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We propose unbalanced versions of the quantum mechanical version of optimal mass transport
that is based on the Lindblad equation describing open quantum systems. One of them is a
natural interpolation framework between matrices and matrix-valued measures via a quantum
mechanical formulation of Fisher-Rao information and the matricial Wasserstein distance,
and the second is an interpolation between Wasserstein distance and Frobenius norm. We
also give analogous results for the matrix-valued density measures, i.e., we add a spatial
dependency on the density matrices. This might extend the applications of the framework to
interpolating matrix-valued densities/images with unequal masses.

Key words: Optimal mass transport, quantum mechanics, matrix-valued densities, Fisher-Rao
information, Wasserstein metric.

1 Introduction

Optimal mass transport (OMT), in addition to its intrinsic mathematical elegance, has
proven to be a very powerful methodology for numerous problems in econometrics, systems
and control, information theory, statistical filtering and estimation, computer vision, and
signal/image processing [19,20]. However, the mass preservation requirement of OMT
is many times unnatural for real-world problems. For example, in image registration or
optical flow, one must impose ad hoc normalizations on the imagery that do not have
a physical justification. Accordingly, there have been a number of approaches based on
the interpolation of the Wasserstein metric from OMT with some other metric such as
L? [1,2] or some information-theoretic distance [9,13-15]. The seminal work of Benamou
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2 Y. Chen et al.

and Brenier [2] makes this possible via certain modifications of the underlying energy
functional and corresponding continuity equation.

In the previous work, Chen et al. [5,6] developed a quantum mechanical framework for
defining a Wasserstein distance on density matrices (positive semi-definite matrices with
trace 1), via a variational framework with a continuity equation constraint, generalizing
the work of [2]. Moreover, in [6], the matricial framework was extended to the matrix-
valued density measures allowing one to add spatial dimensions to the density matrices
in the theory. We should note that independently and at about the same time, similar
approaches to that of [6] were formulated and analysed in [4,16]. A remarkable result
in [4,16] is that the Lindblad equation is in fact the gradient flow of the quantum entropy
with respect to the Wasserstein metric defined there, which resembles to the classical
results in the scalar setting [11]. This result may have a impact on physics and quantum
mechanics. In contrast, our work in [6] was motivated by engineering applications like
diffusion tensor imaging, multivariate spectral analysis where the matrix-valued densities
appear. One essential problem is the numerical implementation. Therefore, our goal was
to develop a computable Wasserstein metric for these types of applications. An efficient
algorithm is developed in [8].

We show in the present note, that the methodology and definitions in [6] of matrix
analogues of the gradient and divergence, allow us to formulate in a rather straight-
forward manner a natural energy functional and continuity equation that generalize the
information-theoretic unbalanced approaches that give interpolations of Wasserstein and
Fisher-Rao [9,13] and Hellinger [15]. Similarly, the interpolation [1,2] of Wasserstein and
L? allows a natural generalization. Both interpolations in the scalar setting have been stud-
ied and proven to be effective in theory and applications [1,2,9,13,15]. Thus, we derive un-
balanced versions of OMT in the matrix case as well as for matrix-valued density measures.
Further, these ideas lead to Riemannian-type metrics on positive definite matrices for which
we derive results on gradient flows relative to certain energy functions. Finally, we show
that the unbalanced problem may be formulated as one of the convex optimization just
like the balanced cases in [6], which makes it applicable to a variety of practical problems.

The remainder of this paper may be summarized as follows. First, we sketch several
versions of unbalanced mass transport for scalar measures in Section 2. The preliminaries
on non-commutative optimal transport are discussed in Section 3. The main results on
non-commutative unbalanced transport are provided in Section 4 for positive matrices.
In Section 5, analogous results are given for matrix-valued positive measures in the
unbalanced setting. Several numerical examples are provided in Section 6 to illustrate our
framework, and finally conclusions and future directions are sketched in Section 7.

2 Background on unbalanced mass transport

In this section, we briefly introduce the basis of OMT and review two possible methods
for an unbalanced version of OMT in the scalar case following [1,9,13]. The original
formulation of OMT is

H%f{/ c(x, T(x))po(x)dx | Tzpo = Pl}, (2.1)
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Interpolation of matrices and matrix-valued densities 3

where c¢(x, y) denotes the cost of moving unit mass from x to y, and pg, p; are two given
probability densities in R™. The operator (-); represents push forward of measures. By
relaxing the map T to a coupling nt [12], we obtain the Kantorovich form

inf / c(x, y)n(dx, dy), (2.2)
nell(po.p1) JRm

with IT(pog, p1) denoting the set of all joint distributions (couplings) between py and py.

When the cost function ¢(x,y) = ||x — y||?, the problem has extremely rich structures [22].

As first pointed out in [2], the OMT problem has the fluid dynamic formulation

Ws(po, p1)* = 1nf/ / p(t, x)||o(t, x)||> dxdt (2.3a)
a[ P19 (pv)=0, (2.3b)
p(0,) = po(-), p(1,-) = p1(-). (2.3¢)

The minimization is taken over all the smooth velocity fields v and density flows p.
They only need to satisfy the continuity equation (2.3b) in the weak sense. The reader is
refer to [22, Chapter 8] for more technical details. The optimal value gives the (squared)
Wasserstein distance W,. We next sketch two possible ways of extending W, to the un-
balanced measures. These formulations are used to study unbalanced transport problems
for the matrices and the matrix-valued densities.

