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ABSTRACT: 14	

Extreme climatic events can lead to rapid yet long-term ecosystem alteration, especially 15	

when such events impact foundation species.  The response and recovery of these 16	

foundation species will depend on the diversity and plasticity of traits within that species.  17	

However, it is often unknown which traits determine foundation species’ performance 18	

under average compared to extreme climatic conditions.  Eelgrass (Zostera marina) is a 19	

marine foundation species distributed along coastlines throughout the northern 20	

hemisphere, on which a unique community of fishes and invertebrates depends.  We 21	

assessed the performance (i.e. productivity) of 36 genotypes of Z. marina across winter 22	

and summer seasons, during one average year (2013) and one year in which summertime 23	
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temperatures were 2.5° C above average (2014).  We used Structural Equation Modeling 24	

to relate trait data to variation in performance of genotypes across environmental 25	

conditions. Genotypes with highest productivity during winter were predicted by traits 26	

related to light capture (leaf length and photosynthetic efficiency).  During the extremely 27	

warm summer, genotypes with lowest winter shoot densities, longest summer leaves, and 28	

the lowest sensitivity to high light (least photoinhibited) achieved highest productivity.  29	

Because traits related to high winter performance differed from traits related to high 30	

summer performance, genotype performance rank order shifted through time.  By directly 31	

linking functional trait differences to performance our results demonstrate how genotypic 32	

composition could be shifted by an extreme climatic event and how genetic diversity may 33	

contribute to population resilience in the face of a changing climate.  34	

 35	

Keywords: Extreme Climatic Events, Ocean Warming, Functional Traits, Genotype 36	

Performance, Zostera marina 37	

 38	

INTRODUCTION:	39	

Anthropogenic climate change is escalating extreme climatic events such as persistent 40	

droughts, high intensity storms, and heat waves (Luterbacher et al. 2004, Schar et al. 41	

2004, Coumou & Rahmstorf 2012). The resilience of species facing extreme climatic 42	

events depends not only on the severity of change, but also on the diversity of functional 43	

traits within a population, the heritability or plasticity in those traits, and the connectivity 44	

between populations (Bernhardt & Leslie 2013).  Extreme conditions can select against 45	

genotypes within a population that are either intolerant of, or unable to acclimate (Chevin 46	
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et al. 2010, Hoffmann & Sgro 2011).  However, the occurrence of extreme climatic 47	

events also creates increased variability in environmental conditions that could promote 48	

or maintain diversity by creating fluctuating selection (Chesson 2000, Shurin et al. 2010), 49	

select for highly plastic “generalist” phenotypes (Moran 1992), and potentially counteract 50	

directional selection by changing climatic means (Adler et al. 2006).   51	

In ecosystems dominated by a sessile and long-lived foundation species, functional 52	

trait diversity and trait plasticity at the genotypic-level will likely play a key role in 53	

determining ecosystem-wide response to extreme climatic events.  Genotypic diversity in 54	

foundation species influences many facets of ecosystem and community processes 55	

(Crutsinger et al. 2006, Johnson et al. 2006, Bangert et al. 2008, Hughes & Stachowicz 56	

2009).  Some evidence shows that intraspecific trait complementarity underlies this 57	

diversity effect (Vavrek et al. 1996, Albert et al. 2011, Hughes and Stachowicz 2011, 58	

Abbott et al. 2017), but links to specific traits have yet to be identified in most cases.  59	

Therefore, to better understand how foundation species will respond to extreme climatic 60	

events it is essential to quantify the diversity in functional traits across genotypes within 61	

populations and relate these traits to genotype performance. However, the link between 62	

traits and performance is complicated and can be the result of a network of direct and 63	

indirect effects, as well as interactions between genetically determined traits, acclimation, 64	

and environmental conditions.  Thus far, simple approaches have had limited success in 65	

identifying how changing climate interacts with trait assemblages to determine 66	

performance.   67	

The temperate seagrass Zostera marina, is a foundation species that forms vast 68	

intertidal and shallow subtidal meadows throughout the northern hemisphere (Moore & 69	
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Short 2006). Z. marina experiences temporal fluctuations in key environmental 70	

parameters such as light, temperature, nutrients, and salinity on both short time scales 71	

(i.e. daily and tidal fluctuations) and on longer time scales (i.e. seasonal and interannual 72	

variation).  Genotypes of Z. marina vary in their physiological and morphological 73	

responses to changes in these environmental parameters (Ehlers et al. 2008, Tomas et al. 74	

2011, Salo et al. 2015, Reynolds et al. 2016).  Difference in genotype response 75	

(genotype-environment interaction) is thought to underlie the diversity effect observed 76	

where Z. marina plots with greater numbers of genotypes are more resilient to 77	

disturbance from extreme warming events, algal blooms and geese grazing (Hughes & 78	

Stachowicz 2004, 2011, Reusch et al. 2005).  Similarly, functional trait diversity 79	

determines the outcome of interactions among eelgrass genotypes (Abbott & Stachowicz 80	

