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Abstract—We study single commodity network flows with suit-
able robustness and efficiency specs. An original use of a maxi-
mum entropy problem for distributions on the paths of the graph
turns this problem into a steering problem for Markov chains with
prescribed initial and final marginals. From a computational stand-
point, viewing scheduling this way is especially attractive in light
of the existence of an iterative algorithm to compute the solution.
This paper builds on the work proposed by Y. Chen et al., [“Ro-
bust transport over networks,” IEEE Transactions on Automatic
Control, vol. 62, no. 9, pp. 4675–4682, Sep. 2017] by introducing
an index of efficiency of a transportation plan and points, accord-
ingly, to efficient robust transport policies. In developing the theory,
we establish two new invariance properties of the solution (called
bridge)—an iterated bridge invariance property and the invariance
of the most probable paths. These properties, which were tangen-
tially mentioned in our previous work, are fully developed here. We
also show that the distribution on paths of the optimal transport
policy, which depends on a “temperature” parameter, tends to the
solution of the “most economical” but possibly less robust opti-
mal mass transport problem as the temperature goes to zero. The
relevance of all of these properties for transport over networks is
illustrated in an example.

Index Terms—Maximum entropy problem, most probable path,
temperature parameter, transport over networks.

I. INTRODUCTION

Consider a company owning a factory F and a warehouse W . The
company wants to ship a certain quantity of goods from F so that they
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reachW in at mostN time units. The flow must occur on the available
road network connecting the two facilities. On one hand, it is desirable
that the transport plan utilizes as many different routes as possible so
that most of the goods arrive within the prescribed time horizon even
in the presence of road congestion, roadwork, etc. On the other hand,
it is also important that shorter paths are used to keep the vehicles fuel
consumption within a budgetary constraint.

In this paper, continuing the research initiated in [13], we provide
a precise mathematical formulation of the above single commodity
network flow problem. Normalizing the mass of goods to one, we for-
mulate a maximum entropy problem for Markovian distributions on the
paths of the network. The optimal feedback control suitably modifies
a prior transition mechanism thereby achieving robustness while lim-
iting the cost. This is accomplished through an appropriate choice of
the prior transition involving the adjacency matrix of the graph. The
optimal scheduling, while spreading the mass over all feasible paths,
assigns maximum probability to all minimum cost paths.

Differently from the standard literature on controlled Markov chains,
the optimal policy (Schrödinger bridge) is not computed through dy-
namic programming. The constraint on the final marginal (all the
goods should be in the warehouse by day N ) dictates a different ap-
proach. The solution is computed by solving iteratively a Schrödinger–
Bernstein linear system with nonlinear coupling at the initial and final
times. This algorithm, whose convergence was established in [22],
is related to recent work in entropy regularization [16] and equilib-
rium assignment in economics [23] as well as to classical work in
statistics [26].

Our straightforward approach also avoids altogether modeling cas-
cading failures, which is a complex and controversial task [42]. It is
also worthwhile remarking that maximum entropy problems [14] that
constitute a powerful inference method find here an alternative use as a
tool to produce a desired flow in a network by exploiting the properties
of the prior transition mechanism.

Our intuitive notion of robustness of the routing policy should not
be confused with other notions of robustness concerning networks that
have been put forward and studied, see, e.g., [1], [5]–[7], [19], [42].
In particular, in [7] and [19], robustness has been defined through a
fluctuation–dissipation relation involving the entropy rate. This lat-
ter notion captures relaxation of a process back to equilibrium af-
ter a perturbation and has been used to study both financial and
biological networks [40], [41]. Our study, inspired by transportation
and data networks, does not concern equilibrium or near equilibrium
cases.

This paper features the following novel contributions.
1) It introduces an explicit index of efficiency of a transportation plan.
2) The choice of the adjacency matrix as prior transition mechanism,

which was justified in [13] on an intuitive basis, is here further
motivated through a specific optimization problem.

3) We derive an iterated bridge invariance property.
4) We establish the invariance of the most probable paths. These two

invariance properties, which were only briefly mentioned in [13]
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in some special cases, are fully investigated here. Their relevance
for transport over networks is also illustrated.

5) We study the dependence of the optimal transport on a temperature
parameter.

The possibility of employing the solution for near-zero temperature
as an approximation of the solution to optimal mass transport (OMT)
is also discussed and illustrated through examples.

The outline of this paper is as follows. In Section II, we introduce
generalized maximum entropy problems. In Section II-A, we estab-
lish the iterated bridge property, and in Section II-B, the invariance of
the most probable paths. Efficiency of a transport policy is introduced
in Section III-A. In Section III-B, we introduce robust transport with
fixed average path length. Section IV deals with efficient robust trans-
portation. In Section V, the dependence of the optimal transport on the
temperature parameter is investigated. The results are then illustrated
through academic examples in Section VI.

II. GENERALIZED MAXIMUM ENTROPY PROBLEMS

We are given a directed, strongly connected (i.e., with a path in each
direction between each pair of vertices) aperiodic graph G = (X , E)
with vertex set X = {1, 2, . . . , n} and edge set E ⊆ X × X . We let
time vary in T = {0, 1, . . . , N}, and let FPN

0 ⊆ XN +1 denote the
family of length N , feasible paths x = (x0 , . . . , xN ), namely, paths
such that xixi+1 ∈ E for i = 0, 1, . . . , N − 1.

