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We propose unbalanced versions of the quantum mechanical version of optimal mass transport

that is based on the Lindblad equation describing open quantum systems. One of them is a

natural interpolation framework between matrices and matrix-valued measures via a quantum

mechanical formulation of Fisher-Rao information and the matricial Wasserstein distance,

and the second is an interpolation between Wasserstein distance and Frobenius norm. We

also give analogous results for the matrix-valued density measures, i.e., we add a spatial

dependency on the density matrices. This might extend the applications of the framework to

interpolating matrix-valued densities/images with unequal masses.

Key words: Optimal mass transport, quantum mechanics, matrix-valued densities, Fisher-Rao
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1 Introduction

Optimal mass transport (OMT), in addition to its intrinsic mathematical elegance, has

proven to be a very powerful methodology for numerous problems in econometrics, systems

and control, information theory, statistical filtering and estimation, computer vision, and

signal/image processing [19, 20]. However, the mass preservation requirement of OMT

is many times unnatural for real-world problems. For example, in image registration or

optical flow, one must impose ad hoc normalizations on the imagery that do not have

a physical justification. Accordingly, there have been a number of approaches based on

the interpolation of the Wasserstein metric from OMT with some other metric such as

L2 [1,2] or some information-theoretic distance [9,13–15]. The seminal work of Benamou
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2 Y. Chen et al.

and Brenier [2] makes this possible via certain modifications of the underlying energy

functional and corresponding continuity equation.

In the previous work, Chen et al. [5,6] developed a quantum mechanical framework for

defining a Wasserstein distance on density matrices (positive semi-definite matrices with

trace 1), via a variational framework with a continuity equation constraint, generalizing

the work of [2]. Moreover, in [6], the matricial framework was extended to the matrix-

valued density measures allowing one to add spatial dimensions to the density matrices

in the theory. We should note that independently and at about the same time, similar

approaches to that of [6] were formulated and analysed in [4, 16]. A remarkable result

in [4,16] is that the Lindblad equation is in fact the gradient flow of the quantum entropy

with respect to the Wasserstein metric defined there, which resembles to the classical

results in the scalar setting [11]. This result may have a impact on physics and quantum

mechanics. In contrast, our work in [6] was motivated by engineering applications like

diffusion tensor imaging, multivariate spectral analysis where the matrix-valued densities

appear. One essential problem is the numerical implementation. Therefore, our goal was

to develop a computable Wasserstein metric for these types of applications. An efficient

algorithm is developed in [8].

We show in the present note, that the methodology and definitions in [6] of matrix

analogues of the gradient and divergence, allow us to formulate in a rather straight-

forward manner a natural energy functional and continuity equation that generalize the

information-theoretic unbalanced approaches that give interpolations of Wasserstein and

Fisher-Rao [9,13] and Hellinger [15]. Similarly, the interpolation [1,2] of Wasserstein and

L2 allows a natural generalization. Both interpolations in the scalar setting have been stud-

ied and proven to be effective in theory and applications [1,2,9,13,15]. Thus, we derive un-

balanced versions of OMT in the matrix case as well as for matrix-valued density measures.

Further, these ideas lead to Riemannian-type metrics on positive definite matrices for which

we derive results on gradient flows relative to certain energy functions. Finally, we show

that the unbalanced problem may be formulated as one of the convex optimization just

like the balanced cases in [6], which makes it applicable to a variety of practical problems.

The remainder of this paper may be summarized as follows. First, we sketch several

versions of unbalanced mass transport for scalar measures in Section 2. The preliminaries

on non-commutative optimal transport are discussed in Section 3. The main results on

non-commutative unbalanced transport are provided in Section 4 for positive matrices.

In Section 5, analogous results are given for matrix-valued positive measures in the

unbalanced setting. Several numerical examples are provided in Section 6 to illustrate our

framework, and finally conclusions and future directions are sketched in Section 7.

2 Background on unbalanced mass transport

In this section, we briefly introduce the basis of OMT and review two possible methods

for an unbalanced version of OMT in the scalar case following [1, 9, 13]. The original

formulation of OMT is

inf
T

{∫
�m

c(x, T (x))ρ0(x)dx | T�ρ0 = ρ1

}
, (2.1)
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Interpolation of matrices and matrix-valued densities 3

where c(x, y) denotes the cost of moving unit mass from x to y, and ρ0, ρ1 are two given

probability densities in �m. The operator (·)� represents push forward of measures. By

relaxing the map T to a coupling π [12], we obtain the Kantorovich form

inf
π∈Π(ρ0 ,ρ1)

∫
�m

c(x, y)π(dx, dy), (2.2)

with Π(ρ0, ρ1) denoting the set of all joint distributions (couplings) between ρ0 and ρ1.

When the cost function c(x, y) = ‖x− y‖2, the problem has extremely rich structures [22].

As first pointed out in [2], the OMT problem has the fluid dynamic formulation

W2(ρ0, ρ1)
2 := inf

ρ,v

∫ 1

0

∫
�m

ρ(t, x)‖v(t, x)‖2 dxdt (2.3a)

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.3b)

ρ(0, ·) = ρ0(·), ρ(1, ·) = ρ1(·). (2.3c)

The minimization is taken over all the smooth velocity fields v and density flows ρ.

They only need to satisfy the continuity equation (2.3b) in the weak sense. The reader is

refer to [22, Chapter 8] for more technical details. The optimal value gives the (squared)

Wasserstein distance W2. We next sketch two possible ways of extending W2 to the un-

balanced measures. These formulations are used to study unbalanced transport problems

for the matrices and the matrix-valued densities.

2.1 L2 and OMT

As noted in [1,2], the L2 distance can be used in conjunction with OMT in case of unbal-

anced mass distributions. The dynamic framework of [2] makes this quite straightforward.

Full details and numerics may be found in [1].

Accordingly, given two unbalanced densities ρ0 and ρ1, it is natural to seek a distribution

ρ̃1 close to ρ1 in the L2 sense, which keeps the Wasserstein distance W2(ρ0, ρ̃1)
2 small in

the mean time. The L2 perturbation may be interpreted as ‘noise’. One can then show

that this problem amounts to minimizing

inf
ρ,v,ρ̃1

∫ 1

0

∫
�m

ρ(t, x)‖v‖2 dx dt + α

∫
�m

(ρ1(x) − ρ̃1(x))2 dx, (2.4a)

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.4b)

ρ(0, ·) = ρ0(·), ρ(1, ·) = ρ̃1(·), (2.4c)

with α > 0 being the coefficient balancing the two parts of the cost. This method has been

used in several applications including optical flow, see [17] and the references therein.