2016) and promotes ecosystem functioning (Abbott et al. 2017).  However, the link 81	

between specific traits and trade-offs in genotype performance across different 82	

environmental conditions is unclear, limiting our ability to predict population responses 83	

based on standing trait diversity.  84	

Here we measured growth and functional traits of 36 genotypes of Z. marina in a 85	

common garden setting for two years (2013-2014) during both the winter and summer 86	

seasons.  We determined if genotype performance rank order, quantified in terms of 87	

aboveground productivity (leaf area production per day), was consistent across seasons 88	

and years that varied in both temperature and light regimes.  In particular, we were 89	

interested in how the extreme ocean warming event in the northern Pacific during 90	

summer 2014 (known as The Blob) (Bond et al. 2015), could have contributed to unusual 91	

patterns in productivity among genotypes.  We use Structural Equation Modeling (SEM) 92	
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as a first attempt to assess which traits might explain variation in plant response to 93	

changing environmental conditions, across winter and summer seasons and during an 94	

extreme ocean warming event.  95	

 96	

METHODS: 97	

Field collection and propagation in common garden 98	

During May 2012 eelgrass (Zostera marina) ramets were collected along 40 m transects 99	

from three tidal heights at five sites within Bodega Harbor, Bodega Bay, CA (see Abbott 100	

et al.  2018 for details and GPS coordinates of collection locations). We identified 219 101	

unique genotypes using 11 microsatellite markers previously designed for Z. marina 102	

(Abbott et al. 2018).  From the original 219 genotypes we selected 36 genotypes to 103	

propagate in common garden that represented individuals from all tidal heights and sites 104	

that included both close genetic relatives and distantly related individuals that were 105	

subsequently demonstrated to cover a broad range of trait space across 17 different traits 106	

(see Abbott et al. 2018).  Leaves and rhizomes of each individual were trimmed (to 30 cm 107	

and 3 cm respectively) and then each ramet was planted in homogenized sediment 108	

collected from Bodega Harbor in 3.79 L plastic flowerpots.  All potted individuals were 109	

kept in a single outdoor tank at the Bodega Marine Laboratory, Bodega Bay, CA.  The 110	

common garden was provided with a constant flow-through supply of seawater, sand 111	

filtered to 30 microns.  Genotypes were grown for a year to allow new side shoots to 112	

develop within the common garden environment.  We rotated the pots once a week to 113	

reduce any position effects created by light or flow gradients within the tank.  We logged 114	

seawater temperature every 15 minutes using an Onset HOBO Light and Temperature 115	
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Pendant (Bourne, MA).  We used the sea surface irradiance (photosynthetically active 116	

radiation, PAR) data from the Bodega Ocean Observing Node (boon.ucdavis.edu/) and 117	

extrapolated these continuous measurements using an extinction coefficient obtained by 118	

measuring average daily irradiance during August 2013 at a 30 cm depth in the common 119	

garden using a Li-COR Spherical Quantum Sensor (unpublished data).  We measured 120	

water column nitrate levels within the common garden by taking three water samples 121	

during each of the 2014 time points (Winter 2014: February 19-21 and 24-25, and 122	

Summer 2014: August 25-29).  These water samples were analyzed for total nitrates 123	

using a LACHAT FIA 8000 series autoanalyzer, (method number 31-107-04-1-E). 124	

 125	

Productivity and Morphology Measurements 126	

We measured productivity and morphology on all 36 genotypes by selecting five clonal 127	

shoots (sub replicates) per pot for trait determination.  We used the “hole punch” method 128	

(see Dennison 1987) to non-destructively determine the leaf growth rates of all leaves on 129	

each shoot measured.  We calculated productivity as the new leaf area (length elongation 130	

multiplied by leaf width) divided by the number of days since initial hole-punch (5-14 131	

days).  We consider leaf productivity a good proxy for plant-level performance because it 132	

is positively correlated with net photosynthesis, metabolic carbon balance, and biomass 133	

change (Dennison 1987), and declines in response to a range of stressors such as light 134	

limitation (Dennison 1987), high temperatures (Hammer et al. 2018), anoxia and sulfide 135	

toxicity (Terrados et al. 1999, Holmer & Bondgaard 2001), and nutrient limitation (Short 136	

1987).  137	
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We also measured shoot level and clonal level traits for each genotype including 138	

shoot length, width, number of leaves per shoot, and shoot density. We considered shoot 139	

density a genotype-specific trait because after an initial increase, all genotypes reached a 140	

stable density that lasted for at least one year (Fig. S2B and C).  Thus, we could not 141	

measure asexual reproduction under these common garden conditions because there was 142	

no net change in shoot density once this stable density was reached.  We were also unable 143	

to assess sexual reproduction (i.e. seed production) as flowering shoots were removed to 144	

prevent the introduction of new genotypes into the common garden.  Productivity and 145	

morphology measurements were taken at four time points including: Winter 2013 146	

(December 19-27, 2012), Summer 2013 (September 18-27, 2013), Winter 2014 (February 147	

19-21 and 24-25, 2014), and Summer 2014  (August 25-29, 2014).  Additionally, we 148	

acquired productivity data from a separate planting of these 36 genotypes in an adjacent 149	

mesocosm during July 2014 (Abbott et al. 2018).  150	

 151	

Chlorophyll fluorescence measurements 152	

We measured Pulse Amplitude Modulation (PAM) chlorophyll fluorescence using a 153	

diving PAM (Walz, Germany) during winter 2014 and summer 2014.  We measured 154	

fluorescence on the same five shoots for each of the 36 genotypes used to obtain 155	

productivity and morphology measurements.  The order of genotypes being measured 156	

was randomized each day, and measurements were taken between 9:00 AM and 2:00 PM 157	

to minimize the effect of diurnal cycles in photosynthesis.  We completed measurements 158	

on all genotypes over five consecutive days.  To take fluorescence measurements, we 159	

placed a 4 mm diameter leaf clip on the outer surface of the third leaf, 20 cm from the 160	
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base of the shoot.  We gently cleaned the leaves of epiphytes using tissues prior to 161	

placing the leaf clip for 30 minutes of dark acclimation.  Maximal yield of photochemical 162	

energy conversion was determined (FV/Fm, i.e. the proportion of photons absorbed into 163	

the photosystem) and a rapid light curve (RLC) was performed immediately after to 164	

assess light adaptation (see Ralph & Gademann 2005).  For the RLC, actinic light from 165	

the diving PAM was applied in 8 incremental steps from 0 to 1400 µmol photons m−	2	s−	1, 166	

and the resulting yield measurements were converted to relative electron transport rates 167	