We seek a probability distribution P on FPN
0 with prescribed initial

and final marginal probability distributions ν0 (·) and νN (·), respec-
tively, and such that the resulting random evolution is closest to a
“prior” measure M on FPN

0 in a suitable sense. The prior law M is
induced by the Markovian evolution as

μt+1 (xt+1 ) =
∑

xt ∈X
μt (xt )mxt xt+ 1 (t) (1)

with nonnegative distributions μt (·) over X , t ∈ T , and weights
mij (t) ≥ 0 for all indices i, j ∈ X and all times. Moreover, to re-
spect the topology of the graph, mij (t) = 0 for all t whenever ij �∈ E .
Often, but not always, the matrix

M (t) = [mij (t)]
n
i,j=1 (2)

does not depend on t. The rows of the transition matrix M (t) do not
necessarily sum up to one, so that the “total transported mass” is not
necessarily preserved. It occurs, for instance, when M simply encodes
the topological structure of the network with mij being zero or one,
depending on whether a certain link exists. The evolution (1) together
with the measure μ0 (·), which we assume positive on X , i.e.,

μ0 (x) > 0 for all x ∈ X (3)

induces a measure M on FPN
0 as follows. It assigns to a path x =

(x0 , x1 , . . . , xN ) ∈ FPN
0 the value

M(x0 , x1 , . . . , xN ) = μ0 (x0 )mx 0 x 1 . . . mxN −1 xN (4)

and gives rise to a flow of one-time marginals

μt (xt ) =
∑

x� �= t

M(x0 , x1 , . . . , xN ), t ∈ T .

Definition 1: We denote by P(ν0 , νN ) the family of probability
distributions onFPN

0 having the prescribed marginals ν0 (·) and νN (·).
We seek a distribution in this set which is closest to the prior M in

relative entropy where, for P and Q measures on XN +1 , the relative

entropy (divergence, Kullback–Leibler index) D(P ‖Q) is

D(P ‖Q) :=

{ ∑
x P (x) log P (x )

Q (x ) , Supp(P ) ⊆ Supp(Q)

+∞, Supp(P ) �⊆ Supp(Q).

Here, by definition, 0 · log 0 = 0. Naturally, while the value of
D(P ‖Q) may turn out negative due to mismatch of scaling (in case
Q = M is not a probability measure), the relative entropy is always
jointly convex. We consider the Schrödinger bridge problem (SBP) as
follows.

Problem 1: Determine

M∗[ν0 , νN ] := arg min{D(P ‖M) | P ∈ P(ν0 , νN )}. (5)

The following result is a slight generalization (to time inhomoge-
neous prior) of [13, Th. 2.3].

Theorem 1: Assume that the product M (N − 1)M (N −
2) · · ·M (1)M (0) has all entries positive. Then there exist nonnegative
functions ϕ(·) and ϕ̂(·) on [0, N ] ×X satisfying

ϕ(t, i) =
∑

j

mij (t)ϕ(t+ 1, j) (6a)

ϕ̂(t+ 1, j) =
∑

i

mij (t)ϕ̂(t, i) (6b)

for t ∈ [0, N − 1], along with the (nonlinear) boundary conditions

ϕ(0, x0 )ϕ̂(0, x0 ) = ν0 (x0 ) (6c)

ϕ(N, xN )ϕ̂(N, xN ) = νN (xN ) (6d)

for x0 , xN ∈ X . Moreover, the solution M∗[ν0 , νN ] to Problem 1 is
unique and obtained by

M∗(x0 , . . . , xN ) = ν0 (x0 )πx 0 x 1 (0) · · ·πxN −1 xN (N − 1)

where the one-step transition probabilities

πij (t) := mij (t)
ϕ(t+ 1, j)
ϕ(t, i)

(7)

are well defined.
The factors ϕ and ϕ̂ are unique up to multiplication of ϕ by a

positive constant and division of ϕ̂ by the same constant. Let ϕ(t) and
ϕ̂(t) denote the column vectors with components ϕ(t, i) and ϕ̂(t, i),
respectively, with i ∈ X . In matricial form, (6a), (6b), and (7) read

ϕ(t) = M (t)ϕ(t+ 1), ϕ̂(t+ 1) = M (t)T ϕ̂(t) (8)

and

Π(t) := [πij (t)] = diag(ϕ(t))−1M (t) diag(ϕ(t+ 1)). (9)

Historically, the SBP was posed in 1931 by Schrödinger for Brow-
nian particles with a large deviations of the empirical distribution mo-
tivation [43], see [30] for a survey. The problem was considered in the
context of Markov chains and studied in [22] and [36], and some gener-
alizations have been discussed in [13]. Important connections between
SBP and OMT [3], [45], [46] have been discovered and developed in
[10]–[12], [29], [30], [32], [33].

