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Optimal Steering of a Linear Stochastic System to a Final Probability
Distribution—Part III

Yongxin Chen , Tryphon T. Georgiou , and Michele Pavon

Abstract—The subject of this work has its roots in the so-called
Schrödginer bridge problem (SBP) which asks for the most likely
distribution of Brownian particles in their passage between ob-
served empirical marginal distributions at two distinct points in
time. Renewed interest in this problem was sparked by a refor-
mulation in the language of stochastic control. In earlier works,
presented as Part I and Part II, we explored a generalization of the
original SBP that amounts to optimal steering of linear stochas-
tic dynamical systems between state-distributions, at two points
in time, under full state feedback. In these works, the cost was
quadratic in the control input, i.e., control energy. The purpose of
the present work is to detail the technical steps in extending the
framework to the case where a quadratic cost in the state is also
present. Thus, the main contribution is to derive the optimal control
in this case which in fact is given in closed-form (Theorem 1). In
the zero-noise limit, we also obtain the solution of a (deterministic)
mass transport problem with general quadratic cost.

Index Terms—Linear stochastic system, Schrödinger bridge,
stochastic control.

I. INTRODUCTION

In 1931/32, Erwin Schrödinger asked for the most likely evolution
that a cloud of Brownian particles may have taken in between two end-
point empirical marginal distributions [1], [2]. Schrödinger’s insight
was that the one-time marginal distributions along the most likely evo-
lution can be represented as a product of two factors, a harmonic and a
coharmonic function, in close resemblance to the way the product of a
quantum mechanical wave function and its adjoint produces the correct
probability density. The 80+ year history of this so-called Schrödinger
bridge problem (SBP) was punctuated by advances relating SBP with
large deviations theory and the Hamilton–Jacobi–Bellman formalism
of stochastic optimal control. More precisely, in its original formu-
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lation, SBP seeks a probability law on path space which is closest
to the prior in the sense of large deviations, i.e., closest in the relative
entropy sense. Alternatively, the Girsanov transformation allows seeing
this Bayesian-like estimation problem as a control problem, namely,
as the problem to steer a collection of dynamical systems from an ini-
tial distribution to a final one with minimal expected control energy.
The solution to the control problem generates the process and the law
sought in SBP.

Historically, building on the work of Jamison, Fleming, Holland,
Mitter, and others, Dai Pra made the connection between SBP and
stochastic control [3]. At about the same time, Blaquiere and others
[4]–[7] studied the control of the Fokker–Planck equation, and more
recently Brockett studied the Louiville equation [8]. The rationale for
seeking to steer a stochastic or even a deterministic system between
marginal state distributions has most eloquently been explained by
Brockett, in that “important limitations standing in the way of the
wider use of optimal control [that] can be circumvented by explicitly
acknowledging that in most situations, the apparatus implementing the
control policy will be judged on its ability to cope with a distribu-
tion of initial states rather than a single state.” Thus, the problem that
comes into focus in this line of current research is to impose a “soft
conditioning” in the sense that a specification for the probability distri-
bution of the state vector is prescribed instead of initial or terminal state
values.

For the case of linear dynamics and quadratic input cost, the de-
velopment parallels that of classical LQG regulator theory [9]. More
specifically, in [10] the solution for quadratic input cost is provided
and related to the solution of two nonlinearly-coupled homogeneous
Riccati equations. The case where noise and control channels differ
calls for a substantially different analysis which is given in [11]. How-
ever, both [10] and [11] do not consider penalty on state vectors. This
was discussed in [12] where, rather than having a hard constraint as
in the SBP on the final marginal, the authors introduce a Wasserstein
distance terminal cost. They derive necessary condition for optimal-
ity for this problem but without establishing sufficiency. Stochastic
control with quadratic state-cost penalty can be given a probabilistic
interpretation when the uncontrolled evolution is the law of dynamical
particles/systems with creation/killing in the sense of Feynman-Kac
[5], [13]. This was discussed in [14] and necessary conditions for opti-
mality were given there too but without establishing sufficiency. In this
paper, we fully document the solution of the stochastic control problem
to steer a linear system between end-point Gaussian state distributions
while minimizing a quadratic state + input cost. The solution is given in
closed form by solving two matrix Riccati equations with nonlinearly
coupled boundary conditions. The main contribution is to obtain the
optimal control which in fact is provided in closed-form (Theorem 1).
The method we adopt is substantially different to the method used in
[10], which only applies to the case without state penalty.

