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Relaxed Schrödinger bridges and robust network routing
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Abstract—We seek network routing towards a desired final
distribution that can mediate possible random link failures. In
other words, we seek a routing plan that utilizes alternative
routes so as to be relatively robust to link failures. To this end,
we provide a mathematical formulation of a relaxed transport
problem where the final distribution only needs to be close to the
desired one. The problem is cast as a maximum entropy problem
for probability distributions on paths with an added terminal
cost. The entropic regularizing penalty aims at distributing the
choice of paths amongst possible alternatives. We prove that
the unique solution may be obtained by solving a generalized
Schrödinger system of equations. An iterative algorithm to com-
pute the solution is provided. Each iteration of the algorithm
contracts the distance (in the Hilbert metric) to the optimal
solution by more than 1/2, leading to extremely fast convergence.

I. INTRODUCTION

Containing the 2017-18 Southern California wild fires has
been a major challenge for CAL FIRE involving dispatching
hundreds of fire engines and thousands of fire fighters includ-
ing some provided by ten other states. Efficiently dispatching
the fire engines over a long period of time (the Thomas fire,
for instance, burned for more than one month) is a difficult
task. The problem can be roughly described as follows: At the
initial time t = 0 we have a certain distribution of fire engines
in certain locations (nodes). Within at most N time units, so
as to provide the crew shift, the engines must reach through
the available road network the various fire locations (other
nodes). The distribution must guarantee the minimum force
necessary to fight each specific fire. Considering the difficulties
and hazards involved in reaching their destination, it seems
reasonable to require that the final distribution of the fire
engines be close (rather than equal) to a desired one. Another
specification of the routing plan is robustness with respect
to link failures. This could be accomplished by dispatching
engines on alternative routes even when they are assigned the
same destination.
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In this paper, building on our previous work [17], [18],
which dealt with the case of a fixed terminal distribution, we
provide a mathematical formulation of the above problem.
It is cast as a maximum entropy problem for probability
distributions on (admissible) paths with a cost on the dis-
crepancy between the terminal distribution and the target one.
Thus, the formulation represents a relaxed version of the
usual Schrödinger bridge problem, where the hard constraint
on the terminal marginal distribution is replaced by a soft
terminal cost on discrepancy at the terminal point from a target
distribution. We show that the solution is obtained by solving
iteratively a generalized Schrödinger system and we establish
convergence of the algorithm in the natural projective metric
(Hilbert metric).

More specifically, we model the network through a
directed graph that reflects admissible paths, and we seek
to design the routing policy so that the distribution of the
commodity at some prescribed time horizon is close to a
desired one. The optimal feedback control consists of suitable
modification of a prior transition mechanism. This follows
the paradigm put forth in [17]. The essence of the “prior”
is to provide a baseline for what paths are desirable and,
thereby, bequeth desirable properties on optimal policy. For
instance, the prior can be decided based on simulations or
field experience from past attempts in implementing previous
transport protocols. It should be underscored that the prior
does not need to be a probability measure, and can be selected
to lessen preference from transit through specific paths and
nodes. Thereby, robustness with respect to network failures,
namely spreading of the mass as much as the topology of
the graph and the final distribution allow, is accomplished by
employing as prior transition the adjacency matrix of the graph
or a suitably weighted version of it.

Our notion of robustness of the routing policy should
not be confused with other notions of robustness concerning
networks which have been put forward and studied, see e.g.
[1], [5], [47], [3], [24], [49]. In particular, in [3], [24],
robustness has been defined through a fluctuation-dissipation
relation involving the entropy rate. This latter notion captures
relaxation of a process back to equilibrium after a perturbation
and has been used to study both financial and biological
networks. This paper is addressed to transportation and data
networks problems and does not concern equilibrium or near
equilibrium cases.

Prior related work includes [32] where the authors pro-
posed a relaxation of the problem of optimally steering a linear
stochastic system studied in [15], by introducing a a Wasser-
stein distance-penalty to a desired terminal marginal distri-
bution. Also, in [19] (see also [36]), a regularized transport
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problem with very general boundary costs is considered and
solved through iterative Schrödinger-Fortet-Demin-Stephan-
Sinkhorn-like algorithms [50], [51], [29], [25], [53]. Although
our dynamic problem can be reduced to a static one of the
form considered in [19] (see Section II), employing a general
prior measure on the trajectories has distinct advantages.
Indeed, the static formulation does not readily provide as
a by-product information on the new transition probabilities
nor does it suggest the paths where the optimal mass flows,
and therefore it is less suited for typical network routing
applications. Moreover, in this work, we allow for general
prior measures that are not necessarily of the Boltzmann’s
type and considered in previous works. Finally, we prove
convergence of the iterative algorithm in the Hilbert rather
than Thompson metric as this typically provides the best
contraction ratio [14, Theorem 3.4], [37].