2.1 L? and OMT

As noted in [1,2], the L? distance can be used in conjunction with OMT in case of unbal-
anced mass distributions. The dynamic framework of [2] makes this quite straightforward.
Full details and numerics may be found in [1].

Accordingly, given two unbalanced densities pg and py, it is natural to seek a distribution
p1 close to p; in the L? sense, which keeps the Wasserstein distance W(po, p1)> small in
the mean time. The L?> perturbation may be interpreted as ‘noise’. One can then show
that this problem amounts to minimizing

plgg / [ pteslelPasdia [ o= pior (24a)
% v =0, (24b)
p(0,) = po(), plL,) = Pi(-), (240)

with o > 0 being the coeflicient balancing the two parts of the cost. This method has been

used in several applications including optical flow, see [17] and the references therein.
Below is a slightly different form of interpolation distance between W, and L? that

allows Riemannian-type structure. We bring in a source term s in the continuity equation
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4 Y. Chen et al.

and construct a convex optimization problem

1
})szs/ / {p(z, x)|Jo]|* + as(t, x)z}dx dr, (2.5a)
6t -I- V- (pv) =s, (2.5b)
p(0,-) = po(-), p(1,-) = p1(). (2.5¢)

It can be shown that the square root of the minimum of the above is a well-defined metric
on the space of probability densities with the finite second-order moments.

2.2 Unbalanced mass transport: Information theoretic formulations

We now review how Fisher-Rao may be employed to get an unbalanced formulation of
OMT [9,13,15]. Unlike the method of [1,2] where one interpolates L?> and OMT, the idea
here is to interpolate OMT and the Fisher-Rao metric. This is quite powerful since one
explicitly combines an information-theoretic method with Wasserstein, and thus makes
contact with the recent work on Schroedinger bridges [7]. There is a related method
in [15] that interpolates between OMT and the Hellinger metric.

The interpolation of Fisher-Rao and Wasserstein is given as

1
;135 / / {p(t,x)||lv]|* + ap(t,x)r*} dx dt, (2.6a)
o —I— V - (pv) = pr, (2.6b)
p(0,-) = po(-), p(L,-) = p1(). (2.6¢)

Here, the minimum is taken over all the density flow p, the velocity field v, and the relative
source intensity r satisfying the continuity equation with the source term (2.6b). Observing
the source terms in (2.5b) and (2.6b) have the relation s = pr, we rewrite the second term
of the cost in (2.6a) as

// p(t, x)r(t, x)*dxdt = // i(ttxx dxdt. (2.7)

This should be compared to
/ / s(t, x)>dxdt, (2.8)

which is used in (2.5). The cost (2.8) corresponds to the L? metric, while (2.7) defines the
Fisher-Rao between the two smooth densities as

der(po, p1)* = lnf/ /

6z >
p(O’ ) = pO(')s p(ls ) = Pl()
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Interpolation of matrices and matrix-valued densities 5
3 Quantum continuity equation

We sketch here the necessary background from [6], where full details can be found.
Consider the two positive definite (Hermitian) matrices pp and p;. We seek a suitable
generalization of the continuity equation that links the two matrices with a smooth path
within the cone of positive matrices in suitable ways. In the context of quantum mechanics,
p may represent a density matrix. In this, a standing assumption is that tr(pg) = tr(p;) = 1,
and thereby, we seek paths p(t) (¢t € [0, 1]) between the two that maintain the same value
for the trace.

Let H, S, and C denote the set of n x n Hermitian, skew-Hermitian matrices, and general
complex matrices, respectively. Since matrices are n x n throughout, we dispense of n in
the notation. We also denote the space of block-column vectors consisting of N elements
in H,S, and C as HN, SV, and CV, respectively. Let now M, and H,, denote the cones
of non-negative and positive definite matrices, respectively, and

D:={p€Hy|tr(p) =1},

Dy :={p € Hyy | tr(p) =1}
Clearly, the tangent space of Dy, at any p € Dy, is

T,=T ={c €H|tr(c) =0}
We also use the standard notion of inner product
(X,Y) =tr(X"Y)

for both H,S, and C. Here, * denotes the complex transpose operator. For X,Y € HV
(SN,cN),

N
(X,Y) = tr(X] V).
k=1

Given X = [X},...,X5]* € HN (SN,CN), Y € H (S,C), denote

X (XY
Xy=|:|v=1| : [,
XN | XnY |
X1 [YX; ]
YX=v | :|=| : [,
XN | Y Xn |
and
X7
X=1:
Xy
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6 Y. Chen et al.