(ETR) using the equation: 168	

 169	

ETR = YIELD x PAR x 0.5 x AF 170	

 171	

where AF is the absorption factor of the leaf (a reasonable estimate of AF = 0.55 was 172	

used; see Cummings & Zimmerman 2003, Durako 2007), and 0.5 assumes that photons 173	

absorbed are equally distributed between photosystems I and II (Genty et al. 1989).  174	

Data were fit to a double exponential decay function (Ralph & Gademann 2005),  175	

 176	

rETR = Ps(1 – e –(α Ed/Ps)) e –(β Ed/Ps) 177	

 178	

where Ps is the scaling factor that defines the maximum potential rETR (relative electron 179	

transport rate) and Ed is the irradiance (PAR) for any given step within a RLC.  We 180	

determined the light-harvesting efficiency (α, the initial slope of the curve), and a metric 181	

for photoinhibition (β, the declining slope of the curve).  From curve coefficients we 182	

calculated maximum relative election transport rate (rETRMAX, the asymptote of the 183	
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curve—a measure of the photosystem’s capacity to use absorbed light), Ek (minimum 184	

saturating irradiance), and Em (minimum irradiance for onset of photoinhibition) (Ralph 185	

& Gademann 2005). Curve fitting and parameter calculations were done in R (version 186	

3.0.2, www.R-project.org) 187	

 188	

Data analyses 189	

First, we used our data to describe seasonal and interannual variation in environmental 190	

parameters and productivity.  Differences among environmental parameters across 191	

seasons were evaluated using a one-way ANOVA using daily averages for each day that 192	

trait measurements were taken for the following: temperature, maximum irradiance (Imax), 193	

hours of saturating irradiance (Hsat, based on ETR’s calculated above), and water column 194	

nitrate.  In order to assess how productivity in the common garden varied through time, 195	

we compared the average productivity of all genotypes combined across all four time 196	

points using repeated-measures ANOVA.  We also compared variation in common 197	

garden-level average productivity, morphology, and photosynthetic parameters between 198	

winter and summer 2014 using a paired T-test.  We tested for correlations between the 199	

average productivity in the common garden at five different time points (including the 200	

fifth time point from Abbott et al. 2018) and three environmental parameters: 201	

temperature, Imax, and Hsat.  202	

 203	

Next, we assessed how the productivity of individual genotypes varied over time and in 204	

response to environmental changes. For each time point, we averaged the five shoot-level 205	

productivity measurements (sub-replicates) to estimate mean productivity for each 206	
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genotype.  We then assessed whether genotype rank order for productivity was consistent 207	

across seasons using Kendall’s Rank Correlation.  208	

 209	

Within 2014, we observed strong differences among genotype rank productivity in 210	

summer compared to winter (see Results).  We used observed-variable Structural 211	

Equation Modeling (SEM) to investigate how differences in morphological and 212	

photosynthetic traits contributed to this variation.  First, we selected five traits out of the 213	

11 measured that we hypothesized to have the greatest influence on productivity and 214	

were least redundant in terms of quantifying genotype physiology (see Table S1 in 215	

supplement for justification).  We then averaged the five shoot-level measurements (sub-216	

replicates) to obtain one trait value for each genotype during each season: winter and 217	

summer 2014.  We standardized trait data into z-scores to allow for comparisons of traits 218	

with different units of measurement.  We then confirmed that data were multivariate 219	

normal using the Mardia’s Multivariate Normality Test from the R-package “MVN” 220	

(Korkmaz et al. 2014).  We started with a meta-SEM that incorporated all five traits at 221	

each time point (see Results), and then through an exploratory model building process 222	

attained more parsimonious models by consecutively removing insignificant paths until 223	

all remaining paths were significant.  We then explored additional paths suggested by the 224	

model’s Modification Indices, which identify potential missing correlations based on 225	

global estimation of the model.  For the nested candidate models that fit the data, we used 226	

Akaike Information Criterion (AIC) (Mitchell 1992, Preacher 2006, Grace et al. 2010), 227	

and knowledge of Z. marina physiology from the literature to select the most likely 228	

model (Fig 4B, Table 2, Table S1).  We confirmed that the residuals of the selected 229	



Traits	predict	genotype	performance	during	warming	

11	
	

model were multivariate normal.  SEM was performed in the R-package “lavaan” 230	

(Rosseel 2012).  All data analyses were done in R (version 3.0.2, www.R-project.org). 231	

 232	

RESULTS: 233	

Seasonal Trends in Common Garden-level Productivity and Environmental Parameters  234	

Average productivity of all 36 genotypes combined during Summer 2014 was almost 235	

double that of the prior three seasons, which differed little from each other (p < 0.001, 236	