The outline of the paper is as follows. In Section II we
define the relaxed transport problem. In Section III, we state
and prove the main result reducing the problem to solving a
generalized Schrödinger system. In Section IV-A, we review
some fundamental concepts and results concerning Hilbert’s
projective metric. In Section IV-B, we establish existence and
uniqueness of the solution to the generalized Schrödinger
system through a contraction mapping principle. Finally, in
Section IV-C, we outline an iterative algorithm to compute
the solution and discuss possible extensions of the results.

II. RELAXED SCHRÖDINGER BRIDGES

Consider a directed, strongly connected aperiodic graph
G = (X ,E ) with vertex set X = {1,2, . . . ,n} and edge set
E ⊆X ×X . We let time vary in T = {0,1, . . . ,N}, and let
FPN

0 ⊆X N+1 denote the family of length N, (admissible)
paths x = (x0, . . . ,xN), namely paths such that (xt ,xt+1) ∈ E
for t = 0,1, . . . ,N−1.

We seek a probability distribution P on FPN
0 with

prescribed initial probability distribution ν0(·) and terminal
distribution close to νN(·), such that the resulting random
evolution is closest to a “prior” measure M on FPN

0 in a
suitable sense. The prior law M is induced by the Markovian
evolution

µt+1(xt+1) = ∑
xt∈X

µt(xt)mxt xt+1(t) (1)

with nonnegative distributions µt(·) over X , t ∈ T , and
weights mi j(t) ≥ 0 for all indices i, j ∈ X and all times.
Moreover, to respect the topology of the graph, mi j(t) = 0
for all t whenever (i, j) 6∈ E . Often, but not always, the matrix

M(t) = [mi j(t)]
n
i, j=1 (2)

does not depend on t. The rows of the transition matrix M(t)
do not necessarily sum up to one, so that the “total transported
mass” may not be necessarily preserved. Another instance is
when M(t) simply encodes the topological structure of the
network with mi j(t) being zero or one, depending on whether
a certain link exists at each time t; in this case, M(t) does

not reflect a probabilistic transition mechanism but can still
be utilized as a reference measure. For another choice of
a reference measure, one can employ a weighted adjacency
matrix which weighs in the length of the paths leading to a
solution which compromises between spreading the mass and
transporting on shorter paths see [17], [18].

The evolution (1) together with a measure µ0(·), which
we assume positive on X , i.e.,

µ0(x)> 0 for all x ∈X , (3)

induces a measure M on FPN
0 as follows. It assigns to a

path x = (x0,x1, . . . ,xN) ∈FPN
0 the value

M(x0,x1, . . . ,xN) = µ0(x0)mx0x1(0) · · ·mxN−1xN (N−1), (4)

and gives rise to a flow of one-time marginals

µt(xt) = ∑
x0,...,xt−1,xt+1,...,xN

M(x0,x1, . . . ,xN), t ∈T .

In the sequel, we seek a distribution which is closest to
the prior M in relative entropy where, for P and Q measures
on X N+1, the relative entropy (divergence, Kullback-Leibler
index) D(P‖Q) is

D(P‖Q):=

{
∑x∈X N+1 P(x) log P(x)

Q(x) , Supp(P)⊆ Supp(Q),

+∞, Supp(P) 6⊆ Supp(Q),

Here, by definition, 0 · log0 = 0, and Supp(P) denotes the
subset in X N+1 where P takes positive values. Naturally,
while the value of D(P‖Q) may turn out negative due to miss-
match of scaling (in case Q=M is not a probability measure),
the relative entropy is always jointly convex. Moreover,

D(P‖Q)− ∑
x∈X N+1

P(x)+ ∑
x∈X N+1

Q(x)≥ 0.

Since for probability distributions we have

∑
x∈X N+1

P(x) = 1,

minimizing the nonnegative quantity D(P‖Q) − ∑x P(x) +
∑x Q(x) over a family of probability distributions P, even
when the prior Q has a different total mass, is equivalent to
minimizing over the same set D(P‖Q).

We are now ready to formulate the problem. In this, we
seek to identify a Markovian evolution with a given specified
marginal distribution ν0 at t = 0, that is close to a prior M
while at the same time having end-point marginal that is close
to a target distribution. To this end, we denote by P(ν0) the
family of all Markovian probability distributions on X N+1

with initial marginal ν0. The problem we address can now be
stated as follows:

Problem 1. Let ν0 and νN be two specified probability
distributions on X . Minimize

J(P) := D(P‖M)+D(pN‖νN) (5)

over P∈P(ν0), where pN denotes the marginal of P at t =N.
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In other words, rather than imposing the desired final
marginal νN as in the standard Schrödinger bridge problem,
we seek a probability law P with specified marginal at t = 0,
which is close to M in the relative entropy sense and, at the
same time, the terminal marginal distribution of P is also close
to the desired target νN , again in the relative entropy sense.
Thus, we seek to minimize a weighted (here, for simplicity,
with equal weights) sum of the two distances.