The paper is organized as follows. We present the problem formu-
lation and the main results in Section II. The results are used to solve
the optimal mass transport problem with losses in Section III by taking
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the zero-noise limit. A numerical example is presented in Section IV
to highlight the results.

II. MAIN RESULTS

We consider the following optimal control problem:1

inf
u∈U

E

{∫ 1

0

[‖u(t)‖2 + x(t)′Q(t)x(t)
]
dt

}
(1a)

dx(t) = A(t)x(t)dt + B(t)u(t)dt + B(t)dw(t) (1b)

x(0) ∼ ρ0 , x(1) ∼ ρ1 (1c)

where x(·) ∈ Rn , u(·) ∈ Rm , and ẇ(·) ∈ Rm represent the state, con-
trol, and standard white noise, respectively. The setU denotes the family
of finite-energy control laws adapted to the state and ρ0 , ρ1 are zero-
mean Gaussian distributions with covariances Σ0 and Σ1 . The optimal
control for nonzero-mean cases can be obtained by introducing a suit-
able time-varying drift, cf. [10, Remark 9]. The system is assumed to
be uniformly controllable in the sense that the reachability Gramian

M (t, s) =
∫ t

s

Ψ(t, τ )B(τ )B(τ )′Ψ(t, τ )′dτ

is nonsingular for all s < t. Here Ψ(·, ·) is the state transition matrix
for A(·).

Sufficient conditions for optimality were given in [14, Proposition 1
and Sec. III] in the form of the following two Riccati equations with
coupled boundary conditions:

−Π̇(t) = A(t)′Π(t) + Π(t)A(t) − Π(t)B(t)B(t)′Π(t) + Q(t)
(2a)

−Ḣ(t) = A(t)′H(t) + H(t)A(t) + H(t)B(t)B(t)′H(t) − Q(t)
(2b)

Σ−1
0 = Π(0) + H(0) (2c)

Σ−1
1 = Π(1) + H(1). (2d)

and the corresponding optimal control is in the form of state feedback

u(t, x) = −B(t)′Π(t)x. (3)

The special case where Q(·) ≡ 0, i.e., the state penalty is zero, is given
in [10] where a solution is given in closed form. A key contribution
below is to show that the system (2a)–(2d) has always a unique solu-
tion. Thereby, under the stated conditions, an optimal control strategy
(3) always exists. It is important to underscore that the system of the
two coupled Riccati equations (2) is substantially different from the
one considered in [10] – the two Riccati equations in (2) are no longer
homogeneous as in [10] due to the extra Q term, and thereby our anal-
ysis and method of proof are new. The method used in [10] converting
(2a)–(2b) into linear differential equations in terms of Π−1 , H−1 no
longer works when the Q term is present.

Theorem 1: Consider positive definite matrices Σ0 , Σ1 and a pair
(A(·), B(·)) that is uniformly controllable. The coupled system of
Riccati equations (2a)–(2d) has a unique solution, which is determined

1The choice of the time interval [0, 1] is without loss of generality, as the
general case reduces to this by rescaling time.

by the initial value problem consisting of (2a)–(2b) and

Π(0) =
Σ−1

0

2
− Φ−1

12 Φ11 − Σ−1/2
0

×
(

I

4
+ Σ1/2

0 Φ−1
12 Σ1 (Φ′

12 )
−1Σ1/2

0

)1/2

Σ−1/2
0 (4a)

H(0) = Σ−1
0 − Π(0) (4b)

where

Φ(t, s) =

[
Φ11 (t, s) Φ12 (t, s)

Φ21 (t, s) Φ22 (t, s)

]
(5)

is a state transition matrix corresponding to ∂Φ(t, s)/∂t =
M (t)Φ(t, s) with Φ(s, s) = I and

M (t) =

[
A(t) −B(t)B(t)′

−Q(t) −A(t)′

]

and where [
Φ11 Φ12

Φ21 Φ22

]
:=

[
Φ11 (1, 0) Φ12 (1, 0)

Φ21 (1, 0) Φ22 (1, 0)

]
.