F3,102 = 40.58; post hoc Tukey p < 0.001) (Fig 1A).  This large spike in Summer 2014 237	

productivity coincided with summer seawater temperatures that were 2.5°C warmer than 238	

the other three time points (p < 0.001, F3,45 = 185; post hoc Tukey p < 0.001) (Fig 1B)   239	

and over 3 standard deviations higher than average summer seawater temperature 240	

recorded at the site over the previous 27 years (see supplement, Fig S1). There is a strong 241	

positive relationship between average productivity of the 36 genotypes in common 242	

garden and seawater temperature (p = 0.009, R2 = 0.94), at least for temperatures ranging 243	

from 11 °C to 17 °C (Fig 2).   244	

In contrast, although other environmental parameters such as Hsat and Imax varied 245	

across seasons and years (Fig 1C & D), this variation was uncorrelated with the average 246	

productivity of the genotypes (p = 0.119, R2 = 0.781 and p = 0.456, R2 = 0.44 247	

respectively, see supplement Fig S3).  Hsat varied by season (i.e. three hours longer in the 248	

summer than winter) but was not significantly different between the summers (p < 0.001, 249	

F3,48 = 64.61; post hoc Tukey, summer comparison: p = 0.68) (Fig 1D), even though the 250	

two summers differed considerably in productivity. Average maximum irradiance did not 251	

differ between winters, but was significantly lower during summer 2014, when 252	
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productivity was highest (p < 0.001, F3,49 = 20.89; post hoc Tukey, winter comparison: p 253	

= 0.937, summer comparison: p < 0.001) (Fig 1C).  Average water column nitrate during 254	

summer 2014 was significantly lower than during the winter 2014 time point, 9.64 ± 0.44 255	

µM and 12.17 ± 0.22 µM respectively (p = 0.002, t = 7.37, df = 3.951), contrary to what 256	

would be expected if nitrate differences among seasons led to productivity differences. 257	

Most morphological traits averaged across all genotypes (shoot width, leaf count, 258	

and shoot density) did not change significantly between time points, although shoots 259	

were overall longer in the summer than winter (Table 1).  PAM fluorometry 260	

measurements revealed physiological changes consistent with acclimation to higher light 261	

conditions in the summer including increased maximum electron transport rate within 262	

photosystem II (rETRmax) and photosynthetic efficiency (α, represented as the rising slope 263	

of the rapid light curve). Dark Acclimated Yield (a measure of the photosystems’ ability 264	

to harvest electrons that is sensitive to environmental stressors) decreased from winter 265	

2014 to summer 2014 (Table 1).  Other PAM measurements did not change between 266	

winter and summer 2014 time points (Table 1). 267	

 268	

Rank Order of Genotype Productivity Across Seasons 269	

Despite increased productivity when averaged across all genotypes during summer 2014, 270	

individual genotypes varied considerably in their response to elevated temperatures such 271	

that productivity of individual genotypes under increased temperatures was not predicted 272	

by productivity at cooler temperatures.  Ranked order of performance (productivity) 273	

among genotypes in summer 2014 was uncorrelated with genotype rank during previous 274	

season (Fig 3C; p = 0.525, τ = 0.08).   In contrast, rank order was very consistent across 275	
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summers and winters between the other three time points that did not differ much in 276	

mean temperature.  Genotypes with the highest productivity in summer 2013 also ranked 277	

the highest in productivity during winter 2013 and winter 2014 (Fig 3A-B; p < 0.001, τ= 278	

0.41; and p = 0.011, τ = 0.30 respectively).  279	

 280	

Explaining variation among genotypes in response to unusual warming 281	

SEM revealed traits predictive of individual genotype productivity and how trait variation 282	

resulted in shifts in rank order of genotype performance between winter and summer 283	

2014.  The best fitting model included the following predictor variables: shoot length, 284	

shoot density, photosynthetic efficiency (α), and summer photoinhibition (β) (Table 2, 285	

Fig 4).  The model better explains variation among genotype productivity during the 286	

summer (54%) than during the winter (32%). During winter 2014, genotypes with greater 287	

photosynthetic efficiency (α) and greater shoot length achieved the highest productivity.  288	

In contrast, during summer 2014 the genotypes with the lowest winter shoot densities, 289	

greater summer shoot length, and least sensitive to summer photoinhibition (β), achieved 290	

the highest productivity.   291	

The SEM did not find a direct relationship between winter productivity and 292	

summer productivity, and indirect pathways between these were both positive and 293	

negative.  For example, genotypes with greater winter productivity had longer summer 294	

shoots, which had a direct positive effect on summer productivity and an indirect 295	

negative effect on summer productivity mediated by increasing susceptibility to summer 296	

photoinhibition.  Thus, the SEM results are consistent with our finding that rank order in 297	

genotype productivity was uncorrelated across these seasons (Fig 3C).    298	
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We also found links between traits across seasons that influenced productivity.  299	

Winter productivity was increased by greater winter photosynthetic efficiency (α) and 300	

shoot length during this light limited period.  Winter and summer α were positively 301	

correlated, indicating a likely genetic component to the trait.  However, summer 302	

photosynthetic efficiency (α) did not directly affect summer productivity, instead summer 303	

α indirectly increased productivity by decreasing susceptibility to summer 304	

photoinhibition (β).  In turn, summer photoinhibition (β) decreased summer productivity.  305	

Additionally, traits in one season could directly affect production in another: winter shoot 306	

density directly and negatively affected summer productivity.    307	

 308	

DISCUSSION: 309	

Although temperature was strongly positively correlated with mean eelgrass productivity 310	

across seasons and years (Fig 2), this did not result from uniform increases in productivity of all 311	

genotypes with temperature (Fig 3).  There was a clear shuffling of genotype productivity rank 312	

that was associated with the anomalously warm summer of 2014 (Fig 1).  For several reasons it 313	

seems likely that temperature (rather than light) was responsible for the changes in the rank order 314	

of genotype productivity that we observed across seasons in 2014.  First, there was a positive 315	

correlation in the rank order of genotype productivity between winter 2013 and summer 2013 316	