It is easy to see that in Problem 1 we can restrict attention
to distributions in PS(ν0), namely to distributions in P(ν0)
for which

Supp(pN)⊆ Supp(νN). (6)

The connection between Problem 1, which is in essence
“dynamic,” to a corresponding static reformulation, such as
those considered in [19], can be arrived at as follows. Let
P and Q be two probability distributions on X N+1. For
x = (x0,x1, . . . ,xN) ∈ X N+1, consider the multiplicative de-
composition

P(x) = Px0,xN (x)p0N(x0,xN),

where
Px̄0,x̄N (x) = P(x|x0 = x̄0,xn = x̄N)

is the probability on paths conditioned at given values at the
two ends and

p0N(x0,xN) := ∑
x1,...,xN−1

P(x0,x1, . . . ,xN).

Assuming without loss of generality that p0N is everywhere
positive on X ×X , and similarly for q0N corresponding to
Q, we obtain

D(P‖Q) = ∑
x0xN

p0N(x0,xN) log
p0N(x0,xN)

q0N(x0,xN)
(7)

+ ∑
x∈X N+1

p0N(x0,xN)Px0,xN (x) log
Px0,xN (x)
Qx0,xN (x)

.

This is the sum of two nonnegative quantities. The second
becomes zero if and only if Px0,xN (x) = Qx0,xN (x) for all
x ∈X N+1. Thus, the minimizer corresponds to the choice
P∗x0,xN

(x) = Qx0,xN (x) where the conditional probabilities with
specified values of paths at the two ends (i.e., the “bridges”)
are the same, and therefore Problem 1 reduces to

min
p0N such that

∑xN p0N(·,xN) = ν0(·)

D(p0N‖m0N)+D(pN‖νN). (8)

Here, as before,

m0N := ∑
x1,...,xN−1

M(x0,x1, . . . ,xN).

We point out that the prior measure mass only needs to be
positive and does not need to be a probability measure, i.e.,
the total mass does not need to be one. We now discuss the
original formulation (5) as motivated in the introduction.

III. MAIN RESULT

The solution to Problem 1 is given in the following
statement. It requires solving a two-point boundary value
problem for functions ϕ and ϕ̂ , which is assumed in the
statement of the theorem. The existence of solutions to this
side-problem will be established later on.

Theorem 1. Suppose there exist two functions ϕ and ϕ̂

mapping {0,1, . . . ,N} ×X into the nonnegative reals and
satisfying the generalized Schrödinger system below:

ϕ(t, i) = ∑
j

mi j(t)ϕ(t +1, j), 0≤ t ≤ N−1, (9a)

ϕ̂(t +1, j) = ∑
i

mi j(t)ϕ̂(t, i), 0≤ t ≤ N−1, (9b)

ϕ(0, i)ϕ̂(0, i) = ν0(i), (9c)

ϕ(N, j)2
ϕ̂(N, j) = νN( j). (9d)

For 0≤ t ≤ N−1 and (i, j) ∈X ×X , define

π
∗
i j(t) := mi j(t)

ϕ(t +1, j)
ϕ(t, i)

. (10)

which constitutes a family of bona fide transition probabilities.
Then, the solution P∗ to Problem 1 is unique and given by the
Markovian distribution

P∗(x0, . . . ,xN) = ν0(x0)π
∗
x0x1

(0) · · ·π∗xN−1xN
(N−1). (11)

Proof. Let πi j(t) be the transition probabilities of the measure
P ∈PS(ν0). Then, using the multiplicative decomposition (4)
for both measures we get the representation

D(P‖M)=D(ν0‖µ0)+
N−1

∑
k=0

∑
xk

D(πxk,·(k)‖mxk,·(k))pk(xk). (12)

Since ν0 is fixed for all P∈PS(ν0), D(ν0‖µ0) is independent
of the choice of P ∈PS(ν0).

Let ϕ(·, ·) be space-time harmonic for the prior transition
mechanism, namely let ϕ satisfy recursion (9a) on 0≤ t ≤N−
1. We observe now that Problem 1 is equivalent to minimizing
over PS(ν0) the following

Jmodified(P) :=
N−1

∑
k=0

∑
xk

D
(

πxk,·(k)‖mxk,·(k)
ϕ(k+1, ·)
ϕ(k,xk)

)
pk(xk)

+∑
xN

log
[

pN(xN)ϕ(N,xN)

νN(xN)

]
pN(xN). (13)

The calculation that allows seeing this fact amounts to can-
celling/contracting the terms in a “telescopic” expansion of the
summation

N−1

∑
k=0

∑
xk,xk+1

(
πxkxk+1(k) log

ϕ(k+1,xk+1)

ϕ(k,xk)

)
pk(xk).

