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Analyzing the impact of disastrous events has been central to understanding and responding to
crises. Traditionally, the assessment of disaster impact has primarily relied on the manual collection
and analysis of surveys and questionnaires as well as the review of authority reports. This can be
costly and time-consuming whereas a timely assessment of an event’s impact is critical for crisis
management and humanitarian operations. In this work, we formulate the impact discovery as
the problem to identify the shared and discriminative subspace via tensor factorization due to the
multidimensional nature of mobility data. Existing work in mining the shared and discriminative
subspaces typically requires the predefined number of either type of them. In the context of event
impact discovery, this could be impractical, especially for those unprecedented events. To overcome
this, we propose a new framework, called “PairFac,” that jointly factorizes the multidimensional
data to discover the latent mobility pattern along with its associated discriminative weight. This
framework does not require splitting the shared and discriminative subspaces in advance and at
the same time automatically captures the persistent and changing patterns from multidimensional
behavioral data. Our work has important applications in crisis management and urban planning,
which provides a timely assessment of impacts of major events in the urban environment.
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1 INTRODUCTION

Analyzing the impact of disastrous events has been central to understanding and responding
to crises. Effective crisis management requires not only careful planning and preparation for
disaster relief operations, but also a timely assessment of an event’s impact. The latter is
important for facilitating actions that will bring the society back to its normal operations as
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fast as possible [24]. In this work, we introduce a novel event analysis framework that can
automatically reveal the changes in human behavioral patterns associated with an event
through mining context-rich, high-dimensional and potentially heterogeneous urban activity
data.

Traditionally, the assessment of a (natural or artificial) disaster’s impact has primarily relied
on the manual administration and analysis of surveys and questionnaires, as well as the review
of authority reports [29]. Both of these approaches are costly and time-consuming. Today, in
the era of mobile and pervasive computing, rich digital human traces of routine transactions
are generated by city-dwellers, businesses, and organizations that can be collected through
online platforms (e.g., activities on social media), sensing technologies (e.g., mobile phones
and wireless sensors) and other means (e.g., crowdsourcing platforms). These rich troves of
human behavioral data provide an unprecedented opportunity to closely examine - both
qualitatively and quantitatively - the changes in urban activity that follow events of interest
(e.g., disasters). While much progress has been made in predictive event analytics, such
as detecting and/or forecasting event outbreaks [2, 33, 35], automatically quantifying and
capturing the impact of an event has been neglected despite its aforementioned importance.

Our objective in this work is to develop an automated method for understanding the
impacts of major effects in the urban environment. To achieve our goal we design unsupervised
learning techniques to uncover the changes in human mobility patterns before and after
an event of interest. In particular, we formulate our objective as a problem of identifying
common and discriminative subspaces between two datasets, the first one capturing the
behavior of interest prior to the event and the second one capturing the behavior after the
event. While there is literature on discriminant subspace learning [10, 14, 20], these solutions
fall into the same generic framework that requires the split of shared and discriminative
components before learning the subspaces. However, in the context of analyzing the impact
of an event, this is not possible. The vast spectrum of disastrous events and the associated
context under which they happen, make it extremely difficult to obtain this knowledge.
Thus, most of the prior methods cannot be practically applied to disaster event analysis.

In this article, we introduce a novel approach that is able to automatically discover the
impact of an exogenous event. While we are focusing on the impact of an event on urban
mobility, our proposed method is generic and can be used to analyze multiple aspects of
urban human activities. Our focus on the mobility will enable us to answer the question of
how does the event change when, where and what citizens normally do in a city? To reiterate,
our approach, called PairFac, formulates the problem as a discriminant tensor analysis
problem and solves it through the joint factorization of a pair of tensors. Specifically, given
two tensors capturing urban activity data before and after an event of interest, PairFac
simultaneously learns the shared and discriminative latent subspaces of the tensor pairs.
PairFac thus, reveals the patterns that both persist and change across multiple aspects of
urban activity data.

The motivation for designing PairFac stems from the fact that understanding the impact
of a disastrous event is a necessity in disaster management, while existing methods for
discriminative subspace learning exhibit practical limitations in their applicability in reality.
More specifically, in the context of disaster management, “impact assessment” plays a
critical role in understanding the (social) consequences of an event. In this situation, “social
impact” refers to the consequences an event has on human populations, altering the ways
in which they live, work, entertain, relate to one another, organize to meet their needs,
and cope as members of society [34]. The process of social impact assessment involves a
number of steps, including among others “description of the relevant human environment and
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zones of influence”, “identification and investigation of probable impacts”, and “estimation
of secondary and cumulative impacts”. These tasks are traditionally performed through
manual, labor-intensive data collection, and comparison. For example, to describe the human
environment and zones of influence, relevant data related to the event should be collected
and reviewed through a baseline study or community profile. This approach has been limited
in terms of scope and comprehensiveness, as it is not possible to scale to all potentially
affected people, and is restricted by pre-defined assessment indices that do not necessarily
universally apply. Therefore, a data-driven, generalizable, approach that can leverage the
large volume of (detailed) data collected from various sources is needed and has the potential
to revolutionize the traditional disaster impact assessment process.

Furthermore, existing approaches in analyzing events mostly focus on the impact discovery
using one- or two- dimensional analysis (e.g., call activities volume changes [3], change in
geographical location distributions [30], change in emotions [36]) and few are capable of
discovering multi-dimensional (or multi-modal) impacts. This inevitably leads to significant
loss of information associated with certain aspects that are either projected to a lower
dimensionality that can be handled by the model used or eliminated all together. Moreover,
the interplay between these multiple facets is not explicitly considered and could result in a
false interpretation of the outcome. By formulating the problem event impact analysis as
a tensor factorization problem, we are able to discover the changes that are correlated in
multiple dimensions. For example, the change in the call volumes on top of any association
in time can also vary depending on the location of these phone calls (e.g., their distance
from the epicenter of the event).

Our method differs from existing work in discriminative subspace learning [10, 14, 20]
by introducing the discriminative weight vector that allows for automatically aligning the
common components while at the same time discerning the discriminative components.
As shown in Fig. 1, we model the mobility data with two three-dimensional tensors', one
describing the mobility before the event and one describing the behavior after the event
of interest. As alluded to above, PairFac jointly factorizes the two tensors to identify the
latent mobility patterns that both change, as well as persist, before and after the event of
interest. Our comprehensive evaluations of PairFac on both synthetic and real-world event
datasets clearly showcase its effectiveness.

The key contribution of this work includes:

e We formally introduce the problem of capturing the impact of an exogenous event
on the normal operations of a system using discriminant tensor analysis. Given the
multidimensional nature of the rich human behavioral data, we use tensor representation
to preserve the interactions between different information layers, such as the temporal,
spatial and human action layers (see Fig. 1).

e We propose PairFac (see Fig. 1), a novel joint tensor factorization framework that
aims at simultaneously learning the shared and discriminative components from a pair
of high-dimensional data sources. Our method can automatically identify the common
components and at the same time discover the discriminative ones without a predefined
number of either type, by formalizing an appropriate optimization problem.

e We provide an efficient iterative algorithm that guarantees convergence to a locally
optimal solution for the aforementioned optimization problem. Furthermore, the
algorithm is scalable with time complexity linear in the number of non-zero tensor

lpairFac can be extended to more dimensions. However, for illustrative purposes, as well as, due to the
nature of our datasets, we design and evaluate our method with three-dimensional tensors.
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Fig. 1. Problem illustration of the proposed discriminant tensor analysis. X' g and X 4 represents
the data tensor Before and After a specific event (Paris terrorist attack). Matrices u®, u®, and
u") represent the three factor matrices for Location, Time, and Venue, respectively. The same-index
columns in each triplet of factor matrix jointly represents a behavioral pattern. PairFac identifies similar
and discriminative patterns before and after the event. For each pattern (e.g, colored in blue or red),

we show the location distribution (e.g., USBL)T, UEAL)T) in the city (of Paris), the time distribution (e.g.,

Ug)r, Ug)r) in a week (24x7) and the venue distribution (e.g., U(BY)T, Ug/l) among different activities
(e.g., Professional & Other Places (POP), Travel & Transportation (TT), Food (F); please refer to 6.1.2
for details.)

elements. In addition, we provide guidance on a parallel implementation of the algorithm
based on Spark that can further speed up the optimization.