(Fig 3), which had similar mean temperatures, but different light levels (Fig 1).  Second, in a 317	

separate study, we found that experimentally mimicking the summer 2014 warming event 318	

differentially affected shoot production among Z. marina genotypes (Reynolds et al. 319	

2016).  Thus, our results suggest that extreme events can shift genotypic productivity rank order, 320	

and to the extent that productivity differences translate to relative abundances of clonal plants in 321	

the field (Pan & Price 2001), influence genotypic composition and ecosystem function. 322	



Traits	predict	genotype	performance	during	warming	

15	
	

Differences in the morphological and photosynthetic traits appear to underlie the variable 323	

response of genotypes through time (Fig 4). Our analysis provides evidence that the same traits 324	

can have different effects on productivity across seasons, due to both direct and indirect linkages 325	

between traits and production that are revealed by structural equation modeling.  Below we detail 326	

several pathways that may contribute to the positive correlation in growth among genotypes in 327	

some years (winter-summer 2013) and lack of correlation in others (winter-summer 2014). 328	

First, in winter when light conditions are lowest, genotypes with high photosynthetic 329	

efficiency (i.e., large α) or longer shoots (i.e. more photosynthetic tissue) had greatest 330	

productivity (Fig 4B).  Winter genotypes with high productivity had longer summer leaves, which 331	

led to both a direct increase and an indirect decrease in summer productivity.  Genotypes with 332	

long summer leaves were most sensitive to high light conditions, expressed as higher 333	

photoinhibition (i.e. large β), which decreased summer productivity (Fig 4B). Summer shoot 334	

length could result in increased photoinhibition if longer leaves were older and thus less efficient 335	

or more damaged from grazing or epiphytes (Ralph et al. 2005, Alcoverro et al. 1998).  The 336	

positive relationship between shoot length and photoinhibition could be strengthened by stressful, 337	

high temperatures because enzyme processes that reduce photoinhibition are damaged when 338	

seagrass experiences temperature stress (Campbell et al. 2006, Lee et al. 2007).  This would 339	

counteract positive relationships between shoot length and productivity, decoupling genotype 340	

rank order between the winter and summer of 2014 (Fig 3C).  Consistent with this, in the cooler 341	

year of 2013, there was a positive correlation between summer and winter productivity, 342	

suggesting that in the absence of temperature stress the direct positive effect of shoot length (Fig. 343	

S8) outweighs the indirect negative effect of photoinhibition. 344	

A second pathway within our SEM highlights how genetically determined traits can 345	

cause legacy effects that can produce an unfit phenotype in future contexts.  Shoot density is a 346	

genotype specific trait that remained stable after genotypes reach individual carrying capacity 347	

after one year in common garden (Fig S2), and winter shoot density has a negative effect on 348	
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summer productivity.  It is possible that this negative legacy effect of winter shoot density on 349	

productivity during an extremely hot summer is due to genotypic differences in stored 350	

carbohydrates which buffer seagrass production under seasonal stress (Zimmerman et al. 1995, 351	

Alcoverro et al. 2001, Govers et al. 2015). Overwintering in high-density ramets decreases stored 352	

carbohydrates and survival by increasing winter respiratory demand (Vermaat & Verhagen 1996, 353	

Alcoverro et al. 2001). If relative differences in carbohydrate stores are persistent, genotypes with 354	

high shoot density during the winter could have fewer stored carbohydrates to maintain relative 355	

productivity during a period of extremely high temperatures.   356	

Alternatively, winter and summer shoot densities are highly correlated, and it is possible 357	

that high summer shoot densities could decrease productivity via self-shading (Dennison 1987, 358	

Vermaat & Verhagen 1996, Ralph et al. 2007).   However, we found evidence that 359	

photoinhibition at the base of the plant negatively affected summer productivity (Fig 4), 360	

suggesting that even beneath the canopy light was not limiting.  Furthermore, differences in light 361	

levels as a function of shoot density were modest: using light extinction coefficients measured in 362	

the common garden for the densest genotype (k = 0.29) and adjacent clear water (k = 0.79) we 363	

found that across all genotypes, the number of hours of saturating irradiance to be greater than 10 364	

and differ by only about 10% within vs outside the eelgrass canopy.  Consequently, our data do 365	

not support summer self-shading as a mechanism linking summer shoot density and productivity 366	

in our mesocosms.  Regardless of how winter density is mechanistically linked to summer 367	

productivity, shoot density was not related to winter productivity but did negatively influence 368	

summer productivity, predominantly driving the change of genotype rank during summer 2014.   369	