Below is a slightly different form of interpolation distance between W2 and L2 that

allows Riemannian-type structure. We bring in a source term s in the continuity equation
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4 Y. Chen et al.

and construct a convex optimization problem

inf
ρ,v,s

∫ 1

0

∫
�m

{
ρ(t, x)‖v‖2 + αs(t, x)2

}
dx dt, (2.5a)

∂ρ

∂t
+ ∇ · (ρv) = s, (2.5b)

ρ(0, ·) = ρ0(·), ρ(1, ·) = ρ1(·). (2.5c)

It can be shown that the square root of the minimum of the above is a well-defined metric

on the space of probability densities with the finite second-order moments.

2.2 Unbalanced mass transport: Information theoretic formulations

We now review how Fisher-Rao may be employed to get an unbalanced formulation of

OMT [9,13,15]. Unlike the method of [1,2] where one interpolates L2 and OMT, the idea

here is to interpolate OMT and the Fisher-Rao metric. This is quite powerful since one

explicitly combines an information-theoretic method with Wasserstein, and thus makes

contact with the recent work on Schroedinger bridges [7]. There is a related method

in [15] that interpolates between OMT and the Hellinger metric.

The interpolation of Fisher-Rao and Wasserstein is given as

inf
ρ,v,r

∫ 1

0

∫
�m

{
ρ(t, x)‖v‖2 + αρ(t, x)r2

}
dx dt, (2.6a)

∂ρ

∂t
+ ∇ · (ρv) = ρr, (2.6b)

ρ(0, ·) = ρ0(·), ρ(1, ·) = ρ1(·). (2.6c)

Here, the minimum is taken over all the density flow ρ, the velocity field v, and the relative

source intensity r satisfying the continuity equation with the source term (2.6b). Observing

the source terms in (2.5b) and (2.6b) have the relation s = ρr, we rewrite the second term

of the cost in (2.6a) as

∫ 1

0

∫
�m

ρ(t, x)r(t, x)2dxdt =

∫ 1

0

∫
�m

s(t, x)2

ρ(t, x)
dxdt. (2.7)

This should be compared to ∫ 1

0

∫
�m

s(t, x)2dxdt, (2.8)

which is used in (2.5). The cost (2.8) corresponds to the L2 metric, while (2.7) defines the

Fisher-Rao between the two smooth densities as

dFR(ρ0, ρ1)
2 := inf

ρ,s

∫ 1

0

∫
�m

s(t, x)2

ρ(t, x)
dxdt,

∂ρ

∂t
= s,

ρ(0, ·) = ρ0(·), ρ(1, ·) = ρ1(·).
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Interpolation of matrices and matrix-valued densities 5

3 Quantum continuity equation

We sketch here the necessary background from [6], where full details can be found.

Consider the two positive definite (Hermitian) matrices ρ0 and ρ1. We seek a suitable

generalization of the continuity equation that links the two matrices with a smooth path

within the cone of positive matrices in suitable ways. In the context of quantum mechanics,

ρ may represent a density matrix. In this, a standing assumption is that tr(ρ0) = tr(ρ1) = 1,

and thereby, we seek paths ρ(t) (t ∈ [0, 1]) between the two that maintain the same value

for the trace.

Let H,S , and C denote the set of n×n Hermitian, skew-Hermitian matrices, and general

complex matrices, respectively. Since matrices are n × n throughout, we dispense of n in

the notation. We also denote the space of block-column vectors consisting of N elements

in H,S , and C as HN , SN , and CN , respectively. Let now H+ and H++ denote the cones

of non-negative and positive definite matrices, respectively, and

D := {ρ ∈ H+ | tr(ρ) = 1},

D+ := {ρ ∈ H++ | tr(ρ) = 1}.
Clearly, the tangent space of D+, at any ρ ∈ D+, is

Tρ = T := {σ ∈ H | tr(σ) = 0}.

We also use the standard notion of inner product

〈X,Y 〉 = tr(X∗Y )

for both H,S , and C. Here, ∗ denotes the complex transpose operator. For X,Y ∈ HN

(SN, CN),

〈X,Y 〉 =

N∑
k=1

tr(X∗
k Yk).

Given X = [X∗
1 , . . . , X

∗
N]∗ ∈ HN (SN, CN), Y ∈ H (S , C), denote

XY =

⎡
⎢⎣
X1

...

XN

⎤
⎥⎦Y :=

⎡
⎢⎣
X1Y

...

XNY

⎤
⎥⎦ ,

Y X = Y

⎡
⎢⎣
X1

...

XN

⎤
⎥⎦ :=

⎡
⎢⎣
Y X1

...

Y XN

⎤
⎥⎦ ,

and

X̄ =

⎡
⎢⎣
X∗

1
...

X∗
N

⎤
⎥⎦ .
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6 Y. Chen et al.

In an open quantum system, the dynamics of the density matrices may be described by

the Lindblad equation [10]

ρ̇ = −i(Hρ− ρH) +

N∑
k=1

(LkρL
∗
k −

1

2
ρL∗

kLk −
1

2
L∗
kLkρ). (3.1)

Here, the first term on the right-hand side describes the evolution of the state under the

effect of the Hamiltonian H and it is energy preserving. The rest of the terms on the

right-hand side represent the diffusion and capture the dissipation of energy. Note that

this is the quantum analogue of the Laplacian operator Δ.

In the following, assume Lk = L∗
k , i.e., Lk ∈ H for all k ∈ 1 . . . , N. Under this assumption,

we can define

∇L : H → SN, X 	→

⎡
⎢⎣

L1X −XL1

...

LNX −XLN

⎤
⎥⎦ (3.2)

as the gradient operator. The dual of ∇L, which is an analogue of the divergence operator,

is given by

∇∗
L : SN → H, Y =

⎡
⎢⎣
Y1

...

YN

⎤
⎥⎦ 	→

N∑
k

LkYk − YkLk. (3.3)

This follows directly from the definition

〈∇LX, Y 〉 = 〈X,∇∗
LY 〉.