In an open quantum system, the dynamics of the density matrices may be described by
the Lindblad equation [10]

N

. . I T 1,
p=—i(Hp — pH) + I;(Lkak — 5PLiLi = 5L{Lip). (3.1)

Here, the first term on the right-hand side describes the evolution of the state under the
effect of the Hamiltonian H and it is energy preserving. The rest of the terms on the
right-hand side represent the diffusion and capture the dissipation of energy. Note that
this is the quantum analogue of the Laplacian operator A4.

In the following, assume Ly = Lj,i.e., Ly € H forallk € 1...,N. Under this assumption,
we can define

LiX — XL,
Ve :H—-8Y, X : (3.2)
LyX — XLy
as the gradient operator. The dual of V1, which is an analogue of the divergence operator,
is given by
Y: N
ViiSN oM, Y= | =) LY - Yl (3.3)
Yy k

This follows directly from the definition
(VX Y)=(X,ViY).
With this, we define the Laplacian as
N
ALX = -ViVLX = (QLipL; — pLi Ly — L Lip),
k=1

which is exactly (with some scaling) the diffusion term in the Lindblad equation (3.1).
Therefore, the Lindblad equation (under the assumption Ly = L) can be rewritten as

, 1
p=—i(Hp—pH)+ >4Lp-

Note that the gradient operator V, acts just like the standard gradient operator. Note
that, in particular,

VXY +YX) =V XY + XV, Y + V. YX+ YV, X, VX,Y € H.

Using this gradient operator (3.2), we can then come up with several notions of the
continuity equation [6]. In the present note for the interpolation of Fisher-Rao and
Wasserstein, we will use

1 *
p=5Vilp+ po), (34)
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Interpolation of matrices and matrix-valued densities 7

*

where the ‘velocity’ field v = [v7,...,v5]* € SN. Note vp + pv € SV, which is consistent
with the definition of V7.

Usually, in the Lindblad equation (3.1), N is taken to be n*> — 1. However, in general, we
may choose N < n®> — 1, as needed, possibly large enough such that in (3.4) we are able to
cover the whole tangent space T, at p for all p € D,. In particular, we need V;, to have
the property that the identity matrix I spans its null space. For instance, one can choose
Lq,...,Ly to be a basis of the Hermitian matrices M, in which case N = n(n+1)/2. A
simpler choice of basis L is

1 - 1
o -.- 0

Li=|. . . .|, Lo=diag(l,2,...,n—1,0]).
10 - 0

Obviously, both constructions ensure that the null space of V, is spanned by I.

Now we have everything ready to define the fluid dynamic formulation of optimal
transport on the space D, of density matrices generalizing [2]. Given two density matrices
00, p1 € Dy, we formulate the following optimization problem:

1
Wa(po,p1)* =  inf / tr(pv*v)dt (3.5a)
peDveSN Jo
1 *
p=5Vilvp+pv), (3.5b)
p(0) = po, p(1)= p1, (3.5¢)

where the minimum is taken over all the continuously differentiable density flows p(-) €
C!([0,1]; D) and continuous velocity fields v(-) € C([0,1];SN). The ‘Wasserstein distance’
between po and p; is defined to be the square root of the minimum of the cost (3.5a).
Note here for v € SN, v*v = 21 vy

The Wasserstein distance function Wj(p,p + ) gives an Riemannian-type structure
on the tangent space T,. More precisely, given two tangent vectors d;,0, € T,, the
Riemannian-type metric is given by

1 ) b
(01,02), = 3 tr(p(ViLd1)" Vi + p(VLA2) Vi), (3.6)

where J; and 4, are the unique (up to an addition by a constant multiplication of I)
solutions [5] to

1, , , .
(3]‘ = EVL(VL/L]'pJFpVL/Lj), ] = 1,2
In fact, v = V. 4; is the unique minimizer [5] of tr(pv*v) subject to the constraint

1 *
6 = 5Vi(vp + po).
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8 Y. Chen et al.

Walpo,pt) = inf / e, pO)d (37)

where the minimum is taken over all the continuously differentiable paths on the manifold
D satisfying the boundary conditions p(0) = po, p(1) =

Proposition 1

Proof Apparently,

Wa(po, p1) 1nf \/ t), p(t)) pnyd

To see this, note that for any p(-) € Cl([O, 1];D+), we have

1 1
/ \/ (1), (1)) piydt < \// (p(2), p(0)) pirydt
0 0
1
= \// tr(p(VpA)* Vi A)de
0

where A satisfies p = %VZ(VMp + pV ). The rest follows.
Now let us turn to the other direction. Let p(-) € C!([0,1];D,) be a (almost) minimizer
of (3.7) with velocity field V4. Denote

/(1) = /0 (p(2), p(7)) p(rydt

and s(t) = /(t)//(1). Using a standard reparameterization

p(s(1)) = p(0),

we obtain

dp _dpdt _ 1o, o, A O
ds  drds VL(V”(I)’) 0+ 2BV2AR) (PO, (O pie)

Therefore, p(-) € C'([0,1]; D), together with velocity field

/(1)

. =V, = VLM)—F—————
o(s(1)) LA(s(t)) LA(T) (p(t), p(1)) (o)

is also a feasible solution to (3.5). Now observing that

/(1)