This article represents a significant extension of our prior work [37] and is our first full
discussion on this subject. In this article, we include new solutions, algorithmic details,
and proofs, as well as extensive experimental results. In particular, there are several major
developments since our previous work [37]:

e We introduce a new algorithm that provides better interpretation of the discriminative
weights while at the same time achieving component alignment. In particular, we
introduce an additional auxiliary function to capture the commonalities between the
pair of tensors. This additional information gives rise to an easier interpretation of the
discriminative scores - i.e., higher scores represent unique patterns while lower scores
indicate shared patterns. In addition, our prior work relies on a post-hoc analysis
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of the learned components to determine the pair-wise alignment of the common
components. We address this limitation by re-formulating our objective function with
a new regularization term to enforce the similarity between common components.

e We provide a detailed algorithmic description and analysis in addition to a parallelized
version of the algorithm. More specifically, we provide details for the solution of our
formulated optimization problem, while at the same time providing a theoretical analysis
of its convergence. In addition, we provide a scalable, distributed implementation of
PairFac that speeds up the runtime, through the partition of tensors into mutually
non-overlapped blocks. This allows the gradient update in each step to be computed
via multiple nodes.

e We perform comprehensive experiments on the scalability and sensitivity of PairFac.
We also apply PairFac to extensive case studies on real events. To better understand
how to appropriately apply the algorithms to event analytics in practice, we system-
atically analyze the separability of data with respect to the ability of PairFac to
segment the components into common and discriminative parts. We further employ
our approach to discover the long-term impact of terrorist attacks in Paris using traffic
sensor data and Twitter geo-tagged content. Another case study is conducted for
discovering the changes in mobility patterns during the Thanksgiving week between
2014 and 2015. We demonstrate that our approach can not only distill the crowd
activity patterns under exogenous shocks but also analyze long-term activity changes.

The rest of this paper is organized as follows. Section 2 discusses literature related to our
study, while Section 3 presents the problem formulation and the essential background. In
Section 4, We introduce multiple solutions to the tensor factorization problem, including
a novel algorithm that automatically learns the discriminative weights of the components.
Section 5 provides detailed quantitative results on synthetic datasets, while Section 6 presents
our case studies. In Section 7 we discuss some open issues and future directions, while Section
8 concludes our work.

2 RELATED WORK

In this section, we describe literature relevant to our methodology and to event and urban
analytics.

2.1 Shared and Discriminative Subspace Learning

The increasing availability of data from a diverse set of sources has given rise to the study of
joint analysis of heterogeneous data. Our study closely relates to the area of discriminative
tensor analysis. For example, GTDA (General Tensor Discriminant Analysis) [32] attempts to
discover the discriminative features of a pair of tensors as a preprocessing step for subsequent
topic discovery and classification tasks, while TCCA (Tensor Canonical Correlation Analysis)
[21] generalizes Canonical Correlation Analysis (CCA) to handle the data of an arbitrary
number of views or distinct feature sets and identifies a reliable common subspace shared
by all views. Compared to these studies, PairFac attempts to simultaneously identify both
common and discriminative subspace from the multi-dimensional dataset. The simultaneous
discovery of common and discriminative subspace is not new. However, it is typically
limited to two dimensions at most. For instance, Gupta et al. [9] propose a joint NNMF
on two data sources through a shared subspace, while maintaining their unique variations
through individual subspaces. While Gupta et al. [10] further impose mutually orthogonal
regularizations to separate the common and discriminative subspaces to ensure that the
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shared and the discriminative subspaces are mutually exclusive. Following the same idea,
Kim et al. [14] relax the framework by requiring the shared subspaces to be similar while
not necessarily being strictly identical. Regarding the shared and discriminative subspace
learning in the context of tensor factorization, the framework by Liu et al. [20] - similar
to [9] - separates the subspace into shared and individual subspaces. In contrast, PairFac
imposes regularization on the shared and discriminative subspaces to automatically identify
the number of either type of components, while offering scalability by enabling factorization
of even higher dimensional data.

2.2 Event Analytics

During the last few years, there has been an increasing interest in the area of event analytics
through microblogs (e.g., Twitter). Researchers have approached this field from three
perspectives. One line of research is geared towards large-scale societal event detection
and forecasting (e.g., civil unrest, disease outbreak, and elections). A common technique
is to monitor the frequency of all words and look for a sudden burst in the frequency of
(a subset of) them [23]. For instance, Ning et al. [25] develop a multiple instance learning
based approach to identify evidence-based precursors and forecast events into the future.

The second line of research aims at sense making of an event’s storyline through statistical
analysis or visual analytics. For example, Diakopoulos et al. [8] design a visual analytics
tool to help journalists and media professionals extract news-worthy content from a large
volume of social media data.

Our work falls into the third line of research, which aims at studying the impact of an
event on the affected population. E.g., Lin and Margolin [18] explore the emotional response
of Twitter users in different cities to the bombing attacks in Boston, while, Bagrow et al. [3]
provide a quantitative view of the behavioral changes in human activity under extreme
(natural and man-made) conditions, such as bomb attacks and earthquakes, through the
analysis of mobile phone records. In a similar direction, Song et al. [30] mined GPS traces of
1.6 million users and built a system to automatically discover, analyze, and simulate the
mobility of a large population under severe disasters in Japan. The shortcoming of using only
cell phone and GPS data is that the activity context is absent. Including information relevant
to activity concept significantly complicates the analysis due to the increased dimensionality
of the data.

2.3 Urban Computing

In recent years, there has been a significant volume of research in the area of urban computing
and informatics. Zheng et al. [42] summarize seven types of urban computing scenarios for
urban planning, transportation, environment, energy, social issues, economy, and public
safety and security. Our work, from an application perspective, falls into the last category,
as we seek to obtain an understanding of the impact of exogenous events on urban space.
Recently, there have been several inspiring studies looking at urban environments. For
instance, Pan et al. [26] detect traffic anomalies based on drivers’ routing behavior on road
networks, while, Pang et al. [27] apply the likelihood ratio test (LRT) (widely used in
epidemiological studies) to describe traffic patterns. Our research is geared more towards the
area of disaster analytics in urban environments. Early forecasting and detection of disasters
are critical for planning effective humanitarian interventions and disaster management.
However, there is plenty of literature in this realm, and it is not the focus of our study. For
example, Lee and Sumiya [17] propose to detect events such as environmental disasters from
geo-tagged Twitter data, while Yu et al. [40] propose multiple Markov boundaries in local
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causal discovery to identify the sets of precursors for tornado forecasting. In another study,
Madaio [22] developed the Firebird framework to help municipal fire departments identify
and prioritize commercial property fire inspections, with a combination of techniques from
machine learning, geocoding and information visualization. Finally, the short- and long-term
evacuation plans/behaviors in the case of a disaster have also been studied [30, 31].

The contribution of our work resides in the area of disaster impact discovery from
multidimensional and heterogeneous data. PairFac is a generic framework that can be
used to study the impact of various exogenous events — being either natural, man-made,
or imposed by the local government (e.g., planning policies). For example, the impact of a
long-term construction project on the inhabitants’ mobility and activities can be quantified
using PairFac. Identifying behavioral changes for a variety of “urban interventions” has
been identified as an open problem pertaining particularly to urban computing [42].

3 PRELIMINARIES AND PROBLEM FORMULATION

In this section, we provide the necessary tensor theory background and notations for the
design of PairFac, followed by the problem formulation.

3.1 Preliminaries

3.1.1 Tensors. A tensor is a mathematical representation of a multidimensional array.
Table 1 presents the notation we use in the rest of the paper. We use x to represent a scalar,
x a vector, X a matrix, and X a tensor. We further use x; to denote the i-th entry of vector
x, X;; to denote the element of matrix X at position {4, j} and X;;i to denote the element
of tensor X at position {4, j,k}. The order of a tensor is the number of dimensions (also
referred to as modes, or ways). The dimensionality of a mode is the number of elements
in that mode. We use I; to denote the dimensionality of the g-th mode. For example, the
three-way tensor X € RI2X13 pag three modes with dimensionality of I7, I, and I3,
respectively. R, indicates that all the elements of X obtain non-negative values.