With this, we define the Laplacian as

ΔLX = −∇∗
L∇LX =

N∑
k=1

(2LkρL
∗
k − ρL∗

kLk − L∗
kLkρ),

which is exactly (with some scaling) the diffusion term in the Lindblad equation (3.1).

Therefore, the Lindblad equation (under the assumption Lk = L∗
k ) can be rewritten as

ρ̇ = −i(Hρ− ρH) +
1

2
ΔLρ.

Note that the gradient operator ∇L acts just like the standard gradient operator. Note

that, in particular,

∇L(XY + Y X) = ∇LXY + X∇LY + ∇LY X + Y∇LX, ∀X,Y ∈ H.

Using this gradient operator (3.2), we can then come up with several notions of the

continuity equation [6]. In the present note for the interpolation of Fisher-Rao and

Wasserstein, we will use

ρ̇ =
1

2
∇∗

L(vρ + ρv), (3.4)
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Interpolation of matrices and matrix-valued densities 7

where the ‘velocity’ field v = [v∗1 , . . . , v
∗
N]∗ ∈ SN . Note vρ + ρv ∈ SN , which is consistent

with the definition of ∇∗
L.

Usually, in the Lindblad equation (3.1), N is taken to be n2 −1. However, in general, we

may choose N � n2 − 1, as needed, possibly large enough such that in (3.4) we are able to

cover the whole tangent space Tρ at ρ for all ρ ∈ D+. In particular, we need ∇L to have

the property that the identity matrix I spans its null space. For instance, one can choose

L1, . . . , LN to be a basis of the Hermitian matrices H, in which case N = n(n + 1)/2. A

simpler choice of basis L is

L1 =

⎡
⎢⎢⎢⎣

1 1 · · · 1

1 0 · · · 0
...

...
. . .

...

1 0 · · · 0

⎤
⎥⎥⎥⎦ , L2 = diag([1, 2, . . . , n− 1, 0]).

Obviously, both constructions ensure that the null space of ∇L is spanned by I .

Now we have everything ready to define the fluid dynamic formulation of optimal

transport on the space D+ of density matrices generalizing [2]. Given two density matrices

ρ0, ρ1 ∈ D+, we formulate the following optimization problem:

W2(ρ0, ρ1)
2 := inf

ρ∈D+ ,v∈SN

∫ 1

0

tr(ρv∗v)dt (3.5a)

ρ̇ =
1

2
∇∗

L(vρ + ρv), (3.5b)

ρ(0) = ρ0, ρ(1) = ρ1, (3.5c)

where the minimum is taken over all the continuously differentiable density flows ρ(·) ∈
C1([0, 1];D+) and continuous velocity fields v(·) ∈ C([0, 1];SN). The ‘Wasserstein distance’

between ρ0 and ρ1 is defined to be the square root of the minimum of the cost (3.5a).

Note here for v ∈ SN , v∗v =
∑N

k=1 v
∗
k vk .

The Wasserstein distance function W2(ρ, ρ + δ) gives an Riemannian-type structure

on the tangent space Tρ. More precisely, given two tangent vectors δ1, δ2 ∈ Tρ, the

Riemannian-type metric is given by

〈δ1, δ2〉ρ =
1

2
tr(ρ(∇Lλ1)

∗∇Lλ2 + ρ(∇Lλ2)
∗∇Lλ1), (3.6)

where λ1 and λ2 are the unique (up to an addition by a constant multiplication of I)

solutions [5] to

δj =
1

2
∇∗

L(∇Lλj ρ + ρ∇Lλj), j = 1, 2.

In fact, v = ∇Lλj is the unique minimizer [5] of tr(ρv∗v) subject to the constraint

δj =
1

2
∇∗

L(vρ + ρv).
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8 Y. Chen et al.

Proposition 1

W2(ρ0, ρ1) = inf
ρ∈D+

∫ 1

0

√
〈ρ̇(t), ρ̇(t)〉ρ(t)dt, (3.7)

where the minimum is taken over all the continuously differentiable paths on the manifold

D+ satisfying the boundary conditions ρ(0) = ρ0, ρ(1) = ρ1.

Proof Apparently,

W2(ρ0, ρ1) � inf
ρ∈D+

∫ 1

0

√
〈ρ̇(t), ρ̇(t)〉ρ(t)dt.

To see this, note that for any ρ(·) ∈ C1([0, 1];D+), we have

∫ 1

0

√
〈ρ̇(t), ρ̇(t)〉ρ(t)dt �

√∫ 1

0

〈ρ̇(t), ρ̇(t)〉ρ(t)dt

=

√∫ 1

0

tr(ρ(∇Lλ)∗∇Lλ)dt,

where λ satisfies ρ̇ = 1
2
∇∗

L(∇Lλ ρ + ρ∇Lλ). The rest follows.

Now let us turn to the other direction. Let ρ(·) ∈ C1([0, 1];D+) be a (almost) minimizer

of (3.7) with velocity field ∇Lλ. Denote


(t) =

∫ t

0

√
〈ρ̇(τ), ρ̇(τ)〉ρ(τ)dτ,

and s(t) = 
(t)/
(1). Using a standard reparameterization

ρ̂(s(t)) = ρ(t),

we obtain

dρ̂

ds
=

dρ

dt

dt

ds
=

1

2
∇∗

L(∇Lλ(t) ρ(t) + ρ(t)∇Lλ(t))

(1)√

〈ρ̇(t), ρ̇(t)〉ρ(t)

.

Therefore, ρ̂(·) ∈ C1([0, 1];D+), together with velocity field

v̂(s(t)) = ∇Lλ̂(s(t)) := ∇Lλ(t)

(1)√

〈ρ̇(t), ρ̇(t)〉ρ(t)

is also a feasible solution to (3.5). Now observing that

tr(ρ̂(s)v̂(s)∗v̂(s)) = tr(ρ(t)(∇Lλ(t))
∗∇Lλ(t))


(1)2

〈ρ̇(t), ρ̇(t)〉ρ(t)
≡ 
(1)2,

we conclude that
∫ 1

0
tr(ρ̂(s)v̂(s)∗v̂(s))ds = 
(1)2. Hence, W2(ρ0, ρ1) is upper bounded by


(1), which completes the proof. �
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Interpolation of matrices and matrix-valued densities 9

Therefore, W2(·, ·) indeed defines a metric on D+ and it is intrinsic with respect to the

Riemannian-type metric (3.6). If the condition that ρ ∈ D+ is relaxed to ρ ∈ D, then an

optimizer exists [5]. In general, it is difficult to establish the existence of the minimizer of

(3.5) due to the possibility of ρ hitting the boundary of D. One can, however, introduce

a Lagrangian multiplier λ(·) ∈ C1([0, 1];H) for the constraints (3.5b), and arrive at the

following sufficient conditions for optimality [6]. The equations (3.8) are also the geodesic

equations in D+ with Riemannian-type metric (3.6).

