
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPL. MATH. c© 2018 Society for Industrial and Applied Mathematics
Vol. 78, No. 3, pp. 1682–1696

VECTOR-VALUED OPTIMAL MASS TRANSPORT∗
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Abstract. We introduce the problem of transporting vector-valued distributions. In this, a
salient feature is that mass may flow between vectorial entries as well as across space (discrete or
continuous). The theory relies on a first step taken to define an appropriate notion of optimal
transport on a graph. The corresponding distance between distributions is readily computable via
convex optimization and provides a suitable generalization of Wasserstein-type metrics. Building
on this, we define Wasserstein-type metrics on vector-valued distributions supported on continuous
spaces as well as graphs. Motivation for developing vector-valued mass transport is provided by
applications such as color image processing, multimodality imaging, polarimetric radar, as well as
network problems where resources may be vectorial.
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1. Introduction. The Monge–Kantorovich optimal mass transport (OMT) the-
ory has witnessed a fast pace of new developments; see [23, 28] for extensive lists of
references. These contributions were driven by a multitude of applications in physics,
geosciences, economics, and probability. Some of the notable advances include the con-
cept of displacement interpolation [20], links to the geometry of spaces [2, 19, 22, 29],
and a fluid dynamic reformulation [3]. In our own work, image analysis and spec-
tral analysis of time series provided starting points (e.g., [13, 14]) and, more recently,
problems in stochastic control, quantum information, and matrix-valued distributions
[5, 15, 21, 27] provided additional research directions. The present paper continues the
work of [4, 6] by proposing a transportation problem for vector-valued distributions.

A salient feature of vector-valued distributions is the possibility of the transfer of
“mass” from one vectorial entry to another. Physical examples include color image
scenes where the vectorial distribution captures color intensities, which may contin-
uously shift with lighting conditions. Alternatively, polarimetric data provide an
analogous example where mass represents power at different polarizations detected at
the locations of a sensor array. As another example, the flow of mass between vector
entries may represent mutation of coexisting population species.

The proposed framework may have far-reaching consequences in, for example,
combining genomic and proteomic networks, and, in general, fusion of vectorial data
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supported on a graph. While in some of these examples the total mass may not be
preserved, in the present work we will restrict our attention to the case where it is.
Thus, we seek a suitable continuity equation that allows trading off mass between
vectorial entries of a distribution, on a continuous or a discrete space (graph), and we
develop a geometric framework that would allow constructing geodesic flows between
snapshots of such distributions.

In order to formulate transport between vectorial entries, we begin with a new
notion of transport on weighed undirected graphs in the spirit of Erbar and Maas [11].
A starting point in [11] is to devise a suitable continuity equation for probability mea-
sures on the nodes of a weighted graph (Markov chain). The formulation in our paper
differs from that in [11], and the corresponding transport problem has the advantage
of being reducible to one of convex optimization. Both [11] and our formulation were
inspired by the Benamou–Brenier theory [3], where the OMT with quadratic cost is
recast as the problem to minimize flow kinetic energy (i.e., an action integral). The
present work builds on [4, 6], extending the Wasserstein theory to densities and mass
distributions on more general spaces. Having as a first step a Benamou–Brenier the-
ory on graphs, the methodology allows us to define a notion of vector-valued transport
and corresponding distance between vector-valued densities on discrete or continuous
spaces. As with the (weighted) graph case, the transport distance that we define on
vector-valued densities may be reduced to a convex optimization problem.

We now outline the remainder of this article. In section 2, we sketch needed
background from the classical theory of optimal mass transport that motivates our
generalization. In section 3, we describe the proposed Wasserstein-2 metric on an
undirected weighted graph. Further, we remark on the Wasserstein-1 type of metric
on a weighted graph. In sections 4 and 5, we formulate the new Wasserstein distance
on vector-valued densities that are supported, first on the Euclidean spaces and then
on graphs. In section 6, we give several examples illustrating the idea of a vector-
valued optimal mass transport, and finally we conclude in section 7 with an outline
of possible applications of the theory and future research directions.

