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Regularization and Interpolation of Positive Matrices

Kaoru Yamamoto =, Yongxin Chen

Abstract—We construct certain matricial analogues of mass
transport for positive-definite matrices of equal trace. The frame-
work aims to devise ways of interpolating positive-definite matrices
that tradeoff between “aligning up their eigenstructure” and “scal-
ing the corresponding eigenvalues.” Motivation for the work is pro-
vided by power spectral analysis of multivariate time series where
linear interpolation between matrix-valued power spectra generates
push-pop unrealistic and undesirable artifacts.

Index Terms—NMultivariate interpolation, optimal
signal processing, time series analysis.

transport,

|. INTRODUCTION

This paper is an attempt to develop a suitable matricial analogue
of optimal mass transport (OMT). The basic problem of OMT refers
to seeking a transportation plan that carries a given probability dis-
tribution to another so that a suitably defined transportation cost is
minimized [1]-[3]. The original formulation of the problem by Monge
in 1871 was motivated by civil engineering considerations, namely to
transport dirt so as to level the ground. The mathematical problem
achieved significant fame and notoriety due to inherent technical dif-
ficulties, which persisted until the 1940s when Kantorovich presented
a relaxation of OMT in the form of a linear program. The relevance
of this circle of ideas in the broader setting of resource allocation was
already widely recognized and the impact secured a Nobel prize in
economics for Kantorovich in 1975. A new transformative phase of de-
velopment in OMT began in the 1990s [4]-[7] motivated by multitude
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of applications in physics, probability theory, image analysis, optimal
control, etc. In these, OMT was seen as an optimal control problem
and stochastic formulations ensued (see [8]-[10] and the references
therein). The work presented herein is motivated by Ning ef al. [11]
where a matrix-valued formulation of OMT was introduced to address
certain issues in spectral analysis of multivariable time series and sys-
tem identification. More specifically, recall that the spectral content of
scalar (slowly time varying) time series is often displayed in the form of
a spectrogram (time—frequency power distribution). The spectrogram
illuminates any time drift of the spectral content, but suffers from the
perennial tradeoff between variability and resolution (also known as
the uncertainty principle of Fourier methods). Traditionally, window-
ing, kernel methods, and several other techniques have been used to
enhance spectrograms. An alternative approach, highlighted in [12],
is to interpolate spectral estimates in a suitable metric so as to track
changes in the underlying spectral content in a natural manner. Fur-
ther, in [13], the authors have argued that OMT induces the appropriate
topology (Wasserstein metric) where small perturbations correspond to
small changes in estimated moments and vice versa. However, there has
been no matrix-valued analogue of the Wasserstein metric. The work
in [11] was perhaps the first attempt and had its basis in Kantorovich’s
idea of seeking a joint density (matrix valued in our case) in a suitable
product space, necessitating a prohibitively high computational burden.
In this paper, we explore alternative ideas that are rooted in control.
More specifically, we seek a dynamical evolution that allows rotation
of eigenvectors as well as scales the corresponding eigenvalues so as
to generate a path between end-point matrices. Accordingly, the choice
of parameters (affecting cost) in an optimization problem promotes
rotation or scaling.

Being inspired by the close connection between the heat equation,
the Schrodinger equation and the scalar version of OMT, [2], [3], we
formulate our problem based on some concepts in quantum mechan-
ics. More specifically, probability density functions are exchanged for
density matrices p, i.e., positive-semidefinite Hermitian matrices with
unit trace. Transport is then seen as a flow in the space of such matrices
that minimizes a suitable cost functional.

The insight and techniques gained are aimed toward interpolating
or regularizing sample covariances as well as matrix-valued power
spectral densities of multivariate time series—they both reflect on how
power varies with direction. More specifically, when dynamics that
impact a vectorial process are slowly varying, it is of interest to track
changes by interpolating input—output short-window spectral estimates
in a nonparametric manner, e.g., tracking frequencies of resonances in
the spectral content along with a corresponding direction that couples
specific entries. The ability to do so in a natural manner is even more
enabling in array processing, where changes in spectral content of
a matrix-valued spectrogram may be directly attributed to a moving
scatterer. In particular, OMT-based interpolation prevents push-pop
artifacts as compared to linear interpolation (e.g., see [13] for scalar
processes).