Theorem 1 Suppose there exists λ(·) ∈ C1([0, 1];H) satisfying

λ̇ +
1

2
(∇Lλ)

∗(∇Lλ) = λ̇ +
1

2

N∑
k=1

(∇Lλ)
∗
k (∇Lλ)k = 0, (3.8a)

and ρ(·) ∈ C1([0, 1];D+) satisfying

ρ̇ =
1

2
∇∗

L(∇Lλ ρ + ρ∇Lλ), (3.8b)

and matching the two marginals ρ(0) = ρ0, ρ(1) = ρ1, then (ρ, v) = (ρ,∇Lλ) solves (3.5).

4 Interpolation of positive matrices

In this section, we describe the main results of the present note, namely the interpolation

between quantum Wasserstein and Fisher-Rao and that between quantum Wasserstein

and Frobenius norm, as the generalizations of (2.6) and (2.5), respectively. These provide

ways to compare and interpolate positive matrices with possibly different traces.

4.1 Interpolation between Wasserstein and Fisher-Rao

Given ρ0, ρ1 ∈ H++ and α > 0, define

W2,FR(ρ0, ρ1)
2 := inf

ρ∈H++ ,v∈SN,r∈H

∫ 1

0

{tr(ρv∗v) + α tr(ρr2)}dt (4.1a)

ρ̇ =
1

2
∇∗

L(vρ + ρv) +
1

2
(rρ + ρr), (4.1b)

ρ(0) = ρ0, ρ(1) = ρ1. (4.1c)

The minimum is taken over all the density flows ρ(·) ∈ C1([0, 1];H++) and velocity fields

v(·) ∈ C([0, 1];SN), r(·) ∈ C([0, 1];H). Note here the ‘continuity’ equation (4.1b), as a

non-commutative generalization of (2.6). This distance W2,FR is an interpolation of W2

and the Fisher-Rao distance

dFR(ρ0, ρ1)
2 := inf

ρ∈H++ ,r∈H

∫ 1

0

tr(ρr2)dt,

ρ̇ =
1

2
(rρ + ρr),

ρ(0) = ρ0, ρ(1) = ρ1,
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10 Y. Chen et al.

where the minimum is taken over ρ(·) ∈ C1([0, 1];H++) and r(·) ∈ C([0, 1];H). Recall that

the Bures metric [21] on the space of density matrices D+ is defined as

dB(ρ, ρ + δ)2 =
1

2
tr(Gδ),

where G ∈ H is the unique solution of

Gρ + ρG = δ

on H. It follows
1

2
tr(Gδ) = tr(ρG2).

Hence, dFR is equivalent to the Bures metric dB when restricted to space of density

matrices D+. The distance W2,FR defines a Riemannian-type structure on H++.

Lemma 2 For a given pair ρ ∈ H++, δ ∈ H, there is a unique solution to

δ =
1

2
∇∗

L(∇Lλρ + ρ∇Lλ) +
1

2α
(λρ + ρλ).

Moreover, (v, r) = (∇Lλ,
1
α
λ) is the unique minimizer of

tr(ρv∗v) + α tr(ρr2)

over all the (v ∈ SN, r ∈ H) satisfying

δ =
1

2
∇∗

L(vρ + ρv) +
1

2
(rρ + ρr).

Proof Consider the convex optimization problem

min
v∈SN,r∈H

1

2
tr(ρv∗v) +

α

2
tr(ρr2)

δ =
1

2
∇∗

L(vρ + ρv) +
1

2
(rρ + ρr).

Clearly, it is feasible, so a minimizer exists. In addition, the cost is strictly convex, therefore

the minimizer is unique. Using Karush–Kuhn–Tucker conditions [3], we conclude that the

minimizer (vopt, ropt) minimizes the Lagrangian

1

2
tr(ρv∗v) +

α

2
tr(ρr2) + 〈λ, δ − 1

2
∇∗

L(vρ + ρv) − 1

2
(rρ + ρr)〉

for some multiplier λ ∈ H. It is then straightforward to see (vopt, ropt) = (∇Lλ,
1
α
λ). The

uniqueness of λ follows from that of the minimizer. This completes the proof. �

Given the two tangent vectors δ1, δ2 ∈ H at ρ, the Riemannian-type metric is

〈δ1, δ2〉FR
ρ =

1

2
tr(ρ(∇Lλ1)

∗∇Lλ2 + ρ(∇Lλ2)
∗∇Lλ1) +

1

2α
tr(ρλ1λ2 + ρλ2λ1), (4.2)
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Interpolation of matrices and matrix-valued densities 11

where λi ∈ H, (i = 1, 2) is the unique solution to

δi =
1

2
∇∗

L(∇Lλiρ + ρ∇Lλi) +
1

2α
(λiρ + ρλi). (4.3)

Again, similar to Proposition 1, it can be shown that our distance W2,FR is the geodesic

distance on H++ with the Riemannian-type metric (4.2).

Proposition 2

W2,FR(ρ0, ρ1) = inf
ρ∈H++

∫ 1

0

√
〈ρ̇(t), ρ̇(t)〉FR

ρ(t)dt,

where the minimum is taken over all the continuously differentiable paths on the manifold

H++ satisfying the boundary conditions ρ(0) = ρ0, ρ(1) = ρ1.

Proof The proof is the same as the proof of Proposition 1. �

Therefore, W2,FR(·, ·) indeed defines a metric on H++ and it is intrinsic with respect

to the Riemannian-type metric (4.2). We remark that even though the Riemannian-type

metric (4.2) may not be well defined on the boundary of H+, W2,FR can be extended to

H+ by the continuity with little effort [4]. If ρ(·) is a solution of (4.1), then it possesses

the nice property

W2,FR(ρ(s), ρ(t)) = (t− s)W2,FR(ρ0, ρ1)

for all 0 � s < t � 1. This is based on a simple argument using reparameterization. With

this in mind, we now present a sufficient condition for the existence of geodesics. The

equations (4.4) also characterize the geodesics.