2. Preliminaries on optimal mass transport. The mass transport problem
was first formulated by Gaspar Monge in 1781, and concerned finding the optimal
way, in the sense of minimal transportation cost, of moving a pile of soil from one site
to another. This problem was given a modern formulation in the work of Kantorovich
in the form of a linear program, and it is now known as the Monge–Kantorovich
problem. See [12, 16, 23, 28] for all details as well as extensive lists of references.

Herein, we focus mainly the case where the transportation cost is quadratic in
the distance. The respective optimization problem

(1) Wp(ρ0, ρ1)p := inf
π∈Π(ρ0,ρ1)

∫
RN×RN

‖x− y‖pπ(dx, dy)

for p = 2, where ‖ · ‖ denotes Euclidean distance and Π(ρ0, ρ1) represents the set
of all couplings between two ρ0 and ρ1 nonnegative probability density functions on
RN (i.e., the set of joint probability distributions having ρ0 and ρ1 as respective
marginals), defines the so-called Wasserstein-2 distance between the two densities, or
more generally, between measures.

In this case, where the cost is quadratic (i.e., p = 2), the transport problem admits
a dynamic reformulation [3] that is especially powerful, and the space of densities D :=
{ρ ≥ 0 |

∫
ρ dx = 1} admits, essentially, a Riemannian structure [22]. The Benamou–

Brenier reformulation identifies the Wasserstein-2 distance with the integral of the
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1684 Y. CHEN, T. GEORGIOU, AND A. TANNENBAUM

kinetic energy (action integral) along a geodesic flow that links the two marginals,
namely,

(2a) W2(ρ0, ρ1)2 = inf
ρ,v

∫ ∫ 1

0

ρ(t, x)‖v(t, x)‖2 dt dx

over all time varying densities ρ and vector fields v satisfying the continuity equation
and boundary conditions

∂ρ

∂t
+∇x · (ρv) = 0,(2b)

ρ(0, ·) = ρ0, ρ(1, ·) = ρ1.(2c)

Interestingly, when expressed in terms of density ρ and flux m = ρv, the minimization
problem in (2a) becomes convex while (2b) and (2c) turn into linear constraints. For
the optimal pair (ρ, v), the vector field turns out to be the gradient v = ∇xg of a
function g, hence it is “rot-free.” Vector fields v of this form can be identified with
tangent directions of D, i.e., elements of the tangent space

TρD ∼=
{
δ :

∫
δ = 0

}
,

as follows. Under suitable assumptions on differentiability for ρ ∈ D and δ ∈ TρD, we
solve the Poisson equation

(3) δ = −∇x · (ρ∇xg)

to obtain a convex function gδ and thereby the vector field ∇gδ. In this way the space
D can be endowed with a Riemannian structure (see [22, 28]) via

(4) 〈δ1, δ2〉ρ :=

∫
ρ∇xgδ1 · ∇xgδ2dx,

which has the aforementioned kinetic energy interpretation. This inner product in-
duces precisely the Wasserstein distance as the geodesic distance between the two
marginals in (2c).

Remark 1 (Wasserstein-1 metric). Interestingly, the case of linear cost (i.e.,
p = 1), can also be cast as the flux minimization problem

W1(ρ0, ρ1) = inf
m

∫
‖m‖ dx,

ρ1 − ρ0 +∇x ·m = 0,

as it can be shown that the flux m = ρv remains invariant with time [12]. For this
case, there is also an alternative expression through a dual formulation,

W1(ρ0, ρ1) = sup
f

{∫
f(ρ1 − ρ0)dx | ‖∇xf‖ ≤ 1

}
,

in terms of test functions; see [12, 23, 28, 18].
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VECTOR-VALUED OPTIMAL MASS TRANSPORT 1685

3. Wasserstein metric on weighted graphs. Following the Benamou–Brenier
viewpoint on Wasserstein distances, our first task is to develop an analogous notion of
transportation distances on graphs. To this end, we consider a connected, positively
weighted, undirected graph G = (V, E ,W) with n nodes labeled as i, with 1 ≤ i ≤ n,
and m edges. We consider the set of probability masses on G that we will denote by
D; an element ρ ∈ D may be regarded as a column vector (ρ1, . . . , ρn)T , with ρi ≥ 0
for 1 ≤ i ≤ n and

n∑
i=1

ρi = 1.