We continue with two technical lemmas needed in the proof of the
theorem.

Lemma 2: Given positive definite matrices X, Y ,

Y 1/2
(

Y −1/2X−1Y −1/2 +
1
4
Y −1/2X−1Y −1X−1Y −1/2

)1/2

Y 1/2

= X−1/2
(

I

4
+ X1/2Y X1/2

)1/2

X−1/2 . (6)

Proof: Multiplying (6) by X1/2 from both left and right we obtain

G

(
(G′G)−1 +

1
4
(G′G)−2

)1/2

G′ =
(

I

4
+ GG′

)1/2

where G denotes X1/2Y 1/2 . As both sides are positive definite, the
above is equivalent to

G

(
(G′G)−1 +

1
4
(G′G)−2

)1/2

G′G
(

(G′G)−1 +
1
4
(G′G)−2

)1/2

G′

=
I

4
+ GG′

by taking the square of both sides. Since G′G commutes with
((G′G)−1 + 1

4 (G′G)−2 )1/2 , the LHS of the above is equal to

GG′G
(

(G′G)−1 +
1
4
(G′G)−2

)
G′ = GG′ +

I

4
.

�
Lemma 3: The entries of the state transition matrix in (5) satisfy

Φ11 (t, s)′Φ22 (t, s) − Φ21 (t, s)′Φ12 (t, s) = I (7a)

Φ12 (t, s)′Φ22 (t, s) − Φ22 (t, s)′Φ12 (t, s) = 0 (7b)

Φ21 (t, s)′Φ11 (t, s) − Φ11 (t, s)′Φ21 (t, s) = 0 (7c)

Φ11 (t, s)Φ22 (t, s)′ − Φ12 (t, s)Φ21 (t, s)′ = I (7d)

Φ12 (t, s)Φ11 (t, s)′ − Φ11 (t, s)Φ12 (t, s)′ = 0 (7e)

Φ21 (t, s)Φ22 (t, s)′ − Φ22 (t, s)Φ21 (t, s)′ = 0 (7f)
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for all s ≤ t. Moreover, both Φ12 (t, s) and Φ11 (t, s) are invertible
for all s < t, and (Φ12 (t, 0)−1Φ11 (t, 0))−1 is monotonically decreas-
ing function in the positive definite sense with left limit 0 as t ↘ 0.

Proof: A direct consequence of the fact that M (t)J + JM (t)′ =
0, with J =

[ 0
−I

I
0

]
, is that

J1 (t, s) :=

[
Φ11 (t, s)′ Φ21 (t, s)′

Φ12 (t, s)′ Φ22 (t, s)′

] [
0 I

−I 0

]

×
[

Φ11 (t, s) Φ12 (t, s)

Φ21 (t, s) Φ22 (t, s)

]

≡ J. (8)

To see this, note that J1 (s, s) = J while

∂

∂t
J1 (t, s) = 0.

Likewise,

J2 (t, s) =
[

Φ11 (t, s) Φ12 (t, s)
Φ21 (t, s) Φ22 (t, s)

] [
0 I

−I 0

]

×
[

Φ11 (t, s)′ Φ21 (t, s)′

Φ12 (t, s)′ Φ22 (t, s)′

]

≡ J. (9)

Then, (8) gives (7a)–(7c) and (9) gives (7d)–(7f).
We next show that both Φ12 (t, s) and Φ11 (t, s) are invertible for all

s < t. Let

T (t, s) = Φ11 (t, s)−1Φ12 (t, s).

Since Φ11 (s, s) = I , by continuity T (t, s) is well defined for |t − s|
sufficiently small. What is more, T (t, s) is symmetric by (7e). Taking
the derivative of T with respect to s yields

∂

∂s
T (t, s) = A(s)T (t, s) + T (t, s)A(s)′ + B(s)B(s)′

−T (t, s)Q(s)T (t, s).

