF-17-193).

REFERENCES

[1] C. Jarzynski, “Nonequilibrium equality for free energy differences,”
Physical Review Letters, vol. 78, no. 14, p. 2690, 1997.

[2] C. Jarzynski, “Equilibrium free-energy differences from nonequilibrium
measurements: A master-equation approach,” Physical Review E, vol. 56,
no. 5, p. 5018, 1997.

[3] G. E. Crooks, “Entropy production fluctuation theorem and the nonequi-
librium work relation for free energy differences,” Physical Review E,
vol. 60, no. 3, p. 2721, 1999.

[4] D. Carberry, J. C. Reid, G. Wang, E. M. Sevick, D. J. Searles, and D. J.
Evans, “Fluctuations and irreversibility: An experimental demonstration
of a second-law-like theorem using a colloidal particle held in an optical
trap,” Physical Review Letters, vol. 92, no. 14, p. 140601, 2004.

[5] U. Seifert, “Entropy production along a stochastic trajectory and an
integral fluctuation theorem,” Physical Review Letters, vol. 95, no. 4,
p. 040602, 2005.

[6] T. Schmiedl and U. Seifert, “Optimal finite-time processes in stochastic
thermodynamics,” Physical Review Letters, vol. 98, no. 2, p. 108301,
2007.

[7] C. Jarzynski, “Comparison of far-from-equilibrium work relations,”
Comptes Rendus Physique, vol. 8, no. 5, pp. 495–506, 2007.

[8] R. Kawai, J. Parrondo, and C. Van den Broeck, “Dissipation: The phase-
space perspective,” Physical Review Letters, vol. 98, no. 8, p. 080602,
2007.

[9] K. Sekimoto, Stochastic Energetics. Springer, 2010, vol. 799.

[10] C. Jarzynski, “Equalities and inequalities: irreversibility and the second
law of thermodynamics at the nanoscale,” Annu. Rev. Condens. Matter
Phys., vol. 2, no. 1, pp. 329–351, 2011.

[11] E. Aurell, K. Gawdzki, C. Mejı́a-Monasterio, R. Mohayaee, and
P. Muratore-Ginanneschi, “Refined second law of thermodynamics for
fast random processes,” Journal of Statistical Physics, vol. 147, no. 3,
pp. 487–505, 2012.

[12] U. Seifert, “Stochastic thermodynamics, fluctuation theorems and molec-
ular machines,” Reports on Progress in Physics, vol. 75, no. 12, p.
126001, 2012.

[13] A. Hotz and R. E. Skelton, “Covariance control theory,” International
Journal of Control, vol. 46, no. 1, pp. 13–32, 1987.

[14] Y. Chen, T. T. Georgiou, and M. Pavon, “Optimal steering of a linear
stochastic system to a final probability distribution, Part I,” IEEE Trans.
on Automatic Control, vol. 61, no. 5, pp. 1158–1169, 2016.

[15] Y. Chen, T. T. Georgiou, and M. Pavon, “Optimal steering of a linear
stochastic system to a final probability distribution, Part II,” IEEE Trans.
on Automatic Control, vol. 61, no. 5, pp. 1170–1180, 2016.

[16] Y. Chen, T. T. Georgiou, and M. Pavon, “Optimal steering of a linear
stochastic system to a final probability distribution, Part III,” IEEE Trans.
on Automatic Control, to appear, 2018.

[17] R. Brockett and J. Willems, “Stochastic control and the second law of
thermodynamics,” in 1978 IEEE Conference on Decision and Control
including the 17th Symposium on Adaptive Processes. IEEE, 1979, pp.
1007–1011.

[18] R. Marsland and J. England, “Far-from-equilibrium distribution from
near-steady-state work fluctuations,” Phys. Rev. E, vol. 92, no. 5, 2015.

[19] R. Sandhu, T. Georgiou, E. Reznik, L. Zhu, I. Kolesov, Y. Senbabaoglu,
and A. Tannenbaum, “Graph curvature for differentiating cancer net-
works,” Scientific Reports, vol. 5, p. 12323, 2015.

[20] A. Gomez-Marin, T. Schmiedl, and U. Seifert, “Optimal protocols for
minimal work processes in underdamped stochastic thermodynamics,”
The Journal of Chemical Physics, vol. 129, no. 2, p. 024114, 2008.

[21] E. Aurell, C. Mejı́a-Monasterio, and P. Muratore-Ginanneschi, “Optimal
protocols and optimal transport in stochastic thermodynamics,” Physical
Review Letters, vol. 106, no. 25, p. 250601, 2011.

[22] R. Jordan, D. Kinderlehrer, and F. Otto, “The variational formulation of
the Fokker–Planck equation,” SIAM Journal on Mathematical Analysis,
vol. 29, no. 1, pp. 1–17, 1998.



0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2939625, IEEE
Transactions on Automatic Control

12

[23] D. Owen, A First Course in the Mathematical Foundations of Thermo-
dynamics. Springer, 1984.

[24] J. M. Parrondo, J. M. Horowitz, and T. Sagawa, “Thermodynamics of
information,” Nature Physics, vol. 11, no. 2, p. 131, 2015.

[25] C. Villani, Topics in Optimal Transportation. American Mathematical
Soc., 2003, no. 58.

[26] F. Otto, “The geometry of dissipative evolution equations: the porous
medium equation,” Communications in Partial Differential Equations,
2001.

[27] C. Villani, Optimal Transport: Old and New. Springer, 2008, vol. 338.

[28] R. J. McCann, “A convexity principle for interacting gases,” Advances
in Mathematics, vol. 128, no. 1, pp. 153–179, 1997.

[29] A. Takatsu, “Wasserstein geometry of gaussian measures,” Osaka Jour-
nal of Mathematics, vol. 48, no. 4, pp. 1005–1026, 2011.

[30] D. Dowson and B. Landau, “The fréchet distance between multivariate
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