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Stochastic control and non-equilibrium
thermodynamics: fundamental limits

Yongxin Chen, Tryphon Georgiou and Allen Tannenbaum

Abstract—We consider damped stochastic systems in a controlled
(time-varying) potential and study their transition between specified
Gibbs-equilibria states in finite time. By the second law of thermody-
namics, the minimum amount of work needed to transition from one
equilibrium state to another is the difference between the Helmholtz
free energy of the two states and can only be achieved by a reversible
(infinitely slow) process. The minimal gap between the work needed
in a finite-time transition and the work during a reversible one, turns
out to equal the square of the optimal mass transport (Wasserstein-
2) distance between the two end-point distributions times the inverse
of the duration needed for the transition. This result, in fact, relates
non-equilibrium optimal control strategies (protocols) to gradient flows
of entropy functionals via the Jordan-Kinderlehrer-Otto scheme. The
purpose of this paper is to introduce ideas and results from the emerging
field of stochastic thermodynamics in the setting of classical regulator
theory, and to draw connections and derive such fundamental relations
from a control perspective in a multivariable setting.

1. INTRODUCTION

The quest to quantify the efficiency of the steam engine during
industrial revolution of the 19th century precipitated the development
of thermodynamics. While its birth predates the atomic hypothesis,
its modern day formulation makes mention of “macroscopic” systems
that consist of a huge number of “microscopic” particles (e.g., of the
order of Avogadro’s number), effectively modeled using probabilistic
tools. Its goal is to describe transitions between admissible end-
states of such macroscopic systems and to quantify energy and heat
transfer between the systems and the “heat bath” that they may be in
contact with. In spite of the name suggesting “dynamics,” the classical
theory relied heavily on the concept of quasi-static transitions, i.e.,
transitions that are infinitely slow. More realistic finite-time transi-
tions has been the subject of “non-equilibrium thermodynamics,” a
discipline that has not reached yet the same level of maturity, but one
which is currently experiencing a rapid phase of new developments.
Indeed, recent developments have launched a phase referred to as
stochastic thermodynamics and stochastic energetics [1], [2], [3], [4],
[51, [6], [71, [8], [9], [10], [11], [12], that aims to quantify non-
equilibrium thermodynamic transitions. The reader is referred to a
nice and detailed review article [12] for an overview of this subject.
Our goal in this paper is to develop such a framework, focusing
on the stochastic control of linear uncertain systems in a quadratic
(controlled) potential, in a way that is reminiscent of what is known as
covariance control [13], [14], [15], [16], and obtain simple derivation
of fundamental bounds on the required control and dissipation in
achieving relevant control objectives.

Specifically, we consider transitions of a thermodynamic sys-
tem, represented by overdamped motion of particles in a (time-
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varying) potential, from one stationary stochastic state to another over
a finite-time window [0, ¢]. The system is modeled by the (vector-
valued) Ornstein-Uhlenbeck process '

dx(t) = —=VH(t, z(t))dt + odw(t) (1)

with x € R™ and w a standard (R"-vector-valued) Wiener process
representing a thermal bath of temperature 7. The coefficient

g =V QkBT,

where kp is the Boltzmann constant [2]. In the case where the
Hamiltonian/potential

Hi(z) = H(t, ) — %x'Q(t)x @
is quadratic, the system becomes
dz(t) = —Q(t)z(t)dt + odw(t), x(0) = mo. 3)

The drift is now the Hookean force field —Q(t)x(¢). The matrix
Q(t) = Q(t), t € [0,ts], represents a controlled parameter that is
to steer the system from a specified initial distribution for xo to a
final one for =y, over the specified time window. In this quadratic
potential setting, the random variables x, z s are taken to be Gaussian
with zero mean and covariances Yo, X, respectively. That is, the
distributions of the state at the two end points have probability
densities are po = N'(0,%0), py = N(0,%), or more explicitly,

1

_ 7lz/2;11 -
p’b(m)_ (271')"/2|2i|1/26 2 ’ Ze{oa.f}v

and we seek to determine the minimum amount of work needed to
effect the transition.

From a controls perspective, the case of utilizing quadratic
potential amounts to covariance control of bilinear systems. Indeed,
the dynamics in this case are driven by the product of the control
input Q(t) times the state z(t). By adjusting the quadratic potential,
it is possible to steer the system from one Gaussian distribution to
another in finite time ¢{y. When this is the case, we are interested
in the optimal control strategy (Q(t), t € [0,ty]) that minimizes
the required control energy. For more general time-varying potential
H(t, -), the control protocol is considerably more involved and does
not fall into the bilinear control setting. Nevertheless, the optimal
protocol can be characterized using optimal transport (see Section
VII).

As noted in the abstract, this minimum control energy is greater
than the Helmholtz free energy difference AF between the two
states (second law of thermodynamics). Starting with the works by
Jarzynski [1], [2] and Crooks [3], great new insights began to shed
light on the precise amount of work required for such finite-time
transitions. Most famously, the Jarzynski equality

e PAF — ]E{efﬁw}, “4)

'A similar stochastic model was adopted in [17] to study the second law
of thermodynamics.
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relates the equilibrium quantity AF (free energy difference be-
tween equilibrium states) to an averaged non-equilibrium quantity
(exponential of the work; see our discussion below) over possible
trajectories of the system in any finite-time transition. Throughout,
E{-} denotes the expectation on the path space of system trajectories
and

8= (ksT)™",

where again 1" represents temperature of the heat bath and kg the
Boltzmann constant; S has units of “inverse-work.” The Jarzynski
identity holds for arbitrary time-dependent driving force and not
necessarily gradient of a quadratic potential. This type of result has
led to a number of so-called Fluctuation Theorems in the literature,
some of which have profound implications in biology and medicine
[12], [18], [19].