7 =/1)?
OO

tr(p(s)o(s)*0(s)) = tr(p(t)(VLA1)"VLA(L)

we conclude that fol tr(p(s)d(s)*d(s))ds = #(1)>. Hence, Ws(po, p1) is upper bounded by
/(1), which completes the proof. O
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Interpolation of matrices and matrix-valued densities 9

Therefore, W5(-,-) indeed defines a metric on D, and it is intrinsic with respect to the
Riemannian-type metric (3.6). If the condition that p € D, is relaxed to p € D, then an
optimizer exists [5]. In general, it is difficult to establish the existence of the minimizer of
(3.5) due to the possibility of p hitting the boundary of D. One can, however, introduce
a Lagrangian multiplier A(-) € C'([0,1];H) for the constraints (3.5b), and arrive at the
following sufficient conditions for optimality [6]. The equations (3.8) are also the geodesic
equations in D, with Riemannian-type metric (3.6).

Theorem 1 Suppose there exists /(-) € C1([0,1];H) satisfying
.1
A+ (VM) (Vi) =)+ 5 ; VLAV LA =0, (3.8a)

and p(-) € CY([0,1]; D) satisfying
1
= EVI(VMP +pVLA), (3.8b)

and matching the two marginals p(0) = po, p(1) = p1, then (p,v) = (p, V1) solves (3.5).

4 Interpolation of positive matrices

In this section, we describe the main results of the present note, namely the interpolation
between quantum Wasserstein and Fisher-Rao and that between quantum Wasserstein
and Frobenius norm, as the generalizations of (2.6) and (2.5), respectively. These provide
ways to compare and interpolate positive matrices with possibly different traces.

4.1 Interpolation between Wasserstein and Fisher-Rao

Given pg, p1 € Hyy and o > 0, define

1
Warr(po, p1)° = inf / {tr(pv*v) + atr(pr?)}dt (4.1a)
pPEH 4+ vESNEH Jo
1_, 1
p= EVL(UP + pv) + i(rp + pr), (4.1b)
p(0) = po, p(1) = p1. (4.1¢)

The minimum is taken over all the density flows p(-) € C'([0,1]; ) and velocity fields
v(-) € C([0,1];8M),7(-) € C([0,1];H). Note here the ‘continuity’ equation (4.1b), as a
non-commutative generalization of (2.6). This distance Wjpr is an interpolation of W,
and the Fisher-Rao distance

1
d ,p1)? = inf / tr(pr?)dt,
Fr(p0, P1) perien J, (pr”)

o1
p=50rp+pr),

p(0) = po, p(1) = p1,
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10 Y. Chen et al.

where the minimum is taken over p(-) € C'([0, 1]; H) and r(-) € C([0, 1]; ). Recall that
the Bures metric [21] on the space of density matrices D, is defined as

1
dp(p.p+6)° = 5 tr(Go),
where G € H is the unique solution of
Gp+pG=9

on H. It follows
1
3 tr(Go) = tr(pG?).

Hence, dgr is equivalent to the Bures metric dg when restricted to space of density
matrices D;. The distance W, rr defines a Riemannian-type structure on H .

Lemma 2 For a given pair p € Hiy,0 € H, there is a unique solution to

1 1
0= 3VL(VLip +pVii) + 5 (Ap + p2).

Moreover, (v,r) = (VL7, éi) is the unique minimizer of
tr(pv*v) + atr(pr?)

over all the (v € SN,r € H) satisfying

1 1
0= EV,’i(up + pv) + E(rp + pr).

Proof Consider the convex optimization problem

o1 o )
—t * -1
pemin 5 r(pv*v) + 7 1(pr”)

1 1
0= EV}E(vp + pv) + E(rp + pr).

Clearly, it is feasible, so a minimizer exists. In addition, the cost is strictly convex, therefore
the minimizer is unique. Using Karush—Kuhn—Tucker conditions [3], we conclude that the
minimizer (Vopt, 'opt) Minimizes the Lagrangian

1 1 1
3 tr(pv*v) + % tr(pr?) + (2,0 — EVZ(vp + pv) — E(rp + pr))

for some multiplier 4 € H. It is then straightforward to see (vopt,Topt) = (VL4 i)»). The
uniqueness of 4 follows from that of the minimizer. This completes the proof. O

Given the two tangent vectors 01,9, € H at p, the Riemannian-type metric is
1 . 1 .
(01,02 = S tr(p(VLA1) Vida + p(VLA) Vi) + oo t(phada + pioka), (42)
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Interpolation of matrices and matrix-valued densities 11

where 4; € H, (i = 1,2) is the unique solution to
1, . 1
0; = EVL(VL/HP +pViLii) + i()”ip + pii). (4.3)

Again, similar to Proposition 1, it can be shown that our distance W;pr is the geodesic
distance on H. with the Riemannian-type metric (4.2).