A. Iterated Bridges

In this section, we explain a rather interesting property of
Schrödinger bridges, which is the following. If, after solving an SBP
for a given set of marginals (ν0 , νN ) and a Markovian prior M to ob-
tain M∗[ν0 , νN ], we decided to update the data (ν0 , νN ) to another set
of marginals (π0 , πN ) then, whether we use as prior M or M∗[ν0 , νN ]
for the SBP with the new marginals π0 and πN , we obtain precisely
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the same solution M∗[π0 , πN ]. The significance of this property will
be discussed later on in the context of robust transportation.

Indeed, take M∗[ν0 , νN ] as prior and consider the corresponding
new Schrödinger system (in matrix form)

ψ(t) = Π(t)ψ(t+ 1), ψ̂(t+ 1) = Π(t)T ψ̂(t)

with boundary conditions

ψ(0, x0 )ψ̂(0, x0 ) = π0 (x0 ) (10a)

ψ(N, xN )ψ̂(N, xN ) = πN (xN ). (10b)

Note in the above Π(t) = diag(ϕ(t))−1M (t) diag(ϕ(t+ 1)),
therefore it can be written as

diag(ϕ(t))ψ(t) = M (t) diag(ϕ(t+ 1))ψ(t+ 1) (11a)

diag(ϕ(t+ 1))−1 ψ̂(t+ 1) = M (t)T diagϕ(t))−1 ψ̂(t). (11b)

The new transition matrix Q∗ is given by

Q∗(t) = diag(ψ(t))−1Π(t) diag(ψ(t+ 1))

= diag(ψ(t))−1 diag(ϕ(t))−1

×M (t) diag(ϕ(t+ 1)) diag(ψ(t+ 1)).

Let ψ1 (t) = diag(ϕ(t))ψ(t) and ψ̂1 (t) = diag(ϕ(t))−1 ψ̂(t), then

Q∗(t) = diag(ψ1 (t))−1M (t) diag(ψ1 (t+ 1)).

By (11), ψ and ψ̂ are vectors with positive components satisfying

ψ1 (t) = M (t)ψ1 (t+ 1), ψ̂1 (t+ 1) = M (t)T ψ̂1 (t).

Moreover, they satisfy the boundary conditions

ψ1 (0, x0 )ψ̂1 (0, x0 ) = π0 (x0 ) (12a)

ψ1 (N, xN )ψ̂1 (N, xN ) = πN (xN ). (12b)

Thus, (ψ1 , ψ̂1 ) provide the solution to Problem 1 when M is taken
as prior.

Alternatively, observe the transition matrix Q∗(t) resulting from the
two problems is the same and so is the initial marginal. Hence, the
solutions of the SBP with marginals π0 and πN and prior transitions
Π(t) and M (t) are identical.

Thus, “the bridge over a bridge over a prior” is the same as the
“bridge over the prior,” i.e., iterated bridges produce the same result. It
should be observed that this result for probability distributions is not
surprising since the solution is in the same reciprocal class as the prior
(namely, it has the same three times transition probability), cf., [27],
[31], [49]. It could then be described as the fact that only the reciprocal
class of the prior matters; this is can be seen from Schrödinger’s original
construction [43], and also [22, Section III-B] for the case of Markov
chains. This result, however, is more general since the prior is not
necessarily a probability measure.

In information theoretic terms, the bridge (i.e., probability law on
path spaces) corresponding to Q∗ is the I-projection in the sense of
Cziszar [15] of the prior onto the set of measures that are consistent
with the initial-final marginals. The above result, however, is not simply
an “iterated information-projection” property, since M∗[ν0 , νN ] is the
I-projection of M onto P(ν0 , νN ) which does not contain P(π0 , πN )
being in fact disjoint from it.

B. Invariance of Most Probable Paths

Building on the logarithmic transformation of Fleming, Holland,
Mitter, and others, the connection between SBP and stochastic control
was developed from the early 1990s on [8], [17], [18], [37]. More

recently, Brockett studied steering of the Louiville equation [9]. In
[17, Sec. 5], Dai Pra established an interesting path-space property of
the Schrödinger bridge for diffusion processes that the “most probable
path” [20], [44] of the prior and the solution is the same. Loosely
speaking, a most probable path is similar to a mode for the path-space
measure P . More precisely, if both drift b(·, ·) and diffusion coefficient
σ(·, ·) of the Markov diffusion process

dXt = b(Xt , t)dt+ σ(Xt , t)dWt

are smooth and bounded, with σ(x, t)σ(x, t)T > ηI , η > 0, and
{x(t) | 0 ≤ t ≤ T } is a path of class C2 , then there exists an asymp-
totic estimate of the probability P of a small tube around x(t) of
radius ε. It follows from this estimate that the most probable path is
the minimizer in a deterministic calculus of variations problem where
the Lagrangian is an Onsager–Machlup functional, see [25, p. 532] for
the full story.1

The concept of the most probable path is, of course, much less deli-
cate in our discrete setting. We define it for general positive measures on
paths. Given a positive measure M as in Section II on the feasible paths
of our graph G, we say that x = (x0 , . . . , xN ) ∈ FPN

0 is of maximal
mass if for all other feasible paths y ∈ FPN

0 we have M(y) ≤ M(x).
Likewise, we consider paths of maximal mass connecting particular
nodes. It is apparent that paths of maximal mass always exist but are,
in general, not unique. If M is a probability measure, then the max-
imal mass paths—most probable paths—are simply the modes of the
distribution. We establish in the following that the maximal mass paths
joining two given nodes under the solution of an SBP as in Section II
are the same as for the prior measure.