In this paper, we focus on interpolation of matrices. We see this
as the first step toward the development of more general transport be-
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tween matrix-valued distributions (i.e., allowing for a spatial/frequency
component). More specifically, at present, we focus on interpolating
positive-definite matrices in ways that allow controlling the correspon-
dence between their eigenstructures. To this end, we decompose the
tangent space of the cones of positive-definite matrices into two sub-
spaces, one that corresponds to rotating the eigenstructure and another
that corresponds to scaling eigenvalues. In this way, by controlling
these two complementing directions, we construct interpolating flows
that have desired properties. Insights into setting up the problem are
drawn from quantum mechanics where the principle object of study
is the time evolution of noncommutative operators (i.e., of matrices,
when restricted to finite dimensions). Thus, in order to make the pa-
per self-contained, we include a brief exposition of certain basic facts
from quantum mechanics upon which we draw insights for the needed
analysis.

This paper is structured as follows. In Section II, we present certain
basic ideas of quantum mechanics that relate to material used in this
paper. In Section III, we consider the tangent space of the cone of
positive-definite matrices. This leads to the material in Section IV on
suitable cost functionals that promote a judicious balance between
rotating the eigenstructure and scaling the eigenvalues. In Sections V
and VI, numerical examples are discussed and in Section VII
concluding remarks are provided.

Notation: We denote by H the set of n x n Hermitian matrices, S the
set of n x n skew-Hermitian matrices, and H, the cones of positive-
semidefinite matrices. Since matrices are n X n throughout this paper,
we will not explicitly note dependence on n. The commutator of two
square matrices A and B is denoted by [A, B] := AB — BA.

II. QUANTUM INSIGHTS

The development draws on concepts from quantum mechanics and,
therefore, we begin with a brief account of basics (see standard refer-
ences, e.g., [15], for more).

A. Schrédinger Equation

The evolution of closed quantum systems, i.e., one having no in-
teraction with other quantum systems or a heat bath, is given by the
following time-dependent Schrodinger equation [15]:

o0

E R

where 1) € C" and X is a skew-Hermitian matrix.! Equation (1) de-
scribes a unitary evolution for the wave function, in our case, vector
1; the quantum system is in a “pure state” in that the density matrix
p = y* has rank 1. A system is in a mixed state when the density
matrix

ey

p= ZMWW
%

with >, A, = 1, has rank higher than 1. Either way, the density matrix
evolves according to

(@)

where the derivative is thought of entry-wise. It is evident that if the
system is in a pure state, it remains so, as the rank of

p(t) = X p(0)p(0) e "

"More generally, ) belongs to a Hilbert space and accordingly X is a skew-
Hermitian operator on that same Hilbert space. Typically X is expressed as
— 5 H where H is a Hamiltonian (Hermitian) operator and /1 is the reduced
Plank constant.

remains invariant. Likewise, if the system is in a mixed state

p(t) = Z M (0)r (8)1hy (1)
i

Xt (Z A (8)1r (0)ehy, (0)*) et
k

the eigenvalues A (¢) of the density matrix remain invariant over time
t, i.e., A, (t) = 14 (0) for all . Thus, the evolution governed by (2)
rotates in the same way the complete set of eigenvectors of the density
matrix without changing the corresponding eigenvalues.

B. Evolution of Density Matrices

Decoherence and changes in the spectrum of p are typically modeled
through coupling with an ancilla, which is another quantum system.
The state of the original system is then obtained by tracing out the
ancillary component of the joint density operator. Lindblad’s equation,
[16], [17], describes precisely such an evolution for the component of
the original system. The Lindblad equation has the form

ap 1
— =[X,p| - —(Y; Yi) — ZppZ;
a1 [X, p] ;(2( wp+ pYi) kP k)
where Y}, = Z; Z,,. The presence of —ZpZ* ensures that trace(p)

remains constant, whereas both the eigenvalues and the eigenstructure
may change over time. Alternatively, one may consider more generally
dp

ot

where trace(u) = 0 so as to preserve the trace of p. In fact, additionally,
we will do exactly that and consider flows in directions corresponding
to traceless component u. Positivity of the flow will be ensured as an
added (convex) condition and will not be intrinsically encoded in w (as
in the Linblad equation where the right-hand side is linear in p).

X, ] + u 3)

Ill. TRACE-PRESERVING LINEAR FLOW ON POSITIVE MATRICES

Consider the set of positive-semidefinite matrices that are normalized
to have trace one

D :={p e H, |trace(p) = 1}.