Proposition 2

FR
Warr(po, p1) pelglif++ \/To(tdt

where the minimum is taken over all the continuously differentiable paths on the manifold
H+ satisfying the boundary conditions p(0) = po, p(1) = p1.
Proof The proof is the same as the proof of Proposition 1. O
Therefore, Wopr(-,-) indeed defines a metric on 44 and it is intrinsic with respect
to the Riemannian-type metric (4.2). We remark that even though the Riemannian-type
metric (4.2) may not be well defined on the boundary of H., W,rr can be extended to
‘H. by the continuity with little effort [4]. If p(-) is a solution of (4.1), then it possesses
the nice property

Warr(p(s), p(1)) = (t — s)WaEr(po, p1)

for all 0 < s <t < 1. This is based on a simple argument using reparameterization. With
this in mind, we now present a sufficient condition for the existence of geodesics. The
equations (4.4) also characterize the geodesics.

Theorem 3 Suppose there exists A(-) € C!([0, 1];H) satisfying
I+ = (VL/I) (Vi) + —a)uz =0, (4.4a)
and p(-) € C'([0,1]: H) satisfying
1 , 1
p=5ViVidp+pVLd)+ 5 (2p + p2), (4.4D)

and matching the marginals p(0) = po, p(1) = p1. Then, the triple (p,v,r) = (p, VLA,é/I)
solves (4.1).
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12 Y. Chen et al.

Proof Let A(-) € C'([0,1];H) be a Lagrangian multiplier for the constraints (4.1b) and
construct the Lagrangian

(1 o 1 1
L(p,v,r,2) = /0 {2 tr(pv*v) + 3 tr(pr*r) + tr(A(p — EVZ(vp + pv) — E(rp + pr)))} dt

1
1 1
= / { tr(pv*v) — = tr((VL2)* (vp + pv)) + ﬁ tr(pr*r)
o 12 2 2
1 . , )
) tr(A(rp + pr)) — tr(Ap)} dt + tr(A(1)p1) — tr(A(0)po).
Pointwise minimizing the above over v, r yields

Uopt([) = VLAlt),

and

1
ropl(t) = &/‘L(t)

The corresponding minimum is

1
1 1 s )
/ {—2 te(p(VLA) (Vid) = 5. tr(pA*) — tr(ﬂp)} dt + tr(A(1)p1) — tr(4(0)po).
0
When / satisfies (4.4a), the first term of the above becomes 0 and therefore the triple
(p,v,7) = (p, VL4, é/l) is a minimizer of the Lagrangian L(p,v,r, ). In view of (4.4b), it is

also feasible. Therefore, it is a minimizer of (4.1). This completes the proof. O

As in the balanced case [6], (4.1) has the following convex reformulation

tr(up™'u*) + o tr(sp™'s7) b, 45

/JEH++ueC“ sec/ {tr(up™ ' u™) + atr(sp™ s*)} (4.5a)
1

p=3Vilu—m+ E(s +5%), (4.5b)

p(0) = po, p(1) =p1. (4.5¢)

Here, we simply used the change of variables u = vp,s = rp. The minimum is taken over
all the density flows p(-) € C'([0,1];H, ) and fluxes u(-) € C([0,1];CN), s(-) € C([0,1];C).
Note here we have relaxed the conditions on u,s as in general u,s cannot be written as
vp,s = rp for v € SV,r € H. This relaxation, however, does not change the problem by
the following lemma.

Lemma 4 For a given pair p € Hyt,0 € H, let (u,s) = (VL/lp,i/Ip) with 1 being the
unique solution to

L
—(Ap + pA).

1
0==V; 2 A
2VL(VL p+pVLd) + 5

Then, it minimizes

tr(up~'u*) + atr(sp~'s*)
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over all u € CN,s € C such that

1_, o1 X
5=§VL(u—u)+§(s+s ).

Proof Consider the convex optimization problem
min 1 tr(up~'u*) + z tr(sp~Ls*),
uechN sec 2 2
b= ST+ 2(s+5")
= =-Vi(u—1u)+ =(s+s%).
2k 2
Obviously, it is feasible, so a minimizer exists. Besides, the cost function is strictly convex,

thus the minimizer is unique. By Karush—Kuhn-Tucker conditions, there exists Lagrangian
multiplier 4 € H such that the minimizer (1op, Sopt) Minimizes the Lagrangian

3 trlup ) (o) 4 {45 — 3 Vi)~ 55+ 5)),
from which we conclude (uopt, Sopt) = (VLA p, ilp). O

Therefore, for any feasible solution (p,u,s) to (4.5), we can always construct (p,i1,5) =
(p, ViLp, ilp) such that the cost in (4.5a) stay unchanged.

Remark: In the scalar setting, the dynamic formulation of the interpolation between
Wasserstein and Fish-Rao distance (2.6) can be rewritten in the static form (2.2) with
a special cost function c(-,-) [15]. This is not the cases in matrix setting. The dynamic
formulation (4.1) does not have a static counterpart.