Although the Jarzynski equality is quite remarkable, it doesn’t
provide an explicit gap between the free energy difference AF and
the average work W = E{W}. This gap is essential if we would
like to find an optimal strategy with minimum work to move a
thermodynamical system from one state to another. Following up on
the Jarzynski equality, the authors of [6], [20] analyze the minimum
energy control problems in the cases of a Brownian particle dragged
by a harmonic optical trap through a viscous fluid, and of a Brownian
particle subject to an optical trap with time dependent stiffness, in
both overdamped and underdamped setting. Further, in [21], [11], the
authors provide an optimal solution that relates the work dissipation
to a Wasserstein distance. It can be viewed as a stronger version of
the Second Law of Thermodynamics for certain Langevin stochastic
processes in finite-time.

The present work is closely related to both [21], [11] as well
as [6], [20]. Compared to [21], [11], our approach gives a control-
theoretic account to the fluctuation type results in the case for
Gaussian distributions. In addition, we provide an alternative proof
for general cases with connections to the gradient flows with respect
to the Wasserstein geometry [22]. The major difference to [6], [20]
is that we consider the general matrix cases in this paper. We remark
that the problems studied in [21], [11] and [6], [20] are not equivalent.
These two can be connected through an relaxation step as discussed
in Section VL.

The rest of the paper is organized as follows. In Section II we
go over some key concepts in stochastic thermodynamics and optimal
mass transport. The minimum energy control problem between two
zero-mean Gaussian distributions is formulated and solved in Section
III. The results’ implication in the second law of thermodynamics
is discussed in Section IV. The result is extended to the nonzero
mean setting in Section V. A modification of our problem without
terminal constraint on distributions is solved in Section VI. After
that, in Section VII, by leveraging the optimal mass transport theory,
we solve the minimum energy control problem for the general
Orstein-Uhlenbeck dynamics and any marginal distributions. Last,
for comparison, we go over a simple proof of the Jarzynski equality
in Section VIII. We conclude with several numerical examples in
Section IX.

II. PRELIMINARIES

This work bridges stochastic control, stochastic thermodynam-
ics and optimal mass transport. Below we introduce some key
concepts in stochastic thermodynamics and optimal mass transport
that are relevant.

A. Stochastic thermodynamics

Stochastic thermodynamics [12], [23] is one approach to study
thermodynamical systems via stochastic calculus. A basic model in
this framework is

dz(t) = —=VH(t, z(t))dt + odw(t). ®)

Here H is the Hamiltonian of the system and the noise dw describes
the effect of the heat bath. When the Hamiltonian is fixed, the state
distribution converges to a Boltzmann distribution
pu(w) = e ),

where Z is a partition function. This is known as the equilibrium
steady state. We denote the internal energy and Helmholtz free energy
in the equilibrium steady state by H and F respectively. They are
defined by [23]

H = H(pp) = [ H(a)ps (@)

and
F:=FH) = —kpTlog Z.

Clearly, they satisfy the relation
F=H-TS5(ps) (6)

with the entropy being

S(p) = ks / pl) log p(z)de.

The above relation (6) may be used to extend the definition
of free energy to non-equilibrium states. More precisely, let p be
the probability distribution of the state, then we can define the free
energy through [24]

F(p; H) = H(p) — T'S(p)- @)

Note that
F(p; H) > F(pp; H) = F.

B. Optimal mass transport

We only cover concepts that are related to the present work. We
refer the reader to [25] for complete details. Consider two measures
po, p1 on R™ with equal total mass. Without loss of generality, we
take po and p; to be probability distributions. In the Kantorovich’s
formulation of optimal mass transport with quadratic cost, one seeks
a joint distribution w € II(pg,p1) on R™ x R", referred to as
“coupling” of po and pi, that minimizes the total cost, and so that
the marginals along the two coordinate directions coincide with pg
and p1, respectively, that is,

inf / lz — y|®r(dady). ®)
R™ xR™

mE€I(po,p1)

The above optimal transport problem has a surprising stochastic
control formulation, which reads as

ir;f E{/O Hu(t,w(t))Hth} (9a)
() = u(t, x(t)) (9b)
z(0) ~ po, z(1) ~ p1. (9¢)
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Briefly, we seek a feedback control strategy with minimum energy
that drives the state of an integrator from an initial probability
distribution po to a terminal probability distribution p;.

Both of the above problems have unique solutions under the
assumption that the marginal distributions are absolutely continuous.
The square root of the minimum of the cost ((8) or (9)) defines a
Riemannian metric on P>(R™), the space of probability distributions
on R™ with finite second-order moments. This metric is known as the
Wasserstein metric Wo [22], [26], [25], [27]. On this Riemannian-
type manifold, the geodesic curve connecting po and p; is given by
pt, the probability density of x(¢) under the optimal control policy.
This is called displacement interpolation [28] and it satisfies

Wa(ps, pt) = (t — s)W2(po, p1),

0<s<t<1l. (10)

When both of the marginals po, p1 are Gaussian distributions,
the problem has a closed-form solution [29], [30], [31]. Denote the
mean and covariance of p;,7 = 0,1 by m; and X;, respectively.
Let X,Y be two Gaussian random vectors associated with po, p1,
respectively. Then the cost in (8) becomes

E{|X = Y|*} = E{IX = Y|} + mo —ma|?, (D)
where X = X — mo, Y = Y —my are zero-mean versions of X and
Y. We minimize (11) over all the possible Gaussian joint distributions
between X and Y, which gives