Symbol  Description
X a scalar (lower-case letter)
X a vector (boldface lower-case letter)
X a matrix (boldface capital letter)
X a tensor (boldface Euler script letter)
X

i the scalar at the {i,j} position of matrix X
X jk,... thescalar at the {77, k...} position of X
X(n) mode-n unfolding of tensor X
U™ mode-n factor matrix of tensor X
Ug,") the r-th column in mode-n factor matrix of tensor X
Iy,..., Iy the dimensionality of mode 1, ..., M
R the desired rank (Capital Italic script letter)

Table 1. Description of Notations.

3.1.2 Basic Operations. Mode-n matricization or unfolding: Matricization is the process
of reordering the elements of an M-way array into a matrix. A mode-n matricization of a
M
I(I

tensor X € RI1x[2xxIn i5 denoted by X, € RI”Xqu
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Mode-n product: The mode-n matrix product of a tensor X € RI1*12X-XIn with a matrix

U € R7*In is denoted by X x,,U and is a new tensor of size I1 X - - - X I,_1 X J X Tpe1 X+ - X Iy
With (X Xp U)iyeciyjinarein = Sor' 1 Tirigevin Uiy -

Tensor Decomposition: Given an input tensor, tensor factorization decomposes it into
a smaller/core tensor multiplied by a matrix along each mode. For the case of a three-
way tensor X € RIVXE2XI3 we have X ~ Z x; A x5 B x3 C. Matrices A € RI1xO,
B € R2XP and C € R13*? are called factor matrices, or factors/components, while tensor
Z € RI}XI2XIs g called the core tensor. In this process, each element of the tensor X is
the product of the corresponding factor matrix elements multiplied by a weight Z,,,, i.e.,
Xirigiy & 21111:1 Zilszl szjzl Z opqAoii Bpiy Cyis-

CP Decomposition: CANDECOMP /PARAFAC [11] decomposition is often referred to as
CP. The CP decomposition of tensor X could be expressed as X pq ~ Zil Ay By Cyy.
Let [z] denote a superdiagonal tensor, where [-] is the operation that transforms vector z to a
superdiagonal tensor by setting tensor element zj  j = zx and other elements as 0. Thus the
CP decomposition of a three-way tensor can be written as X = [z] X1 A x9 B x3 C. Following
Kolda [15], the CP model can be concisely expressed as X =~ [A,B,C] = Zil A, 0B, 0C,.

3.2 Problem Formulation

Simultaneous Discovery of Common and Discriminative Activity Patterns:

PROBLEM DEFINITION 1. Let us consider two non-negative tensors, X g € RILXIrx1Iv gnd
X 4 € RILXITXIv pepresenting the urban activities Before (B) and After (A) an exogenous
shock, where the tensor modes represents the Location (L), Time (T') and Venue (V') of
the activities. We seek to obtain a non-negative tensor factorization (NTF) to approximate
both input tensors, as Xy ~ [[USZL),USJT),USJV)]], Vq € {A, B}, and U(qm) e RImxB 'y €
{L,T,V'}, represents the factor matrices corresponding to each mode.

Note, as alluded to above, that in this work we focus on three-mode tensors but PairFac
can be used to deal with data with higher dimensionality. The location dimension corresponds
to specific neighborhoods in the city, the time is quantized hourly, while the venue dimension
captures the various types of establishments available (e.g., coffee shops, retail shops, etc.).
The term “venue” refers to the kind of place people visited, e.g., restaurants, schools, etc. —
that is, the semantics of the human activity, whereas “location” refers to the geographical
location that certain activity occurs. In our data, “venue” information is available from
Foursquare that describes the functionality or the activity provided by the point of interest
(or location). As shown in Fig.1, the corresponding columns (red) of each factor matrix
together define a mobility pattern that associates specific areas/neighborhoods, time, and
types of venues. Disastrous events, such as terrorist attacks, can inject intensive psychological
instabilities in the targeted population and as a result the mobility and/or behavioral patterns
of this population are likely to change after the event. The goal of the problem described
above is to discover the shared and discriminative components of the tensor structures
describing their urban activities before and after an event of interest.

4 SOLUTIONS

In this section, we begin with providing solutions to Problem 1. We start by describing
the current state-of-the-art approaches to solving similar problems [10, 14, 20] (Sections 4.1
and 4.2). We then discuss their limitations and introduce a new solution (Section 4.3). We
further provide a parallel implementation of our solution in Section 4.4.
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4.1 Shared and Discriminative Subspace Approach

To learn the shared and discriminative subspace, Liu et al. [20] proposed the Common
and Discriminative subspace Non-negative Tensor Factorization (CDNTF) which takes a
set of tensors as its input and computes both their common and discriminative subspaces
simultaneously as the output. Following their work, the objective of CDNTF can be re-
written as the following simultaneous factorization of two input tensors: X, ~ [U,], where

[(Uf;’g, (m) )]7 Yq, Ym, and Uflm) € RIm*R Tn this way, the columns of matrix U(qm)

are segmented mto two parts: U((;rg represents the common subspace, while Uf;nD)q represents
the discriminative components to each tensor. The above common and discriminative
subspace discovery is the solution to the minimization of the following objective function:

LD D EAR (R N (1)
qe{A,B} "1

where Uf;'g and UE;'B are defined as above, n, is the Frobenius norm of each tensor, and

||H§7 stands for the Frobenious norm.

4.2 Regularized Shared and Discriminative Subspace Approach

Shared and discriminative subspace learning have also been explored in the context of
nonnegative matrix factorization. In fact, CDNTF can be thought of as the extension
of nonnegative shared subspace learning (JSNMF [9]) to higher dimensions. Under this
framework, Gupta et al. [10] propose regularized nonnegative shared subspace learning
that further imposes a mutual orthogonality constraint on the constituent subspace, which
segregates the patterns. In the context of discovering common and discriminative mobility
patterns, we extend the framework to Regularized Joint Subspace Nonnegative Tensor
Factorization (RJSNTF) and with a slight abuse of notation, we derive the following
minimization problem:

— (m) y1(m) (m)
hi=dho+ Y Jm(Uge Uy UTH ), (2)
me{L,V,T} 4
where Uf;fg and UE;TLD)q are defined as above. Focusing on our application, q/ in Eq. 2

represents the time after the event that is different from ¢ (time prior to the event) with
U(m) U;T)C, and U(q?gq # U;T)D,. Therefore, Jg1(-) is a regularization function used to
: :DY,

penalize the “similarity” between subspaces spanned in {U[(]m)} and {U’(;,n)}. Following [10],

the mutually orthogonal constraints are defined as:

2 2

; 3)

JRl =&

(m) T g 7(m)
Um Uq7:nD

(m) (m)
+ﬂHUm UqTDq/

T
(m)
D Uq’:Dq/

where &, B and 4 are the regularization parameters. When Jr; = 0, the model becomes
identical to CDNTF.

RJSNTTF enforces the shared components to be strictly identical, which is a hard constraint
and might result in distortion during the factorization. Kim et al. [14] have proposed
the simultaneous discovery of common and discriminative topics via joint non-negative
matrix factorization where this constraint is relaxed by redefining the regularization term.
Their approach further emphasizes the similarities and differences of the common and
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discriminative components. Following the same idea and replacing Ufﬁg with Uf;’gq and

Uf;ﬁ)c to represent the similar components of tensors X'y and X 4 We derive Simultaneous
: q/

Discovery of Common and Discriminative Nonnegative Tensor Factorization (SDCDNTF)
as the following minimization function:

B=do+ Y Jpe(UGE UTD U Ul ),
q

q:Dg’ q’:D ’ (4)
me{L,V,T} a
and
(m) wm | (m) T15(m)
_ m _ m m m
JR2 = Uq:Cq Uq,:Cq/ H +8 HquDq Uq,:Dq/) 11 ’ (5)

where |[-||; ; denotes the absolute sum of all the matrix entries.

4.3 Automatic Discovery of Discriminative Components

4.3.1 Our PairFac Formulation. The above approaches fall under the same framework
that splits the tensors’ components into common and discriminative parts in advance,
discovering these components with different regularization. These approaches require the
number of shared (or distinct) components to be determined beforehand, which is difficult
in practice. In this paper, we propose a novel factorization method, which we term PairFac,
that does not require manual input of the shared or distinct components. In order to achieve
that, we assign a weight to each component that reflects the discriminative coefficient or
score of the corresponding component.

For this purpose, we introduce two auxiliary data tensors Zp and Z 4 that represent the
aggregated unique patterns found in each tensor respectively. We first define the following
function to compute these auxiliary tensors.