Theorem 3 Suppose there exists λ(·) ∈ C1([0, 1];H) satisfying

λ̇ +
1

2
(∇Lλ)

∗(∇Lλ) +
1

2α
λ2 = 0, (4.4a)

and ρ(·) ∈ C1([0, 1];H++) satisfying

ρ̇ =
1

2
∇∗

L(∇Lλ ρ + ρ∇Lλ) +
1

2α
(λρ + ρλ), (4.4b)

and matching the marginals ρ(0) = ρ0, ρ(1) = ρ1. Then, the triple (ρ, v, r) = (ρ,∇Lλ,
1
α
λ)

solves (4.1).
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12 Y. Chen et al.

Proof Let λ(·) ∈ C1([0, 1];H) be a Lagrangian multiplier for the constraints (4.1b) and

construct the Lagrangian

L(ρ, v, r, λ) =

∫ 1

0

{
1

2
tr(ρv∗v) +

α

2
tr(ρr∗r) + tr(λ(ρ̇− 1

2
∇∗

L(vρ + ρv) − 1

2
(rρ + ρr)))

}
dt

=

∫ 1

0

{
1

2
tr(ρv∗v) − 1

2
tr((∇Lλ)

∗(vρ + ρv)) +
α

2
tr(ρr∗r)

−1

2
tr(λ(rρ + ρr)) − tr(λ̇ρ)

}
dt + tr(λ(1)ρ1) − tr(λ(0)ρ0).

Pointwise minimizing the above over v, r yields

vopt(t) = ∇Lλ(t),

and

ropt(t) =
1

α
λ(t).

The corresponding minimum is

∫ 1

0

{
−1

2
tr(ρ(∇Lλ)

∗(∇Lλ)) −
1

2α
tr(ρλ2) − tr(λ̇ρ)

}
dt + tr(λ(1)ρ1) − tr(λ(0)ρ0).

When λ satisfies (4.4a), the first term of the above becomes 0 and therefore the triple

(ρ, v, r) = (ρ,∇Lλ,
1
α
λ) is a minimizer of the Lagrangian L(ρ, v, r, λ). In view of (4.4b), it is

also feasible. Therefore, it is a minimizer of (4.1). This completes the proof. �

As in the balanced case [6], (4.1) has the following convex reformulation

inf
ρ∈H++ ,u∈CN,s∈C

∫ 1

0

{tr(uρ−1u∗) + α tr(sρ−1s∗)}dt, (4.5a)

ρ̇ =
1

2
∇∗

L(u− ū) +
1

2
(s + s∗), (4.5b)

ρ(0) = ρ0, ρ(1) = ρ1. (4.5c)

Here, we simply used the change of variables u = vρ, s = rρ. The minimum is taken over

all the density flows ρ(·) ∈ C1([0, 1];H++) and fluxes u(·) ∈ C([0, 1]; CN), s(·) ∈ C([0, 1]; C).

Note here we have relaxed the conditions on u, s as in general u, s cannot be written as

vρ, s = rρ for v ∈ SN, r ∈ H. This relaxation, however, does not change the problem by

the following lemma.

Lemma 4 For a given pair ρ ∈ H++, δ ∈ H, let (u, s) = (∇Lλ ρ,
1
α
λρ) with λ being the

unique solution to

δ =
1

2
∇∗

L(∇Lλρ + ρ∇Lλ) +
1

2α
(λρ + ρλ).

Then, it minimizes

tr(uρ−1u∗) + α tr(sρ−1s∗)
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Interpolation of matrices and matrix-valued densities 13

over all u ∈ CN, s ∈ C such that

δ =
1

2
∇∗

L(u− ū) +
1

2
(s + s∗).

Proof Consider the convex optimization problem

min
u∈CN,s∈C

1

2
tr(uρ−1u∗) +

α

2
tr(sρ−1s∗),

δ =
1

2
∇∗

L(u− ū) +
1

2
(s + s∗).

Obviously, it is feasible, so a minimizer exists. Besides, the cost function is strictly convex,

thus the minimizer is unique. By Karush–Kuhn–Tucker conditions, there exists Lagrangian

multiplier λ ∈ H such that the minimizer (uopt, sopt) minimizes the Lagrangian

1

2
tr(uρ−1u∗) +

α

2
tr(sρ−1s∗) + 〈λ, δ − 1

2
∇∗

L(u− ū) − 1

2
(s + s∗)〉,

from which we conclude (uopt, sopt) = (∇Lλ ρ,
1
α
λρ). �

Therefore, for any feasible solution (ρ, u, s) to (4.5), we can always construct (ρ, û, ŝ) =

(ρ,∇Lλρ,
1
α
λρ) such that the cost in (4.5a) stay unchanged.

Remark: In the scalar setting, the dynamic formulation of the interpolation between

Wasserstein and Fish-Rao distance (2.6) can be rewritten in the static form (2.2) with

a special cost function c(·, ·) [15]. This is not the cases in matrix setting. The dynamic

formulation (4.1) does not have a static counterpart.

4.2 Interpolation between Wasserstein and Frobenius

As a straightforward generalization of (2.5), we define, for ρ0, ρ1 ∈ H++,

W2,F (ρ0, ρ1)
2 := inf

ρ∈H++ ,v∈SN,s∈H

∫ 1

0

{tr(ρv∗v) + α tr(s2)}dt, (4.6a)

ρ̇ =
1

2
∇∗

L(vρ + ρv) + s, (4.6b)

ρ(0) = ρ0, ρ(1) = ρ1. (4.6c)

Here, the minimum is taken over all the density flows ρ(·) ∈ C1([0, 1];H++) and velocity

fields v(·) ∈ C([0, 1];SN), s(·) ∈ C([0, 1];H). The second part of the cost corresponds to

the Frobenius metric. More specifically, the Frobenius metric can be rewritten as

‖ρ0 − ρ1‖2
F = inf

ρ∈H,s∈H

{∫ 1

0

tr(s2)dt | ρ̇ = s, ρ(0) = ρ0, ρ(1) = ρ1

}
.
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14 Y. Chen et al.

Lemma 5 For a given pair ρ ∈ H++, δ ∈ H, there is a unique solution to

δ =
1

2
∇∗

L(∇Lλρ + ρ∇Lλ) +
1

α
λ.