. b)) S
msgn {Hmo — m1H2 + trace(zo + 3 — 25) | |:S(,) 21:| > O} R
(12)

with S = E{XY"}. The constraint is a semidefinite one, so the above
problem is one of semidefinite programming (SDP). The minimum
is achieved in closed-form by the unique minimizer

S =52 (m P ny ) e (13)

corresponding to the minimum value

Wa(po, p1)? = ||mo—ma ||*+trace(So+ 1 —2(S/ 25, 58/ %)V/2),

(14)
The resulting displacement interpolation p; is a Gaussian distribution
with mean m; = (1 — t)mo + tm1 and covariance

2
5, =552 ((1 — )% + t(Zé/QElEé/Q)l/Q) Sy 2 (s)

III. REGULATION VIA A TIME-VARYING POTENTIAL

We consider the stochastic dynamical system in (3). As
mentioned earlier, it represents a thermodynamical system with a
quadratic Hamiltonian (2), overdamped and attached to a heat bath
that is modeled by the stochastic excitation dw. The initial state is a
Gaussian random vector zg ~ N (0,%0), i.e., one having covariance
Yo and mean E{xo} = 0. The initial distribution is usually taken
to be the stationary distribution with potential remaining constant
on (—o0,0] by keeping Q(t) = Qo over ¢ € (—o0,0], in which
case Qo = %Eg !, but this assumption is not required. We are
interested in steering the state to the terminal distribution A'(0, X ¢)
through selecting an optimal (least energy) time-varying control
matrix variable Q(-) = Q’(-) satisfying the boundary conditions
Q0) = Qo, Q(ty) = Q.

The control energy/work (see [1], [2]) delivered to the system
along any particular sample path z(-) by the time-varying potential
() is®

W@ = [T = [T w. g ar

where (X,Y) = tr(X'Y). Thus, by averaging over all possible
sample paths, we obtain

W@ -£{ [ 0.5
= e{ [ J@w a0}

= 3/ Qs

Here, 3(-) is the state covariance which, according to standard linear
systems theory, evolves according to the Lyapunov equation

S(t) = —Q()2(t) — B(H)Q(t) 4 o°1.

The control may be discontinuous, reflecting instantaneous changes
in the Hamiltonian H, in which case, the expression for the work
becomes the Lebesgue-Stieltjes integral

(16)

3 amn

w=1 [ e, 5w,

where 07, t}L represent limits from below and above, respectively, so
as to account for the discontinuities.

Problem 1: Determine a control law

{Q) [t [0, 2]}
that minimizes (17) subject to (16) and the boundary conditions

Q(0) = Qo, Qty) = Qy,%(0) = X, X(ty) = Xy

Theorem 2: Problem 1 has a unique minimizer Qopt(-) as
follows:

(i) If ¥o = Xy, then Wyin = 0 and
2
o _
Qopt(t) = ?20 17
X(t) = Xo, for all t € (0,¢f).

(i) If Xg # Xy, then

2

Wmin = —% tracelog(2;%0 ")
+% trace(So + X5 — 2(30/ 28, 56/%)2) (18)
and
0'2 -1 —1 -1
Qopt (t) = ?E(t) — (A(O) + tI) (198.)
S(t) = (A0) ' + M (A0) "t +¢I),  (19b)
with
A(0) = %(4 Fug V228, s 28512) (200
M = A(0)"'Sg A 0) . (20b)

2The specific expression for the work has been debated in detail in [32],
[33], [34], [35].
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Proof 1: Case (i) is trivial. We only discuss case (ii) in detail.
Applying integration by parts to (17), we obtain

T
W= 7%/ Q) ds() + %traee (QEH)Zr — Q(07)0) -
(21

Notice that
%trace (Q(t}r)Ef -Q(07)%) = %trace (QsXf — QoXo)
= Hy(pr) —Ho(po)

is precisely the change in the average energy (expectation of the
Hamiltonian) and is independent of the control {Q(t), t € [0,t¢]}.
More specifically,

£ (ps) ~ Ho(p) = [ s (@)ps (@) — [ Ho(w)m(a)do.

Substituting (16) into (21) yields

W = % /0 7 (2 trace( QU MQ()) — o trace(Q(1))) dt
+Hy (py) — Ho(po)- (22)
We change variables, replacing Q by
AW = T50 - Q).
in both, the constraint (16) as well as (22). These now become
(1) = A(t)S(t) + S(t)A(t) (23)
and
W o= /0 Y trace(A()S(HA(L))dt — "; /O Y race(A(6))dt

+H¢(py) — Ho(po), (24)

respectively. From (23),
trace(S(£)X(t) ) = 2trace(A(t)).

It follows that

T /0 " trace(A())dt = T /0 " trace(S(0)2(1) )t

2
g

Y trace(- log(3(t)))dt
=7 [ race( g oa(2(0))
2
= %tracelog(E(tf)E(O)_l)
2
= %tracelog(Engl)

is independent of the choice of @) or A. Thus, minimization of (22)
(equivalently, minimization of (24)) is equivalent to minimization of
ty
J:= / trace(A(t)X(¢)A(t))dt (25)

0

subject to the choice of A(-) that satisfies (23) and the boundary
conditions 3(0) = X and X(ty) = X. Then,

2
W =J - 7 tracelog(£,55 1) + Hy(py) — Holpo).  (26)

Setting X := AX, the functional J becomes convex in X, X.
Then,

t
minJ = min/ ! trace(X (£)2(t) ' X (¢)")dt,
A X Jo

4

subject to the linear constraint
S(t) = X(8) + X()', 5(0) = 2o, B(ty) =%y, 27

has a unique solution. In fact, a closed-form expression can be
obtained by considering the necessary conditions that are being
dictated by the stationarity of the Lagrangian