We denote the (open) interior of D by D+.
The standard heat equation on G,

ρ̇ = Lρ = −DWDT ρ,

where L,D,W = diag{w1, . . . , wm} are the graph-Laplacian, incidence, and weight
matrices, respectively, can also be written in the more familiar (from calculus)

(5) ρ̇ = ∆Gρ

by defining
∆G := −∇∗G∇G ,

where
∇G : Rn → Rm, x 7→W 1/2DTx

denotes the gradient operator and

∇∗G : Rm → Rn, y 7→ DW 1/2y

denotes its dual. More generally, if we let the entries of u(t) ∈ Rm represent flux
along respective edges, we can express the continuity equation in the form

(6) ρ̇−∇∗Gu = 0.

Evidently, the flux u = −∇Gρ gives (5). Also note that since the row vector consisting
of all 1’s lies in the left kernel of the incidence matrix, mass is preserved by (6).

To carry out our program, we need to express the flux u in the form of a momen-
tum “ρv” as in [3]. However, the flux is supported on the edges E of the graph whereas
the mass is supported on the set of nodes V, the two sets having different dimensions.
In order to overcome this difficulty in a natural manner, we choose to associate the
flux along an edge with the mass at the source in the two endpoints. More specifically,
the flux along an edge ek = (i, j), with source i and sink j, consists of two parts. A
part that flows out of node i, and another that flows in opposite direction out of node
j. Thus, we define a flux uk = ρivk out of i and another, ūk = ρj v̄k out of j, and
represent the total flux as the superposition ρjvk − ρiv̄k, while restricting the rates
vk, v̄k to be nonnegative. Thus, our continuity equation for rates v, v̄ ∈ Rm+ becomes

(7) ρ̇−∇∗G((DT
2 ρ) ◦ v − (DT

1 ρ) ◦ v̄) = 0,

where ◦ denotes entry-wise multiplication of two vectors. The matrix D1 is the portion
of the incidence matrix D containing 1’s (sources), and D2 = D1−D (sinks). In other
words, DT

1 ρ is the mass at the source of an edge, and DT
2 ρ is the mass at the sink of
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1686 Y. CHEN, T. GEORGIOU, AND A. TANNENBAUM

an edge. The dependence of the flux in (7) on ρ ensures that the entries of ρ remain
positive while the fact that the kernel of D contains the vector with all ones ensures
that the total mass is preserved as well.

For notational convenience we use µ ∈ D+ and ν ∈ D+ (instead of ρ0 and ρ1) to
denote the starting and ending mass on nodes. We now define the transport distance
between µ and ν as follows:

W2,a(µ, ν)2 := inf
ρ,v,v̄

∫ 1

0

{
vT ((DT

2 ρ) ◦ v) + v̄T ((DT
1 ρ) ◦ v̄)

}
dt(8)

ρ̇−∇∗G((DT
2 ρ) ◦ v − (DT

1 ρ) ◦ v̄) = 0,

v ≥ 0, v̄ ≥ 0,

ρ(0) = µ, ρ(1) = ν.

It is easy to see that at each time instant, for each k, at most one of the vk and
v̄k is nonzero. In a similar manner as in the Benamou–Brenier program, (8) can
be recast in the form of a convex optimization problem in (momentum) variables
u = (DT

2 ρ) ◦ v, ū = (DT
1 ρ) ◦ v̄,

W2,a(µ, ν)2 = inf
ρ,u,ū

∫ 1

0

{
uT diag(DT

2 ρ)−1u+ ūT diag(DT
1 ρ)−1ū

}
dt(9)

ρ̇−∇∗G(u− ū) = 0,

u ≥ 0, ū ≥ 0,

ρ(0) = µ, ρ(1) = ν.

