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Dynamic Relations in Sampled Processes
Tryphon T. Georgiou , Fellow, IEEE , and Anders Lindquist , Life Fellow, IEEE

Abstract—Linear dynamical relations that may exist in
continuous-time, or at some natural sampling rate, are
not directly discernable at reduced observational sampling
rates. Indeed, at reduced rates, matricial spectral densi-
ties of vectorial time series have maximal rank and thereby
cannot be used to ascertain potential dynamic relations
between their entries. This hitherto undeclared source of
inaccuracies appears to plague off-the-shelf identification
techniques seeking remedy in hypothetical observational
noise. In this letter we explain the exact relation between
stochastic models at different sampling rates and show
how to construct stochastic models at the finest time
scale that data allows. We then point out that the correct
number of dynamical dependencies can only be ascer-
tained by considering stochastic models at this finest time
scale, which in general is faster than the observational
sampling rate.

Index Terms—Identification, stochastic systems.

I. INTRODUCTION

SUPPOSE that we seek to identify linear dynamical
relations that may exist between the components of a

continuous-time process. What is typically available to us is
the discrete-time sampled process (time series) of measure-
ments collected at a given finite sampling rate. In this letter
we are not concerned with issues of statistical estimation but
instead assume that we can determine sufficiently accurately
the spectral density of the sampled process. The theme of this
letter is on how, from the model parameters of the sampled
process, one may obtain a maximal number of dependencies
between the entries of the process at a suitably finer time scale.

Modern-day applications, which aim towards high dimen-
sional data and possibly varying sampling protocols, fur-
ther underscore the importance of a careful consideration
of how sampling affects dependencies. For example, con-
sider a network as in Figure 1 with a continuous stationary
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Fig. 1. Processes in a network environment.

stochastic vector process ζ = (ζ1, ζ2, . . . , ζp)
′, whose com-

ponents correspond to specific nodes. Suppose there is a
deterministic dynamical relationship, described by the trans-
fer function T(s), between u = (ζ1, ζ2, . . . , ζm)′ and y =
(ζm+1, ζm+2, . . . , ζp)

′ as depicted in Figure 2. An important
question is whether it is possible to detect this dynamical
dependency from an observed sampled process ζk := ζ(kh),
where h is the sampling period. The same issue occurs when
the original process is discrete-time and the observed process
is subsampled at a slower rate.

The preponderance of techniques in the literature implic-
itly assume that the observed time series inherits any
dynamical dependencies and typically seek to identify rela-
tions for the discrete-time process at the observation sampling
rate. However this assumption cannot be made in general.
Dependencies that may exist in continuous-time, or at some
other fine “natural” sampling rate, are obfuscated by the pro-
cess of sampling or sub-sampling. This is reflected in the
fact that while the nullity of the spectral density of the orig-
inal process coincides with the number of linear relations,
the density of the sampled process has generically maximal
rank. Evidently, when the observational sampling rate is suf-
ficiently fast, the density of the sampled process is close to a
singular one with the correct nullity. In such cases, hypothe-
sizing a “small amount” of observational noise may salvage
the situation and suggest a nearly correct model for dynamic
dependencies. But in general there are no guarantees that
hypothesizing observational noise, especially when there is
none, as exemplified in Figure 2, will not exacerbate statistical
inaccuracies.

The stochastic nature of the two vector processes u and y
in Figure 2 originates in the “environment” of uncertain com-
ponents and noise sources in feedback, while no observation
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Fig. 2. Dynamical (network) dependencies.

noise is hypothesized. The setting represents a rather typi-
cal situation in distributed systems where variables can be
accurately measured, albeit at a finite rate. The purpose of
this letter is to point out that the statistics/model of the
sampled or subsampled process contain enough information
to correctly identify a “primitive” model for the underlying
finer-time-scale process at its natural finer time-resolution.
Such a primitive model, by necessity, exposes any dynamical
relations between variables that may exist. This observation
suggests the following potentially enabling new dictum for
linear system identification: given time series data that has
been collected at a sampling period h, and a derived model
at that time resolution, consider the family of models at
sampling periods h/q, with q an integer, or in continuous
time, for underlying processes that are consistent with the
observations at the particular sampling period h. Amongst
those models select the one that exposes a maximal num-
ber of dynamical relationships. This will be the model with
the finest time-resolution, and it will be referred to as the
lifting of the observation-time-scale model to the natural
time-resolution.