While the two pathways described above link photophysiological and morphological 370	

traits to shifts in genotype relative performance through negative correlations, other pathways 371	

simultaneously reveal robust positive correlations through time.  For example, photosynthetic 372	

efficiency (α) ultimately has a positive effect on productivity in both seasons, but the mechanism 373	

by which the trait acts in each season differs.  During the summer, the positive effect of 374	
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photosynthetic efficiency (α) was achieved by reducing the impact of photoinhibition (β) on 375	

productivity.  Under high light conditions, the fraction of excitation energy that can be used in 376	

photochemistry becomes less, allowing excess energy to cause greater photodamage in the PSII 377	

and greater photoinhibition (Lambers et al. 2008).  Consequently, genotypes that are more 378	

efficient at light capture could be less likely to accumulate damage to photosystem II, as seen in 379	

the negative path connecting summer photosynthetic efficiency to summer photoinhibition.  In 380	

the winter, under low-light conditions, high photosynthetic efficiency (α) directly increases 381	

productivity by allowing for better light harvesting.  Thus, genotypes characterized by higher 382	

photosynthetic efficiency are predicted to perform better in both seasons, but for different 383	

reasons.  However, under the warmer summer conditions of 2014, simultaneous positive and 384	

negative correlations between traits and performance result in the lack of correlated genotype 385	

performance through time, and demonstrate how a suite of functional traits is required to tease 386	

apart the complex mechanisms underlying changing genotype performance across seasons and 387	

years. 388	

As foundation species are critical to ecosystem functioning, understanding the 389	

links between traits within and performance of foundation species can have broad, 390	

ecosystem-level implications.  Additionally, the importance of facilitative interactions 391	

from foundation species should become increasingly important as environmental stress 392	

increases (Bruno et al. 2003, Anthelme et al. 2014), and will be essential for maintenance 393	

of associated species diversity when these species are limited in ability to adapt or 394	

acclimate (Michalet et al. 2006, Bulleri et al. 2015).  Idiosyncratic differences in 395	

community response to extreme warming events have been linked to differences among 396	

species in their functional traits (reviewed in Brotherton & Joyce 2015).  In eelgrass, 397	

intraspecific trait diversity enhances biomass accumulation and invertebrate grazer 398	

abundance (Abbott et al. 2017), influences the outcome of intraspecific interactions 399	
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(Abbott and Stachowicz 2016) and likely underlies the observed relationship between 400	

genotypic diversity and ecosystem functioning (Hughes and Stachowicz 2004, 2011, 401	

Ruesch et al. 2005, Duffy et al. 2015).  Beyond eelgrass, decreased variability in 402	

photophysiological traits and genetic diversity of kelps was associated with population 403	

decline after an extreme warming event (Wernberg 2018), suggesting that links between 404	

trait diversity and the maintenance of foundation species’ biomass and functioning may 405	

be widespread.  Our results demonstrate that variability in response to changing 406	

environmental conditions (such as seasonal fluctuations or extreme climatic events) can 407	

only be understood as the result of multiple physiological and morphological processes 408	

(Kraft et al.  2015), and that the net effect of these processes is context 409	

dependent.  Clarifying the suites of traits that drive individuals’ responses to a changing 410	

environment, as well as describing the distribution of functional trait variation within and 411	

among populations, should improve predictions of which populations are most vulnerable 412	

to extreme events.  413	
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	575	
 576	

 577	

 578	

 579	

TABLES: 580	

Table 1.  Paired t-test comparison of trait values during winter and summer 2014 averaged across all 36 581	
genotypes. Mean ± SD. 582	
Parameters Season p-value 
  Winter 

(n=36) 
Summer 
(n=36) 

 

    
Productivity (cm2 day-1) 1.51 ± 0.46 3.17 ± 1.04 <0.001 
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Shoot Length (cm) 60.59 ± 13.63 96.96 ± 11.92 <0.001 
Shoot Width (cm) 6.29 ± 0.77 6.49 ± 0.78 0.28 
Leaf Count 3.28 ± 0.39 3.12 ± 0.33 0.07 
Shoot Density (shoots m-2) 518 ± 336 561 ± 337 0.33 

Dark Acclimated Yield (%)  0.75 ± 0.21 0.72 ± 0.04 <0.001 
Photosynthetic Efficiency (α) 0.21 ± 0.04 0.23 ± 0.05 0.02 
Photoinhibition (β) 0.009 ± 0.004 0.009 ± 0.005 0.99 

  Maximum Electron Transport Rate           
(rETRmax , µmol electrons m-2 s-1) 

4.12 ± 0.45 4.68 ± 0.60 <0.001 

Saturating Irradiance  
(Ek,  µmol photons m-2 s-1) 

57.73 ± 9.43 58.47 ± 11.07 0.76 

Downwelling Irradiance  
(Em, µmol photons m-2 s-1) 

356.15 ± 140.01 317.22 ± 121.79 0.21 

 583	
 584	
 585	
 586	
 587	
 588	
 589	
 590	
 591	
 592	
 593	
 594	
 595	
 596	
 597	
 598	
 599	
 600	
 601	
 602	
 603	
 604	
	605	
	606	
Table	2.	Candidate	path	models	(see	Fig	4A	for	meta-model).	Model	7	was	selected	607	
as	the	final	model	and	drawn	in	Fig	4B.		Models	4-7	are	all	similar	and	all	fit	the	data.	608	
Model	 Description	 MF	Test	Stat.	 DF	 Fit	(P)	 AIC	
1	 Full	Meta-Model:	includes	all	traits	(Fig	4A)	 60.4	 35	 0.005	 NA	
2	 Removed	cross	season	correlations	between	

shoot	length,	photoinhibition,	and	
maximum	electron	transport	rate	

62.5	 38	 0.007	 NA	

3	 Removed	maximum	electron	transport	rate	
completely,	and	link	between	winter	
productivity	to	summer	photosynthetic	
efficiency	

41.9	 26	 0.025	 NA	
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4	 Added	links:	winter	shoot	density	to	
summer	productivity,	summer	shoot	length	
to	summer	shoot	density,	and	summer	
shoot	length	to	summer	photoinhibition	