Moreover, (v, s) = (∇Lλ,
1
α
λ) is the unique minimizer of

tr(ρv∗v) + α tr(s2)

over all the (v ∈ SN, s ∈ H) satisfying

δ =
1

2
∇∗

L(vρ + ρv) + s.

Proof The proof is omitted as it is almost identical to that of Lemma 2. �

Given any two tangent vectors δ1, δ2 at ρ on H++, the inner product

〈δ1, δ2〉Fρ =
1

2
tr(ρ(∇Lλ1)

∗∇Lλ2 + ρ(∇Lλ2)
∗∇λ1) +

1

α
tr(λ1λ2), (4.7)

endows the manifold H++ a Riemannian-type structure. Here, λi ∈ H, (i = 1, 2) is the

unique solution to

δi =
1

2
∇∗

L(∇Lλiρ + ρ∇Lλi) +
1

α
λi. (4.8)

We note that similar results as those described previously for W2,FR, can be proven for

the distance W2,F . In particular, the latter gives the geodesic distance on H++ with respect

to the Riemannian-type metric (4.7).

Proposition 3

W2,F (ρ0, ρ1) = inf
ρ∈H++

∫ 1

0

√
〈ρ̇(t), ρ̇(t)〉Fρ(t)dt,

where the minimum is taken over all the continuously differentiable paths on the manifold

H++ satisfying the boundary conditions ρ(0) = ρ0, ρ(1) = ρ1.

Proof The proof is the same as the proof of Proposition 1. �

Employing a Lagrangian argument, we obtain the optimality condition and a charac-

terization of the geodesics as follows.

Theorem 6 Suppose there exists λ(·) ∈ C1([0, 1];H) satisfying

λ̇ +
1

2
(∇Lλ)

∗(∇Lλ) = 0 (4.9a)

and ρ(·) ∈ C1([0, 1];H++) satisfying

ρ̇ =
1

2
∇∗

L(∇Lλ ρ + ρ∇Lλ) +
1

α
λ (4.9b)
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Interpolation of matrices and matrix-valued densities 15

and matching the marginals ρ(0) = ρ0, ρ(1) = ρ1. Then, the triple (ρ, v, s) = (ρ,∇Lλ,
1
α
λ)

solves (4.6).

Further, through change of variable u = vρ, we may reformulate (4.6) as the following

convex optimization problem:

inf
ρ∈H++ ,u∈CN,s∈H

∫ 1

0

{tr(uρ−1u∗) + α tr(s2)}dt, (4.10a)

ρ̇ =
1

2
∇∗

L(u− ū) + s, (4.10b)

ρ(0) = ρ0, ρ(1) = ρ1. (4.10c)

The minimum is taken over all the density flows ρ(·) ∈ C1([0, 1];H++) and fluxes u(·) ∈
C([0, 1]; CN), s(·) ∈ C([0, 1];H). Again, the relaxation from u = vρ with v ∈ SN to general

u ∈ CN does not change the minimum by the following lemma.

Lemma 7 For a given pair ρ ∈ H++, δ ∈ H, let (u, s) = (∇Lλ ρ,
1
α
λ) with λ being the unique

solution to

δ =
1

2
∇∗

L(∇Lλρ + ρ∇Lλ) +
1

α
λ.

Then, it minimizes

tr(uρ−1u∗) + α tr(s2)

over all u ∈ CN, s ∈ H such that

δ =
1

2
∇∗

L(u− ū) + s.

Proof The proof is identical to that of Lemma 4. �

Remark: An alternative way to interpolate W2 and the Frobenius metric is

Ŵ2,F (ρ0, ρ1)
2 := inf

ρ∈H++ ,ρ̃1∈H++ ,v∈SN

∫ 1

0

tr(ρv∗v)dt + α‖ρ1 − ρ̃1‖2
F ,

ρ̇ =
1

2
∇∗

L(vρ + ρv),

ρ(0) = ρ0, ρ(1) = ρ̃1,

where the minimum is taken over all ρ̃1 ∈ H++, density flows ρ(·) ∈ C1([0, 1];H++), and

velocity fields v(·) ∈ C([0, 1];SN). This is a non-commutative analogue of (2.4). Note that

in general Ŵ2,F is not a metric.

5 Interpolation of the matrix-valued densities

In applications, it is often the case that one has to deal with the matrix-valued densities

on dimensions which may represent space or frequency. Formally, we define a spatial
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16 Y. Chen et al.

matrix-valued density to be a mapping ρ : E → H+, where E ⊂ �m. For instance, in

the context of multivariable time series analysis, it is natural to consider m = 1 and

E = [−π, π]; see, e.g., [18]. For simplicity, we assume E to be a convex compact set.

Let

E = {ρ(·) | ρ(x) ∈ H+ for x ∈ E such that

∫
E

tr(ρ(x))dx < ∞}, (5.1)

and E+ its interior, namely,

E+ = {ρ(·) | ρ(x) ∈ H++ for x ∈ E such that

∫
E

tr(ρ(x))dx < ∞}.

The tangent space at ρ ∈ E+ is

Tρ = {δ(·) | δ(x) ∈ H for x ∈ E such that

∫
E

| tr(δ(x))|dx < ∞}.

Note that the problem on the subset
∫
E

tr(ρ(x))dx = 1, i.e., the balanced case, has been

studied in [6]. By combining the standard continuity equation on the Euclidean space

and the continuity equation for positive definite matrices (3.4), and taking into the source

term, we obtain a continuity equation on E+ for the flow ρ(t, x) as

∂ρ

∂t
+

1

2
∇x · (wρ + ρw) − 1

2
∇∗

L(vρ + ρv) − 1

2
(rρ + ρr) = 0, (5.2)

or simply

∂ρ

∂t
+

1

2
∇x · (wρ + ρw) − 1

2
∇∗

L(vρ + ρv) − s = 0. (5.3)

Here, ∇x·, the standard divergence operator on �m applies independently to each entry

of wρ+ρw, w(t, x) ∈ Hm is the velocity field along the spacial dimension, and v(t, x) ∈ SN

is the quantum velocity as before. The source term is 1
2
(rρ+ ρr) in (5.2) and s in (5.3). We

next present, based on the continuity equations, both the interpolating distance between

Wasserstein and Fisher-Rao, and the interpolating distance between Wasserstein and

Frobenius metric.