DEFINITION 2. Given a data tensor X € RIV<12XIs - G(X) is a clamping function that
outputs a tensor Z € RIVXI2X13 that is derived from the input tensor X with entries restricted
to a given value range such that Z = G(X), where G(X) is defined as:

Xivinigs If Xijigis > €,
0, otherwise,

G(X) = { (6)

where € is a constant that defines the minimum entry in the tensor Z. € can be empirically
chosen to control the sparsity of the auxiliary tensors (we use € = 0 in this work). Note that
the clamping function G(-) can also work with vectors and matrices. Then we compute Z,
that captures the unique variance in X, from X g s

Zq=G<Xq—Xq/>,qe{A,B} (7)

DEFINITION 3. Given two data tensors X and Y € RIV2XIs  GN(X V) is a binary
clamping function defined as:

0, otherwise,

GI(X,y) = { 1, Zf |Xi1i2i3 - yi1i2i3‘ < 6,, (8)

where € is a constant that defines the minimum entry in the tensor Z. ¢ can also be
empirically chosen to control the sparsity of the auxiliary tensors (we use e = 0 as well).
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Now with function G/, we derive another auxiliary tensor S defined as:
Sq=G (X, %) a€{AB) (9)

We further introduce the weight vectors w, € R to capture the discriminative coefficient
of each component. Given S, we want to enforce (1 — w,) to represent the contribution
of the corresponding components to the common parts of the two tensors. Note that in
Equation 9 we use a binary clamping function to infer the & tensor. This function captures
the common factors as the ones whose differences are no larger than ¢ . The choice of €
allows for imposing the degree of sparsity in the S tensor, which the stochastic version of
optimization benefits from (introduced in Section 4.4). Besides, the binary clamping function
enforces the non-common part to be zero such that the weights (1 — wy) gives a clearer
interpretation directly related to the degree of how much the pattern contributes towards to
the common tensor. Our intuition is that while factorizing the original tensors into its latent
patterns, we would like to find a discriminative score for each pattern that corresponds
to its unique contribution in each tensor. At the same time, we want to find a score that
represents the commonality of a component in the two tensors. With the notations presented,
we formally derive the minimization objective of PairFac as:

J3 = J(/J + Jg3 + JRa, (10)

where J(; differs from Jy in that it does not require the manual split of common and
discriminative parts in the factor matrix, and Jr3 is a function to factorize the auxiliary
tensors, defined as:

Im=a > NZi—[waUJIIP+8 Y 18, - [(1—wos [UJII1%, (1)

qe{A,B} qe{A,B}

where wy is the level of discriminativeness associated with component U,. According to
Eq. 11, the degree of which U, contributes towards the reconstruction of Z, is determined
by wg, and Z, captures the information of predominant “discriminative” part between
the two (before- and after-) tensors. Similarly, (1-w,) can be thought of as the degree of
commonality associated with Uy as the reconstruction of S; depends on U, but weighted
by (1-wg). Unlike Z,, S; captures the information of predominant “common” part shared
in both (before- and after-) tensors.

Jr4 in Eq. 10 is a function to align the components in the order such that similar
components should share similar weights as the result of the factorization:

R
2
Ji=r Y% H(1 — W)U (1 - wq/j)Uf;f;”,)H , (12)
me{L,V, T} j

where UfIT) is the jth column of factor matrix Ufgl) and w,, is its associated score.
Note that Eq. 10 differs from the objective defined in our prior work [37]. In [37], the
objective is given as:

T3 = o+ T, (13)
where
Jp3 =« Z 24 — [wgs [Uq]]]||2~ (14)
q€{A,B}
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Compared to J54 in Eq. 13, Jr3 in Eq. 11 has the addition of a second term, which uses
the auxiliary tensor S. Our prior work attempts to model the level of uniqueness of each
component ¢ captured by the weight w;. With the addition of (1 —w;), we can interpret it as
the level of contribution to the commonality between the two tensors. Moreover, the output
of Eq. 13 in our prior work [37] splits the tensor factors into common and discriminative
components but is not able to identify directly the pair-wise common components across
tensors. Previously, we addressed this problem through post-hoc analysis on examining the
pair-wise similarity of the components, which could be cumbersome. In this study, we expand
on our prior work by introducing Jgr4 to automatically align the common components in
order.

To solve Eq. 10 we use the block coordinate descent method. Consider the updating
of UY™ at iteration k. Using the fact that if X, = U™ o Uflm/) o Ufzm”), then Xy(m) =
Ufzm)(UgmH) @USIM/))T7 where X () is the unfolded matrix of X g m-th mode. The objective
(J3) can be then re-written as:

| 1 " / 2
minimize 7 Z (TT qu(m) _ Ufzm)(Uém ) o U((Im ))TH
qe{A,B} 9
" / 2
A ——

. N1 (15)
+ B[S0y — US A= A, )UE™) @ UG )T

2
sy > [uma-aw) - uPa- )|
me{L,V,T}

where ® denotes the Khatri-Rao product, I € R®*% is the identity matrix, Ay, , 1s a diagonal
matrix with w, as its diagonal entries, and m’ and m’ are used to index factor matrices

other than U,(Jm). The gradient with respect to Ug,m) is given as:

1 ’ " / "
Fug = - (DU 0 U7 x4 00 0 UG
w0 (U A, (U5 0 U = 2,,)) (05 © UL,
+6 (UG~ AU UG =5, ) (OF 0 UF A~ AT

+9 (UG = Aw,) ~ U= Aw ) 0= Aw,).

(16)
Let
Frol=um outm (17)
Ufzm) - Yg,k—1 q,k—1"
We take
- 2
k—1 _ k—1 k—1
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and
wk—1 — Og—1 — 1’
Qg
with ag = 1 and
f1:2
~ 1+4/4a;_ +1
[ B) .

Furthermore, let

q,k—1 q,k— n q,k—
and
Gk-1 _ i Om  gk-1 X Fk-1
UE;”) nq q,k‘fl UEIWL) ‘I(m) Ug’n)

A (m) k1T k—1 ,T
+oz(Uq’k_1Aqu q —Zq(m)>F A

~_ (1, T
+5 (Uf]’k)_l(l — Aw,)FF LT — sq(m)) (1 - Aw,)

(m)
Uq

+7 (IAJZ’]‘C)_l(I —Aw,) — IAJ(;/"”L_I(I —Aw, )) I - Aw,)

be the gradient. Then we can derive the update based on [38]:

(m) _ s IEYk—1 (m) Fr(m)
Uq’k = argg)mn(GUgm),Uq,k - Uq7k71> + 2
ulim>o

which can be written in the closed form as

U = max <0, O - Gh ek
q

Similarly, let

)

A _ k—1
Wg,k—1 = Wgk—11+W (Wq,k—l - Wq’k—2) )

and

Ak—1 ~ k=17 k—1 A k1T k—1

qu = (Wquq - Zq) qu - ((1 - Wq)qu - Sq) qu

-2 (U“”’ (=W UL, — (1 - Ay U
q,k—1 )Y g k-1 w
where
k}— ’ "
Py, = U 0 UL 0 U,

Let

2
k=1 _ ||lpk—1T k-1
k- _Hqu F- ’

we can write the closed form of the update for wy,

_ - Ak—1/pk—1
Wq k= INax (O,Wq,k,l -Gy, /Ly, ) .

1:13

(19)

(20)

(21)

(22)

(27)

(28)

(29)
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ALGORITHM 1: PairFac algorithm for discovering the shared and discriminative subspace from
tensor pairs.

Input :original tensors X g and X 4, and R.
Output: {wq}, {Uém)} for g € {A,B} and m € {L,V, T}
Compute Z4 and Sq by Eq. 7 and Eq. 9, Vm;
Randomly initialize Uf;,n—)l = U((;?é) and set wy 1 =wg o = [%}, Vq and VYm;
Set ag =1 and k = 0;
while not converged do
k=k+1;

Compute ll{qu_l, Ef;w{), and set wkil, Vq and Vm, according to Eq. 18, 28, 19;
q
Compute fJfI"Z) and W, ., Vg and ¥m, according to Eq. 21, and 25;

Update Ufﬁc) and w ., Vg and Vm, according to Eq. 23, and 29;
end

Algorithm 1 summarizes the above updating rules for solving Eq. 10 2.
Convergence analysis We provide the convergence analysis of Algorithm 1. The convergence
of alternating proximal gradient method is analyzed in [4].