Proposition 1: Consider marginals ν0 and ν1 in Problem 1. Assume
that ν0 (x) > 0 on all nodes x ∈ X and that the product M (N − 1) ·
M (N − 2) · · ·M (1) ·M (0) of transition probability matrices of the
prior has all positive elements [cf., with M ’s as in (2)]. Let x0 and xN
be any two nodes. Then, under the solution M∗[ν0 , νN ] of the SBP,
the family of maximal mass paths joining x0 and xN in N steps is the
same as under the prior measure M.

Proof: Suppose path y = (y0 = x0 , y1 , . . . , yN −1 , yN = xN ) has
maximal mass under the prior M. In view of (4) and (7) and assumption
(3), we have

M∗[ν0 , νN ](y) = ν0 (y0 )πy 0 y 1 (0) · · ·πyN −1 yN (N − 1)

=
ν0 (x0 )
μ0 (x0 )

ϕ(N, xN )
ϕ(0, x0 )

M(y0 , y1 , . . . , yN ).

Since the quantity

ν0 (x0 )
μ0 (x0 )

ϕ(N, xN )
ϕ(0, x0 )

is positive and does not depend on the particular path joining x0 and
xN , the conclusion follows. �

The calculation in the above proof actually establishes the following
stronger result.

Proposition 2: Let x0 and xN be any two nodes in X . Then, under
the assumptions of Proposition 1, the measures M and M∗[ν0 , νN ],
restricted on the set of paths that begin at x0 at time 0 and end at xN at
time N , are identical.

III. ROBUST TRANSPORT

In this section, we first discuss notions of efficiency of a transporta-
tion plan and then introduce entropy as a surrogate for robustness.

1The Onsager–Machlup functional was introduced in [34] to develop a theory
of fluctuations in equilibrium and nonequilibrium thermodynamics.
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A. Efficiency of a Transport Plan

Inspired by the celebrated paper [48], we introduce a measure of
efficiency of a transportation plan over a certain finite-time horizon
and a given network in the following.

For the case of undirected and connected graphs, small-world net-
works [48] were identified as networks being highly clustered but with
small characteristic path length L, where

L :=
1

n(n − 1)

∑

i �= j

dij

and dij is the shortest path length between vertices i and j. The inverse
of the characteristic path length L−1 is an index of efficiency of G.
There are other such indexes, most noticeably the global efficiency
Eglob introduced in [28]. This is defined as Eglob = E(G)/E(Gid )
where

E(G) =
1

n(n − 1)

∑

i �= j

1
dij

and Gid is the complete network with all possible edges in place.
Thus, 0 ≤ Eglob ≤ 1. However, as argued on [28, p. 198701–2], it is
1/L which “measures the efficiency of a sequential system (i.e., only
one packet of information goes along the network).” Eglob , instead,
measures the efficiency of a parallel system, namely, one in which
all nodes concurrently exchange packets of information. Since we are
interested in the efficiency of a specific transportation plan, we define
the efficiency by a suitable adaptation of the index L as follows.

Consider a strongly connected, aperiodic, directed graph G =
(X , E) as in Section II. To each edge, ij is now associated with a
length lij ≥ 0. If ij �∈ E , we set lij = +∞. The length may represent
distance, cost of transport/communication/etc. Let T = {0, 1, . . . , N}
be the time-indexing set. For a path x = (x0 , . . . , xN ) ∈ XN +1 , we
define the length of x to be

l(x) =
N −1∑

t=0

lx t x t+ 1 .

We consider the situation where initially at time t = 0 the mass is dis-
tributed on X according to ν0 (x) and needs to be distributed according
to νN (x) at the final time t = N . These masses are normalized to sum
to one, so that they are probability distributions. A transportation plan
P is a probability measure on the (feasible) paths of the network hav-
ing the prescribed marginals ν0 and νN at the initial and final time,
respectively. A natural adaptation of the characteristic path length is to
consider the average path length of the transportation plan P , which
we define as

L(P ) =
∑

x∈XN + 1

l(x)P (x) (13)

with the usual convention +∞× 0 = 0. This is entirely analogous to
a thermodynamic quantity, the internal energy, which is defined as the
expected value of the Hamiltonian observable in stateP . Clearly,L(P )
is finite if and only if the transport takes place on actual, existing links
of G. Moreover, only the paths which are in the support of P enter
in the computation of L(P ). One of the goals of a transportation plan
is of course to have small average path length since, for instance, cost
might simply be proportional to length. Determining the probability
measure that minimizes (13) can be seen to be an OMT problem.