It is straightforward to see that the right-hand side in (9) is in general positive
and vanishes only when µ = ν. It is also straightforward to see that W2,a satisfies
the triangle inequality. However, in general, W2,a(µ, ν) 6= W2,a(ν, µ), therefore W2,a

is only a quasimetric. Yet, it endows D+ with a Finsler metric type structure,

W2,a(µ, µ+ δ)2 = inf
ρ,v,v̄

vT ((DT
2 µ) ◦ v) + v̄T ((DT

1 µ) ◦ v̄(10)

δ −∇∗G((DT
2 µ) ◦ v − (DT

1 µ) ◦ v̄) = 0,

v ≥ 0, v̄ ≥ 0,

for small perturbation δ, and in this, (D+,W2,a) becomes a length space. In fact,
W2,a has a very nice “geodesic” property. Indeed, if ρ(·) is the mass distribution as a
function of time obtained by solving (9), then

(11) W2,a(ρ(s), ρ(t)) = (t− s)W2,a(µ, ν)

for any 0 ≤ s < t ≤ 1. Finally, W2,a can be extended to D, the closure of D+, by
continuity.

Naturally, one can symmetrize W2,a in the obvious way, by adopting as our metric

max{W2,a(µ, ν),W2,a(ν, µ)},

which can then be computed by solving two convex optimization problems. (A similar
remark holds for the metrics W2,b and W2,c defined later on.)

An alternative way to symmetrize W2,a is to replace the cost function (9) with∫ 1

0

1

2

{
uT (diag(DT

2 ρ)−1 + diag(DT
1 ρ)−1)u+ ūT (diag(DT

2 ρ)−1 + diag(DT
1 ρ)−1)ū

}
dt.
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Since the cost terms for u and ū are symmetric, we can combine the two and drop
the nonnegativity requirement u ≥ 0, ū ≥ 0, to obtain

Ŵ2,a(µ, ν)2 := inf
ρ∈D+,u

∫ 1

0

{
uT (diag(DT

2 ρ)−1 + diag(DT
1 ρ)−1)u

}
dt(12)

ρ̇−∇∗Gu = 0,

ρ(0) = µ, ρ(1) = ν.

Positive entries of u represent flow from sources to sinks, while negative entries flow
from sinks to sources. This (symmetric) metric induces a Riemannian type structure
on D+, akin to that of standard optimal transport theory on Euclidean spaces [28].

Remark 2. We point out that similar notions was recently considered in [11, 8, 26,
9]. We arrived at the above formulation independently and from a different starting
point.

Remark 3 (Gradient flow of entropy). The gradient flow of the entropy functional
on probability mass distribution on a graph G with respect to Ŵ2,a is given by

(13) ρ̇ = −∇∗G(A(ρ)−1∇G log ρ),

where A(ρ) := diag(DT
2 ρ)−1 + diag(DT

1 ρ)−1. It represents a nonlinear heat-like equa-
tion, to be contrasted with the linear heat equation derived in [11]. To see (13),
compute the derivative of the entropy functional S(ρ) = −

∑n
i=1 ρi log ρi along a

curve ρ(t), t ∈ [0, 1] in D+,

−Ṡ(ρ) =

n∑
i=1

ρ̇i log ρi +

n∑
i=1

ρ̇i

= 〈ρ̇, log ρ〉 (since for each t,
∑n
i=1 ρi(t) = 1)

= 〈∇∗Gu, log ρ〉 (since ρ̇ = ∇∗Gu)

= 〈u,∇G log ρ〉,

and observe that the direction of steepest ascent is along u = −A(ρ)−1∇G log ρ, from
which (13) follows.

Remark 4 (Wasserstein-1 distance on graphs). Following up on Remark 1, we
sketch a Benamou–Brenier type reformulation of W1-distances on graphs. Assuming
that the entries of c = (c1, . . . , cm)T are edge weights representing the cost of moving
a unit mass across, a W1 distance between mass distributions µ, ν can be defined as
the solution of the min-cost flow problem

W1(µ, ν) = min
u
cT |u|(14)

ν − µ−Du = 0.