L(Z,X,A) = /tf trace(X (£)S(¢) 7' X (¢))dt

+ /tf trace(A(S() — X(t) — X (£)'))dt.
0
Specifically, the first variation with respect to X gives that
A=xy""=A
Then, the variation with respect to 3 gives
A=—A% (28)

Assuming that A(0) is nonsingular,

From (23),
B(t) = (A0) ™" + )M (A0) " + ¢I)

for a suitable choice of a matrix M. Then, A(0), M are determined
from the boundary conditions,

$0) =
B(ty) =

AO) " MTIA(0) T = B,
(AO)  +t, )M Y (A(0) " 4 t41) = Ty

It follows that
Yot = I+ A0)t)S7HT + A0)ty),

from which we deduce that I + A(0)t; is the geometric mean
(ZalﬁEf) of 251 and Xy (see [36]), viz.,

T+ A0)ty = 55 2(5g/ 255/ 255 2,
Thus, we conclude (20).
Finally, plugging the optimal solution into (25) yields

tytrace(M ")
ty trace(A(0)XoA(0))
- tltrace(zo + X =22y 2u )Y,
f

Jmin

(29)
which completes the proof. O

Remark 3: The optimal control Q(¢) in (19a) is continuous
function on (0, t7). The limit values at ¢t = 0,t; are

2
Q") = TS5 + (1 = 5725l sy ) e )

2 ty
and
2
— g — 1 1/2 1/2 1/2\— 1/2
Q(tf) = jzfl + E(_['i‘ Eo/ (Eo/ Efzo/ ) 1/220/ )
respectively. These may not be consistent with the boundary condi-
tions Q(0) = Qo, Q(ty) = Qy, which dictates the discontinuities of
the optimal control at ¢ = 0,%;. When both the initial and terminal

. 2 2
states are stationary, namely, Qo = %EO 1,@ f = %E fl, such
discontinuities go to zero as the length of time ¢; goes to infinity.
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IV. SECOND LAW OF THERMODYNAMICS AND OPTIMAL
TRANSPORT

The problem to minimize J in (25) is in fact a Monge-
Kantorovich optimal transport problem with marginals po and py,
and quadratic cost functional [25], [27]. Specifically,

minJ = le(po,pf)2. (30)
A ty

This follows directly from (29) and (14). Alternatively, consider the

stochastic control formulation (9) of optimal transport. The optimal

solution, see e.g., [37], [38], is in the linear state feedback form

u(t,z) = A(t)z. With E{z(t)z(¢)'} = 3(¢),

E{[[ull*} = trace(A()Z(t)A(t)")

and
() = A)S(t) + S(t)A(t) .

The optimal A is symmetric and therefore coincides with the mini-
mizer of J up to a scaling in time. The factor 1/t; shows up due to the
fact that the time window in standard optimal transport is [0, 1] while
in our problem it is [0, ¢f]. Naturally, it follows from this equivalence
that the probability density flow of z(¢) under optimal control Qops
is a (scaled) geodesic (displacement interpolation) between pg and py
with respect to the Wasserstein metric Ws. Indeed, it can be verified
that ¥ in (19b) is
t

n(t) =52 ((1 ;

which is consistent with the geodesic formula in (15). Thus, we obtain
the following:

2
t _
S0 + 5(25/@23/2)1/2) 5502,

Theorem 4: The probability density flow of z(¢) in Problem
1 with optimal control @ is the (scaled) displacement interpolation
between po and py.

From (30) and Theorem 2, the minimum of W is
2

1 o _
;Wz(po,pf)Q — - tracelog(X,%, ")+ Hy (ps) — Ho(po).

Using the “log det = trace log” equality, and the fact that the entropy
of Gaussian distributions is

S(p) = —k:B/plogp
= 1%3 log det(X) + %9 log det(271) + %B trace I,

and, in view of o? = 2kpT, we get that the minimum value of W
is

1
Winin = EWQ(/)O’ pr)2=TS(ps)+TS(po)+Hs(ps)—Ho(po)

1
= EWQ(POJ’f)Q — TAS+Hy(ps)—Ho(po)- 31

Next note that the change in the Helmholtz free energy (see (7)) is
AF =F(ps; Hy) — F(po; Ho) = Hy(ps) — Ho(po) — TAS.

Putting all this together, we get that

Theorem 5:

1
Wmin = AF + EW2(po,pf)2- (32)

Recall that for reversible processes, one has

W = AF,

and for general processes
W > AF.

These are equivalent to the second law of thermodynamics, which
says that the total entropy of an isolated system is nondecreasing.
Theorem 5 provides a stronger lower bound for entropy production
of a finite-time process, and this bound connects thermodynamics and
optimal mass transport!

The difference W — AF is the entropy production, or work
dissipation, and denoted Wq;ss. This is the same as J in the proof of
Theorem 2. Theorem 5 provides a fundamental lower bound of work
dissipation

1
Waiss > EW2(p0, ,Of)2

for an irreversible process evolving in a finite time-interval [0, ¢¢].
As we discussed earlier, this lower bound is achieved by the optimal
protocol (19a) and the corresponding probability density flow is the
displacement interpolation between po and pjy.

In general, for any feasible protocol Q(t),t € [0, ty], the work
dissipation depends only on the probability density flow p; from po

to py.

Theorem 6:
ty
Waiss = / trace(A(t)2(t)A(t))dt (33a)
S(t) = —QM)E(t) - (H)Q(t) + 0*1  (33b)
Al) = T2 - Q). (33¢)

Indeed, once the probability density flow p; is fixed, we can get
@, A through (33b)-(33c) and then W 4i55 through (33a). In fact, this is
nothing but the length (scaled by ¢¢) of the curve p; on the manifold
of probability densities equipped with the Wasserstein metric Wa
[27].