B. Problem Formulation

Besides efficiency, another desirable property of a transport strategy
is to ensure robustness with respect to links/nodes failures, the latter

being due possibly to malicious attacks. We, therefore, seek a transport
plan in which the mass spreads, as much as it is allowed by the network
topology, before reconvening at time t = N in the sink nodes. We
achieve this by selecting a transportation plan P that has a suitably
high entropy S(P ), where

S(P ) = −
∑

x∈XN + 1

P (x) lnP (x). (14)

Thus, in order to attain a level of robustness while guaranteeing a
relatively low average path length (cost), we formulate a constrained
optimization problem that weighs in both S(P ) as well as L(P ) as
follows.

We begin by letting L̄ designate a suitable bound on the average path
length (cost) that we are willing to accept. Clearly, we need that

lm := min
x∈XN + 1

l(x) ≤ L̄. (15a)

We will also assume that

L̄ ≤ 1
|FPN

0 |
∑

x∈FPN0

l(x). (15b)

The rationale behind the latter, i.e., requiring an upper bound as
stated, will be explained in Proposition 3 as follows.

Let P denote the family of probability measures on XN +1 . The
probability measure that maximizes the entropy S(P ) subject to a
path-length constraint L(P ) = L̄ is the Boltzmann distribution

P ∗
T (x) = Z(T )−1 exp

[
− l(x)

T

]
, Z(T ) =

∑

x

exp
[
− l(x)

T

]
(16)

where the parameter (temperature) T depends on L̄. To see this, con-
sider the Lagrangian

L(P, λ) := S(P ) + λ(L̄ − L(P )) (17)

and observe that the Boltzmann distribution (16) satisfies the first-
order optimality condition of L with T = 1/λ. Clearly, the Boltzmann
distribution has support on the feasible paths FPN

0 . Hence, we get a
version of Gibbs’ variational principle that the Boltzmann distribution
P ∗
T minimizes the free energy functional

F (P, T ) := L(P ) − TS(P ) (18)

over P . An alternative way to establish the minimizing property of
Boltzmann’s distribution is to observe that

F (P, T ) = TD(P ‖P ∗
T ) − T logZ (19)

and, therefore, minimizing the free energy over P is equivalent to
minimizing the relative entropy D(P ‖P ∗

T ) over P ∈ P , which ensures
that the minimum is unique. The following properties of P ∗

T are noted,
see, e.g., [35, Ch. 2].

Proposition 3: The following holds:
i) For T ↗ +∞,P ∗

T tends to the uniform distribution on all feasible
paths.

ii) For T ↘ 0, P ∗
T tends to concentrate on the set of feasible paths

having minimal length.
iii) Assuming that l(·) is not constant over FPN

0 , then for each value
L̄ satisfying the bounds (15), there exists a unique nonnegative
value of T = λ−1 ∈ [0,∞] such thatP ∗

T maximizes S(P ) subject
to L(P ) = L̄.
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We also observe the Markovian nature of the measure P ∗
T . Indeed,

recall that a positive measure M on XN +1 is Markovian if it can be
expressed as in (4). Since

P ∗
T (x0 , x1 , . . . , xN ) = Z(T )−1

N −1∏

t=0

exp
[
−
lx t x t+ 1

T

]
(20)

which is exactly in the form (4), we conclude that P ∗
T is (time homoge-

neous) Markovian with uniform initial measure μ(x0 ) ≡ Z(T )−1 and
time-invariant transition matrix given by

MT =
[
exp

(
− lij
T

)]n

i,j=1
. (21)

However, observe that, in general, MT is not stochastic (rows do not
sum to one). Moreover, observe that, after suitable normalization, MT

represents the transition matrix of a chain where probabilities of tran-
sition between nodes are inversely proportional to the length of the
links.

Consider now ν0 and νN distributions on X . These are the “start-
ing” and “ending” concentrations of resources for which we seek a
transportation plan. We denote by P(ν0 , νN ) the family of probability
distributions on paths x ∈ XN +1 having ν0 and νN as initial and final
marginals, respectively, and we consider the problem to maximize the
entropy subject to marginal and length constraints as follows.

Problem 2: Maximize S(P ) subject to P ∈ P(ν0 , νN ) and
L(P ) = L̄.

Note that the solution to Problem 2 depends on L̄ as well as the two
marginals ν0 , νN and that when L̄ is too close to lm , the problem may
be infeasible.

Once again, bringing in the Lagrangian (17), which now needs to
be minimized over P(ν0 , νN ), we see that Problem 2 is equivalent to
solving the following SBP for a suitable value of the parameter T .

Problem 3: minimize {D(P ‖P ∗
T ) | P ∈ P(ν0 , νN )}.

Thus, employing path-space entropy as a measure of robustness, the
solution to Problem 3, denoted by M∗

T (ν0 , νN ) and constructed in ac-
cordance with Theorem 1, minimizes a suitable free energy functional
with the temperature parameter specifying the tradeoff between effi-
ciency and robustness. Thus, Problem 3 can be viewed as an SBP as in
Section II where the “prior” measure P ∗

T is Markovian.