The outline of this letter is as follows. In Section II we
explain how dynamical dependencies between the entries of
a vector process are encoded in the spectral density and
how they can be recovered via spectral factorization in the
form of a transfer matrix that relates respective compo-
nents. In Section III we provide the correspondence between
continuous-time stochastic systems and their corresponding
sampled discrete-time versions. In particular, Theorem 2 pro-
vides necessary and sufficient conditions for a discrete-time
model to originate via sampling. Then, Section IV details the
correspondence between sampled models at different sampling
rates. In each of these two sections we present an academic
example that illustrates key points. In Section V we investi-
gate general discrete-time linear stochastic model as to when
they can be lifted to continuous-time ones. Finally, Section VI
concludes with implications of the theory.

II. DYNAMIC RELATIONS AND SPECTRAL RANK

We consider finite-dimensional stationary Gauss-Markov
real stochastic processes and are interested in identifying the
maximal number of deterministic dynamical relations between
the entries of such processes from observational data. Initially,
in this section, we explain how such relations relate to the
spectral density of the process at its natural time resolution,
whether this is in continuous-time as depicted in Figure 2 or
discrete-time at some basic sampling rate.

To exemplify the task of identifying dynamical dependen-
cies consider the setting of Figure 2 and let

ζ(t) :=
(

u(t)
y(t)

)
(1)

be a stationary process partitioned into two components. Its
stochastic nature originates in the “environment” that may
include multiple feedback loops and noise sources. Assume
that a deterministic dynamical relation between u and y, repre-
sented by the transfer function T , exists. This transfer function
does not need to be stable – only the combined (feedback)
dynamics need to be. Moreover, causation is not essential in
our discussion, although we will see shortly how the entries
of ζ can be partitioned into “inputs” and “outputs” so as to
assign a consistent proper transfer function that models their
dependence.

Continuing in the context of Figure 2, the spectral density

�ζ (iω) =
(

�u(iω) �uy(iω)

�yu(iω) �y(iω)

)
,

of the stochastic process ζ factors as

�ζ (iω) =
(

I
T(iω)

)
�u(iω)

(
I, T(−iω)′

)
. (2)

Thus, assuming that �u is a.e. nonsingular, the number of
deterministic dynamical relations between the entries of ζ

coincides with the nullity of �ζ . Indeed, the transfer function
between u and y can be recovered from �ζ since

T(s) = �yu(s)�u(s)
−1, (3)

and the deterministic dependence between the entries of ζ

can be expressed in “kernel” form as L(iω)�ζ (iω) = 0 with
L(s) := (−T(s), I).

We now explain how such dynamical relations can be read-
ily obtained in state-space form via spectral factorization of
�ζ . Throughout, we let ζ be a stationary p-vector stochastic
process with the p×p rational spectral density �ζ (iω) having

rank(�ζ (iω)) = m, a.e., for ω ∈ R.

Thus, m ≤ p, and when the inequality is strict, there are p−m
dynamical relations between the entries of ζ . For our purposes
we assume throughout that �ζ (∞) = 0. This ensures that ζ

has continuous sample paths, which is needed later on when
we define the sampled process ζk := ζ(kh). Denote by

Vζ (s) = H(sI − F)−1G

a minimal stable p×m spectral factor of �ζ (see [1, p. 198]).
That is,

�ζ (iω) = Vζ (iω)Vζ (−iω)′ (4)

with H ∈ R
p×n, F ∈ R

n×n, G ∈ R
n×m, (F, G) reachable,

(F, H) observable, and F stable matrix, i.e., having all eigen-
values in the open left halfplane. In particular, G has full
column rank and

rank(G) = m ≤ n.

Moreover, we assume that rank(HG) = m. Below we provide
a factorization of Vζ that displays the transfer function T; for
notational convenience, rational proper functions with possibly
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a constant term will be displayed in the following standard
matrix-notation

C(sI − A)−1B + D =:
[

A B
C D

]
.

Theorem 1: With Vζ , F, G, H as above, re-order the rows
of H and partition

H =
(

H0
H1

)

so that H0G is m×m and invertible. Re-order in the same way
the entries of ζ and as in (1) let u represent the first m entries
and y the remaining. Then,

Vζ (s) =
(

I
T(s)

)
M(s)s−1, where (5)

T(s) =
[

� G(H0G)−1

H1� H1G(H0G)−1

]
, (6a)

M(s) =
[

F G
H0F H0G

]
, and (6b)

� = F − G(H0G)−1H0F. (6c)

Proof: Partition Vζ conformably with H, to write

Vζ (s) =
(

s−1(H0G + H0F(sI − F)−1G)

s−1(H1G + H1F(sI − F)−1G)

)

=:
(

M(s)
N(s)

)
s−1.