LEMMA 1. (Sufficient decrease property [6]). Let f : R™ — R be a continuously
differentiable function with gradient 7 f assumed Ly-Lipschitz continuous and let o : R™ —
(—00, +00] be a proper and lower semicontinuous function with infgmo > —oco. For any t >
Ly and u € domo, define

u* = arg min {{ & — u, 77 ) + Slle =l + o ()} (30)
Then we have that
Flu) + o) — (F) + o) > 3¢~ Ll —ull” (31)

LEMMA 2. Let ¥(p) be the objective function Js ,where p = (U;ﬁ),wq,k)kEN and

(EIEI("”’ El‘qu )ken are generated by our PairFac algorithm, we have that
q

Lk
U(m)
YUY, W) = ¥ (UL Wok) 2 —5 |

2
PR Ul — Ul |12, vm, v,

k

W
W(U‘(I%)erwq’k) B T(U(qyarlarl’wqakﬂ) 2 Tq”quk - Wq,k+1||27vq

Proof. The above inequalities can be obtained by using Lemma 1.0
In the following we show that the value of ¥(p) monotonically decreases on the sequence
(p*), € N, which is generated by PairFac.

20ur codes are publicly available at https://github.com/picsolab/pairfac.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date:
January 2018.



Event Analytics via Discriminant Tensor Factorization 1:15

LEMMA 3. Let ¥(p) be the objective function defined in Js, where p = (Ugﬂz),w%k) and
there exists L > 0 such that E%(m) > L and E"qu > L, then (i) The sequence {¥(p)}ren is

nonincreasing and for any k € Nq, there is a scalar B > 0 such that
¥(p") =¥ (") = Bt — ot T > 0.

(ii) We have

o0 o0

2 k k2
S U U2 + W ke — = I = pF|? < oo, (32)
k=1 k=1

and therefore the sequence {¥(p)}ren is bounded.

Proof. Adding the inequalities from Lemma 2, we have

L‘k k
PO Wy ) — WU wy ) > — 2 [U0 —U 2 T w2
(33)
In PairFac, the Lipschitz constants ij(m) > L, £’§vq > L. Therefore, we have
q
C% k
OO U 1 T g w2 > (UL UL+ gk — ke
(34)
Combining inequality 33 and 34 yields the following
k k+1 L k k+1)2
M) W > Tt - 2 (3)

Hence with f =min{L/2,1/2}, we prove (i).

From Eq. 33 we obtain that the sequence {¥(p)}xen is nonincreasing. Since ¥ is assumed
to be bounded from below by zero, it converges to some real number ¥. Let N be a positive
integer. Summing up all £ > 1 for inequality 35, we have

¥(p") =¥ > ¥(°) —¥(p™)

I N
> 52 Mot =

b(
=1

SUul = Ul 12+ lwak — worel?)
k=1

T2

Taking the limit as N — oo, we prove the assertion (ii).

Based on this lemma, we then provide a convergence result of algorithm 1 under certain
assumptions. Let p = (U(qm), Wg). A point p satisfies the KKT-condition for the solution to
Eq. 10 if
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1 ’ " ’ "
— U ( (U Uy 0 U 7T = Xy, ) (UG @ UE)
q
+a (U Ay, (U 0 U =z, ) (UG © UG )AL,
+8 (U0 = A, (UG 0 U )T =50, ) (U7 © UG A= Aw)"

+y (US;“(I —Aw,) = UG~ Aw, )) I- Awq)> =0,

q

Wy < (WaFw,” = Z4) Py, = (1= w)Fy, T = 8, ) F,,
_Z< U (1~ U™ — (1 - w,)U“’“))) _

where * denotes component-wise product and qu is defined in Eq. 27.

THEOREM 1. Suppose the sequence {p = Uf;rfc)7 wWq )} generated by algorithm PairFac

is uniformly away from zero, i.g., there exists L > 0 such that /.ij(m) > L and E'jvq > L, Vq
q
and ¥Ym. Then any limit point of {p} satisfies the KKT-conditions 37.

The proof of Theorem 1 is provided in Appendix.

4.4 Parallel Implementation

In this section, we provide a scalable implementation for the PairFac algorithm. Our method
is based on FlexiFaCT [5], which is a MapReduce algorithm for PARAFAC and coupled
PARAFAC decompositions.

The key idea of FlexiFaCT is to split the tensor data into multiple blocks, each of which is
further split into smaller blocks with no shared rows or columns. Given the complex nature of
tensorial computation, researchers have initiated efforts in devising more efficient algorithms
for tensor computations, e.g., GigaTensor [13], FlexiFaCT [5], MET [16], Turbo-SMT [28], and
Haten2 [12]. We adopt the scheme introduced in [5] due to its simplicity in implementation as
well as its ability for coupled tensor matrix factorization. The parallelization implementation
involves three steps:

Step 1: Blocking for Parallelization. This step is to partition the data tensors into certain
blocks so that each block could run in parallel. Following [5], we term one set of independent
blocks in the corresponding tensor a stratum, and then we denote the number of blocks
in each stratum by d. To have full coverage of the whole tensor, we require d? strata. For
a stratum s we have blocks Pi(s) for i = 0...d — 1. Let each block P be the tensor that
contains all data observations in (bz,bj,bk) where b;, b;, by are ranges in I, J, and K:

= GT1/d), G+ 1) [1/d), b = G [1/d], G + 1) [1/d]), b = Gk [T/d] , (k + 1) [I/d]). With

this we define the blocks for stratum s as
P = (bi,bj,.,.br,,)
=(i+s) mod d
kei=[(i+s/d)| mod d,
fori=0..d—1.
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Step 2: Parallelizing the Computation. We partition the original tensors as well as the
three auxiliary tensors with the same schema so that Pi(s) denotes the same block across
different tensors. With this partition schema, we run the strata sequentially, but for each
stratum we compute the gradient with respect to U((Jm) by Eq. 22 and to wg by Eq. 26 based
on sparse tensors constructed from (b;,b;,by) in parallel on d machines.

Step 3: Gradient Summation. Now we have temporary gradient values computed by each
machine. These values are sent the partial gradients to the centralized master server. Lastly,
the final gradients in Eq. 22 and Eq. 26 are the summation of all the partial gradients.

In practice, step 1 can be regarded as a prepossessing step to index the observations in the
tensors to certain blocks for parallelization. We can run step 2 and 3 repeatedly, iteratively
updating Ugm) and wg, Vm and Vg, until the algorithm converges.

5 EVALUATION

In this section, we provide the evaluation of PairFac based on a synthetic dataset. Section
5.1 describes the synthetic dataset, while Section 5.2 illustrates the exemplary output of
PairFac. Section 5.3 provides the quantitative comparison with existing baselines. Since
PairFac outputs components with a list of associated weights instead, Section 5.4 discusses
several approaches to identify the common and discriminative components based on the
weights. Finally, in Section 5.5, we provide guidance on the parallelized implementation of
PairFac.

5.1 Synthetic Data Setup

The synthetic dataset generation aims to provide multidimensional datasets that share some
signals in common. To this end, we want to generate two three-way tensors X g € RI1x/2x1s
and X, € RIOXI2XI3 jecording to the equation Xp = Zfﬂ USBL)T o Ug)r o U(V) nd

Xa= Zr 1 U(L) Ug::ﬂ o UQ/’Z", where X' g and X 4 share the first K components among
the total R components in the first factor matrix and have exactly the same columns in
the second and third factor matrices. K is a parameter that controls the extent to which
the two generated tensors are similar to each other. Our generation rules of the synthetic
dataset follow the idea in [14]. The shared part in the first factor matrix are generated as:

U(L) _ 1,sr <m < s(r+1),
C,r 7] 0, otherwise,

where s = I/ (R + (R — K)), r is the column index for each matrix and m is the row index.
We generate the discriminative parts in the first factor matrix as:

U(L) ) LsK+sr<m<sK+s(r+1),
D:B,r = 1 0, otherwise,
and
U(L) _ 1,sR+sr<m< sR+s(r+1),
D:A,r ™ ] 0, otherwise.