Remark 7: Minimizing the work W is equivalent to minimizing
the work dissipation Wgiss = W — AF as AF relies only on the
boundary conditions. When there is no constraint on the choice
of Hamiltonian H, the optimal strategy is given by Theorem 2,
which leads to a probability density flow that is the displacement
interpolation between po and py. On the other hand, when there
exist constraints on H, in view of the above argument, we can lift
the problem to the space of probability densities, and seek a feasible
time-varying Hamiltonian such that the resulting density flow p; has
minimum length on the manifold of probability densities equipped
with the Wasserstein metric W>. This may lead to a promising
direction to solve constrained thermodynamical control problems.

V. HAMILTONIAN WITH NONZERO CENTER

In this section, we extend our framework to the cases when
the centers of the Hamiltonian potentials are allowed to change over
time. Specifically, consider the stochastic thermodynamical system

dx(t) = —Q(t)(2(t) — p(t))dt + odw(t),

which corresponds to the Hamiltonian

(34)

H(t,2) = 5 (x — p() Q(0)(x — p(t))
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with time-varying center p(t). Assume the initial and terminal
Gaussian distributions are po = N (mo, Xo), py = N (my,Xy). Our
goal is to drive the system from initial distribution po to terminal
distribution py with minimum cost via changing the strength @) as
well as the center p of the potential well at the same time.

The mean and covariance of x(t) evolve according to

B(t) = —Q)N(t) — SH)Q(t) + 021 (35a)

and
m(t) = —Qt)m(t) + Q(t)p(t).

The average work is

tf OH(t,z)
E{ [ i) dt}

- E{/’i«mwwaw—pwxaw—mww
—(2(t) = p(t)) Q(t)p(t)dt }
= [ 15000, 50) + 5m() ~ p(0) Q) mle) (1)

~(m(t) — p(t)) QU (D)dt
= [ e, 20) + o)

+d(%(m(t) = p())' Q) (m(t) — p(1)))]-

(35b)

Problem 8: Find a time-varying Q(t) from Q(0) = Qo to
Q(ty) = Qy and a time-varying p(t) from p(0) = po to p(ts) = ps
such that x(t) has po, py as the marginal distributions and the average
work is minimized.

Theorem 9: The optimal () and X are as in the zero-mean case,
and the optimal m, p satisfy

m(t) = Lty + Loy, (36)
ty t
and
ty —1t 1 1
p(t) = mo + —mys + —Q(t)” (ms —mo) (37
ty t tr

The corresponding work is

2

_ 1
Wiin = —% tracelog(X 3, 1) + 7|\mf — mon
f

+1(mf —ps) Qs(mys —py) — 1(mo — o)’ Qo(mo — po)

2 2
+ti trace(So + Xy — 2(S¢/ 25,5l 2)1?). (38)
f

Proof 2: We first simplify the work to
W= [ (e, 20) + I
+d(%(m(t) —p(1))' Q) (m(t) — p(1)))]

+
/tf

+%(mf *Pf)/Qf(mf —py) — %(mo *po),Qo(mo — po).

The last two terms depend only on the boundary conditions. The first
two terms are totally decoupled; one depends only on @), 3 while

[504Q(0. 20 + [ o) P

the other on m. Therefore, we can minimize these two terms inde-
pendently. Clearly, the optimal (), > are identical to that in the zero-
mean case (Theorem 2). To obtain m, p, we minimize f(ff |l (t)||*dt
subject to the boundary conditions m(0) = mo, m(ty) = my.
Thus, the optimal m is the linear interpolation between mo and m .
Plugging it into (35b) concludes the optimal p. O

As we have already seen in Section III, the optimal strength
Q of the potential usually has discontinuities at the boundary points
t = 0, ty. We next argue that similar phenomenon happens for the
center p of the potential. From (37) we get

p(0*) = m+%MWVWw—m%

~ 1
p(ty) = my+ EQ(tf) (my —mo).

These usually don’t match the boundary conditions p(0) =
po,p(ty) = py. When both the initial and terminal states are
stationary, in which case mo = po, my = py, the discontinuity gaps
att =0, ty go to zero as ty goes to infinity.

Comparing (38) and (14) we again conclude the relation

1
Wonin = AF + t—Wg(pO,pf)Q. (39)
f
Here we have employed the property that entropy is invariant with
respect to translation. Moreover, the resulting density flow p; is the
(scaled) displacement interpolation between po and py.

VI. RELAXATION

In this section, we consider a modified version of Problem 1.
We specify a terminal value for the potential by fixing )y while
we relax the terminal constraint X(¢7) = Xy, which is commonly
set to be %262;1. This value for the covariance will be then
attained asymptotically since, even if we do not specify the terminal
distribution, it will converge to the Boltzmann distribution due to
fluctuation-dissipation effects. Therefore, if our goal is to simply
minimize the work, there is no need to insist on setting X(ts) = 3.
More precisely, we address the following.

Problem 10: Find a function Q(-) from Q(0) = Qo to Q(ty) =
Qy over time [0, ts] that minimizes the average work (17) subject to
constraint (16) as well as the boundary condition ¥(0) = Xo.