Alternatively, in terms of “test vectors” f , the expression

W1(µ, ν) = max
f

{
fT (ν − µ) | ‖∇Gf‖∞ ≤ 1

}
(15)

has the dual

W1(µ, ν) = min
û

{
‖û‖1 | ν − µ−∇∗G û = 0

}
.(16)

D
ow

nl
oa

de
d 

09
/1

6/
19

 to
 1

28
.1

95
.7

7.
19

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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This coincides with (14) by taking ci = 1/
√
wi, 1 ≤ i ≤ m, and u = W 1/2û. Finally,

we point out that the above has an action minimization formulation following [17]:

W1(µ, ν) = inf
ρ,v,v̄

∫ 1

0

{
cT ((DT

2 ρ) ◦ v) + cT ((DT
1 ρ) ◦ v̄)

}
dt

ρ̇−D((DT
2 ρ) ◦ v − (DT

1 ρ) ◦ v̄) = 0,

v ≥ 0, v̄ ≥ 0,

ρ(0) = µ, ρ(1) = ν,

which assumes the convex recast

W1(µ, ν) = inf
ρ,u,ū

∫ 1

0

{
cTu+ cT ū

}
dt

ρ̇−D(u− ū) = 0,

u ≥ 0, ū ≥ 0,

ρ(0) = µ, ρ(1) = ν.

4. Vector-valued densities and transport. We now turn to the main theme
of our paper: the introduction of a Wasserstein type metric between vector-valued
densities. A vector-valued density ρ = [ρ1, ρ2, . . . , ρM ]T on RN , or on a discrete
space, may represent a physical entity that can mutate or be transported between
alternative manifestations, e.g., power reflected off a surface at different frequencies
or polarizations. While the total power may be invariant (under some lighting condi-
tions), the proportion of power at different frequencies or polarization may smoothly
vary with viewing angle. As another example consider the case where the entries of
ρ represent densities of different species, or particles, and allow for the possibility
that mass transfers from one species to another, i.e., between entries of ρ. Thus, in
general, we postulate that transport of vector-valued quantities captures flow across
space as well as between entries of the density vector. We introduce an OMT-inspired
geometry that allows us to express a continuity and quantify transport cost for such
vectorial distributions.

We begin by considering a vector-valued density ρ on RN , i.e., a map from RN
to RM+ such that

M∑
i=1

∫
RN

ρi(x)dx = 1.

To avoid proliferation of symbols we denote the set of all vector-valued densities
and its interior again by D and D+, respectively. We refer to the entries of ρ as
representing density or mass of species/particles that can mutate between one another
while maintaining total mass. The dynamics are captured by the following continuity
equation:

(19)
∂ρi
∂t

+∇x · (ρivi)−
∑
j 6=i

(ρjwji − ρiwij) = 0 ∀i = 1, . . . ,M.

Here vi is the velocity field of particles i and wij ≥ 0 is the transfer rate from i to j.
Equation (19) allows for the possibility to mutate between each pair of entries. More
generally, mass transfer may only be permissible between specific types of particles
and can be modeled by a graph F = (V1, E1,W1). Thus, (19) corresponds to the case
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where F is a complete graph with all weights equal to 1. For general F the continuity
equation is

(20)
∂ρ

∂t
+∇x · (ρ ◦ v)−∇∗F ((DT

2 ρ) ◦ w − (DT
1 ρ) ◦ w̄) = 0.

Note here ρ denotes the vector [ρ1, ρ2, . . . , ρM ]T and likewise for v, w, w̄.
Given µ, ν ∈ D+, we formulate the optimal mass transport:

W2,b(µ, ν)2:= inf
ρ,v,w,w̄

∫ 1

0

∫
RN

{
vT (ρ ◦ v) + γ[wT ((DT

2 ρ) ◦ w)(21)

+w̄T ((DT
1 ρ) ◦ w̄)]

}
dxdt

∂ρ

∂t
+∇x · (ρ ◦ v)−∇∗F ((DT

2 ρ) ◦ w − (DT
1 ρ) ◦ w̄) = 0,

w(t, x) ≥ 0, w̄(t, x) ≥ 0 ∀t, x
ρ(0, ·) = µ(·), ρ(1, ·) = ν(·).