5.1 Interpolation between Wasserstein and Fisher-Rao

A dynamic formulation of matrix-valued OMT between two given marginals ρ0, ρ1 ∈ E+

is

W2,FR(ρ0, ρ1)
2

:= inf
ρ∈E+ ,w∈Hm,v∈SN,r∈H

∫ 1

0

∫
E

{
tr(ρw∗w) + γ tr(ρv∗v) + α tr(ρr2)

}
dxdt, (5.4a)

∂ρ

∂t
+

1

2
∇x · (wρ + ρw) − 1

2
∇∗

L(vρ + ρv) − 1

2
(rρ + ρr) = 0, (5.4b)

ρ(0, ·) = ρ0, ρ(1, ·) = ρ1. (5.4c)

Note that the minimum is taken over all the smooth density flows ρ and velocity fields

w, v, and r with the zero flux boundary conditions (wρ + ρw) ·
n = 0 on ∂E with 
n
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Interpolation of matrices and matrix-valued densities 17

denoting the normal vector of ∂E. The coefficient γ > 0 is arbitrary and weighs in the

relative significance of the two velocity fields w, v. We then define the interpolating distance

W2,FR(ρ0, ρ1) between ρ0 and ρ1 via (5.4 a).

The proof of the existence of minimum of (5.4) is not the focus of this paper and will

be studied somewhere else. Here, we provide a sufficient condition for optimality.

Theorem 8 Suppose there exists smooth λ(·, ·) ∈ H satisfying

∂λ

∂t
+

1

2
(∇xλ)

∗(∇xλ) +
1

2γ
(∇Lλ)

∗(∇Lλ) +
1

2α
λ2 = 0 (5.5a)

and smooth ρ(·) ∈ E+ satisfying

∂ρ

∂t
+

1

2
∇x · (∇xλρ + ρ∇xλ) −

1

2γ
∇∗

L(∇Lλρ + ρ∇Lλ) −
1

2α
(λρ + ρλ) = 0 (5.5b)

and matching the two marginals ρ(0, ·) = ρ0, ρ(1, ·) = ρ1. If in addition, (∇xλρ+ρ∇xλ)·
n = 0

on ∂E, then (ρ, w, v, r) = (ρ,∇xλ,
1
γ
∇Lλ,

1
α
λ) solves (5.4).

Proof Let λ(·, ·) ∈ H be a smooth function and define the Lagrangian

L(ρ, v, w, λ) =

∫ 1

0

∫
E

{
1

2
tr(ρw∗w) +

γ

2
tr(ρv∗v) +

α

2
tr(ρr2)

+ tr(λ(
∂ρ

∂t
+

1

2
∇x · (wρ + ρw) − 1

2
∇∗

L(vρ + ρv) − 1

2
(rρ + ρr)))

}
dxdt.

Integration by parts, in view of the boundary conditions on w, yields

∫ 1

0

∫
E

{
1

2
tr(ρw∗w) +

γ

2
tr(ρv∗v) +

α

2
tr(ρr2)

− tr(
∂λ

∂t
ρ) − 1

2
〈∇xλ, wρ + ρw〉 − 1

2
〈∇Lλ, vρ + ρv〉 − 1

2
tr(λ(rρ + ρr))

}
dxdt.

Here, we have discarded the terms on ρ0, ρ1. Minimizing the above pointwise over w, v

gives expressions for the optimal values as

wopt(t, x) = ∇xλ(t, x),

vopt(t, x) =
1

γ
∇Lλ(t, x),

and

ropt(t, x) =
1

α
λ(t, x).

Substituting these back to the Lagrangian, we obtain

∫ 1

0

∫
E

{
−1

2
tr(ρ(∇xλ)

∗(∇xλ)) −
1

2γ
tr(ρ(∇Lλ)

∗(∇Lλ)) −
1

2α
tr(ρλ2) − tr(ρ

∂λ

∂t
)

}
dxdt.
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18 Y. Chen et al.

Hence, (ρ, w, v, r) = (ρ,∇xλ,
1
γ
∇Lλ,

1
α
λ) minimizes the Lagrangian L. By (5.5b), it is also

feasible. Therefore, it solves (5.4). �

Formally, the Wasserstein distance W2,FR(ρ, ρ+δ) induces a Riemannian-type structure

on the tangent space of Tρ. Given any two tangent vector δ1, δ2 at ρ, we can associate

them with λ1, λ2 by solving

δj = −1

2
∇x · (∇xλjρ+ ρ∇xλj) +

1

2γ
∇∗

L(∇Lλjρ+ ρ∇Lλj) +
1

2α
(λjρ+ ρλj), j = 1, 2, (5.6)

and define the Riemannian-type metric as

〈δ1, δ2〉FR
ρ =

∫
E

{
1

2
tr(ρ(∇xλ1)

∗∇xλ2 + ρ(∇xλ2)
∗∇xλ1)

+
1

2γ
tr(ρ(∇Lλ1)

∗∇Lλ2 + ρ(∇Lλ2)
∗∇Lλ1) +

1

2α
tr(ρλ1λ2 + ρλ2λ1)

}
dx.

Again, W2,FR(·, ·) is a metric on E+ and it is intrinsic. That is,

W2,FR = inf
ρ

∫ 1

0

√√√√〈
∂ρ

∂t
,

∂ρ

∂t

〉FR

ρ(t)

dt,

where the integral is minimized over all the piecewise smooth curves in E+ connecting ρ0

and ρ1. The proof follows the same spirit as that of Proposition 1, but it require much

more delicate analysis as we now need to work on partial differential equations instead

of differential equations. Rigorous proof will be provided somewhere else.