There are several possible approaches to solve the above prob-
lem. One of them is applying standard calculus of variations, just
like what we did in the proof of Problem 1. Here, we adopt an
alternative idea which solves the problem in two steps. We first
find the solution for a given terminal value ¥(¢y) = X and then
minimize the cost function over all possible X > 0. Evidently, the
first step is equivalent to solving Problem 1. The optimal cost is given
by (32), which is

1
F(ps; Hy) — F(po; Ho) + EW2(P0>Pf)2»

where po, py are the zero-mean Gaussian distributions with covari-
ances Yo, 2. The free energy is

1 2
F(ps; Hy) = 3 trace(QsXf) — UZ log det ¢ + constant.
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By (12), the distance between two Gaussian distributions is given by
the solution of the SDP
. b S
min {trace(Eo +X;—-25) | |:S9 Ef] > 0} .
Plugging them into the cost yields the convex optimization formula-
tion of Problem 10

min % trace(Q s Ef)f— log det Zeri trace(Xy—25), (40a)

5,5
S} > 0.

< 1 EO
subject to [S’ of

(40b)

After solving (40), we can obtain the solution of Problem 10 via that
of Problem 1 with the optimal ¥ as a boundary condition.

Theorem 11: The convex optimization problem (40) has a
unique minimizer at

2

5 o= T +1+X) (41a)
s = Eé”(zé”EfEé”)”“’Eo” (41b)

with
2 > 2 5172 [ y-1/2 s-1/2 1 e 1/2
—W Ot 0 < ( Qr T ) JFUQt?) DM

Proof 3: First we construct a Lagrangian

2
L(S,%f,T) = %trace(Qfo)f%logdetEf

+% trace(Xy — 25) + trace ({?9 ;f] \I/)

with Lagrange multiplier

U = |:\I/l11 \Ij12

<0.
12 \1122} B

Minimizing £ over S leads to the constraint
Uiz = 1/ty,

and over X yields as minimizer

2 —1
Yy = Z ( Qr+ — +\I/22> .

Therefore, we obtain the dual problem

(42)

2

max trace(XoW11) + 7 log det( Qf + + W) (43a)

4
L £
subject to I Ll <. (43b)
i Yoo
For fixed W2, the above expression is maximal for W, = t%\I/;;
¥
Thus, (43) is equivalent to the convex optimization problem
1 . o 1 I
Jnax, trace(gZo\DQQ )+ T logdet(§Qf + i + Wyz). (44)

Its first order optimality condition is

o2
I
‘1122 SoWay + — ( Qf JF - JF W) =0,

or equivalently

2
o _ 1 I
WY Wy + W + —Qp + — =
4 2 ty

7
Let X = X, /?Wy0%; /2, then
2
%XZ —X=Y:= 20‘1/2( Qr+ 1 ) 5, 2.
It follows that
g 1 2 I
Ix_ 12 _yy 2
(2 crtf) t
If we pick the solution
g I I 1/2
IX=— —(Y+ 5 )?*<0 45
2 oty V' + 0'215?) -7 “5)

then Wy = 2(1]/2)(2(1)/2 satisfies the constraint Woo < 0. Thus,
in view of the strong convexity of (44), we conclude that Woy =
$o/2X5? with X in (45) is the unique solution to (44). The
optimal S, 3 follow from (13) and (42). This completes the proof.

We establish similar results when the centers of the potentials
are nonzero. Denote by po, py the centers of the initial and target
potentials. We seek an optimal control for the following problem.

Problem 12: Find Q(-) from Q(0) = Qo to Q(t5) = Qy and
p(+) from p(0) = po to p(ty) = py over time [0,¢y] that minimize
the total work subject to constraint (35) as well as boundary condition
2(0) = Eo,m(O) = Mmo.

The idea is the same as in the zero-mean case. Straight forward
calculation gives
2
% log det 3

1
Flor;Hy) = 5 trace(QrXy) —

1 /
+o(my —ps) Qs (mys —py).

This together with (12) and (39) points to the convex optimization
formulation

2
%trace(QfEf) — % logdet Xy + titrace(Ef —25)
f

min
S,3p,my
1 ' 1 2
+5(my = p) Qr(ms —ps) + EHmo —myl|” (46a)
. o S
> 0.
subject to {S’ ZJ >0 (46b)

We note that in (46) the minimization over S, Xy and that over my are
decoupled. Thus, we have two independent optimization problems.
The solution to the former is given by Theorem 11 and the solution
to the latter is given in closed-form as
2.1 2
mp = (Qr + )" (Qrpy + o). 47
! ty
Next we use the above results to recover two scalar cases that have
been solved in Schmiedl and Seifert [6].

A. Case study I: Moving laser trap

Suppose the strength @ of the potential H is fixed to be Q = 1.
Our goal is to choose proper function p(-) from p(0) = po = 0 to
p(ty) = py such that the work is minimized. The initial state is
assumed to be at equilibrium, i.e., mo = 0, %o = 02/2.

When Qo
from Theorem 11 that the optimal strategy is Q(¢) =

= Qf and X =

2 . .
%Egl, it can be easily seen
Qo. Thus the
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assumption (Q = 1 is consistent with the optimality. Regarding the
centers p(t), from (47) we obtain

_ lypy
me= 2+tf.

Substituting it back to Theorem 9 we obtain that the optimal p(¢) is

t 1 (L4 t)ps
t)=— —my =
p(t) tfmf‘f'tfmf Sty

and the corresponding work is

1 5 1 2
Wmin = = - =
;Mg (ms —py)

p}

24+t5°

B. Case study II: Time-dependent strength of the trap

The means po, ps, mo are set to be zero. The task is to drive the
linear system (3) from an initial “strength” Qo to a terminal Q) ¢. The
initial state is assumed to be zero stationary, namely, Yo = %-Qy L
Applying Theorem 11 we obtain

Xp= %2 [\/QfQO +2Qo/ty +1/t3 — 1/tf}_2~

This together with Theorem 2 points to the optimal solution

_ Qo —A(l+AY)
R (Y V)
2(t) = o1+ At)?

with
1
5(—1 + V2 /%0)

\/QfQot} +2Qots +1—1—Qyts
(2+ Qyts)ty '

VII. GENERAL POTENTIAL AND THE CONNECTION TO JKO
GRADIENT FLOW

The result (32) is closely related to the celebrated Jordan-
Kinderlehrer-Otto (JKO) flow [22]. In fact, we obtain an alternative
proof of Theorem 5 for general marginal distributions based on the
results in [22].