The coefficient γ > 0 specifies the relative cost between transporting mass in space
and trading mass between different types of particles. When γ is large, the solution
reduces to independent OMT problems for the different entries to the degree possible.
As with W2,a, it can be shown that W2,b is a quasi-metric in that it satisfies the
triangle inequality and positivity, but is not symmetric. Also, W2,b has the geodesic
property

(22) W2,b(ρ(s, ·), ρ(t, ·)) = (t− s)W2,b(µ, ν)

for 0 ≤ s < t ≤ 1, assuming ρ is the optimal flow for (21).
Setting p = ρ ◦ w ≥ 0, p̄ = ρ ◦ w̄ ≥ 0 and u = ρ ◦ v, we establish that (21) is

equivalent to the convex optimization problem

(23)

inf
ρ,u,p,p̄

∫ 1

0

∫
RN

{
uT diag(ρ)−1u+ γ[pT diag(DT

2 ρ)−1p+ p̄T diag(DT
1 ρ)−1p̄]

}
dxdt

∂ρ

∂t
+∇x · u−∇∗F (p− p̄) = 0,

p(t, x) ≥ 0, p̄(t, x) ≥ 0 ∀t, x
ρ(0, ·) = µ(·), ρ(1, ·) = ν(·).

Again, as in (12), one can define a Riemannian like metric on D+ by symmetrizing
the above, which leads to

Ŵ2,b(µ, ν)2(24)

= inf
ρ,u,p

∫ 1

0

∫
RN

{
uT diag(ρ)−1u+ γpT (diag(DT

2 ρ)−1 + diag(DT
1 ρ)−1)p

}
dxdt

∂ρ

∂t
+∇x · u−∇∗F p = 0,

ρ(0, ·) = µ(·), ρ(1, ·) = ν(·).D
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Remark 5 (Wasserstein-1 distance for vector-valued densities). With continuity
equation (20), in the same spirit as in Remark 1, it is straightforward to define the
Wasserstein-1 distance for vector-valued densities as

W1(µ, ν) = inf
u,p

∫
{‖u‖+ γ‖p‖} dx

ν − µ+∇x · u−∇∗F p = 0,

whose dual is clearly

W1(µ, ν) = sup
f

∫
{fT (ν − µ)}dx

‖∇xf‖ ≤ 1, ‖∇Ff‖ ≤ γ.

5. Vector-valued mass transport on graphs. We finally consider vector-
valued mass transport on graphs. A vector-valued mass distribution on graph G =
(V, E ,W) (with n nodes and m edges) is an M -tuple ρ = (ρ1, . . . , ρM ) with each
ρi = (ρi,1, . . . , ρi,n)T being a vector in Rn+ such that

M∑
i=1

n∑
k=1

ρi,k = 1.

That is, each entry ρi, for i ∈ {1, . . . ,M}, is a vector with nonnegative n-entries
representing, e.g., color intensity for the ith color, at the node corresponding to the
respective entry. We denote the set of all nonnegative vector-valued mass distributions
with D and its interior with D+. Combining (7) and (19) we obtain the continuity
equation

(25) ρ̇−∇∗G((DT
2 ρ) ◦ v − (DT

1 ρ) ◦ v̄)−∇∗F ((DT
2 ρ) ◦ w − (DT

1 ρ) ◦ w̄) = 0.

The problem of transporting vector-valued mass on a graph is conceptually simpler
as it reduces essentially to a scalar mass situtation. Indeed, we can view the vector-
valued mass as a scalar mass distribution on M identical layers of the graph G where
the same nodes at different layers are connected through a graph F . The two velocity
fields v, w represent mass transfer within the same layer and between different layers,
respectively.