The only thing that needs to be shown is the claimed expres-
sion in (6a). One can verify directly that T(s)M(s) coincides
with N(s) = H1G + H1F(sI − F)−1G. To carry out the
computations and verify, one needs to write the product in
state-space form and cancel the modes corresponding to the
system matrix �.

A corresponding result can be easily worked out in discrete
time where the spectral factor may also have a constant term.

III. CONTINUOUS-TIME TO DISCRETE-TIME AND BACK

Once again we consider ζ to be a stationary p-vector process
with p × p rational spectral density �ζ (iω) of constant rank
m a.e. on iR, and F, G, H as specified in the previous section.
A minimal Markovian representation [1] of ζ is

dx(t) = Fx(t)dt + Gdw(t) (7a)

ζ(t) = Hx(t) (7b)

with w(t) a standard vectorial Wiener process of compatible
dimension. The sampled paths of x(t) are also continuous a.s.
and the corresponding sampled process xk = x(kh) satisfies

xk+1 = eFhxk +
∫ (k+1)h

kh
eF((k+1)h−τ)Gdw(τ ).

It follows that xk and ζk = ζ(kh) satisfy the discrete-time
stochastic system of equations

xk+1 = Axk + Bvk (8a)

ζk = Cxk (8b)

with,

A = eFh (9a)

C = H (9b)

Bvk =
∫ (k+1)h

kh
eF((k+1)h−τ)Gdw(τ ), (9c)

and vk a sequence of independent random vectors having zero
mean and unit variance (i.e., normalized white noise). Then

BB′ = ∫ h
0 eFτ GG′eF′τ dτ =: Q.

Since (F, G) is a controllable pair, Q = BB′ is nonsingular
and, in particular, we can take

B = Q1/2. (9d)

At the same time,

BB′ =
∫ ∞

0
eFτ GG′eF′τ dτ − eFh︸︷︷︸

A

(∫ ∞

0
eFτ GG′eF′τ dτ

)
eF′h︸︷︷︸

A′
,

and therefore,

P :=
∫ ∞

0
eFτ GG′eF′τ dτ,

satisfies simultaneously two Lyapunov equations

P = APA′ + BB′, and (10a)

FP + PF′ + GG′ = 0, (10b)

i.e., both a “discrete-time” and a “continuous-time” Lyapunov
equation.

We distill the bijection between the continuous-time model
and its sampled counterpart in the following theorem.

Theorem 2: Consider the continuous-time stochastic
model (7) having parameters (F, G, H) with (F, G) control-
lable. Sampling with period h gives rise to the discrete-time
stochastic model (8) with parameters (A, B, C) satisfying (9).
Conversely, if the parameters (A, B, C) of stochastic model (8)
(with A a stability matrix) are such that

i) A admits a (principal) matrix logarithm [2]

that we denote log(A), (11a)

ii) det(BB′) �= 0, (11b)

iii) log(A)P + P log(A)′ ≤ 0, for P

the solution of P = APA′ + BB′, (11c)

then (8) arises by sampling (7) with F = 1
h log(A), H = C,

and G is a left factor of −(FP + PF′) of full column rank.
Proof: The first claim, to the effect that sampling leads

to (9), has already been shown. For the second part, given
any sampling period h, let F = 1

h log(A), H = C, and G such
that

GG′ = −(FP + PF′), (12)

it can be readily verified that conditions (9) hold. That (12)
can be solved for a suitable G follows from (11c).

The transfer function corresponding to (8) is

W(z) = C(zI − A)−1B,
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and the spectral density of the sampled process ζk is

�(z) = W(z)W(z−1)′

= C(zI − A)−1Q(z−1I − A′)−1C′. (13)

Therefore, since Q > 0 and rank((zI − A)−1) = n, we
have that rank(�(z)) = rank(C) a.e. On the other hand,
m = rank(�ζ (s)) ≤ rank(H). Hence, since rank(C) =
rank(H) ≥ m,

p ≥ rank(�(z)) ≥ rank(�ζ (s)) = m.