As we noted earlier, we seek flows on D that preserve trace. The tangent
space of D atany p € D is

T, = {u | u € H, trace(u) = 0}.
In this, the subspace of traceless Hermitian components’
R, = {[X.0l | X €5}

is responsible for rotating the eigensubspaces of p as we have noted in
the previous section.

We now seek to identify the orthogonal complement of R, so as
to isolate the two directions that are responsible for rotation of eigen-
vectors and scaling of eigenvalues.? To this end, consider v € H such
that

trace(u[X, p]) =0 VX €S. 4)
Since the trace is invariant under cyclic permutations,
trace([u, p]X) =0 VX €S. Q)

2If X € Sand p € H, both [X, p]* = [X, p] € H and trace([X, p]) = 0.
3The inner product of two matrices is (u, v) = trace(u'v)
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But [u, p] isalready in S, hence it is zero, and therefore « must commute
with p. Thus, from (4) we have that « is in the orthogonal complement
of R,. We summarize our conclusion as follows.

Proposition 1: The tangent space 7, of D:={pecH, |
trace(p) = 1} at p € D can be decomposed as the direct sum

T,=R,®C,
of orthogonal components
R, ={[X,p] | X €S} and
C, ={u|ueH,[u,p] =0, and trace(u) = 0} .

If X(t) € Sandu(t) € C, forall ¢, then trace(p(t)) remains con-
stant with ¢.

IV. INTERPOLATING FLOWS BETWEEN py AND p;

Following on the previous rationale, we may seek paths between
density matrices p, and p;, that minimize a suitable cost functional
that allows trading off between the eigenstructure rotation specified by
X (t) € S and the eigenvalue scaling affected by u(¢) € H. Assuming
a constant rate of rotation and a constant “drift” of the spectrum, we
formulate the following problem:

Problem 1: Minimize || X ||s + €||Z]|2 subject to

p(t) =

(X, p()] + ¢t Ze ™ ©)

u(t)

for p(0) = po, p(1) = p1,alongwith X € S, Z € H, [py, Z] = 0,and
trace(Z) = 0.

In the above-mentioned equation, the parameter e € [0, 00) repre-
sents a weight that helps trading off the two alternative mechanisms for
shifting eigenvalues and eigensubspaces to match the two end-point
matrices. In general, “rotation” and “scaling” may vary over time,
whereas in the case of (6) where the drift is constant, the solution has
the explicit form p(t) = eX'(py + Zt)e X1,

In the setting of Problem 1, we readily verify that «(¢) commutes
with p(t) as long as Z commutes with p,. Thence, it can be seen that
in fact, Problem 1 is equivalent to

minimize e X pie — ol (7a)

X1z + €

subjectto X + X" =0and [py,e ™~ pie* —py] =0.  (7b)

This is a constrained nonconvex optimization problem that we ap-
proach, numerically, using fmincon in MATLAB. This utilizes an
interior point method with computational complexity of order O(n?)
at each iteration.

V. EXAMPLE: INTERPOLATION OF DENSITY MATRICES

In this section, we highlight how interpolation is effected, via solv-
ing Problem 1, as a proof of concept. Starting from two end-point
density matrices, the framework allows constructing alternative paths
connecting the two where one may tradeoff the two possible ways that
the transition from one to the other may take place, i.e., allowing for
the eigenvalues to adjust by “scaling” and the eigenvectors to “rotate,”
respectively.*

4The examples we present involve matrices of sizes 2 x 2 and 3 x 3. This
is solely because we cannot display in a suggestive manner results in higher
dimensions. The computational burden in higher dimensions scales reasonably
well (interpolating 20 x 20 matrices requires of the order of 200 s using general
purpose solvers on a laptop with Intel Core i7).

00 t
(b)

Fig. 1. Solutions are obtained by solving Problem 1: for illustration,
eigenvectors, shown as line segments that vary with ¢, are scaled in
proportion to corresponding eigenvalues. (a) shows a push-pop effect
where eigenvalues are rescaled (hence two eigenvectors are shown, one
increasing and the other decreasing in length as a function of ¢), whereas
(b) indicates a correspondence through rotation of the eigenstructure
along a path of rank-1 matrices (hence only one eigenvector is shown,
and this rotates with ¢).