This together with the initial condition T (t, t) = 0 and the assumption
that (A, B) is controllable lead to

T (t, s) < 0

for all s < t, which implies that both Φ11 (t, s) and Φ12 (t, s) are in-
vertible for all s < t.

Finally, taking the derivative of T with respect to t we obtain

∂

∂t
T (t, s) = −Φ11 (t, s)−1 ∂

∂t
Φ11 (t, s)Φ11 (t, s)−1Φ12 (t, s)

+Φ11 (t, s)−1 ∂

∂t
Φ12 (t, s)

= Φ11 (t, s)−1B(t)B(t)′(Φ21 (t, s)Φ11 (t, s)−1Φ12 (t, s)

−Φ22 (t, s))

= Φ11 (t, s)−1B(t)B(t)′(Φ21 (t, s)Φ12 (t, s)′(Φ11 (t, s)−1 )′

−Φ22 (t, s))

= −Φ11 (t, s)−1B(t)B(t)′(Φ11 (t, s)−1 )′ ≤ 0

where we used (7d) and the fact that Φ11 (t, s)−1Φ12 (t, s) is symmetric
in the last two steps. Therefore, we conclude that T (t, s) is continuous

monotonically decreasing function of t(>s) in the positive-definite
sense, with left limit T (s, s) = 0 at t = s. �

Proof of Theorem 1: The basic idea is to recast the Riccati equa-
tions (2a)–(2b) as linear differential equations in the standard manner.
To this end, let [X(t)′, Y (t)′]′ be the solution of

[
Ẋ

Ẏ

]
=

[
A(t) −B(t)B(t)′

−Q(t) −A(t)′

] [
X

Y

]
. (10)

Then

Π(t) = Y (t)X(t)−1 (11)

is a solution to the Riccati equation (2a) provided that X(t) is invertible
for all t. To see this, differentiate (11) to obtain

−Π̇(t) = −Ẏ (t)X(t)−1 + Y (t)X(t)−1 Ẋ(t)X(t)−1

= (QX + A′Y )X−1 + Y X−1 (AX − BB ′Y )X−1

= A′Y X−1 + Y X−1A − Y X−1BB ′Y X−1 + Q

= A′Π(t) + Π(t)A − Π(t)BB ′Π(t) + Q

which coincides with (2a). Similarly, let

H(t) = −(X̂(t)′)−1 Ŷ (t)′ (12)

with

⎡
⎣ ˙̂

X

˙̂
Y

⎤
⎦ =

[
A(t) −B(t)B(t)′

−Q(t) −A(t)′

] [
X̂

Ŷ

]
(13)

is a solution to (2b) provided that X̂(t) is invertible for all t. Plugging
(11) and (12) into the boundary conditions (2c) and (2d) yields

Σ−1
0 = Y (0)X(0)−1 − (X̂(0)′)−1 Ŷ (0)′

Σ−1
1 = Y (1)X(1)−1 − (X̂(1)′)−1 Ŷ (1)′.

Since [X(t)′, Y (t)′]′ has linear dynamics (10), we have

[
X(1)
Y (1)

]
=

[
Φ11 Φ12

Φ21 Φ22

] [
X(0)

Y (0)

]
.

Similarly,

[
X̂(1)

Ŷ (1)

]
=

[
Φ11 Φ12

Φ21 Φ22

] [
X̂(0)

Ŷ (0)

]
.

Moreover, without loss of generality, we can assume X(0) = X̂(0) =
I because their initial values can be absorbed into Y (0) and Ŷ (0)
without changing the values of Π(0) and H(0). In this case, the only
unknowns Y (0), Ŷ (0) are symmetric. Combining the above we obtain

Σ−1
0 = Y (0) − Ŷ (0) (14a)

Σ−1
1 = (Φ21 + Φ22Y (0))(Φ11 + Φ12Y (0))−1

− (Φ′
11 + Ŷ (0)′Φ′

12 )
−1 (Φ′

21 + Ŷ (0)Φ′
22 ). (14b)
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Multiplying (14b) with (Φ′
11 + Ŷ (0)Φ′

12 ) from the left and (Φ11 +
Φ12Y (0)) from the right yields

(Φ′
11 + Ŷ (0)Φ′

12 )Σ
−1
1 (Φ11 + Φ12Y (0))