In addition, each row of {U™} and {UM™)} is set to be a unit vector with only one non-zero
entry at a randomly selected dimension. We further add sparse Gaussian noise N(0, 02)
with different levels of variance to 20% of the entries in Ug) and U%).
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U , (Ground Truth) u® , (Output) U ; (Ground Truth) u® 5 (Output)

Fig. 2. lllustration of the output from our approach. We reorder the components of each output
factor matrix by its associated weight in ascending order from left to right. The weight vector w4 =
[.0001, .0000, .0000, .4874, .5124] and the weight vector wpg = [.0000,.0003,.0013,.4877,.5107].

5.2  Algorithm Output lllustration

We first provide the illustration of the output from our approach with the synthetic dataset
generated by setting Iy = Iy = I3 =20, R=5, K =3, 02 =0.1and a = 107%, 3 =2, and
v = 10~*. Fig. 2 shows an illustrative example of the factor matrices obtained from our
method in comparison with the ground truth factor matrices. Each column of the output
factor matrices is associated with a discriminative score (i.e., wq as in Eq. 11). To reiterate, a
higher score represents a greater level of discriminativeness for the corresponding component
in comparison with the components in the factor matrix in the second tensor. As explained
in Eq. 11, the value of each w, reflects the extent to which its corresponding component
contributes to the reconstruction of the “differing” part between the two (before and after)
tensors. We observe that our method nicely segments each output factor into two parts
based on the learned weights. The weights of the common components are almost zero while
the discriminative components contribute equally to the overall discriminative power. One
outstanding property of this model compared to our prior work [37] is its ability to align the
similar components in the corresponding order. For instance, we observe that the first three
columns are common components in U%)(Output) and U%)(Output). Among these three
columns, the first columns in these two matrices correspond to one common component (the
third column) in U%)(Ground Truth) and Ug)(Ground Truth). Similarly, we could find
that the second and the third columns in the output matrices concur with themselves and
can also find their matches in the ground truth matrices.

5.3 Comparisons with Baselines

As discussed in Section 4, there are three existing models that we adopt for comparisons,
including CDNTF [20], our extension of RSJINMF [10] to RSINTF, and our extension of
SDCDNMF [14] to SDCDNTF.
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5.3.1 Baselines. We include three baselines and one modification of our method for
comparative studies:

e CDNTF [20] takes an input K and splits the factor matrix into K common components
and (R — K) discriminative components by solving Eq. 1 with multiplicative updating
rules.

e RSINTF is our tensor extension of RSINMF [10]. It also requires the number of
common components K as input K and is based on a similar framework with CDNTF
where additional mutually orthogonal constraints on the common and discriminative
components are added. We develop multiplicative updating rules to solve Eq. 2.

e SDCDNTF is our tensor extension of SDCDNMF [14], which also requires K as input.
It can be classified under the same framework as RSINTF, where there is a relaxation
to the constraints on the shared components. We extend the block coordinate descent
framework to SDCDNTF to solve Eq. 4.

e PairFac does not require the specification of K. Instead, it generates two weight
vectors that represent the discriminative scores for each of its components.

5.3.2 Evaluation Metrics. To quantitatively evaluate the performance of our proposed
approach in comparison with existing literature, we use three measures, namely, (a) the
relative reconstruction error, (b) the quality of the recovered discriminative components
and (c) the quality of the recovered common components. To measure the quality of the
reconstruction, we compute the relative reconstruction error as:

N A
%5 % al?

The quality of the recovered discriminative part of the factor matrix is computed as
the similarity between the output factor matrix and the ground truth factor matrix:

simp(U,U) = ﬁzf>K cos(Up, Up) = —2 0 where U,. is the r-th discriminative

[RSAIIReA
component in the ground truth factor matrix and U, is the output of the r-th discrimi-
native component. Because there is an ambiguity in the column ordering [1], we try out
all possible permutations of R — xk components and compute the maximum similarity.
Furthermore, we compute the maximum similarity score of the common components as:

. - R T
simc (U, U) = % ngKcos(Ur,Ur) = W

(o oo e oy
: 4

Lo

5.3.3 Experiment Setup. Following the setup introduced in section 5.1, we generate another
synthetic dataset by setting I; = 100, I = 10, I3 = 20, 02 = 0.5, R = 10, and K = 5. For SD-
CDNTF, we experiment with o« and 3 € {1076,1075,107%,1073,1072,1071}. For RSJNTF,
following [10], we set a super parameter « in the same range. Finally, for PairFac, we set
aand B € {1076,107°,1074,1073,1072,1071,10°}, and v € {1074,1073,1072,10~%, 10°}.
We plot the average reconstruction error versus the average similarity score on the discrimi-
native components as well as on the common components from 30 runs of each method on
every set of parameters.

5.3.4 Results. Fig. 3 presents the comparison of the various methods from 30 independent
trials for each combination of parameter settings. The x-axis and y-axis show the quality of
recovered discriminative components and the quality of recovered common components. Each
point represents the average result of 30 runs. The size of each point is proportional to the
reconstruction error. We observe that PairFac has comparable reconstruction quality with
that of SDCDNTF. We also notice that most of the points from PairFac lay on the top-right
region in the figure, exhibiting higher quality in both recovered discriminative and common
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Fig. 3. Comparison of our approach with existing methods. Each point represents the average score
of 30 runs for each combination of the parameter setting. The size of points represents the reconstruction
error.

components. We conducted additional experiments on cases where the data have a varying
number of modes that are similar or different. Our results show that PairFac consistently
achieves better recovery quality in both the common and discriminative components. The
results are included in the appendix.

5.4 Identification of Common and Discriminative Patterns

PairFac learns the ranked components based on their discriminative scores. Components
that have higher similarities associate with low weights. In this section, we show how to
identify common and discriminative patterns.

Given a vector of ranked numerical values in the range of (0, 1) generated by PairFac, the
problem of identifying common and discriminative components is equivalent to searching
for a proper threshold 6, such that components with w < 6 would be regarded as common
components, while the rest can be regarded as discriminative components. We experimented
with four approaches for the selection of a cutoff threshold:

Fized threshold. The simplest approach is to define a fixed threshold, regardless how many
common components are in the tensors. We can set 6 = %, which essentially makes the
assumption that every component (from the R components in total) has equal probability
of being discriminative.

Largest Difference. We could also define 6 as the maximum difference between two
consecutive (ordered) weights.

Two Clusters. The weights learned from PairFac tend to fall into two natural groups.
Therefore small weights and large weights are likely to be separated by a simple one-
dimensional clustering with two clusters.
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Bimodal Density. Given that the weights tend to fall into two natural groups, we could
model the distribution of weights using a kernel density function and set 6 equal to the local
minimum of the area between two peaks.

5.4.1 Experimental Setup. In this experiment, we aim into evaluating the number of
common components identified by different heuristics. Following the setup introduced in
section 5.1, we generated another synthetic dataset by setting I = 100, I = 10, I3 = 20,
02=0.5, R=10,and K € {1,2,4,5,6,7,8,9}. We perform five runs with each value of K
and reported the run with the best results.

5.4.2 Results. In Fig. 4, we present the number of common components identified based
on the value 6 defined by the different heuristics aforementioned. Ideally, for a perfect choice
of 0, we expect the results to lay on the line y = x. Of the four approaches attempted, we
observe that the value of 6 defined by bimodal density and largest differences are the closest
to the optimal solution.

% ° Fixed Cutoff Largest Difference . s
2 g ~Two Clusters =Correct Split A
S . . 7~
S _ | - Bimodal Density
£7 pr
8 e
c 6 &
o /
Es =
o
O 4 & ~
8 ~
2° z
S 2
g A
* 1 <y
1 2 3 4 5 6 7 8 9

#Common Components in Groundtruth Dataset

Fig. 4. Number of common components identified by different heuristic approaches. Dark blue
line with diamond-shaped points denotes the perfect split between the common and discriminative
components; the cutoff defined by Bimodal Density (green line with cross-shaped points) has the closest
split with the optimal split.

5.5 Parameter Sensitivity

In our approach, parameters o and S control the weight placed on identifying the discrimi-
native or common components, and v controls the extent to which common components
could be aligned together. In this section, we evaluate the sensitivity of our approach with
regards to these parameters.