4.2 Interpolation between Wasserstein and Frobenius

As a straightforward generalization of (2.5), we define, for pg, p1 € Hovy,

1
War(po, p1)* = inf / {tr(pv*v) + o tr(s*)}dt, (4.6a)
pEH eSSV sEH J
1
p= EV}:(U,O + pv) + s, (4.6b)
p(0) = po, p(1) = p1. (4.6¢)

Here, the minimum is taken over all the density flows p(-) € C'([0,1]; ) and velocity
fields v(-) € C([0,1];SM),s(-) € C([0,1];H). The second part of the cost corresponds to
the Frobenius metric. More specifically, the Frobenius metric can be rewritten as

1
lpo — pillF = _inf {/0 tr(s”)dz | /’)=s,p(0)=po,p(1)=p1}.

pEH,sEH
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14 Y. Chen et al.

Lemma 5 For a given pair p € Hi4,0 € 'H, there is a unique solution to
0= %VZ(VLM) 4+ pVLA) + él.
Moreover, (v,s) = (VL4, éi) is the unique minimizer of
tr(pv*v) + o tr(s?)
over all the (v € SN,s € H) satisfying

1
0= EVZ(vp + pv) +s.

Proof The proof is omitted as it is almost identical to that of Lemma 2. OJ
Given any two tangent vectors d1,9, at p on H. ., the inner product
1 . | I
(61,02)) = 5 tr(p(VeA1) Vida + p(ViLd2)* V) + p tr(1142), (4.7)

endows the manifold H,; a Riemannian-type structure. Here, 1; € H, (i = 1,2) is the
unique solution to

1 1
0; = EVI(VM:‘P +pViii) + &/111 (4.8)

We note that similar results as those described previously for W, pr, can be proven for
the distance W, . In particular, the latter gives the geodesic distance on H with respect
to the Riemannian-type metric (4.7).

Proposition 3

1
War(onpn) = inf [0 o),

where the minimum is taken over all the continuously differentiable paths on the manifold
H satisfying the boundary conditions p(0) = po, p(1) = py.

Proof The proof is the same as the proof of Proposition 1. O

Employing a Lagrangian argument, we obtain the optimality condition and a charac-
terization of the geodesics as follows.

Theorem 6 Suppose there exists A(-) € C1([0,1];H) satisfying
A+ %(VM)*(VM) =0 (4.9a)
and p(-) € CY([0,1]; H ) satisfying
p= %VZ(VLM) +pViLd)+ éi (4.9b)
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Interpolation of matrices and matrix-valued densities 15

and matching the marginals p(0) = po, p(1) = p1. Then, the triple (p,v,s) = (p, VLA,&/I)
solves (4.6).

Further, through change of variable u = vp, we may reformulate (4.6) as the following
convex optimization problem:

1
inf J/ {tr(up~'u*) + atr(s?)}dt, (4.10a)
pEH 1 ueCNseH Jo
1
p= Evz(u — i)+, (4.10b)
p(0) = po, p(1) = p1. (4.10¢)

The minimum is taken over all the density flows p(-) € C!([0,1];H,) and fluxes u(-) €
C([0,1];CMN), s(+) € C([0,1]; H). Again, the relaxation from u = vp with v € SV to general
u € CV does not change the minimum by the following lemma.

Lemma 7 For a given pair p € Hiy,0 € H, let (u,s) = (VirAp, éi) with A being the unique
solution to

0= %vz(vgp +pViLA) + é/l.
Then, it minimizes
tr(up~'u*) + o tr(s?)
over all u € CN,s € H such that

1
0= EVZ(“*’])‘F&

Proof The proof is identical to that of Lemma 4. O

Remark: An alternative way to interpolate W, and the Frobenius metric is

1
W ,p1)’ = inf /tr v*u)de + ol pr — pil|%,
2wrlpop) = il s ) ) lor = pallF
R
p=5Vivp+pv),
p(0) = po, p(1) = p1,
where the minimum is taken over all p; € H,, density flows p(-) € C!([0,1];H, ), and

velocity fields v(-) € C([0,1];SY). This is a non-commutative analogue of (2.4). Note that
in general Wz,F is not a metric.

5 Interpolation of the matrix-valued densities

In applications, it is often the case that one has to deal with the matrix-valued densities
on dimensions which may represent space or frequency. Formally, we define a spatial
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16 Y. Chen et al.

matrix-valued density to be a mapping p : E — H,, where E C R"™. For instance, in
the context of multivariable time series analysis, it is natural to consider m = 1 and
E = [—m, n]; see, e.g., [18]. For simplicity, we assume E to be a convex compact set.

Let

E={p(") | p(x) € Hy for x € E such that / tr(p(x))dx < oo}, (5.1)
E

and &, its interior, namely,
E+ ={p() | p(x) € Hyy for x € E such that /Etr(p(x))dx < o0}
The tangent space at p € &4 is
T, ={6(-) | 6(x) € H for x € E such that /E | tr(d(x))|dx < oo}
Note that the problem on the subset [, tr(p(x))dx = 1, ie., the balanced case, has been
studied in [6]. By combining the standard continuity equation on the Euclidean space

and the continuity equation for positive definite matrices (3.4), and taking into the source
term, we obtain a continuity equation on &, for the flow p(t, x) as

op 1 1. 1
ot + va “(wp + pw) — EVL(D,D + pv) — 5(”,0 +pr)=0, (5.2)
or simply
op 1 1_,
ot + va “(wp + pw) — EVL(Up +pv) —s=0. (5.3)

Here, V.-, the standard divergence operator on R™ applies independently to each entry
of wp + pw, w(t,x) € H™ is the velocity field along the spacial dimension, and v(t,x) € S¥
is the quantum velocity as before. The source term is %(rp + pr) in (5.2) and s in (5.3). We
next present, based on the continuity equations, both the interpolating distance between
Wasserstein and Fisher-Rao, and the interpolating distance between Wasserstein and
Frobenius metric.