= (Φ′
11 + Ŷ (0)Φ′

12 )(Φ21 + Φ22Y (0))

− (Φ′
21 + Ŷ (0)Φ′

22 )(Φ11 + Φ12Y (0))

= Φ′
11Φ21 + Φ′

11Φ22Y (0) + Ŷ (0)Φ′
12Φ21 + Ŷ (0)Φ′

12Φ22Y (0)

−Φ′
21Φ11 −Φ′

21Φ12Y (0)−Ŷ (0)Φ′
22Φ11 − Ŷ (0)Φ′

22Φ12Y (0)

= Y (0) − Ŷ (0) (15)

where is the state we have used the three identities (7a)–(7c) in the last
step. By (14a), Y (0) and Ŷ (0) can be parameterized by a symmetric
matrix Z as

Y (0) = Z +
1
2
Σ−1

0 (16a)

Ŷ (0) = Z − 1
2
Σ−1

0 . (16b)

Plugging these into (15) yields

Σ−1
0 =

(
Φ′

11 − 1
2
Σ−1

0 Φ′
12 + ZΦ′

12

)
Σ−1

1

(
Φ11 +

1
2
Φ12Σ−1

0 + Φ12Z

)
.

Expanding it and exploring the symmetry we obtain a quadratic
equation

ZΦ′
12Σ

−1
1 Φ12Z + ZΦ′

12Σ
−1
1 Φ11 + Φ′

11Σ
−1
1 Φ12Z + Φ′

11Σ
−1
1 Φ11

= Σ−1
0 +

1
4
Σ−1

0 Φ′
12Σ

−1
1 Φ12Σ−1

0

on Z . By completion of square the left-hand side is

(Z + Φ′
11 (Φ

′
12 )

−1 )Φ′
12Σ

−1
1 Φ12 (Z + Φ−1

12 Φ11 ).

Note, here we have used the fact that Φ12 is invertible (see Lemma 3).
By (7e), Φ−1

12 Φ11 is symmetric, therefore

(
T −1/2 (Z + Φ−1

12 Φ11 )T −1/2)2

= T −1/2
(

Σ−1
0 +

1
4
Σ−1

0 T −1Σ−1
0

)
T −1/2

where T = (Φ′
12Σ

−1
1 Φ12 )−1 . It follows that the only solutions are

Z± = −Φ−1
12 Φ11 ± T 1/2

(
T −1/2Σ−1

0 T −1/2

+
1
4
T −1/2Σ−1

0 T −1Σ−1
0 T −1/2

)1/2

T 1/2 .

Since Σ0 and T are positive definite, we can apply Lemma 2 and
arrive at

Z± = −Φ−1
12 Φ11 ± Σ−1/2

0

(
I

4
+ Σ1/2

0 Φ−1
12 Σ1 (Φ′

12 )
−1Σ1/2

0

)1/2

Σ−1/2
0 .

The unknowns Y (0) and Ŷ (0) can be obtained by plugging the above
into (16).

We next show that when Z = Z−, the solutions to (10) and (13)
satisfy that X(t) and X̂(t) are invertible for all t ∈ [0, 1], while this is
not the case when Z = Z+ . This implies that when Z = Z−, the pair
(Π(·), H(·)) in (11) and (12) is well defined and solves the coupled
Riccati equations (2), whereas, Π(·) or H(·) would have finite escape
time when Z = Z+ .

By (10), recalling the initial condition X(0) = I

X(t) = Φ11 (t, 0) + Φ12 (t, 0)Y (0)

= Φ11 (t, 0) + Φ12 (t, 0)
(

1
2
Σ−1

0 + Z

)
.

Since Φ12 (t, 0) is nonsingular for all t ∈ (0, 1], it follows

Φ12 (t, 0)−1X(t) = Φ12 (t, 0)−1Φ11 (t, 0) +
1
2
Σ−1

0 + Z.

First, when Z = Z−, we have

Φ12 (t, 0)−1X(t) = Φ12 (t, 0)−1Φ11 (t, 0) − Φ−1
12 Φ11 +

1
2
Σ−1

0

− Σ−1/2
0

(
I

4
+ Σ1/2

0 Φ−1
12 Σ1 (Φ′

12 )
−1Σ1/2

0

)1/2

Σ−1/2
0 .