Finally, let q = wρ, u = vρ, s = rρ, then (5.4) can again be cast as a convex optimization

problem

inf
ρ∈E+ ,q∈Cm,u∈CN,s∈C

∫ 1

0

∫
E

{
tr(qρ−1q∗) + γ tr(uρ−1u∗) + α tr(sρ−1s∗)

}
dxdt, (5.7a)

∂ρ

∂t
+

1

2
∇x · (q + q̄) − 1

2
∇∗

L(u− ū) − 1

2
(s + s∗) = 0, (5.7b)

ρ(0, ·) = ρ0, ρ(1, ·) = ρ1. (5.7c)

Note that the minimum is taken over all smooth functions with zero flux boundary

conditions on q.
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5.2 Interpolation between Wasserstein and Frobenius

Given ρ0, ρ1 ∈ E+, we define the interpolating distance between Wasserstein and Frobenius

through

W2,F (ρ0, ρ1)
2 := inf

ρ∈E+ ,w∈Hm,v∈SN,s∈H

∫ 1

0

∫
E

{
tr(ρw∗w) + γ tr(ρv∗v) + α tr(s2)

}
dxdt, (5.8a)

∂ρ

∂t
+

1

2
∇x · (wρ + ρw) − 1

2
∇∗

L(vρ + ρv) − s = 0, (5.8b)

ρ(0, ·) = ρ0, ρ(1, ·) = ρ1. (5.8c)

The minimum is taken over all the piecewise smooth density flows ρ and velocity fields

w, v, and r with the zero flux boundary conditions (wρ + ρw) ·
n = 0 on ∂E. Following

similar argument as in Theorem 8, we arrive at an optimality condition.

Theorem 9 Suppose there exists smooth λ(·, ·) ∈ H satisfying

∂λ

∂t
+

1

2
(∇xλ)

∗(∇xλ) +
1

2γ
(∇Lλ)

∗(∇Lλ) = 0, (5.9a)

and smooth ρ(·) ∈ E+ satisfying

∂ρ

∂t
+

1

2
∇x · (∇xλρ + ρ∇xλ) −

1

2γ
∇∗

L(ρ∇Lλ + ∇Lλρ) − 1

α
λ = 0, (5.9b)

and matching the two marginals ρ(0, ·) = ρ0, ρ(1, ·) = ρ1. If in addition, (∇xλρ+ρ∇xλ)·
n = 0

on ∂E, then (ρ, w, v, s) = (ρ,∇xλ,
1
γ
∇Lλ,

1
α
λ) solves (5.8).

The Wasserstein distance W2,F (ρ, ρ + δ) induces a Riemannian-type structure on the

tangent space of Tρ. Given any two tangent vector δ1, δ2 at ρ, we can associate them with

λ1, λ2 by solving

δj = −1

2
∇x · (∇xλjρ + ρ∇xλj) +

1

2γ
∇∗

L(∇Lλjρ + ρ∇Lλj) +
1

α
λj , j = 1, 2, (5.10)

and define the Riemannian-type metric as

〈δ1, δ2〉Fρ =

∫
E

{
1

2
tr(ρ(∇xλ1)

∗∇xλ2 + ρ(∇xλ2)
∗∇xλ1)

+
1

2γ
tr(ρ(∇Lλ1)

∗∇Lλ2 + ρ(∇Lλ2)
∗∇Lλ1) +

1

α
tr(λ1λ2)

}
dx.

The metric W2,F is intrinsic, namely,

W2,F = inf
ρ

∫ 1

0

√〈
∂ρ

∂t
,

∂ρ

∂t

〉F

ρ(t)

dt,

where the integral is minimized over all the piecewise smooth curves in E+ connecting ρ0

and ρ1.
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Substituting q = wρ and u = vρ, we get a convex formulation

inf
ρ∈E+ ,q∈Cm,u∈CN,s∈H

∫ 1

0

∫
E

{
tr(qρ−1q∗) + γ tr(uρ−1u∗) + α tr(s2)

}
dxdt, (5.11a)

∂ρ

∂t
+

1

2
∇x · (q + q̄) − 1

2
∇∗

L(u− ū) − s = 0, (5.11b)

ρ(0, ·) = ρ0, ρ(1, ·) = ρ1. (5.11c)

The minimum is taken over smooth functions with zero flux boundary conditions on q.

6 Examples

One typical example of the matrix-valued density is the power spectrum density of a

multivariate stochastic signal. The power spectrum of a stationary discrete time stochastic

process is a map from E = [−π, π] to H. The dimension of H is equal to the number of

channels of the signal. The power spectrum describe the power distribution of the signal

among different frequencies as well as the correlation between channels.

When enough data samples are given, one can estimate the power spectrum using

Fourier transform or other similar tools. This is, however, built on the assumption that

the signal is stationary. When the signal is time-varying, its power spectrum will change

as a function of time. This is often the case. To capture the varying of power spectrum,

we can use Fourier transform on small time windows to estimate the power spectrum at

different time points. To connect them through a continuous function of power spectrum,

we need a good method to interpolate these spectra. Next, we show that the interpolation

using our framework makes perfect sense.

Consider two power spectra of two-dimensional signals as shown in Figures 1 and 2.

If we use simply linear interpolation, then the result is shown in Figure 3. It has fade-in

fade-out effect and cannot capture the modalities of the signal. On the other hand, if we

use geodesic interpolation with respect W2,FR or W2,F , we get the spectra flow in Figures

4 and 5, respectively. We can see that the dominant frequencies change slowly from one

to another. In such a way, we are able to capture the moving of the energy peaks in the

signals.

7 Conclusions

Our line of research into unbalanced versions of OMT is motivated by the fact that general

distributions (histograms, power spectra, spatio-temporal energy densities, and images)

may not necessarily be normalized to have the same integral. Thus, it is imperative to

devise appropriate metrics and theory to handle these situations. Our overall aim is to

provide constructions for ‘interpolating’ data in the form of distributions. In the present

work, we have formulated a natural technique that interpolates the quantum mechanical

version of OMT developed in [6] with an analogue of Fisher-Rao information.

In the future work, we plan to establish the existence proofs for our general optimal

transport problems. To achieve this goal, we will focus on the convex reformulations with

weaker assumptions, and follow a similar argument as in [5]. We will also explore the
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Figure 1. ρ0. (a) ρ0(1, 1) and (b) ρ0(2, 2).

Figure 2. ρ1. (a) ρ1(1, 1) and (b) ρ1(2, 2).

Figure 3. Linear interpolation. (a) ρ(1, 1) and (b) ρ(2, 2).
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Figure 4. Interpolation based on W2,FR. (a) ρ(1, 1) and (b) ρ(2, 2).

Figure 5. Interpolation based on W2,F . (a) ρ(1, 1) and (b) ρ(2, 2).

Riemannian-type structure associated to the unbalanced Wasserstein distance and other

variants of the continuity equation. From a more applied side, we plan to apply the

methodology described in the present work to the various types of multi-modal, multi-

sensor, and multi-spectral data. It seems ideal for multiple target estimation as was done

in [18].
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