The JKO scheme gives that the Fokker-Planck equation as the
gradient flow of the free energy with respect to the Wasserstein metric
Wo>. Indeed, according to [22], the Fokker-Planck equation

Ip

2
= V- (VH(@)p) - T Ap=0 (48)

ot
can be viewed as the gradient flow of the free energy

Flps H) = H(p) - T5(p) = [ H)p(o) + . [oroz0 @9

with respect to the Wasserstein metric W> on the manifold of
probability densities. More specifically, discretizing the above in the
time domain, we obtain the celebrated JKO scheme. This amounts to
the fact that p* ! (x) := p((k + 1)h, ), where p is the solution to
(48) and h is the step size, minimizes

S Walp, o) + F(ps H) — B(p" H)

over p as h goes to 0. This is akin to our result (32). Next we discuss
the connection between the two.

(50)

8
Since p®*1 minimizes (50), we have
1
o W2 (0" 0" + (" H) — F (o H)
1
= W™ 0" + o(h). (51)

This is the Wasserstein counterpart of

gilla = ol + F(@) = f(z0) = =g o = ol + o()

when z minimizes the left-hand side (LHS), which follows from the
approximation

1
LHS =~ ﬁﬂx — z0||® + V£ (xo) - (z — x0).
Rearranging (51) leads to

Lia(ot+, p)? = F(o*; H) —

; F(p"T H) +o(h). (52
Now summing up the above we obtain
1N
2> Walp™ ") A Fpo) — Flpy) (53)
k=0

where N = ty/h is the number of steps. Applying both Cauchy-
Schwarz and the triangular inequality yields

1 N-1
SN Wt )
f k=0

L (Nl 2
~ W(Z W2(pk+1,pk))

k=0

F(po; H) — F(py; H)

Q

1
> EWz(po7pf)2~ 54

Finally, by letting h goes to 0 we establish
1
EW2(P07Pf)2 +F(ps; H) = F(po; H) <0,

which is a special case of (32) when W = 0. Indeed, when the
potential H is time-invariant, there is no work being done.

When H is time-varying, the analysis is similar. The Fokker-
Planck equation is

@_ 2

o
- (VH — —Ap=
g V- (VH(z)p) 5 AP 0 (55)
and the approximation (51) becomes
1 .
S W2 (0" )+ F (M HET) — (ot )
1 k41 k\2 OH:
=——W h d h
o W2 P7)" ¢ P dz +o(h),

where H* := Hy,,. Following the same steps as in the time-invariant
case, we conclude

OH, _
En pdxdt=W.

1 ty
£ Walpo, 1) +F (o5 Hp)—F(pos Ho) < I
0

Thus, the amount of work W needed is always lower-bounded
by the change of free energy plus the optimal transport cost between
the marginal state distributions po, ps. Moreover, in view of (54),
the equality holds when the density flow p; is the displacement
interpolation between po and py. The optimal Hamiltonian is

2
H, =~ — 5 logp,
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where ¢ is the unique solution (under the constraint that f ¢r = 0)

© 0]
Pt | 7 (V) =
at + (pi ¢t) 07

which, by standard optimal mass transport theory [39], always exists.

Therefore, we conclude that Theorem 5 holds for general
marginal distributions po, py providing we are free to change the
Hamiltonian in whatever way we like. The above analysis also reveals
that, for general time-varying Hamiltonian, we can calculate the work
using the solution p; to (55).

Theorem 13:
ty
W F(ps: Hy)+F(po; Hy) = / / (@) |V be() Pzt
[0)

0
% + V- (p:Vee) =0.

We note that this is a generalization to Theorem 6 to general marginal
distributions.

Remark 14: Finally, we note the counterpart of the above result
for gradient dynamics

o(t) = =V [(t,x(t))
in a Euclidean space. In general,

laltn)=a(OP+ (. 2(t)~F0.2(0) < [ S ate)ar

In the special case when f is independent of time,

%Ilw(tf) —2(0)||* + f(x(ts)) - f(x(0)) < 0.

VIII. THE JARZYNSKI EQUALITY

Different from the above results, the Jarzynski equality [1], [2]
provides an alternative way to compare work and free energy. It reads,

E{exp(fﬁW(va))} = EXp(*ﬂAF), (56)

under the assumption that the initial state is at equilibrium. Here AF
is the difference of free energy at equilibrium, viz.,

AF =F(ps;Hy) — F(ps; Hy).

Note that the Jarzynski equality implies W = E{W} > AF by
Jensen’s inequality. Indeed,

exp(—AW) < E{exp(—SW(Q, x))} = exp(—BAF).

The relation W > AT then follows from the monotonicity of the
exponential function. In addition to the intrinsic value of the Jarzynski
equality in relating equilibrium to nonequilibrium quantities, it may
also be used to estimate the free energy of a thermodynamic system;
see [40] for an interesting related sampling approach.