By Lemma 3,

Φ12 (t, 0)−1Φ11 (t, 0) ≤ Φ12 (1, 0)−1Φ11 (1, 0) = Φ−1
12 Φ11

therefore, for any t ∈ (0, 1]

Φ12 (t, 0)−1X(t) ≤ 1
2
Σ−1

0 − Σ−1/2
0

(
I

4

+ Σ1/2
0 Φ−1

12 Σ1 (Φ′
12 )

−1Σ1/2
0

)1/2

Σ−1/2
0 < 0

is invertible. This indicates X(t) is for all t ∈ [0, 1]. On the other hand,
when Z = Z+

Φ12 (t, 0)−1X(t) = Φ12 (t, 0)−1Φ11 (t, 0) − Φ−1
12 Φ11 +

1
2
Σ−1

0

+ Σ−1/2
0

(
I

4
+ Σ1/2

0 Φ−1
12 Σ1 (Φ′

12 )
−1Σ1/2

0

)1/2

Σ−1/2
0 .

By Lemma 3, (Φ12 (t, 0)−1Φ11 (t, 0))−1 ↗ 0 as t ↘ 0. Thus, for small
enough s > 0, Φ12 (s, 0)−1X(s) is symmetric and negative definite.
But for t = 1

Φ12 (1, 0)−1X(1) =
1
2
Σ−1

0 + Σ−1/2
0

(
I

4

+ Σ1/2
0 Φ−1

12 Σ1 (Φ′
12 )

−1Σ1/2
0

)1/2

Σ−1/2
0 > 0.

Hence, by continuity of X(t) we conclude that there exists τ ∈ (s, 1)
such that X(τ ) is singular. This implies that Π(t) grows unbounded at
t = τ . An analogous argument can be carried out for X̂ and H. Finally,
setting Z = Z− into (16) and recalling that X(0) = X̂(0) = I we
obtain

Π(0) =
Σ−1

0

2
− Φ−1

12 Φ11

− Σ−1/2
0

(
I

4
+ Σ1/2

0 Φ−1
12 Σ1 (Φ′

12 )
−1Σ1/2

0

)1/2

Σ−1/2
0

H(0) = Σ−1
0 − Π(0).

�
The result for the Q ≡ 0 in [10, Proposition 4, Remark 6] can be

recovered as a special case of the Theorem 1.
Corollary 4: Given Σ0 , Σ1 > 0 and controllable pair (A(·), B(·)),

the Riccati (2) with Q ≡ 0 has a unique solution, which is determined
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by the initial conidtions

Π(0) =
Σ−1

0

2
+ Ψ(1, 0)′M (1, 0)−1Ψ(1, 0) − Σ−1/2

0

(
I

4

+Σ1/2
0 Ψ(1, 0)′M (1, 0)−1Σ1M (1, 0)−1Ψ(1, 0)Σ1/2

0

)1/2
Σ−1/2

0

H(0) = Σ−1
0 − Π(0)

where Ψ is the state transition matrix of (A, B) and M is the corre-
sponding reachability Gramian.

Proof: Simply note that when Q ≡ 0 we have Φ11 = Ψ(1, 0), and
Φ12 = −M (1, 0)(Ψ(1, 0)′)−1 . �

III. ZERO-NOISE LIMIT AND OMT WITH LOSSES

The zero-noise limit of the optimal steering problem (1) is a opti-
mal mass transport problem with general quadratic cost. That is, the
solution of

inf
u∈U

E

{∫ 1

0

[‖u(t)‖2 + x(t)′Q(t)x(t)
]
dt

}
(17a)

dx(t) = A(t)x(t)dt + B(t)u(t)dt +
√

εB(t)dw(t) (17b)

x(0) ∼ ρ0 , x(1) ∼ ρ1 (17c)

converges2 to the solution of

inf
u∈U

E

{∫ 1

0

[‖u(t)‖2 + x(t)′Q(t)x(t)
]
dt

}
(18a)

dx(t) = A(t)x(t)dt + B(t)u(t)dt, (18b)

x(0) ∼ ρ0 , x(1) ∼ ρ1 , (18c)

as ε ↘ 0. The special case when Q ≡ 0 has been studied in [15] and
[16]. See [17]–[20] for the proof of the general cases.