In view of (9d), (13) reduces to

Jmodified(P) =
N−1

∑
k=0

∑
xk

D
(

πxk,·(k)‖mxk,·(k)
ϕ(k+1, ·)
ϕ(k,xk)

)
pk(xk)

+D(pN‖ϕ(N, ·)ϕ̂(N, ·)).



2325-5870 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2019.2935623, IEEE
Transactions on Control of Network Systems

We next note that

π
∗
i j(t) := mi j(t)

ϕ(t +1, j)
ϕ(t, i)

(14)

constitute a family of transition probabilities. Indeed, π∗i j(t)≥
0 and, by (9a),

∑
j

π
∗
i j(t) = ∑

j
mi j(t)

ϕ(t +1, j)
ϕ(t, i)

=
ϕ(t, i)
ϕ(t, i)

= 1.

Moreover, it can be shown [31] that ϕ(N, ·)ϕ̂(N, ·) is a prob-
ability vector. Utilizing the property that the relative entropy
between probability vectors is nonnegative, we conclude that
Jmodified(P) is bounded below by 0. In addition, the minimum
0 is achieved by π∗ in (14) and pN = ϕ(N, ·)ϕ̂(N, ·) provided
this pair π∗, pN is compatible. That is, starting from ν0, the
Markov chain with transition probability π∗ will reach pN at
t = N. We next prove this is true. In fact, we show below that
pt = ϕ(t, ·)ϕ̂(t, ·) by induction.

Clearly, p0 = ν0 = ϕ(0, ·)ϕ̂(0, ·) holds by assumption.
Supposing pt = ϕ(t, ·)ϕ̂(t, ·), then

pt+1( j) = ∑
i j

π
∗
i j(t)pt(i)

= ∑
i j

mi j(t)
ϕ(t +1, j)

ϕ(t, i)
ϕ(t, i)ϕ̂(t, i)

= ϕ(t +1, j)ϕ̂(t +1, j),

where we have used (9b) in the last equality. This completes
our proof.

Thus, as we have seen in the above proof, at each time
t = 0,1, . . . ,N the marginal p∗t of the solution factors as

p∗t (i) = ϕ(t, i)ϕ̂(t, i). (15)

This holds as well in the usual setting of Schrödinger bridges,
in that the one-time marginals can be constructed as the
product of space-time harmonic functions, see e.g., [41], [40].
Here, however, we wish to highlight the fact that the final
condition (9d) for the Schrödinger system is substantially dif-
ferent from the standard one, see e.g. [18]. As a consequence,
we get from (9d) that

ϕ(N,xN) =

√
νN(xN)

ϕ̂(N,xN)
. (16)

Now let ϕ(t) and ϕ̂(t) denote the column vectors with entries
ϕ(t, i) and ϕ̂(t, i), respectively, and i ∈X . In matrix form,
(9a), (9b) and (14) read

ϕ(t) = M(t)ϕ(t +1), ϕ̂(t +1) = M(t)T
ϕ̂(t), (17a)

and

Π(t) = [πi j(t)] = diag(ϕ(t))−1M(t)diag(ϕ(t +1)). (17b)

IV. GENERALIZED SCHRÖDINGER SYSTEM & A
COMPUTATIONAL FRAMEWORK

The key technical step in the main result in Theorem 1
is the existence of solutions to the generalized Schrödinger
system of equations. This system departs from the general
form of the Schrödinger system in that one of the boundary
conditions, in equation (9d) is quadratic in the space-time
harmonic function φ . The purpose of the following subsections
are to establish the existence of solutions to the Generalized
Schrödinger system as well as an algorithm for computing the
solution. The key ingredient of what follows is the Hilbert
projection metric, and the fact that the relations that arise
induce contractive maps in the Hilbert metric. This echoes
similar constructions for the standard Schrödinger problem.
For the benefit of the reader we first present in Section IV-A
a brief exposition of the Hilbert metric and some of its key
properties. This is followed by Section IV-B where build the
stage for proving the existence of solutions to (9) and stated
in Theorem (6). Finally in Section IV-C we summarize the
steps of an algorithm to constructing solutions along with its
application to an academic example.

A. Background: Hilbert’s projective metric

This metric dates back to 1895 [33]. A crucial contrac-
tivity result that permits to establish existence of solutions of
equations on cones (such as the Perron-Frobenius theorem)
was proven by Garrett Birkhoff in 1957 [8]. Important exten-
sions of Birkhoff’s result to nonlinear maps were provided by
Bushell [13], [14]. Various other applications of the Birkhoff-
Bushell result have been developed such as to positive integral
operators and to positive definite matrices [14], [39]. More
recently, this geometry has proven useful in various problems
concerning communication and computations over networks
(see [55] and the work of Sepulchre and collaborators [52],
[10], [4] on consensus in non-commutative spaces and metrics
for spectral densities) and in statistical quantum theory [48].
A recent survey on the applications in analysis is [39]. The
use of the Hilbert metric is crucial in the nonlinear Frobenius-
Perron theory [38]. A considerable further extension of the
Perron-Frobenius theory beyond linear positive systems and
monotone systems has been recently proposed in [28].