5.5.1 Experimental Setup. We follow the same experimental setup as introduced in Section
5.2 for PairFac. For each experiment, we vary one of the parameters «, 8, and <y in PairFac,
while keeping the remaining parameters constant.
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5.5.2 Evaluation Metrics. In Eq. 10, we introduced auxiliary tensors to capture the
common as well as the unique parts of both tensors. a and 8 control the importance of the
discriminative and common components respectively. As PairFac learns the discriminative
weights of each component we label them in order to classify them as common or unique.
During this process, we need to identify a cutoff point for the (ranked) weights. The
components that have discriminative power higher than this cutoff would be regarded as
unique patterns to each tensor. Section 5.4 suggests that the distribution of weights follow a
bi-modal distribution and the local minimum of the pit is the optimal cutoff for the split.
Hence, we separate the components using a bimodal distribution for the weights. To measure
the extent to which the bimodal distribution could reach a clear separation, we compute the
bimodal separation index [41]. Furthermore, the third term in Eq. 10 enforces that similar
components should be aligned together. v is expected to control the degree to which the
factorization should be constrained by the component similarity regularization.

5.5.3 Results. For evaluating the sensitivity of « and 3, we calculate their impact on the
separability and the relative reconstruction error, with a fixed value of . For evaluating
the sensitivity of v, we calculate its effect on the similarity of the common components and
the relative reconstruction error, with a and S fixed. We run PairFac with each parameter
setting for 30 runs and report the average measures with standard errors.

Effect of auxiliary tensors. We vary the weight of factorizing the auxiliary tensors by
setting o and B € {1076,107°,1074,1073,1072,10~%,10°}, and ~ = 1. Fig. 5 shows the
average relative reconstruction given different settings of o and 5. The results suggest that
with the increase of the weight for factorizing the auxiliary tensors, the reconstruction
quality degrades. One exception is shown in Fig. 5 (a), where the relative reconstruction
error decreases while v becomes larger. However, we expect the factorization quality would
eventually go up with larger « values. Fig. 6 shows the average separability with different
parameter settings of o and  when ~ is fixed to 1. When 3 is fixed, the separability becomes
larger when « increases, except when f is equal to 1. When « is fixed, we observe that the
separability decreases first and then increases.

Effect of column regqularization. We vary the weight of enforcing the column similarity
regularization by setting v € {1074,1073,1072,107%,10°} and o = 8 = 1076, Fig. 7 (a)
shows the average relative reconstruction error with different values of v. As we observe,
when v < 1072, the column regularization barely draws any impacts on the reconstruction
error, although we have gains in the similarity between the resultant common components as
shown in Fig. 7 (b). When v > 1072, the reconstruction error first decreases and increases
again, while the similarity scores seem to continue rising with the increase of . It is possible
that a reasonably large choice of v can give rise to the importance of column regularization
in the factorization steps. However, when 7 is set to be too large, the factorization result
would bias towards making excessive agreements between the common components, while
losing its quality on the true discriminative patterns.

To summarize, we demonstrated that, in practice, the “relative reconstruction error” can
be used to observe the appropriate range of the parameter settings. For example, in our
experiments, we found that the reconstruction errors are relatively stable for a wide range of
a and (8 values, except for a very large value in either of the two parameters (Fig. 5 and 6).
~ controls the level of “similarity” in common components, which is a parameter that allows
the algorithm to adapt to different application scenarios (Fig. 7(b)). A too large value of 7
(too much tolerance of “similarity”) may degrade the reconstruction results, which can be
easily discovered from plotting the reconstruction error against v (Fig. 7(a)).
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Fig. 5. (a) « vs. relative construction error (b) § vs. relative reconstruction error. Different lines
represent the settings of different « or B values. (a) shows that as o goes large, we have higher
reconstruction errors except when 3 =1 ; (b) shows that as 3 larger tend to lead to higher reconstruction
errors.
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Fig. 6. (a) a vs. separability (b) 3 vs. separability. Different lines represent the settings of different «
or (3 values. (a) shows that as « goes larger, the separability becomes larger except when 3 = 1; (b)
shows that as 8 becomes larger, however followed by in increasing trend.

5.6 Scalability

In this section, we provide the scalability analysis of our proposed method in terms of parallel
and non-parallel implementations. The purpose of the experiments on the synthetic data
is to demonstrate the run-time efficiency of the proposed method as well as the speedup
of the parallelization strategy. To understand how different tensor properties affect the
computation time, we perform a set of experiments with varying conditions. There are
three sets of parameters involved in this analysis: observations N is the number of nonzero
elements in the tensor; dimensionality [ is the size of a mode; and rank R is the minimal
number of rank one tensors, which generate the tensor as their sum.

5.6.1 Experiments. We construct two synthetic tensors following the dataset setup intro-
duced in Section 5.1, with a varying set of parameters to test the scalability with respect to
each of them. To this end, we fix two of three parameters N, I, R and vary the remaining
one. We conducted three experiments for the sake of validating the scalability of our method
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Fig. 7. (a) « vs. relative reconstruction error (b) ~ vs. similarity in the common components.
(a) shows that as v goes large, the relative reconstruction error decreases and then goes up after
taking certain larger values; (b) shows that as «y increases, we have higher similarities in the common
components.

concerning the number of observations, the dimensionality of the tensors, and the tensor
rank. Unless otherwise stated, we set the convergence criteria as either reaching 10,000
iterations or the relative reconstruction is below 10~%.

Observations. We generate a synthetic dataset with I; = Iy = I3 = 1000, R = 30, K = 10,
following section 5.1. Then we take the top N largest elements from each tensor to construct
the sparse tensor, where N varies in the range of {102,10%,10%,10%,105}. We set R = 10 as
the number of components after the factorization. In Fig. 8 (a), we show the running time
of our algorithm against the number of observations.

Dimensionality. We generate a synthetic dataset with Iy = Is = I3 € {400, 500, 600, 700, 800},
R =30, K = 10. Then we take the top 10* largest elements from each tensor to construct
the sparse tensors and set R = 10 as the number of components after the factorization. In
Fig. 8 (b), we show the running time of our algorithm against the dimensionality.

Rank. We generate a synthetic dataset with Iy = Is = Is = 1000, R = 30, K = 10. Then
we take the top 10° largest elements from each tensor to construct the sparse tensors and
set R in the range of {10, 20, 30,40, 50} as the number of components after the factorization.
In Fig. 8 (¢), we show the running time of our algorithm against the rank of the tensor
decomposition.

5.6.2 Results. The results show that the running time of PairFac scales reasonably well
with the growth of the number of observations, the dimensionality of the tensors, and
the number of components. Furthermore, with the stratum split mechanism introduced in
Section 4.4, we could reach better scalability with the help of multi-threading processing of
PairFac. The yellow lines in Fig 8 show the running time with two threads in comparison
to single-threaded PairFac.

6 CASE STUDIES

In this section, we illustrate the application of our method in two case studies, which
showcases the effects of specific events in the urban space, including the Paris terrorist
attacks and the Thanksgiving holiday weeks comparison in New York City (NYC).
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Type of Data Dimensions extracted Volume of raw data extracted

10,915,272 hourly occupancy rate

Traffic Sensor databases Location, Time from 2,885 road sensors

86,033 check-ins with

Check-ins and POI database | Location, Time, Activity 15.375 POI information

Geo-tagged Tweets Location, Time 121,631 tweets

Table 2. Data sources used in the case study of Paris terrorist attacks.

6.1 Paris Attacks

In this section, we use PairFac to analyze the effects of the Paris terrorist attacks in the
surrounding urban space. In our previous study, we investigated the immediate impact
of urban mobility in the following week of the attacks. In this study, we collect Twitter
check-ins and traffic sensor data in the month following the attacks from the Paris area and
apply our approach to study the long-term impacts on urban mobility.

6.1.1 Dataset. Table 2 summarizes the data sources we used for our case study. The first
dataset is the geo-tagged tweets from Paris collected through the Twitter API between the
period of Oct 16th, 2015 and Dec 18, 2015. The region is defined by a rectangle boundary *
that covers the Paris area. 121,631 geo-located tweets were extracted during the period
covered. The second dataset includes approximately 10.9 million records of traffic sensor
data [7]. It provides the hourly occupancy rate of 2,889 road segments in the area of Paris
and covers the same period as above. Our third dataset is from Foursquare collected by Yang
et al. [39] and it contains 86,033 check-ins from 15,375 POIs in the area of Paris between
April 2012 and September 2013.