By slightly modifying the results in Section II, we can readily obtain
the solution to (17). The optimal control strategy for (17) is

u(t, x) = −B(t)′Πε (t)x

with Πε (·) satisfying the same Riccati equation (2a) with some proper
initial condition Πε (0). The initial value is chosen in a way such that
the covariance Σε (·), that is, the solution to

Σ̇ε (t) = (A − BB ′Πε )Σε + Σε (A − BB ′Πε )′ + εBB ′ (19)

matches the two boundary values Σ0 and Σ1 . Combining (2a) and (19)
and letting

Hε (t) = εΣ−1
ε (t) − Πε (t)

yield

−Ḣε (t)=A(t)′Hε (t) + Hε (t)A(t) + Hε (t)B(t)B(t)′Hε (t) − Q(t).

Therefore, to establish the optimal control for (17), we only need to
solve the coupled Riccati equations (2a)–(2b) with boundary conditions

εΣ−1
0 = Πε (0) + Hε (0), εΣ−1

1 = Πε (1) + Hε (1).

2See [15] for a precise statement of this convergence which involves weak
convergence of path space probability measures and of their initial-final joint
marginals.

This is nothing but Theorem 1 with different boundary conditions.
Therefore, the initial value for Πε (t) is

Πε (0) =
εΣ−1

0

2
− Φ−1

12 Φ11

− Σ−1/2
0

(
ε2I

4
+ Σ1/2

0 Φ−1
12 Σ1 (Φ′

12 )
−1Σ1/2

0

)1/2

Σ−1/2
0 .

Letting ε → 0 we obtain that the solution to the optimal mass trans-
port problem (18) is

u(t, x) = −B(t)′Π0(t)x

where Π0(·) satisfies the Riccati equation (2a) with initial value

Π0(0) = −Φ−1
12 Φ11 − Σ−1/2

0

(
Σ1/2

0 Φ−1
12 Σ1 (Φ′

12 )
−1Σ1/2

0

)1/2
Σ−1/2

0 .

Therefore, we established the following.
Theorem 5: The solution to Problem (18) with zero-mean Gaussian

marginals with covariances Σ0 , Σ1 is

u(t, x) = −B(t)′Π(t)x

where Π is the solution of the Riccati equation (2a) with initial value

Π(0) = −Φ−1
12 Φ11 − Σ−1/2

0

(
Σ1/2

0 Φ−1
12 Σ1 (Φ′

12 )
−1Σ1/2

0

)1/2
Σ−1/2

0 .

Evidently, we can similarly solve the slightly more general optimal
mass transport problem

inf
u∈U

E

{∫ 1

0
[u(t)′R(t)u(t) + x(t)′Q(t)x(t)]dt

}
(20a)

dx(t) = A(t)x(t)dt + B(t)u(t)dt (20b)

x(0) ∼ ρ0 , x(1) ∼ ρ1 (20c)

where R(t), 0 ≤ t ≤ 1 is positive definite, as this reduces to (18) by
setting ũ(t) = R(t)1/2u(t) and B1 (t) = B(t)R(t)−1/2 . More specif-
ically, the solution to (20) with zero-mean Gaussian marginals having
covariances Σ0 , Σ1 is given by u(t, x) = −R(t)−1B(t)′Π(t)x, where
Π is the solution of

−Π̇(t)=A(t)′Π(t)+Π(t)A(t)−Π(t)B(t)R(t)−1B(t)′Π(t) + Q(t)

with initial value

Π(0) = −Φ−1
12 Φ11 − Σ−1/2

0

(
Σ1/2

0 Φ−1
12 Σ1 (Φ′

12 )
−1Σ1/2

0

)1/2
Σ−1/2

0 .