5.1 Interpolation between Wasserstein and Fisher-Rao

A dynamic formulation of matrix-valued OMT between two given marginals pg, p; € E1
is

Warr(po, 1)

1
= inf / / {tr(pw*w) + ytr(pv*v) + « tr(prz)} dxdt, (5.4a)
pEELwEHMvESNrEH Jo JE

o 1 1 1
afl; + EVX “(wp + pw) — ivi(vp + pv) — E(rp +pr) =0, (5.4b)
p(0,-) = po, p(1,-)=pi. (5.4¢)

Note that the minimum is taken over all the smooth density flows p and velocity fields
w,v, and r with the zero flux boundary conditions (wp 4+ pw) -1 = 0 on OE with 7
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Interpolation of matrices and matrix-valued densities 17

denoting the normal vector of OE. The coefficient y > 0 is arbitrary and weighs in the
relative significance of the two velocity fields w, v. We then define the interpolating distance
Warr(po, p1) between po and p; via (5.4 a).

The proof of the existence of minimum of (5.4) is not the focus of this paper and will
be studied somewhere else. Here, we provide a sufficient condition for optimality.

Theorem 8 Suppose there exists smooth A(-,-) € H satisfying

oA

T 1(v A)*(Vid) + —(vm (VL) + 1/12 =0 (5.5a)

20
and smooth p(-) € &, satisfying

op 1
P N (Vadp 4 pVad) —

1 1
a7 T2 —Vi(Viip+pVLA) — Z—(Ap—i-p}) =0 (5.5b)

2y

and matching the two marginals p(O )= po, p(1,°) = py. If in addition, (VAp+pVi2)-n =0
on OF, then (p,w,v,r) = (p, Vi, VLA - A) solves (5.4).

Proof Let /A(-,-) € H be a smooth function and define the Lagrangian

1
1
L(p,vo,w, 1) = /0 / { tr(pw*w) + % tr(pv*v) + %tr(prz)

d 1 1
+ tr(4 a—p + = V “(wp + pw) — EVZ(U,O + pv) — E(rp + pr)))} dxdt.

Integration by parts, in view of the boundary conditions on w, yields

/ /{tr(pw w) ftr(pv v) + ftr(pr)

1 1
- tr( 6t p) — (V JsWwp + pw) — E(VL/I vp + pv) — = tr()(rp + pr))} dxdt.

Here, we have discarded the terms on pg, p;. Minimizing the above pointwise over w,v
gives expressions for the optimal values as

Wopt(ts x) = VA, x),

1
Uopl(ts x) = ;VL}L(I’ X),
and
1
ropt(t: X) = &)”(ta x)'

Substituting these back to the Lagrangian, we obtain

1 1 i
/ / {—tr V) (Vid)) — % (p(VLi)*(VL}L))—Mtr(pﬂvz)—tr(pg/;)}dxdt.
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18 Y. Chen et al.

Hence, (p,w,v,r) = (p, Vi4, %VLJV, é/l) minimizes the Lagrangian L. By (5.5b), it is also
feasible. Therefore, it solves (5.4). O

Formally, the Wasserstein distance W, rr(p, p 4 0) induces a Riemannian-type structure
on the tangent space of T,. Given any two tangent vector d;,0, at p, we can associate
them with J{, 4, by solving

1 1_, 1 .
6 = =3V (Vdyp + pVuy) + o Vi(Vidip +pVid) + 5 Gop + pp), J= 1.2 (56)

and define the Riemannian-type metric as

1 o )
(01,82)," = / {2tr(p(w) Vs + p(Vida) Vi)
E

1
+2j/ tr(p(VL1)*"Viia + p(VLA2)* Vi) + 5= tr(pdi/a + ,07~2/11)} dx.

1
200

Again, Wy r(,-) is a metric on £y and it is intrinsic. That is,

where the integral is minimized over all the piecewise smooth curves in £, connecting pg
and p;. The proof follows the same spirit as that of Proposition 1, but it require much
more delicate analysis as we now need to work on partial differential equations instead
of differential equations. Rigorous proof will be provided somewhere else.