Taking advantage of the Birkhoff-Bushell results on con-
tractivity of linear and nonlinear maps on cones, we showed
in [31] that the Schrödinger bridge for Markov chains and
quantum channels can be efficiently obtained from the fixed-
point of a map which is contractive in the Hilbert metric. This
result extended [30] which deals with scaling of nonnegative
matrices. In [16], it was shown that a similar approach can
be taken in the context of diffusion processes leading to i) a
new proof of a classical result on SBP and ii) providing an
efficient computational scheme for both, SBP and OMT. This
new computational approach can be effectively employed, for
instance, in image interpolation.
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In this section, following [14], we recall some basic
concepts and results of this theory.

Let S be a real Banach space and let K be a closed
solid cone in S , i.e., K is closed with nonempty interior
intK and is such that K +K ⊆ K , K ∩−K = {0} as
well as λK ⊆K for all λ ≥ 0. Define the partial order

x� y⇔ y− x ∈K , x < y⇔ y− x ∈ intK

and for x,y ∈K0 := K \{0}, define

M(x,y) := inf{λ | x� λy}
m(x,y) := sup{λ | λy� x}.

Then, the Hilbert metric is defined on K0 by

dH(x,y) := log
(

M(x,y)
m(x,y)

)
.

Strictly speaking, it is a projective metric since it
is invariant under scaling by positive constants, i.e.,
dH(x,y) = dH(λx,µy) = dH(x,y) for any λ > 0,µ > 0 and
x,y ∈ intK . Thus, it is actually a distance between rays. If
U denotes the unit sphere in S , (intK ∩U,dH) is a metric
space.

Example 1. Let K = Rn
+ = {x ∈ Rn : xi ≥ 0} be the positive

orthant of Rn. Then, for x,y ∈ intRn
+, namely with all positive

components,

M(x,y) = max
i
{xi/yi}, m(x,y) = min

i
{xi/yi},

and
dH(x,y) = logmax{

xiy j

yix j
}.

Another very important example for applications in
many diverse areas of statistics, information theory, control,
etc., is the cone of Hermitian, positive semidefinite matrices.

Example 2. Let S = {X = X† ∈Cn×n}, where † denotes here
transposition plus conjugation and, more generally, adjoint.
Let K = {X ∈ S : X ≥ 0} be the positive semidefinite
matrices. Then, for X ,Y ∈ intK , namely positive definite, we
have

dH(X ,Y ) = log
λmax

(
XY−1

)
λmin (XY−1)

= log
λmax

(
Y−1/2XY−1/2

)
λmin

(
Y−1/2XY−1/2

) .
It is closely connected to the Riemannian (Fisher-information)
metric

dR(X ,Y ) = ‖ log
(

Y−1/2XY−1/2
)
‖F

=

√
n

∑
i=1

[logλi
(
Y−1/2XY−1/2

)
]2.

A map E : K →K is called non-negative. It is called
positive if E : intK → intK . If E is positive and E (λx) =
λ pE (x) for all x ∈ intK and positive λ , E is called positively

homogeneous of degree p in intK . For a positive map E , the
projective diameter is befined by

∆(E ) := sup{dH(E (x),E (y)) | x,y ∈ intK }

and the contraction ratio by

k(E ) := inf{λ :| dH(E (x),E (y))≤ λdH(x,y),∀x,y ∈ intK }.

Finally, a map E : S →S is called monotone increasing if
x≤ y implies E (x)≤ E (y).

Theorem 2 ([14]). Let E be a monotone increasing positive
mapping which is positive homogeneous of degree p in intK .
Then, the contraction k(E ) does not exceed p. In particular,
if E is a positive linear mapping, k(E )≤ 1.
Theorem 3 ([8], [14]). Let E be a positive linear map. Then

k(E ) = tanh(
1
4

∆(E )). (18)

Theorem 4 ([14]). Let E be either

a. a monotone increasing positive mapping which is
positive homogeneous of degree p(0 < p < 1) in
intK , or

b. a positive linear mapping with finite projective di-
ameter.

Suppose the metric space Y = (intK ∩U,dH) is complete.
Then, in case (a) there exists a unique x ∈ intK such that
E (x) = x, in case (b) there exists a unique positive eigenvector
of E in Y .

This result provides a far-reaching generalization of the
celebrated Perron-Frobenius theorem [9]. Notice that in both
Examples 1 and 2, the space Y = (intK ∩U,dH) is indeed
complete [14].

There are other metrics which are contracted by positive
monotone maps. For instance, the closely related Thompson
metric [54]

dT (x,y) = logmax{M(x,y),m−1(x,y)}.

The Thompson metric is a bona fide metric on K . It has been,
for instance, employed in [43], [19], [4].