Thus the rank of � does not immediately reveal the p − m
linear dependencies. However m can be computed as the rank
of log(A)P + P log(A)′ in the second part of Theorem 2.

Finally, since A is invertible (a necessity, since A admits
a principal matrix logarithm [2]), W(0) = −CA−1B is finite,
and since W(∞) = 0,

�(0) = 0. (14)

These two conditions, A admitting a matrix logarithm and (14),
characterize spectral densities of sampled processes.

Example 1: We now present an illustrative academic exam-
ple. To this end we consider the continuous-time model (7)
with

F =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

−2 −5 −6 −4

⎞
⎟⎟⎠, G =

⎛
⎜⎜⎝

1 −1
1 −1
1 −1
1 1

⎞
⎟⎟⎠,

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4
2 1 2 3
3 2 1 2
...

. . .
. . .

9 8 7 6
10 9 8 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

The rank of the corresponding spectral density is 2, in agree-
ment with the rank of G. Next, we consider stochastic models
(A, B, C) for the sampled processes with sample periods
h ∈ {1, 2−1, 2−2, . . . , 2−7}. Their spectral density has rank 4,
and so does BB′. Thus, in Figure 3 we display the four
eigenvalues of BB′ in logarithmic scale as a function of h.

It is seen that only two eigenvalues remain dominant1 as
h → 0. This is in agreement with the spectral density rank
being 2 in the limit. Dynamical relations between the entries of
ζ can be obtained from the limiting continuous-time stochastic
model with (F, G, H) as in the second part of Theorem 2.

IV. SUBSAMPLING IN DISCRETE-TIME AND BACK

In analogy with the correspondence between continuous and
discrete-time stochastic models, we now consider a discrete-
time process with the following representation

xk+1 = Fxk + Gwk (16a)

ζk = Hxk + Jwk (16b)

1Their ratio tends to the ratio of the non-zero eigenvalues of GG′ since
GG′ = limh→0

1
h BB′.

Fig. 3. log (eig(P − eFhPeF ′h)) vs. h.

with wk a discrete-time white noise process and H ∈ R
p×n,

F ∈ R
n×n, G ∈ R

n×m, m ≤ p as before, with (F, G)

controllable and (F, H) observable pairs. Once again

�ζ (e
iθ ) = Vζ (e

iθ )Vζ (e
−iθ )′, (17)

is the spectral density, with

Vζ (z) = H(zI − F)−1G + J

a stable spectral factor of �ζ . We use notation (F, G, H), �,
etc., for this model to reflect the analogy to continuous-time
in Section III, as it represents the underlying dynamics at the
finest time-resolution. For any given positive integer q, we
consider the subsampled process

ζ̂	 := ζ	q, for 	 ∈ {0, 1, 2, . . .}.
This admits the stochastic model

ξ	+1 = Aξ	 + Bv	 (18a)

ζ̂	 = Cξ	 + Dv	 (18b)

where ξ	 := xq	 and

A = Fq, (19a)

B = [
G, FG . . . , Fq−1G

]
, (19b)

C = H, and (19c)

D = [
0, 0 . . . , J

]
(19d)

with

v	 = [
w′

	q+q−1, w′
	q+q−2 . . . , w′

	q

]′
.

We note that BB′ = ∑q−1
k=0 FkGG′(Fk)′ gains in rank as q

increases and will attain maximal rank for q ≥ n, and so the
spectral density

�(z) = W(z)W(z−1)′,

(where W(z) will be specified in (22)) will have rank that
is larger than the rank m of �ζ (z). Consequently, as in
Section III, nullity of �ζ (z) that is due to dynamic relations
between the entries of ζ will no longer be reflected in �(z).
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The analogous statement to Theorem 2 is the following.
Theorem 3: Consider the discrete-time stochastic

model (16) with parameters (F, G, H, J) and (F, G)

controllable. Then, with q a positive integer, subsampling
ζk every q steps gives rise to ζ̂	 in (18) with parameters
(A, B, C, D) satisfying (19). Conversely, given a model (18)
with parameters (A, B, C, D), it is a model of a q-subsampled
discrete-time process ζk provided

i) A admits a qth root that we denote A1/q, and (20a)

ii) M(P) =
[

P − A1/qP(A1/q)′ A1/q−1BD′
DB′(A1/q−1)′ DD′

]
≥ 0,

for P the solution of P = APA′ + BB′. (20b)