IV. STRUCTURE OF ROBUST TRANSPORT

We now address in detail Problem 3, namely, to identify a probabil-
ity distribution P on FPN

0 that minimizes D(·‖P ∗
T ) over P(ν0 , νN )

where P ∗
T is the Boltzmann distribution (20)—the minimizing law be-

ing denoted by M∗
T [ν0 , νN ] as before. In the following, we show that

the two invariant properties discussed in the previous two sessions can
be used to determine an optimal transport policy. We also show that the
M∗

T [ν0 , νN ] inherits from the Boltzmann distribution P ∗
T properties as

dictated by Proposition 3.
Initially, for simplicity, we consider the situation where at time

t = 0 the whole mass is concentrated on node 1 (source), and at time
t = N it is concentrated on node n (sink), i.e., ν0 (x) = δ1 (x) and
νN (x) = δn (x). We want to allow (part of) the mass to reach the
end-point “sink” node, if this is possible, in less than N steps and
then remain there until t = N . In order to ensure that it is possible,
we assume that there exists a self-loop at node n, i.e., MT nn > 0.
Clearly, M∗

T (δ1 , δn )(·) = P ∗
T [·|Y0 = 1, YN = n]. The Schrödinger

bridge theory provides transition probabilities so that, for a path

y = (y0 , y1 , . . . , yN )

M∗
T (δ1 , δn )(y) = δ1 (y0 )

N −1∏

t=1

exp
(
−
ly t y t+ 1

T

)
ϕT (t+ 1, yt+1 )

ϕT (t, yt )

= δ1 (y0 )
ϕT (N, yN )
ϕT (0, y0 )

[
exp

(
− l(y)

T

)]
(22)

cf., (4) and (7). Here, l(y) =
∑N −1

t=0 ly t y t+ 1 is the length of path y
and ϕT satisfies together with ϕ̂T the Schrödinger system (6) with

mij (t) = exp
(
− l i j

T

)
and ν0 (x) = δ1 (x), νN (x) = δn (x).

In [13, Sec. VI], Problem 3 was first studied with a prior measure Ml

having certain special properties. To introduce this particular measure,
we first recall (part of) a fundamental result from linear algebra [24].

Theorem 2 (Perron–Frobenius): LetA = (aij ) be an n × nmatrix
with nonnegative entries. Suppose there existsN such thatAN has only
positive entries, and let λA be its spectral radius. Then,

i) λA > 0 is an eigenvalue of A;
ii) λA is a simple eigenvalue;

iii) there exists an eigenvector v corresponding to λA with strictly
positive entries.

Consider now the weighted adjacency matrix B = MT in (21)
(where we dropped the subscript T as it will be fixed throughout
this section). Assume that BN has all positive elements so that we can
apply the Perron–Frobenius theorem. Let u and v be the left and right
eigenvectors with positive components of the matrix B corresponding
to the spectral radius λB . We have

BT u = λB u, Bv = λB v. (23)

We assume throughout that u and v are chosen so that
∑

i ui vi = 1.
Then, for y0 = i and yt = j, define

Ml (i, y1 , . . . , x0 t−1 , j) := λ−t
B uivj e

−
∑t−1

k = 0
ly k y k + 1 . (24)

The corresponding transition matrix is

Rl = λ−1
B diag(v)−1B diag(v). (25)

It admits the invariant measure

μl (i) = uivi . (26)

Note that Ml and the Boltzmann distribution P ∗
T have the same transi-

tion matrix but different initial distributions. In [13], to which we refer
for motivation and more details, the following problem was studied.

Problem 4: minimize {D(P ‖Ml ) | P ∈ P(ν0 , νN )}.
Under the assumption that BN has all positive entries, this SBP has

a unique solution M∗
l . In [13, Th. 3.4], it was also shown that Ml

is itself the solution of an SBP with equal marginals and the Boltz-
mann distribution (16) as prior. Thus, by the iterated bridge property of
Section II-A, M∗

l coincides with the solution of Problem 3 for any
choice of the initial–final marginals ν0 and νN .

We recall the following rather surprising result [13, Th. 6.1], which
includes the invariance of the most probable paths in Problem 3 (Propo-
sition 1).

Theorem 3: M∗
l gives equal probability to paths y ∈ XN +1 of

equal length between any two given nodes. In particular, it assigns
maximum and equal probability to minimum length paths.

This result is relevant when the solution of Problem 3 for low
temperature is used as an approximation to OMT, see Remark 1
Section V. Finally, an important special case occurs when lij = 0 for
existing links and +∞ for nonexisting. Then, the matrix B reduces to
the unweighted adjacency matrixA and the measure Ml to the so-called
Ruelle–Bowen random walk MRB . The only concern in the transport
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policy is in maximizing path family entropy to achieve robustness, see
[13, Sec. 4 and 5] for details.

V. DEPENDENCE OF ROBUST TRANSPORT ON T

Following we study how the solution M∗
T [δx 0 , δxN ] to Problem

3 varies with the temperature parameter T . Here, x0 , xN are speci-
fied nodes where mass is concentrated at the start and end times, and
δx ′(x) = 1 when x = x′ and zero otherwise. It should be noted that
similar results hold for general marginal distributions as well, which
are not necessarily Dirac.