Example 1: Consider the two density matrices

Lol 00
= an = .
A =101

On one end, a choice of € (vanishingly small) in Problem 1 leads to a
path that displays a fade-in/fade-out effect of scaling the eigenvalues,
so as to connect the two end points [see Fig. 1 (a)]. No rotation of
eigenvectors takes place. On the other end, for large € (e.g., € = 10),
we obtain a path where “rotation” of the eigenvectors is less costly [see
Fig. 1(b)]; it is worth noting that in this case, since both matrices have
rank 1, the path remains rank 1.

Motivation for our framework stems from multivariable time series
analysis where power is often associated (e.g., in sensor arrays or radar)
with the position of dominant scatterers. Fade-in—fade-out effects when
interpolating or smoothing multivariable spectra are obviously unde-
sirable as they create artifacts. Such fade-in—fade-out effects may be
erroneously interpreted as due to the presence of additional scatterers
beyond those that are present. The above-mentioned rudimentary ex-
ample may correspond to the case of two sensors reading a constant
frequency echo from a scatterer that changes its relative position with
respect to the two. When recorded signals are correlated, the matrix-
valued power spectrum at the corresponding frequency has (approxi-
mately) rank 1. Likewise, movement of the scatterer that corresponds to
a path between the two matrices, ought to have rank 1 [as in Fig. 1(b)].
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t=1

Fig. 2. Solutions are obtained by solving Problem 1: for illustration,
eigenvectors (shown as colored line segments) are scaled in proportion
to corresponding eigenvalues. It is seen how eigenstructure rotates while
eigenvalues scale.

t=20

This exemplifies the need for paths that avoid push-pop for the cor-
responding eigenvalues (as linear interpolation would—one eigenvalue
reducing while another increasing at the same time).

Example 2: In this example, we highlight a situation with matrices
of higher dimension (three in this case). Fig. 2 shows a path between
two matrices as follows:

02 0 0 0.5 0 0
po = 03 0 Jandpy=1] 0 03 O
0 0 0.5 0 0 0.2

The solution to (7) with e = 10 is p(t) = e**(py + Zt)e Xt with

0 0 2.2 0.1 0 0
X = 0 0 22|andZ=| 0 0.2 0
-22 =22 0 0 0 -03

In this case, we see that both rotation and scaling take place simulta-
neously.

VI. EXAMPLE: REGULARIZATION OF NOISY PATHS

Besides interpolation problems, i.e., finding a path for p(¢) con-
necting two density matrices py and p;, the approach allows solving
regularization problems where a smooth path is constructed to smooth
out noisy measurements. More specifically, given a noisy data set

{pt)10<t; <...<ty <1,}

we seek a smooth path p(t) that approximately fits the data in a suit-
able sense. The key is to parameterize the path in a way consistent
with the two “orthogonal” actions of rotating eigenvectors and scaling
eigenvalues (as both may be needed), and penalize one more (typically,
scaling). To this end, we propose the following:

Problem 2: Minimize, over choice of py, X, and Z

N
Z ”exm (po + Zti)e_Xf’f - ﬁ(ti)Hz

i=1

subjectto X € S, Z € H, p(-) > 0, [po, Z] = 0, and trace(Z) = 0.
The outcome is shown in Fig. 3. For illustration purposes, the data set

p(t;) is generated by adding a symmetric matrix-valued (uniform) noise

w(t) to a nominal flow eX!pye X! for t; € {0.05,0.1,0.15,...,1}

(b)

Fig. 3. Regularization of noisy matricial data with eigenvectors scaled
according to corresponding eigenvalues. (a) Data: noisy matrices p(¢; ).
(b) Regularized path p(t;).

1.0 0 0 -1.6
po = and X = .
0 0.1 1.6 0

VIl. CONCLUDING REMARKS

where

We propose an approach to constructing flows on density matrices.
This is intended for interpolation and regularization of sample covari-
ances and power spectra of multivariable time series. The general ap-
proach is control theoretic in that we select the flow (tangent direction)
that minimizes a suitable cost functional. The choice of functional al-
lows trading off the two basic mechanisms (rotating eigenvectors versus
scaling eigenvalues). Judicious balance between aligning up the eigen-
structure and scaling the eigenvalues is necessitated by the fact that
one of the two mechanisms alone may not suffice in generic situations.
The choice of the parameter ¢ that dictates the respective tradeoff must
be based on the application and priors on the problem. In closing, we
refer the interested reader to [14] for a parallel alternative formulation
of matricial OMT, which also draws on the connection with quantum
mechanics, but along a different angle altogether.
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