Following our earlier program, given two marginal densities µ, ν ∈ D+, we define
their Wasserstein distance as

W2,c(µ, ν)2 := inf
ρ,v,v̄,w,w̄

∫ 1

0

{
vT ((DT

2 ρ) ◦ v) + v̄T ((DT
1 ρ) ◦ v̄)

+ γ
[
wT ((DT

2 ρ) ◦ w) + w̄T ((DT
1 ρ) ◦ w̄)

]}
dt

ρ̇−∇∗G((DT
2 ρ) ◦ v − (DT

1 ρ) ◦ v̄)−∇∗F ((DT
2 ρ) ◦ w − (DT

1 ρ) ◦ w̄) = 0,

w ≥ 0, w̄ ≥ 0, v ≥ 0, v̄ ≥ 0,

ρ(0) = µ, ρ(1) = ν.D
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In the same way as before, the above has a convex reformulation,

inf
ρ,u,ū,p,p̄

∫ 1

0

{
uT diag(DT

2 ρ)−1u+ ūT diag(DT
1 ρ)−1ū

+ γ[pT diag(DT
2 ρ)−1p+ p̄T diag(DT

1 ρ)−1p̄]
}
dt

ρ̇−∇∗G(u− ū)−∇∗F (p− p̄) = 0,

p ≥ 0, p̄ ≥ 0, u ≥ 0, ū ≥ 0,

ρ(0) = µ, ρ(1) = ν.

The same method as in (12) gives rise to a symmetric Riemannian type metric
Ŵ2,c(µ, ν)2 provided by the solution of

inf
ρ,u,p

∫ 1

0

{
uT (diag(DT

2 ρ)−1+ diag(DT
1 ρ)−1)u

+ γpT (diag(DT
2 ρ)−1+ diag(DT

1 ρ)−1)p
}
dt ρ̇−∇∗G u−∇∗F p = 0,

ρ(0) = µ, ρ(1) = ν.

6. Examples. In this section, we present two examples. The first one is an
academic example to illustrate the idea of vector-valued optimal mass transport. In
the second example, we apply our framework to color image processing problems.

6.1. Interpolation of one-dimensional densities. We consider vector-valued
densities with two components on the real line (interval [0, 1]). The two marginal
densities µ and ν are displayed in Figure 1 with the two colors (red and blue) denoting
the two components.

We solve the symmetric vector-valued transport problem (24) for several different
values of γ. For the numerical implementation, we first discretize the space inter-
val [0, 1] to convert it into a vector-valued transport problems on graphs, which is
essentially (12). Then we discretize the time dimension with staggered grids. In
particular, we discretize the time interval into nt subintervals. Then the densities
take value at time points 0, 1/nt, . . . , (nt − 1)/nt, 1 while the fluxes take values at
time points 1/(2nt), 3/(2nt), . . . , (2nt − 1)/(2nt). We refer the reader to [7] for more
details about the convex optimization algorithm used for the examples in this paper.

The results are depicted in Figure 2. As can be seen, for large γ, the solution tends
to have two independent transport plans, as the cost of transferring between the two
different masses is high. In contrast, when γ is small, the solution prefers transferring
rather than transporting, since the cost of transferring between masses is low.

(a) µ (b) ν

Fig. 1. Marginal distributions.
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(a) γ = 0.0001 (b) γ = 0.01

(c) γ = 1 (d) γ = 100

Fig. 2. Density flow with different γ values.

(a) ρ0 (b) ρ1

Fig. 3. Marginal distributions.

6.2. Interpolation of color images. As alluded to previously, the different
components of a image may stand for different color channels. For instance, a color
image can be viewed as a vector-valued density with three components that represent
red (R), green (G), blue (B), respectively. Thus, it is straightforward to use vector-
valued optimal mass transport to compare and interpolate such color images. Below
we explain three representative examples, shown in Figures 3 through 8, that highlight
the mechanism of vector-valued transport.

First consider the two color images (64× 64) shown in Figure 3. The intensity in
each is a Gaussian distribution centered at a different location. The two distributions
are of different color, thereby the corresponding vectorial-valued mass is distributed
differently across the three components. The result of interpolating between the
two, with γ = 0.001, is shown in Figure 4. As we can see from the subplots, the
displacement of the mass appears to run at constant speed between ρ0 to ρ1 while,
at the same time, the color is changing gradually as mass flows between the vectorial
components.
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(a) t = 0.1 (b) t = 0.2 (c) t = 0.3 (d) t = 0.4

(e) t = 0.5 (f) t = 0.6 (g) t = 0.7 (h) t = 0.8 (i) t = 0.9

Fig. 4. Interpolation with γ = 0.001.