Theorem 4: Consider the solution M∗
T [δx 0 , δxN ] =: M∗

T to Prob-
lem 3 with ν0 (x) = δx 0 (x) and νN (x) = δxN (x). Let lm (x0 , xN ) =
miny∈XN + 1 (x 0 ,xN ) l(y), i.e., the minimum length of N -step paths
originating in x0 and terminating in xN . Then,

i) For T ↘ 0, M∗
T tends to concentrate itself on the set of feasible,

minimum length paths joining x0 and xN in N steps. Namely,
if y = (y0 = x0 , y1 , . . . , yN −1 , yN = xN ) is such that l(y) >
lm (x0 , xN ), then M∗

T (y) ↘ 0 as T ↘ 0.
ii) For T ↗ +∞, M∗

T tends to the uniform distribution on all feasi-
ble paths joining x0 and xN in N steps.

iii) Suppose XN +1 (x0 , xN ) is not a singleton and that l(·) is not
constant over it. Then, for each value L̄ satisfying the bounds

lm (x0 , xN ) ≤ L̄ ≤ 1
|XN +1 (x0 , xN )|

∑

y∈XN + 1 (x 0 ,xN )

l(y)

there exists a unique value of T ∈ [0,+∞] such that M∗
T satisfies

the constraint L(M∗
T ) = L̄ and therefore solves Problem 2.

Proof: Observe first that, since M∗
T is a probability measure on

XN +1 , it must satisfy by (22)

1 =
∑

y∈XN + 1

M∗
T (y) =

∑

y∈XN + 1

δ1 (y0 )
ϕT (N, yN )
ϕT (0, y0 )

[
exp

(
− l(y)

T

)]

=
∑

y∈XN + 1 (x 0 ,xN )

δ1 (y0 )
ϕT (N, xN )
ϕT (0, x0 )

[
exp

(
− l(y)

T

)]
(27)

where we have used the fact that the initial and final marginals of M∗
T

are δ1 and δn , respectively. It follows that

ϕT (0, x0 )
ϕT (N, xN )

=
∑

y∈XN + 1 (x 0 ,xN )

δ1 (y0 )
[
exp

(
− l(y)

T

)]

=
∑

y∈XN + 1 (x 0 ,xN )

[
exp

(
− l(y)

T

)]
(28)

where again XN +1 (x0 , xN ) denotes the family of paths joining x0 and
xN in N time periods.

Proof of i): Let y = (y0 = x0 , y1 , . . . , yN −1 , yN = xN ) be such
that l(y) > lm (x0 , xN ). Then

M∗
T (y) =

ϕT (N, xN )
ϕT (0, x0 )

[
exp

(
− l(y)

T

)]
.

By (28), we have ϕT (0 ,x 0 )
ϕT (N ,xN ) ≥ exp(− lm (x 0 ,xN )

T
). Hence,

M∗
T (y) =

ϕT (N, xN )
ϕT (0, x0 )

e−
l ( y )
T ≤ e−

l ( y )−l m (x 0 , x N )
T .

Since l(y) − lm (x0 , xN ) > 0, the right-hand side tends to zero as
T ↘ 0.

Proof of ii): For T ↗ +∞, exp(− l(y )
T

) tends to 1 for all paths

y ∈ XN +1 (x0 , xN ). Since ϕT (N ,xN )
ϕT (0 ,x 0 ) does not depend on the specific

Fig. 1. Network topology.

path in XN +1 (x0 , xN ) (it is just a normalization like the partition
function), we conclude that as T tends to infinity, M∗

T tends to the
uniform distribution on XN +1 (x0 , xN ).

Proof of iii): Note that Problem 2 is feasible when lm (x0 , xN ) ≤ L̄
holds. By standard Lagrangian duality theory, there exists a Lagrangian
multiplier λ ∈ [0,∞] such that the maximizer of the corresponding
Lagrangian (17) over P(ν0 , νN ) is the solution of Problem 2.2 On the
other hand, maximizing (17) over P(ν0 , νN ) is equivalent to solving
Problem 3 with T = 1/λ. �

Remark 1: Let us interpret lij as the cost of transporting a unit
mass over the link ij. Then L(P ) is the expected cost corresponding
to the transport plan P . For T = 0, the free energy functional reduces
to L(P ) as our problem amounts to a discrete OMT problem [38]. In
this, one seeks minimum cost paths—a combinatorial problem which
can also be formulated as a linear programming problem [4]. Precisely
as in the diffusion case [10]–[12], we also see that when the “heat
bath” temperature is close to 0, the solution of the SBP is close to
the solution of the discrete OMT problem (claim i) of Theorem 4).
Since for the former an efficient iterative algorithm is available [22],
we see that also in this discrete setting the SBP provides a valuable
computational approach to solving OMT problems. This is illustrated
in Section VI through an academic example. It should also be observed
that the measure M∗

T (δ1 , δn ) is just a “Boltzmann measure” on the
subset of XN +1 of paths originating in x0 and terminating in xN .
Thus, the above proof is analogous to the classical one for P ∗

T .