25.3	 21	 0.234	 564.27	

5	 Removed	non-significant	link	between	
summer	shoot	length	and	summer	shoot	
density	

27.3	 22	 0.199	 564.28	

6	 Removed	non-significant	link	between	
summer	shoot	density	and	summer	
productivity	

27.0	 21	 0.168	 566.05	

7	 Added	significant	link	between	summer	
photosynthetic	efficiency	and	summer	
photoinhibition	

24.0	 22	 0.345	 561.01	

Model	fit	was	determined	using	a	chi-squared	test	of	model	fit	(Fit	(P)),	P-values	greater	than	0.05	609	
denote	good	model	fit.		Models	that	fit	the	data	were	compared	using	Akaike	Information	Criterion	610	
(AIC).		611	
 612	

 613	

FIGURE CAPTIONS: 614	

Figure 1. Average productivity for all 36 genotypes was significantly higher in the 615	

summer of 2014 (A), as was average seawater temperature (B). Photoperiod varied by 616	

season but was not significantly different between summers (C). Average maximum 617	

irradiance varied across time points but not predictably by season (D) Letters indicate 618	

statistically similar groups. N=36. 619	

 620	

Figure 2. Temperature is significantly correlated with the average productivity of the 36 621	

genotypes (p = 0.009, R2 = 0.94).  Circles denotes measurements taken on common 622	

garden plants, triangles are data taken on all 36 genotypes in separate experiment (Abbott 623	

et al. 2018) during July of 2014.  Error bars show standard deviation around the mean. 624	

 625	

Figure 3. Kendall’s Rank Correlations for 36 genotypes ranked by average productivity 626	
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between four consecutive time points, Winter 2013-Summer 2013 (A. p < 0.001, τ = 627	

0.41), Summer 2013-Winter 2014 (B. p = 0.011, τ = 0.30), and Winter 2014-Summer 628	

2014 (C. p = 0.525, τ = 0.07). Shaded regions denote 95% confidence interval. Data 629	

shown in C. are the same productivity data used in SEM (See Fig 4). N = 36 630	

 631	

Figure 4.  Path diagrams of the theoretical meta-model (A.) and the selected model (B.). 632	

The selected model (B.) demonstrates that traits related to productivity differ between 633	

time points and that changes in relative productivity among genotypes during summer 634	

2014 were primarily driven by a legacy effect of winter shoot density. Gray shaded 635	

variables are winter 2014 measurements, unshaded variables are summer 2014 636	

measurements.  In the selected model (B.) all black paths are significant.  Coefficients of 637	

determination are shown in bold by the endogenous variables: winter productivity, 638	

summer productivity, summer shoot density, summer shoot length, summer 639	

photosynthetic efficiency, and summer photoinhibition.  Path regression coefficients are 640	

standardized.  Arrow sizes are proportional to the strength of the relationship.  N = 72 641	

 642	

 643	

 644	

FIGURES: 645	

Figure 1. 646	
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 652	

 653	

Figure 2. 654	
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SUPPELEMENTAL TABLE: 673	

Table S1. Physiological justifications for the relationships included in the Meta-SEM and 674	

additional paths added to the selected model (Fig 4). 675	

 Path Justification 
Meta-Model Photosynthetic 

efficiency (〈) to 
productivity 

In seagrass electron transport as measured 
with PAM fluorometry is positively 
correlated with photosynthesis as measured 
by oxygen evolution (Beer et al. 1998), 
thus it seems plausible that photosynthetic 
efficiency could be a limiting step in 
photosynthesis and plant growth.  

 Photoinhibition (β) 
to productivity 

In seagrass electron transport as measured 
with PAM fluorometry is positively 
correlated with photosynthesis as measured 
by oxygen evolution (Beer et al. 1998), 
thus it seems plausible that photoinhibition 
could be a limiting step in photosynthesis 
and plant growth. 

 Relative maximum 
electron transport 
rate (rETRmax) to 
productivity 

In seagrass electron transport as measured 
with PAM fluorometry is positively 
correlated with photosynthesis as measured 
by oxygen evolution (Beer et al. 1998), 
thus it seems plausible that relative 
maximum electron transport rate could be a 
limiting step in photosynthesis and plant 
growth. 

 Shoot length to 
productivity 

Increasing leaf area (i.e. leaf length) can 
lead to higher efficiency in carbon fixation 
per unit dry mass and is usually associated 
with faster relative growth rates (Lambers 
& Poorter 1992). Longer Z. marina sheath 
lengths are correlated to faster absolute 
growth rates (Ruesink et al. 2018). 

 Shoot Density to 
productivity 

Z. marina shoot density in the field is 
thought to lower productivity through self-
shading (Olesen B & Sand-Jensen K 1994), 
and might also increase respiratory burden 
of large clones during times of stress 
(Vermaat & Verhagen 1996) 

 Traits across both Z. marina traits are distinct among 
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time points genotypes (Tomas et al. 2011), if these trait 
differences are genetically based it is 
possible that relative trait values across 
genotypes would be maintain through time. 