B. Solution to the generalized Schrödinger system

Let G = M(0)M(1) · · ·M(N−2)M(N−1) = [gi j]
n
i j=1 and

assume that all its elements are positive. Let us introduce the
following maps on Rn

+:

E : x 7→ y where yi = ∑
j

gi jx j, (19a)

E † : x 7→ y where y j = ∑
i

gi jxi, (19b)

D0 : x 7→ y = ν0
x

def⇔ yi =
(ν0)i

xi
(19c)

DN : x 7→ y = νN
x

def⇔ yi =
(νN)i

xi
(19d)
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i.e. division of vectors is carried out componentwise1.

Lemma 1. Consider the maps E and E †. We have the
following bounds on their contraction ratios:

k(E ) = k(E †) = tanh(
1
4

∆(E ))< 1. (20)

Proof. Observe that E is a positive linear map and its projec-
tive diameter is

∆(E ) = sup{dH(E (u),E (v)) | u,v ∈ Rn
+}

= sup{log
(

gikg j`

gi`g jk

)
| 1≤ i, j,k, `≤ n}.

To see the validity of the second line note that the supremum
is attained when each u,v select a suitable row of G (e.g.,
u,v each having a single nonzero entry at position k and `,
respectively). Then set x = E (u) and y = E (v) and utilize the
expression in Example 1.

The expression for ∆(E ) is now seen to be finite, since
all entries gi j’s are positive. It now follows from Theorem 3
that its contraction ratio satisfies (20). A similar conclusion
holds for the adjoint map E †.

Lemma 2.
k(D0)≤ 1, k(DN)≤ 1

Proof. See [31, p.033301-10].

Lemma 3. Let R : Rn
+→Rn

+ be the map which associates to
the vector x with components xi to the vector with components√

xi, i.e.,
R : x 7→ y =

√
x. (21)

Then
k(R) = 1/2. (22)

Proof. Let x,y ∈ intRn
+. In view of Example 1 and using the

properties of the square root,

dH(R(x),R(y))=logmax{
√
(xiy j/yix j)}=(1/2)dH(x,y).

Theorem 5. The composition

C := E † ◦D0 ◦E ◦R ◦DN (23)

contracts the Hilbert metric with contraction ratio k(C ) <
(1/2), namely

dH(C (x),C (y))< (1/2)dH(x,y), ∀x,y ∈ intRn
+.

Proof. The result follows at once from Lemmas 1, 2, 3.

We now conclude with the following result that
claims the existence of sought solutions to the Generalized

1Our use of the adjoint for the map E is consistent with the standard
notation in diffusion processes where the Fokker-Planck (forward) equation
involves the adjoint of the generator appearing in the backward Kolmogorov
equation.

Schrödinger system.

Theorem 6. Assume that the elements of the matrix

G = M(0)M(1) · · ·M(N−2)M(N−1) = [gi j]
n
i j=1

are positive. Let ν0 and νN be any two probability distributions
on X . Then, there exist a unique choice of the vectors
ϕ(0), ϕ̂(N) with positive entries such that

ϕ(t, i) = ∑
j

mi j(t)ϕ(t +1, j), 0≤ t ≤ N−1 (24a)

ϕ̂(t +1, j) = ∑
i

mi j(t)ϕ̂(t, i), 0≤ t ≤ N−1 (24b)

ϕ(0,x0)ϕ̂(0,x0) = ν0(x0), (24c)

ϕ(N,xN)
2
ϕ̂(N,xN) = νN(xN). (24d)

Proof. Consider the iteration

(ϕ̂(N, ·))next = C (ϕ̂(N, ·)) (25)

Notice that the componentwise divisions of D0 and DN are
well defined. Indeed, even when ϕ̂(0) (ϕ(N)) has zero entries,
ϕ̂(N) (ϕ(0)) has all positive entries since the elements of G
are all positive. Since C is strictly contractive in the Hilbert
metric, the iteration (25) would converge to a ray that is
invariant under C . We next show that the iteration (25) in
fact has a unique fixed point. Let φ̂ be any positive vector on
the invariant ray, then

C (φ̂) = λ φ̂

for some positive number λ . At the same time, by tracing all
operations that make up C , it is easy to see that

C (λ 2
φ̂) = λC (φ̂).

Combining these, let x = λ 2φ̂ and verify that

C (x) = λC (φ̂) = λ
2
φ̂ = x. (26)

On the other hand, for any y = αx with α 6= 1, we get

C (y) =
√

αC (x) =
√

αx 6= y.