Parameters of a model (16) for the corresponding primary pro-
cess ζk are F = A1/q, H = C, and

[
G
J

]
a left factor of M(P)

of full column rank, i.e., so that[
G
J

][
G′ J′] = M(P). (20c)

If D = 0, (20b) in condition ii) reduces to

ii)′ P − A1/qP(A1/q)′ ≥ 0. (20d)

Proof: The first direction in the theorem has already been
shown. It only remains to prove the converse direction. By
setting F = A1/q and selecting G and J to satisfy (20c), we
see that (A, B̂, C, D̂), with B̂ and D̂ given by (19b) and (19d),
respectively, is a model of a q-subsampled discrete process.
Now, it remains to show that[

B̂
D̂

][
B̂′ D̂′] =

[
B
D

][
B′ D′].

To this end observe that

B̂B̂′ = P − FqP(Fq)′ = P − APA′,

which equals BB′ by condition ii). Moreover, D̂D̂′ = JJ′,
which equals DD′ by (20c). Finally, by (20c) and (20b),

B̂D̂′ = Fq−1GJ′ = A1−1/qGJ′ = BD′.

Hence, q-subsampling of the output process of (16) gives rise
to a process with the same statistics as that in (18).

Example 2: We now present an academic example where
the fastest time-resolution is in discrete time. We begin with
a discrete-time model having spectral density of rank two and
no consistent model running with a faster clock being possible.
To this end we take

xk+1 = F̂xk + Guk

ζk = Hxk

with zero constant term J, for simplicity, and with F̂ = eFh,
h = 0.5 [time units] and F, G, H as in (15). Assume that data
is available at intervals of h = 2.5 [time units] and, therefore,
provide us with the discrete-time model (18) with parame-
ters A = F̂5, B = [G, F̂G, . . . F̂4G] and C = H. Selecting
q ∈ {2, 3, 4, 5, 6, . . .} and applying the converse direction in
Theorem 3 gives us models with a faster time rate, as long as
P − A1/qP(A1/q)′ ≥ 0, with P the solution of P − APA′ = BB′.

Fig. 4. log (eig(P − A1/qP(A′)1/q )) vs. q.

Naturally, for q = 5 we recover the parameters (F̂, G, H). It
can be verified that

P − A1/qP(A1/q)′ �≥ 0 for q > 5.

Therefore no model with rate faster than 5 times the obser-
vational sampling rate is possible. As seen in Figure 4, the
lowest two eigenvalues of P − A1/qP(A1/q)′ separate sub-
stantially from the top two and vanish for q = 5, leading
to rank(P − A1/qP(A1/q)′) = 2. Once again, the parameters
(F̂, G, H) can be obtained from (A, B, C) as in Theorem 3.

V. WHEN IS LIFTING TO CONTINUOUS-TIME POSSIBLE?

Discrete-time (purely nondeterministic) stationary stochastic
models are usually given in the form

ξk+1 = Aξk + Bvk (21a)

ζk = Cξk + Dvk (21b)

and, accordingly,

W(z) = C(zI − A)−1B + D, (22)

with a nonzero constant term D. As we already saw in
Example 2, lifting to a continuous-time system may not always
be possible, even when D = 0. Therefore, we now seek con-
ditions on the parameters of (21) under which the output
process ζk arises via sampling the output of a continuous-time
model (7). For later reference we define C̄ := CPA′ +DB′ and
�0 := CPC′ + DD′ with P satisfying (10a).

Clearly condition (14) is necessary for ζk to be the sampled
output process of (7). So we must have

�(0) = W(0)W(∞)′ = (D − CA−1B)D′ = 0. (23)

There are numerous systems (21) with the same output ζk,
all having the same A and C, but possibly different matrices
B and D [1, Ch. 6], each corresponding to a different spec-
tral factor (22). Without loss of generality, we choose (21)
to correspond to a minimum phase spectral factor and we
let (B−, D−) be the corresponding pair of matrices. Then,
if the p × p spectral density �(eiθ ) has rank r for all θ ,
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D− is a p × r matrix of full column rank [1, Th. 6.1],
and therefore R := D′−D− > 0. However, (23) implies that
(D− − CA−1B−)R = 0, and therefore

D− − CA−1B− = 0. (24)