VI. EXAMPLES

Consider the graph in Fig. 1. We seek to transport a unit mass from
node 1 to node 9 inN = 3 and 4 steps. We first consider the case where
the costs of all the edges are equal to 1. Here we add a zero cost self-loop
at 9, i.e., l99 = 0. The shortest path from node 1 to 9 is of length 3 and
there are three such paths, which are 1 − 2 − 7 − 9, 1 − 3 − 8 − 9,
and 1 − 4 − 8 − 9. If we want to transport the mass with a minimum
number of steps, we may end up using one of these three paths. To
achieve robustness, we apply the Schrödinger bridge framework. Since

2Actually, using (28), it is easy to see thatL(M∗
T ) = EM∗

T
[l(Y )] is a strictly

increasing function of T . Indeed,

∂EM∗
T

[l(Y )]

∂T
=

1
T 2 VarM∗

T
[l(Y )]

where l(Y ) =
∑N −1

t=0 lY t Y t+ 1 and Y = (Y0 , Y1 , . . . , YN ) is the Markov
chain. In view of Points 1 and 2, we conclude that EM∗

T
[l(Y )] bijectively

maps [0,+∞] onto
⎡

⎣lm (x0 , xN ),
1

|XN +1 (x0 , xN )|

∑

y∈XN + 1 (x 0 ,xN )

l(y)

⎤

⎦ .



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 63, NO. 7, JULY 2018 2293

all the three feasible paths have equal length, we get a transport plan
with equal probabilities using all these three paths, regardless of the
choice of temperature T . The evolution of mass distribution is given
by

⎡

⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 1/3 1/3 1/3 0 0 0 0 0

0 0 0 0 0 0 1/3 2/3 0

0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎦

where the four rows of the matrix show the mass distribution at time
step t = 0, 1, 2, 3, respectively. As we can see, the mass spreads out
first and then goes to node 9. When we allow for more steps N = 4,
the mass spreads even more before reassembling at node 9, as follows,
for T = 1:
⎡

⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 0.4705 0.3059 0.2236 0 0 0 0 0
0 0 0.0823 0.0823 0.1645 0 0.2236 0.4473 0
0 0 0 0 0 0.0823 0.0823 0.1645 0.6709
0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎦
.

There are 7 feasible paths of length 4, which are 1 − 2 − 7 − 9 −
9, 1 − 3 − 8 − 9 − 9, 1 − 4 − 8 − 9 − 9, 1 − 2 − 5 − 6 − 9, 1 − 2 −
5 − 7 − 9, 1 − 3 − 4 − 8 − 9, and 1 − 2 − 3 − 8 − 9. The amount of
mass traveling along these paths are

0.2236, 0.2236, 0.2236, 0.0823, 0.0823, 0.0823, 0.0823.

The first three are the most probable paths. This is consistent with
Proposition 1 since they are the paths with minimum length. If we
change the temperature T , the flow changes. The set of most probable
paths, however, remains invariant. In particular, whenT = 0.1, the flow
concentrates on the most probable set (effecting OMT-like transport),
as follows:

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 0.3334 0.3333 0.3333 0 0 0 0 0

0 0 0 0 0 0 0.3334 0.6666 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Now we change the graph by setting the length of edge (7, 9) as
2, that is, l79 = 2. When N = 3 steps are allowed to transport a unit
mass from node 1 to node 9, the evolution of mass distribution for the
optimal transport plan, for T = 1, is given by

⎡

⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 0.1554 0.4223 0.4223 0 0 0 0 0

0 0 0 0 0 0 0.1554 0.8446 0

0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎦
.

The mass travels through paths 1 − 2 − 7 − 9, 1 − 3 − 8 − 9, and 1 −
4 − 8 − 9, but unlike the first case, the transport plan does not take
equal probability for these three paths. Since the length of the edge
(7, 9) is larger, the probability that the mass takes this path becomes
smaller. The plan does, however, assign equal probability to the two
paths 1 − 3 − 8 − 9 and 1 − 4 − 8 − 9 with minimum length, that is,
these are the most probable paths. The evolutions of mass for T = 0.1

and T = 100 are
⎡

⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 0 1/2 1/2 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎦

and
⎡

⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 0.3311 0.3344 0.3344 0 0 0 0 0

0 0 0 0 0 0 0.3311 0.6689 0

0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎦

respectively. We observe that, when T = 0.1 the flow assigns almost
equal mass to the three available paths, while, when T = 100, the flow
concentrate on the most probable paths 1 − 3 − 8 − 9 and 1 − 4 − 8 −
9. This is clearly a consequence of Theorem 4.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we considered transportation over strongly connected,
directed graphs. The development built on our earlier work [13]. More
specifically, we introduced as measure of efficiency for a given trans-
portation plan the average path length (cost) in, e.g., (13), and as a
measure of robustness the entropy (14). This allowed us to explore
efficient robust transport plans via solving corresponding optimization
problems. Important insights gained in this paper include the results on
certain invariances of the Schrödinger’s bridges—the “iterated bridge”
invariance property and the invariance of the “most probable path.” We
explained their relevance for efficient robust transport over networks.
We also considered the dependence of the optimal transportation sched-
ule on the temperature parameter following similar ideas from statistical
physics. In this, we highlighted the connection between the SBP and
OMT. Specifically, the solution of the SBP near-zero temperature is an
approximation to the solution of the corresponding OMT problem. The
relevance of the conceptual framework developed here for assessing ro-
bustness of real-world networks (e.g., communication networks [47],
biological [2], [40], and financial [41]) will be the subject of future
work.
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