Hence, x is the unique fixed point of (25). Define

ϕ̂(N) = x

ϕ(N) =

√
νN

ϕ̂(N)

ϕ(0) = E (ϕ(N))

ϕ̂(0) =
ν0

ϕ(0)

and ϕ(t), ϕ̂(t) according to (24a)-(24b). Observe that these
vectors are consistent with the Schrödinger system (24a-24d),
and this completes the proof.
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C. An algorithm contracting Hilbert’s metric and some exten-
sions

We delineate the steps of the algorithm that results for the
iterative steps suggested in (25) below. The sought result is to
compute the transition probabilities π∗i j(t) in (10) via solving
(24a). The transition probabilities represent the scheduling for
the transportation problem that we have been considering. The
summary of the algorithmic steps are followed by discussing
a generalization that aims at weighing differently the terms of
the optimization problem (Problem 1). We proceed with the
basic algorithm that can be stated as follows.

Algorithm 1: Determine π∗i j(t) in (10)

Result: routing scheduling specified by π∗i j(t)
Data:
matrices M(t) in (2) and probability vectors ν0,νN .
Initialization: C as defined in (23) where D0,E ,R,DN are
as in (19) and (21).
Set stopping accuracy, e.g., eps = 10−4.
Set x = 1 := (1,1, . . . ,1)†, and xnext = C (x).
while |x− xnext|> eps do

x← xnext
xnext← C (x)

end
ϕ̂(N)← xnext

ϕ(N,xN)←
√

νN(xN)
ϕ̂(N,xN)

t← N
while t > 0 do

ϕ(t, i) = ∑ j mi j(t)ϕ(t +1, j)
t← t−1

end
while t < N do

π∗i j(t) := mi j(t)
ϕ(t+1, j)

ϕ(t,i)
t← t +1

end

The assumption that the elements gi j of the matrix G =
M(0)M(1) · · ·M(N−2)M(N−1) be all positive can be relaxed.
For instance, if both ν0 and νN are everywhere positive on X ,
it suffices that G has at least one positive element in each row
and column to guarantee that the componentwise divisions of
D0 and DN are well defined. In that case, Theorems 1 and 5
hold true and the algorithm of this section applies.

Our analysis and algorithm can be generalized to the cost
function

D(P‖M)+ηD(pN‖νN) (27)

for any η ≥ 0. In this case, we only need to change (9d) in
the Schrödinger system to

ϕ(N, j)
η+1

η ϕ̂(N, j) = νN( j)

and the relation ϕ(N,xN) =
√

νN(xN)/ϕ̂(N,xN) in the algo-
rithm to

ϕ(N,xN) =

(
νN(xN)

ϕ̂(N,xN)

) η

η+1
.

The convergence rate is strictly bounded from above by η

η+1 .
The parameter η measures the significance of the penalty
term D(pN‖νN). When η goes to infinity, we recover the
traditional Schrödinger bridge. The upper bound is 1 in this
case. On the other hand, when η = 0, the solution is trivial
in view of (12). It is the Markov process with kernel M(t)
(assuming that all M(t) are stochastic matrices) and initial
distribution ν0. Indeed, η

η+1 = 0 implies ϕ(N, ·) = 1 on X . In
view of (24a), we get ϕ(t, i)≡ 1. This is intuitive and we do
not need to run the algorithm to solve the problem when η = 0.

Example 3. Consider the graph in Figure 1. We seek to
transport masses from initial distribution ν1 = δ1 to target
distribution νN = 1/2δ6 +1/2δ9. The step N is set to be 3 or
4. When N = 3, the evolution of mass distribution by solving

Fig. 1: transport graph

Problem 1 is given by1 0 0 0 0 0 0 0 0
0 0.59 0.21 0.21 0 0 0 0 0
0 0 0 0 0.38 0 0.21 0.41 0
0 0 0 0 0 0.38 0 0 0.62

 ,
where the four rows of the matrix show the mass distribution
at time step t = 0,1,2,3 respectively. The prior law M is taken
to be the Rulle Bowen random walk [17]. The mass spreads
out before reaching nodes 6 and 9. Due to the soft terminal
constraint, the terminal distribution is not equal to νN .

When we allow for more steps N = 4, the mass spreads
even more before reassembling at nodes 6,9, as shown below,

1 0 0 0 0 0 0 0 0
0 0.69 0.20 0.10 0 0 0 0 0
0 0 0.10 0.10 0.49 0 0.10 0.20 0
0 0 0 0 0 0.39 0.10 0.20 0.31
0 0 0 0 0 0.29 0 0 0.71

 .
The terminal distribution is again not equal to νN . However,
if we increase the penalty on D(pN‖νN), then the difference
between pN and νN becomes smaller, as can be seen below,
for the evolution of distributions obtained by minimizing the
cost in (27) for η = 10,

1 0 0 0 0 0 0 0 0
0 0.77 0.15 0.08 0 0 0 0 0
0 0 0.08 0.08 0.61 0 0.08 0.15 0
0 0 0 0 0 0.54 0.08 0.15 0.23
0 0 0 0 0 0.46 0 0 0.54

 ,
and for η = 100,

1 0 0 0 0 0 0 0 0
0 0.78 0.15 0.07 0 0 0 0 0
0 0 0.07 0.07 0.64 0 0.07 0.15 0
0 0 0 0 0 0.57 0.07 0.14 0.22
0 0 0 0 0 0.50 0 0 0.50

 .
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As can be seen, the terminal distribution gets closer to νN
as η increases. However, this comes at a cost of slower con-
vergence. In fact, the number of iterations needed to achieve
relative accuracy of 10−4 are 12,67,412, corresponding to η

being 1,10,100, respectively.