Finally, let ¢ = wp,u = vp,s = rp, then (5.4) can again be cast as a convex optimization

problem
inf tr(qp~"q") + 7 tr(up~'w*) + atr(sp~'s*) Y dxdt, (5.7
,,egweg},uecmsec/ /{ r(gp™ q*) +ytr(up™ u™) +otr(sp™'s )} X (5.7a)
op 1 _ . 1 i}
A (q+q)—§VL(u—u)—§(s+s)=0, (5.7b)
p(0,-) = po, p(1,-) = p1. (5.7¢)

Note that the minimum is taken over all smooth functions with zero flux boundary
conditions on gq.
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Interpolation of matrices and matrix-valued densities 19
5.2 Interpolation between Wasserstein and Frobenius

Given pg, p1 € &4, we define the interpolating distance between Wasserstein and Frobenius

through
1
War(po, p1)* == inf / / {tr(pw*w) + 7 tr(pv*v) + o tr(s*) } dxdt, (5.8a)
pEEL, weHMeS” SEH
0
a’; + Vx (wp + pw) — fV}i(up + pv) —s =0, (5.8b)
p@)—m;ﬂﬁ=m- (5.8¢)

The minimum is taken over all the piecewise smooth density flows p and velocity fields
w,v, and r with the zero flux boundary conditions (wp + pw) -7 = 0 on OE. Following
similar argument as in Theorem 8, we arrive at an optimality condition.

Theorem 9 Suppose there exists smooth A(-,-) € H satisfying

%Jr Ly + V(VLA)*(VLA)=0, (59a)

and smooth p(-) € &4 satisfying

op

1 1 1
— + =V (Vidp+pVid) — —=Vi(pVLA+ Viip) — =4 =0, (5.9b)
o 2 2y o

and matching the two marginals p(0,-) = po, p(1,-) = py. If in addition, (VAp+pVA)-1 =0
on OE, then (p,w,v,s) = (p, V4, %VLA, éi) solves (5.8).

The Wasserstein distance W, p(p,p + ) induces a Riemannian-type structure on the
tangent space of T,. Given any two tangent vector d;,d, at p, we can associate them with
A1, 22 by solving

1 1 , , r, .
5] = —va . (Vx)vjp + pvx)»j) + ZVZ(VL/WO + pVLAj) + &/Lj, j=12, (5.10)
and define the Riemannian-type metric as

1
<517 52>§ = / {2 tr(p(vx)vl)*vx)Q + p(vx/b)*vx/ll)
E

| A . 1
+Z tr(p(Vp A1) 'Vidas + p(VLA2)* Vi) + 2 tr(/h/{z)} dx

The metric W, is intrinsic, namely,

W2F —1nf/ ap ap

where the integral is minimized over all the piecewise smooth curves in £; connecting pg
and p;.
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20 Y. Chen et al.

Substituting ¢ = wp and u = vp, we get a convex formulation

1
/0/E{tr(qp_lq*)~I—ytr(up_1u*)~I—octr(s2)}dxdt, (5.11a)

inf
PEELGECT UECN sEH

op 1 _ 1_, _ B
3 T7Ve @+ —5Vilu—i)—s=0, (5.11b)
p(0,-) = po, p(1,) = p1. (5.11¢)

The minimum is taken over smooth functions with zero flux boundary conditions on gq.

6 Examples

One typical example of the matrix-valued density is the power spectrum density of a
multivariate stochastic signal. The power spectrum of a stationary discrete time stochastic
process is a map from E = [—n, m] to H. The dimension of H is equal to the number of
channels of the signal. The power spectrum describe the power distribution of the signal
among different frequencies as well as the correlation between channels.

When enough data samples are given, one can estimate the power spectrum using
Fourier transform or other similar tools. This is, however, built on the assumption that
the signal is stationary. When the signal is time-varying, its power spectrum will change
as a function of time. This is often the case. To capture the varying of power spectrum,
we can use Fourier transform on small time windows to estimate the power spectrum at
different time points. To connect them through a continuous function of power spectrum,
we need a good method to interpolate these spectra. Next, we show that the interpolation
using our framework makes perfect sense.

Consider two power spectra of two-dimensional signals as shown in Figures 1 and 2.
If we use simply linear interpolation, then the result is shown in Figure 3. It has fade-in
fade-out effect and cannot capture the modalities of the signal. On the other hand, if we
use geodesic interpolation with respect Wy rr or Wy p, we get the spectra flow in Figures
4 and 5, respectively. We can see that the dominant frequencies change slowly from one
to another. In such a way, we are able to capture the moving of the energy peaks in the
signals.

7 Conclusions

Our line of research into unbalanced versions of OMT is motivated by the fact that general
distributions (histograms, power spectra, spatio-temporal energy densities, and images)
may not necessarily be normalized to have the same integral. Thus, it is imperative to
devise appropriate metrics and theory to handle these situations. Our overall aim is to
provide constructions for ‘interpolating’ data in the form of distributions. In the present
work, we have formulated a natural technique that interpolates the quantum mechanical
version of OMT developed in [6] with an analogue of Fisher-Rao information.

In the future work, we plan to establish the existence proofs for our general optimal
transport problems. To achieve this goal, we will focus on the convex reformulations with
weaker assumptions, and follow a similar argument as in [5]. We will also explore the
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Riemannian-type structure associated to the unbalanced Wasserstein distance and other
variants of the continuity equation. From a more applied side, we plan to apply the
methodology described in the present work to the various types of multi-modal, multi-
sensor, and multi-spectral data. It seems ideal for multiple target estimation as was done
in [18].
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