 Productivity across 
both time points 

Based on Kendall Rank Correlation 
analysis (Fig 3) we were not expecting 
genotype productivity to be correlated 
through time. Relative performance (i.e. 
productivity) among genotypes could be 
uncorrelated across environments that 
allowed trait differences to be expressed 
(Gillespie & Turelli 1989) 

Additional paths 
added to selected 
model (Model 7) 

Summer 
photosynthetic 
efficiency (〈) to 
summer 
photoinhibition (β) 

More efficient light capture under stressful 
and high light conditions should reduce the 
amount of excess light capable of causing 
photodamage in the PSII and subsequent 
increase in photoinhibition (Lambers et al. 
2008) 

 Summer shoot 
length to summer 
photoinhibition (β) 

Two possible mechanisms by which 
summer shoot length could result in an 
increase in photoinhibition include 1) 
greater self-shading by longer leaves, or 2) 
if longer leaves were older (Ralph et al. 
2005, Alcoverro et al. 1998).   

 Winter productivity 
to summer shoot 
length 

It seems reasonable that greater growth in 
the winter could cause shoots to be longer 
in the following season.   

 Winter shoot 
density to summer 
productivity 

Shoot density and ramet size have been 
linked to stored carbohydrate levels within 
the rhizome (Vermaat & Verhagen 1996, 
Govers et al. 2015).  In particular, 
overwintering in smaller ramets increases 
stored carbohydrates and survival by 
lowering winter respiratory demand 
(Vermaat & Verhagen 1996, Alcoverro et 
al. 2001).  Therefore, genotypes 
maintaining higher shoot densities during 
the winter could incur a greater cost in 
terms of using carbohydrate stores.  If the 
relative difference in carbohydrate stores is 
persistent, then during times of future 
stress these genotypes would be at a 
disadvantage. 

 676	
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SUPPELEMENTAL FIGURES: 677	

FIGURE CAPTIONS: 678	

Figure S1. Average summer temperature during 2014 (vertical dashed line) was 3.35 679	

standard deviations higher than the long-term summer average at the Bodega Marine 680	

Laboratory, Bodega Bay, CA.  Data shown are summer averages (July-September) since 681	

1988, calculated from the Bodega Ocean Observing Node (BOON) dataset 682	

(www.boon.ucdavis.edu).   683	

 684	

Figure S2. Shoot counts (i.e. number of shoots within a pot, effectively shoot density) 685	

stabilize after the first year in common garden.  Six months after the common garden was 686	

planted counts range from 1-15, then 1 year after planting counts range from 1-30 (A & 687	

B). Shoot counts reach a range of 5-60 during Winter 2014 (B).  Shoot counts remain 688	

stable for all of 2014 (C).  689	

 690	

Figure S3. There is potentially an effect of hours of saturating irradiance (Hsat) on 691	

average productivity of the 36 genotypes (p = 0.12, R2 = 0.61), driven by seasonal 692	

differences in daylight hours (A).  There is no relationship between maximum irradiance 693	

(Imax) and productivity (B). Circles are data take from genotypes in common 694	

garden.  Triangle are data taken on 36 genotypes in separate experiment (Abbott et al. 695	

2018) during July 2014. 696	

Figure S4. Raw productivity (A), shoot count (B), and length (C) trait data for all 36 697	

genotypes comparing winter 2013 with winter 2014.  Trait variation among the 36 698	
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genotypes is maintained or increases through time.  Dashed line is the 1:1 correspondence 699	

line. 700	

 701	

Figure S5. Raw	productivity	estimates	for	all	36	genotypes	comparing	adjacent	time	702	

points	(A)	Winter	2013-Summer	2013,	(B)	Summer	2013-Winter	2014,	(C)	Winter	2014-703	

Summer	2013.	Dashed	line	is	the	1:1	correspondence	line.	704	

 705	

Figure S6. Raw	productivity	estimates	for	all	36	genotypes	comparing	the	same	seasons	706	

across	years	including	a	(A)	winter	comparison,	and	a	(B)	summer	comparison.	Dashed	707	

line	is	the	1:1	correspondence	line.	708	

 709	

Figure S7. There	is	no	correlation	in	productivity	between	the	same	seasons	across	710	

years	for	(A)	winter,	and	(B)	summer.		If	temperature	shifts	genotype	rank	during	711	

summer	2014,	we	would	not	expect	there	to	be	a	correlation	across	summers	when	712	

temperature	varied.		The	lack	of	correlation	across	the	two	winters	(which	had	similar	713	

temperature	and	light	conditions)	could	be	because	genotypes	had	only	been	in	714	

common	garden	for	four	month	by	winter	2013	and	were	acclimating	to	garden	715	

conditions	at	different	rates.	716	

 717	

Figure S8. Measured	variable	SEM	for	all	36	genotypes	during	2013.		As	demonstrated	718	

in	the	2014	SEM,	there	is	a	robust	positive	feedback	between	shoot	length	and	719	

productivity.		Contrary	to	the	2014	SEM,	winter	shoot	count	(i.e.	shoot	density)	does	not	720	
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)0,76$+H/$!$R"*M"6/$TU"-""7VF$$OW$X$5FYY?B$GW$X$ZB$W,+9!;$X$>FYZ5B$[$X$\>F :6='
:64'

Figure S9. Kendall’s Rank Correlations for 36 genotypes ranked by average productivity :65'

between four consecutive time points, Winter 2013-Summer 2013 (A. p < 0.001, # = :66'

0.41), Summer 2013-Winter 2014 (B. p = 0.011, # = 0.30), and Winter 2014-Summer :67'

2014 (C. p = 0.525, # = 0.07). Shaded regions denote 95% confidence interval. Labels are :68'

genotype ID numbers. Data shown in C. are the same productivity data used in SEM (See :69'

Fig 4). N = 36 :6:'

:6;'
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:74'

Figure S1. :75'

:76'
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Figure S5757	
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Figure S6759	
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Figure S7 762	
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