The observed phenomenon of “mass-spreading” before
final “reassembly” to a distribution close to specification,
provides a degree of robustness against link failures, as it
increases the alternative ways mass travels to destination.
Evidently, any change in topology can evidently be used
to update the data (matrices M(t)) so as to recompute the
transportation scheduling for the remaing of the time window.
While it is intuitively clear that the relaxation of the problem
leads to a transportation plan the explores a wider range of
paths, numerical experiments may be necessary to quantify
advantages of such plans on a case by case basis, as the
benefits and caveats may depend on the precise topology of
the network.

V. FINAL COMMENTS

Since the work of Mikami, Thieullen, Leonard, Cuturi
[44], [45], [46], [40], [41], [23], a large number of papers have
appeared where Schrödinger bridge problems are viewed as
regularization of the Optimal Mass Transport (OMT) problem,
see e.g., [7], [42], [2], [19]. Computation of solutions to
OMT problems in high dimensional cases is computationally
challenging [6], and due to that, the regularization aforded
by the Schrödinger bridge problem (aka entropic regulariza-
tion) present an effective computational scheme to obtain
approximate OMT solutions. Besides, Schrödinger bridges
are of independent interest as they are motivated by the
following two problems: The first is based on Schrödinger’s
original “hot gas experiment” and seeks large deviations of
the empirical distribution on paths [27]. The second is a
maximum entropy principle in statistical inference, namely the
problem to choose the a posteriori distribution corresponding
to the fewest number of assumptions about what is beyond
the available information. This inference method has been
noticeably developed over the years by Jaynes, Burg, Dempster
and Csiszár [34], [35], [11], [12], [26], [20], [21], [22]. It is
this last concept which largely inspired the original approach
taken in this paper.

In the setting of the present work, the prior mass distri-
bution on paths may simply encode topological information
of the network or, encode topological information together
with the length of each link. The mass distribution does
not necessarily need to be a probability distribution. Then,
given two marginal distributions at the beginning and end
of a time interval, we have considered a relaxed version of
the Schrödinger problem where the final distribution does not
need to be precisely matched, and the solution only needs to
correspond to a terminal distribution that is close to the desired
one. This has been formalized by adding to the criterion the
Kullback-Leibler distance between the final distribution and
the desired one. We have shown that the solution can be

obtained solving a modified Schrödinger system, in that the
terminal matching condition differs from the one in standard
Schrödinger problem. Finally, we provided an iterative algo-
rithm, contracting the Hilbert metric with contraction ratio less
than 1/2, to compute the solution numerically.
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[33] D. Hilbert, Über die gerade linie als kürzeste verbindung zweier punkte,
Mathematische Annalen, 46, 91-96, 1895.

[34] E. T. Jaynes, Information Theory and Statistical Mechanics, Physical
Review Series II, 106 (4): 620630, 1957. doi:10.1103/PhysRev.106.620.
MR87305, and Information Theory and Statistical Mechanics
II, Physical Review Series II, 108 (2): 171190, 1957.
doi:10.1103/PhysRev.108.171. MR96414.

[35] E. T. Jaynes. On the rationale of maximum-entropy methods. Proceed-
ings of the IEEE, 70(9):939–952, Sept. 1982.

[36] Johan Karlsson, and Axel Ringh, Generalized Sinkhorn iterations for
regularizing inverse problems using optimal mass transport, SIAM Jour-
nal on Imaging Sciences 10(4) : 1935-1962, 2017

[37] E. Kohlberg and J. W. Pratt, The contraction mapping approach to
the Perron-Frobenius theory: Why Hilbert?s metric?, Mathematics of
Operations Research, 7, no. 2, 198-210, 1982.

[38] B. Lemmens and R. Nussbaum, Nonlinear Perron-Frobenius Theory,
no. 189, Cambridge University Press, 2012.

[39] B. Lemmens and R. Nussbaum,, Birkhoff’s version of Hilbert’s metric
and its applications in analysis, ArXiv e-prints, arXiv:1304.7921v1,
(2013), Handbook of Hilbert geometry, Chapter 10, G. Besson, A.
Papadopoulos and M. Troyanov Eds., European Mathematical Society
Publishing House, Zürich, 275-306,2014.
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[50] E. Schrödinger, Über die Umkehrung der Naturgesetze, Sitzungsberichte
der Preuss Akad. Wissen. Berlin, Phys. Math. Klasse (1931), 144-153.
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