We next recall a simple derivation of the Jarzynski equation.
Let p(t,-) be the density of z(t), and let

o(t.) = Edexp(=5 [ s | alt) =)

We have that

a 2
a—?+(—VHt—02v logp)~Vg—%Ag+ﬂ

(57)

OH,
ot

g=0, g(0,-) =1
(58)

9

To see this, first rewrite (3) in the reverse direction utilizing Doob’s
h-transform,

dz(t) = (~VH; — 0>V log p)dt + odw-_. (59)

This is quite standard. Here, dw_ is a reverse Wiener process, whose
current increment is independent with the future. We deduce that

t 9H,
R (s)ds) | a(t) =)

g(t,z) =E {exp(—ﬁ

0

z]E{E [exp(fﬂ/ot_dt a;?(gc(s))ds) | x(tfdt):x+dm}

x (1— 58§f (@)dt) | a(t) = x}

—E {g(t —dt,x+ da)(1 - 58§t (@)dt) | a(t) = a:}

~ {g(t, z) — %dt — Vg (=VH; — ¢°Vlog p)dt

OH, B

5 (z)dt | z(t) = x}
dyg 2

=g(t,x) — =dt —Vg-(—VH; — 0"V log p)dt

ot
0'2 8Ht
= Agdt —

+ 589 Bg En

from which (58) follows. Combining (58) and the Fokker-Planck
equation

2
+oVg-dw_ + %Agdt — Bg

dp o2 _
we establish that
ftz) = g(t,z)p(t, x) (60)

satisfies

of _ 99 . 9p

o~ o’ %

0'2 aHt
= V-(VHtf)+7Af—B e I

Finally, we claim that
1
fltz) = o exp(—FH:(z))
0
with Zo = [ exp(—SHo(x))dz. To see this, we just need to notice

of _ ,0H,
ot ot

B——f

as well as
2

V. (VH.f) + %Af =0.
Clearly the boundary condition g(0,-) = 1 also holds as

f(0,2) = Zio exp(—BHo(z)) = po.

Therefore, in view of the definition of (57) and (60),
E{exp(—IW(@. )} = [ J(ty,2)ds
1
— [ 5 exp(-BHy ))da
0

establishing (56).
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IX. NUMERICAL EXAMPLES

Consider a laser trap in one dimensional space whose strength
and center location can both vary over time. The initial Hamiltonian
Ho and terminal Hamiltonian Hy are set to be quadratic with
parameters

Qo =
Qr =

respectively. The initial state distribution is assumed to be stationary,
that is,

17 Pbo = 037
47 pf - _17

0_2

g 2 1
EO - ?QO - ?7
We further choose o to be 1 and f to be 1 to simplify the calculation.
Our goal is to drive the state distribution to the stationary distribution
corresponding to H;, which is

1.4 1

21 - 2 1 — 87

via adjusting the Hamiltonian H;. The optimal strategy is given in
Section III if we want to achieve this distribution at ¢ = 1. Plugging
the above parameters into Theorem 2, we get the optimal strategy

and density flow being

mo = po = 0.3.

mi1 =p1 = —1,

6—t
Q) = -2
B 1.3(t — 2)?
p(t) =03 1.3t — —=—=,
and
(t—2)

(1) =

respectively for all ¢ € (0,1). The minimum work is 2.162. The
Hamiltonian jumps from (Q(1) =5, p(1) = —1.26) to (Q1, p1) at
the terminal time point ¢t = 1, after which, both the Hamiltonian and
state density remain time-invariant. Figure 1 depicts the evolution of
the probability density of the state. Several typical sample paths are
plotted in Figure 2. Clearly the sample paths are consistent with the
density flow.

Density

Position z

Fig. 1: Density evolution

Next we move to another scenario discussed in Section VI
where the constraint on the terminal state distribution doesn’t exist.
Following the discussion in Section VI, we obtain the optimal
terminal distribution at ¢t = 1 to be

31 =0.3273, my = —0.35.

The corresponding optimal strategy and density flow can be again
obtained using Theorem 2. The minimum work is 0.9692, which

10

Position z

0 0.2 0.4 0.6 0.8 1
Time ¢

Fig. 2: Sample paths over ¢ € [0, 1]

is less than 2.162 in the previous setting. In this case, the terminal
distribution is not stationary with respect to H; anymore, therefore,
the state density will vary after the terminal time ¢ = 1. Eventually,
due to fluctuation, the state density will converge to the stationary
distribution A/(—1, 1/8). In Figure 3, we can see clearly that the
evolution of the state distribution doesn’t match the terminal condition
N (=1, 1/8). This can also be seen from the sample paths in
Figure 4. However, if we run the system long enough, then the state
distribution will converge to the stationary one, as shown in Figure 5,
due to fluctuation.

I o o
IS =) ©

Density p

o
N

»~O

Position x -4 0 Time ¢

Fig. 3: Density evolution

Position =

0.2 0.4 0.6 0.8 1
Time ¢

Fig. 4: Sample paths over ¢ € [0, 1]
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Position z

Time ¢

Fig. 5: Sample paths over ¢ € [0, 3]

X. CONCLUSION

We described the problem of controlling non-equilibrium ther-
modynamical systems with time-varying Hamiltonian, from a given
initial state to a final state, by adjusting the parameter specifying the
Hamiltonian in finite time. This led to some interesting connections to
optimal mass transport theory, and gave a new twist to understanding
the second law of thermodynamics building on the seminal results
of Jarzynski and the recent advances in stochastic thermodynamics,
e.g., see [12]. We expect that the theory will lead to insights in the
case of potentials with several wells and to connections with the
theory of large deviations and information theory with optimal mass
transport [41], [24], [42], [43]. We anticipate interesting connections
to the celebrated Landauer principle [44], [45], which provides a
fundamental lower bound of the energy consumption to erase one
bit of information. In recent years, many experiments have been
performed aiming to achieve the bound kg7 In 2 [46], [47], [48]. This
bound, however, theoretically can only be achieved through reversible
processes. The constraint to erase a bit in finite time, unavoidably,
introduces a gap. Our aim is to gain insights into such a gap using
optimal transport theory and stochastic control.
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