Here

Φ(t, s) =

[
Φ11 (t, s) Φ12 (t, s)

Φ21 (t, s) Φ22 (t, s)

]

is a state transition matrix corresponding to ∂Φ(t, s)/∂t =
M (t)Φ(t, s) with Φ(s, s) = I and

M (t) =

[
A(t) −B(t)R(t)−1B(t)′

−Q(t) −A(t)′

]

and, as before,
[

Φ11 Φ12

Φ21 Φ22

]
:=

[
Φ11 (1, 0) Φ12 (1, 0)

Φ21 (1, 0) Φ22 (1, 0)

]
.
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Fig. 1. State trajectories of inertial particles with Q = I, ε = 1.

Fig. 2. State trajectories of inertial particles with Q = 10I, ε = 1.

IV. EXAMPLES

Consider inertial particles modeled by

dx(t) = v(t)dt

dv(t) = u(t)dt +
√

εdw(t)

where u(t) is a control input (force) at our disposal, x(t) represents
the position, v(t) velocity of particles, and w(t) represents random
exitation (corresponding to “white noise” forcing). Our goal is to steer
the spread of the particles from an initial Gaussian distribution with
Σ0 = 2I at t = 0 to the terminal marginal Σ1 = I/4 for t = 1 in a
way such that the cost function (1a) is minimized. The value of adding
a state-cost penalty is in that it penalizes large deviations of trajectories
from a nominal one, as otherwise, it is typical to observe a “lazy gas”
behavior, see e.g., [20], where trajectories “spread out” before they
again “reassemble” at the end.

Fig. 1 displays typical sample paths {(x(t), v(t)) | t ∈ [0, 1]} in
phase space as a function of time that are obtained using the optimal
feedback strategy derived with Q = I in (4a) and, then integrating
(2a) and applying the optimal control in (3). In all phase plots, the
transparent blue “tube” represents the “3 σ” tolerance interval. More
specifically, the intersection ellipsoid between the tube and the slice
plane t is the set

[
x v

]
Σ(t)−1

[
x

v

]
≤ 32 .

As can be seen, the sample paths lie inside the 3 σ region, which is as
expected.

For comparison, Figs. 2 and 3 display typical sample paths under
optimal control strategies when Q = 10I and Q = −5I , respectively.
As expected, Σ(·) shrinks faster as we increase the state penalty Q

Fig. 3. State trajectories of inertial particles with Q = −5I, ε = 1.

Fig. 4. State trajectories of inertial particles with Q = I, ε = 10.

Fig. 5. State trajectories of inertial particles with Q = I, ε = 0.1.

Fig. 6. State trajectories of inertial particles with Q = I, ε = 0.

which is consistent with the reference evolution loosing probability
mass at a higher rate at places where x′Qx is large, while Σ(·) will
expand first when Q is negative since the particles have the tendency
to stay away from the origin to reduce the cost.

To see the zero-noise limit behavior of the problems, we take differ-
ent levels of noise intensity with the same Q = I . Figs. 4 and 5 depict
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the typical sample paths for ε = 10 and ε = 0.1, respectively. As can
be observed, the results converge to that of Problem (18), which is
shown in Fig. 6.

V. CONCLUDING REMARKS

The theme of the present work, which completes and complements
[10], [11], is the control of linear stochastic dynamical systems between
specified distributions of their state vectors. This type of a problem rep-
resents a “soft conditioning” of terminal constraints that typically arise
in applications of the LQG theory. It can also be seen as a precise vari-
ant of the rather indirect, and certainly less accurate, route to approx-
imately regulate the distribution of the terminal state in LQG designs
via a suitable choice of quadratic penalties. Although the development
is reminiscent of classical LQG theory, in each case we studied, the
key problem leads to an atypical two-point boundary value problem in-
volving a pair of matrix Riccati equations nonlinearly coupled through
their boundary conditions.

The earlier works [10], [11] dealt with the case where a quadratic cost
penalty is imposed on the input vector alone and, respectively, where
stochastic excitation and control affect the system through the same or
different channels. There is a substantial difference between the two
that necessitated separate treatments. The present work, presented as
Part III, details the technical issues that arise when a quadratic cost on
the state vector is present as well. It is important to point out that herein
we assume that noise and control input enter into the system via the
same channel, i.e., same “B” matrix, very much as in the model taken
in [10]. The case where this is not so is currently open.
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