Next, letting xk := A−1ξk+1,

xk+1 = ξk+1 + A−1B−vk+1 = Axk + A−1B−vk+1,

and, since ξk = A−1ξk+1 − A−1B−vk = xk − A−1B−vk, we
have ζk = Cxk + (D− − CA−1B−)vk. Consequently, by (24),

xk+1 = Axk + A−1B−vk+1

ζk = Cxk

which has the form (8) of a sampled system. Now let

P̂ = AP̂A′ + A−1B−B′−(A′)−1

be the corresponding Lyapunov equation. Then P− := AP̂A′
satisfies P− = AP−A′ + B−B′−, and hence

P− = lim
k→∞ �k (25)

[1, Sec. 6.9], where �k+1 = �(�k), �0 = 0, with

�(�) = � − A�A′ + (C̄ − C�A′)′
(�)−1(C̄ − C�A′)

and 
(�) := �0 − C�C′. We summarize these conclusions
in the following theorem.

Theorem 4: The output process ζk of the stochastic
system (21) is the sampled process of the output of a
continuous-time system (7) with parameters (F, G, H) pro-
vided �(0) = 0 and conditions (11a), (11b) and log(A)P̂ +
P̂ log(A)′ ≤ 0 hold, where P̂ = A−1P−(A′)−1 with P− given
by (25). Then ζk arises by sampling (7) with F = 1

h log(A),
H = C, and G being a left factor of −(FP̂ + P̂F′) of full
column rank.

VI. CONCLUDING REMARKS

The most basic underlying principle in modeling is that of
parsimony where we seek a minimal number of parameters to
explain the data. Historically, statistical reasoning was sought
to mathematize the search for exact linear algebraic relations
giving rise to methods of principle component analysis, factor
analysis and so on, see [3], [4]. On a parallel route a sizable
part of the literature has been devoted to statistical rationales
for trading off inaccuracy with model complexity, see [5].
At this point, the art of modeling has accumulated a huge
arsenal of ideas that includes regression analysis, likelihood
methods, information criteria, regularization, and many more.
The importance is further underscored by the mere citation-
count of modern accounts of these subjects, e.g., [6] which
surpassed hundred thousand citations in few short years.

In this letter we dealt with dynamical models. While the
topic has a long history [4], issues of how sampling affects
dynamical relations have not received sufficient attention. In
fact, models are sought at a prespecified time-scale which often
coincides with that at which data has been recorded, see the
extensive literature on modern subspace identification meth-
ods [7]. While sampling rate selection is being discussed in
various contexts, in all literature on dynamical relations (e.g.,

subspace methods, dynamical factor analysis, and so on) the
typical assumption is that sampling is “sufficiently fast” with
the premise that dynamical relations are not impacted if sought
at the time-scale of the observation process.

The point of this letter is to bring attention to the fact that,
while the sampling rate may or may not be “fast enough,”
one may retrieve exact dynamical relations at a finer time-
scale from models at a coarse time-resolution. Should the
generating mechanism dictate dynamic dependencies that truly
originate at time-scale finer than the observational time rate,
those dependencies may stay undetected or be poorly identi-
fied at the observation rate. Building on the paradigm of linear
dynamical models and second-order processes we highlight
the consequent dictum to seek models at the finest possible
time-resolution that are consistent with the data at the given
observation time scale. The implication is that, testing the
dimenisionality of “lifted models” is a logical indicator of
parsimony in system identification.

In summary, our setting involves dynamic (i.e., difference
differential) linear relations between variables and stochastic
noise. Guidelines that emerge can be summarized as follows:

a) Given data at observation time-intervals, determine lin-
ear dynamical models with parameters (A, B, C, D) using
mostly standard techniques.

b) Determine whether the corresponding discrete time model
originates from a continuous-time one via sampling the
output process, and if not, determine if there is a discrete-
time model at a faster time-scale which is consistent.

c) Dynamic relations between variables ought to be sought
for the lifted model at the finest time-scale.

System identification techniques may be tuned to the idea
that parsimony is sought at a scale other than that at which
the system (A, B, C, D) is seen to operate. To this end, low-
rank regularizers and the postulate of observational noise could
be redirected into fitting low complexity models of the lifted
model (F, G, H) of, e.g., Theorem 2. Thus, the principal
contribution of this letter is to introduce the idea of lifting
identified models to a finer time-scale before assessing their
complexity. Sampling or subsampling a random process, and
generating data at a rate that is lower than the native time scale,
masks the exactness of any pre-existing dynamic relations.
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