(a) ρ0 (b) ρ1

Fig. 5. Marginal distributions.

(a) t = 0.1 (b) t = 0.2 (c) t = 0.3 (d) t = 0.4

(e) t = 0.5 (f) t = 0.6 (g) t = 0.7 (h) t = 0.8 (i) t = 0.9

Fig. 6. Interpolation with γ = 0.01.

Figure 5 shows yet another example of a similar nature. The initial density is
centered and it is white, which signifies equal mass distribution across the three color
channels/components. The terminal density on the other hand has four separated
masses of different color. The dimensions of the images are 128 by 128. The density
flow shown in Figure 6, based on our technique with γ = 0.01, smoothly interpolates
by dispacing the intensity and color profiles in a seemingly natural manner.

D
ow

nl
oa

de
d 

09
/1

6/
19

 to
 1

28
.1

95
.7

7.
19

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1694 Y. CHEN, T. GEORGIOU, AND A. TANNENBAUM

Finally, in Figures 7 and 8 we display the result of interpolating real-life images.
The marginal distributions shown in Figure 7 are two photos (256 × 256) of two
geothermal basins in Yellowstone Park, where bacterial growth give them distinctly
different colors and hues. The result of interpolating the corresponding vector-valued
distributions is depicted in Figure 8, taking γ = 0.3. The flow of images produces a
sequence of natural looking images transitioning from one to the next.

(a) ρ0 (b) ρ1

Fig. 7. Marginal distributions.

(a) t = 0.1 (b) t = 0.2 (c) t = 0.3

(d) t = 0.4 (e) t = 0.5 (f) t = 0.6

(g) t = 0.7 (h) t = 0.8 (i) t = 0.9

Fig. 8. Interpolation with γ = 0.3.
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In all the examples, we observe the apparently natural displacement of intensity
and color that should be contrasted with potentially undesirable “push-pop” effects
of linear interpolation.

7. Conclusions and further research. Our early motivation, as noted in the
Introduction, has been to devise a suitable geometry to study flows of probability or
power distribution in problems of signal analysis and fusion of vectorial data. How-
ever, the framework, very much as the broader subject of optimal mass transport, has
application in a wider range of ideas. In particular, the connection between transport
geometry and properties of an underlying space (e.g., curvature in the Bakry–Emery
theory) may have important implications here as well. More specifically, we are inter-
ested in applying this methodology to studying the robustness of various networks,
as was done in [24, 25] for biological and financial networks and in [30] for communi-
cations networks.

7.1. Biological networks. The study of cellular networks (e.g., signaling and
transcription) has become a major enterprise in systems biology; see [1] and the
references therein. One of the key problems is understanding global properties of
cellular networks, in order to differentiate a diseased state from a normal cellular
state. As is argued in several places [10, 31, 24], network properties may help in
formulating systems biological concepts that could lead to novel therapies for a number
of diseases, including cancer. This would involve integrating genetic, epigenetic, and
protein-protein interaction networks.

7.2. Financial networks. Stock data and financial transactions provide an in-
sight into the vast global financial network of human activities. The health of the
national and world economy is reflected in the robustness and self-regulatory proper-
ties of the markets. Long range correlations are responsible for cascade failures due to
financial insolvency. Indeed, multiple exposures of companies is often the root cause
of infectious propagation of balance sheet insolvency, with catastrophic effects. It is of
interest to understand the relation between the various financial parameters (assets,
liability, capital) that quantify the stress and the buffer capabilities of financial insti-
tutions with network connectivity and interdependence (weighted network Laplacian)
so as to assess risk of cascade failures and fragility, and to devise ways to mitigate
such effects. See [25] and the references therein.

At closer inspection, many of the aforementioned problem areas involve finer
attributes of the studied objects, which may be more suitably treated and studied as
vector-valued distributions. Thus, we hope that the present work provides a starting
point for such an endeavor.
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