6.1.2 Case Study Setup. In our previous study, we used grid-cell based city partition to
study the immediate impact of the terrorist attacks. We constructed three-mode tensors,
where the three dimensions are location, time, and venue type, respectively. While the
spatial locations can be represented via a two-dimensional variable, e.g., (x, y) or (latitude,
longitude), they can also be represented as a list of locations indexed by the two-dimensional
variable. We use the latter representation in our experiment to facilitate the interpretation
of discovered impact in terms of "location mode" and to compare it with other modes. In
our case studies, we used the neighborhoods to construct a list of locations as one mode in
the input tensors, where each entry in the location dimension represents one neighborhood

3N 48° 54/ 32.6118", E 2° 24/ 33.7104", N 48° 48’ 56.361", E 2° 14’ 36.7794".
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location. We extract 80 quartiers from 20 arrondissements in Paris as the possible values of
the location dimension. For the temporal dimension, we segment a week into 24 x 7 = 168
hourly intervals. Finally, for the venue dimension, we extract the nine primary categories in
the Foursquare venue hierarchy that includes Professional & Other Places (POP), Travel
& Transport (TT), Food (F), Outdoors & Recreation (OR), Nightlife Spot (NS), Shop &
Service (SS), Residence (R), Arts & Entertainment (AE), and College & University (CU).
For the data tensor of geo-tagged tweets, we first construct a matrix LT, where LT;; is
the number of geo-tagged tweets that fall in the i-th district at the j-th hour in the week.
Similarly, we construct the LT matrix based on the traffic sensor data, where LTj; is the
average occupancy rate in i-th district at the j-th hour in the week. Then, we construct a
matrix FTV, where FTV;;; is the probability of Foursquare check-ins in the k-th venue
category that falls in the i-th district at the j-th hour in the week. Thus, for each cell at
a given hour in the week, we know from the matrix FTV the probability distribution of
activities over the nine categories. Finally, the entries in the data tensor are computed as:

LTij X FT‘/'ijk

Zz’jk Xijk 7
for both Xp and X 4. X' p contains the normalized aggregated values over four weeks
between Oct. 16th, 2015 (Friday) and Nov. 12th, 2015, and & 4 is constructed based on the
normalized values in the following month, between Nov. 20th, 2015 (Friday) and Dec. 18th,
2015.

In our study we set « = 3 =108, v =5 x 10~7 for social media dataset and v = 10~7 for
traffic sensor dataset. Finally we set R = 20 for both datasets.

Xijk = (38)

6.1.3 Results. The advantage of PairFac is that it aligns the respective components of
each tensor which share high similarities. This is realized through the fact that the output
of PairFac is the mobility components as ranked by their associated discriminative scores,
with similar components sharing similar scores. It is therefore straightforward to identify the
common patterns as well as those discriminative ones. In the following, we pick two common
patterns and one discriminative pattern from each dataset to illustrate the advantage of our
proposed PairFac method. We first show the patterns from the geo-tagged tweets dataset,
followed by the ones from the traffic sensors.

Patterns from social media data: Since the largest difference method has been shown
to best find the split the patterns as in Section 5.4, we use it to separate the common
components and the discriminative components in all case studies. There are 19 pairs of
common components with small discriminative scores (M = .032, SD = .034) and one set of
discriminative components with discriminative scores as .38 and .39, respectively. Below we
show several interesting patterns among them all:

Common Pattern 1. Fig. 9 shows the 3rd component one month before (with discriminative
score as .0035) and one month after (with discriminative score as .0038) the Paris attacks. We
observe that the patterns from each tensor are virtually identical in all three dimensions. This
set of patterns primarily corresponds to the activities in professional places. The time usage
of this pattern typically falls during the daytime, although we observe a spike of activities on
Thursday nights. This might be due to the small portion of nightlife activities mixed in this
pattern. The pattern is heavily geographically distributed in the 16th arrondissement, where
four Fortune Global 500 companies (PSA Peugeot Citroén, Kering, Lafarge, and Veolia)
have their headquarters, which might explain the periodical distribution of professional
workplaces activities.
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Fig. 9. Common Pattern 1 from social media data. 3rd component before the attacks and 3rd
component after the attacks. Two maps show the probability distribution of check-ins in different
neighborhoods of Paris before (right) and after (left), where dark red (right) stands for a higher
probability. The bottom-left figure shows the distribution of traffic over the week (24 x 7), where
blue lines represent the distribution before the attacks and the red lines represent the one after. The
bottom-right figure features the distribution of check-ins over different types of venues (defined in section

6.1.2).
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Fig. 10. Common pattern 2 from social media. 14th component before the attacks and 14th compo-
nent after the attacks.
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Common Pattern 2. Fig. 10 shows the 14th component one month before (with discrimi-
native score as .026) and one month after (with discriminative score as .053) the attacks. We
see that the patterns from each tensor are almost identical, especially in their location and
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Fig. 11. Unique patterns from social media data. 20th component before the attacks and 20th
component after the attacks.

activity distribution. The time associated with this pattern starts from the morning and
keeps active for almost the entire day. It is interesting to note that on Sundays, Parisians
tend to start this pattern late and then gradually increase its usage. We observe the most
geographically highlighted areas are the one that is very close to the 11th arrondissement,
which is regarded as the hub of new food scene®. Other areas include the 8th and 10th
arrondissement are also among the top three popular food places.

Unique Patterns. Fig. 11 shows the 20th component one month before (with discriminative
score as .38) and 20th component from one month after (with discriminative score as
.039) the attacks. We select these two as they share similar time distribution, along with
similar location distribution, while their associated time of the week is different. This set of
patterns features the activities around outdoor recreations. The area associated with these
components is at the upper corner of 19th arrondissement, which is featured by Parc de
la Villette, the third largest park in Paris. This could explain why the activity is centered
around the outdoor recreations and the time mostly focuses on the second half of the days
or over the weekends. We notice that before the attacks, the time distribution follows a
fairly periodical pattern, with activities mostly taking place during the day-time and then
shifting to afternoons or nights during the weekends. However, after the attacks, the volume
of activities becomes less regular and also shrinks during most of the weekdays.

Patterns from Traffic Sensors: The largest difference method leads to 18 pairs of common
components with small discriminative scores (M = .042, SD = .031) and two sets of
discriminative components with large discriminative scores (M = .12, SD = .10), respectively.
Below we show several interesting patterns among them all. The first two sets of common
patterns are similar to the ones from the social media data in their respective distributions,
while the last one differs from each.

Common Pattern 1. Fig. 12 shows the 6th patterns one month before (with discriminative
score as .037) and one month after (with discriminative score as .000) the attacks related

4https:/ /www.thrillist.com/eat/paris/paris-arrondissements-ranked-by-their-food-and-drink
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Fig. 12. Common Pattern 1 from Paris traffic sensors. 6th component before the attacks and 6th
component after the attacks.

to the activities of food. We observe that the patterns from each tensor are practically the
same in all three dimensions. This set of patterns spans across multiple districts in Paris,
while mostly from the 10th arrondissement. In the time dimension, this pattern reaches its
peak during the day in the weekdays and tends to peak during the night on the weekends.
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Fig. 13. Common pattern 2 from Paris traffic sensors. 14th component before the attacks and 14th
component after the attacks.
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Common Pattern 2. Fig.13 shows the 14th components one month before (with discrimi-
native score as .037) and one month after (with discriminative score as .084) the attacks,
corresponding to the activities of professional places. The patterns from each tensor are very
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similar in all three dimensions. This set of patterns spans across multiple districts in Paris.
We can observe two peaks during the day-time, for which we conjecture each of them can
relate to the rush hour for work. The weekend traffic, however, is more centralized during
the day.

Location Distribution
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Fig. 14. Unique patterns from Paris traffic sensors. 20th component before the attacks and 19th
component after the attacks.

Unique Patterns. Fig. 14 shows the 20th (with discriminative score as .169) component for
one month before and 19th (with discriminative score as .096) component for one month after
the attacks. We select these two because they exhibit similar distributions both in time and
activities, as both of them show daily travel and transportation patterns while being very
distinct regarding their location distribution in the city. Prior to the attacks, the destination
of travel and transportation seems to fall around multiple locations, while several of them
are close the attack sites (e.g., 3rd, 4th, and 11th arrondissement). However, in the following
month, the traffic appears to have been more centralized to the 10th arrondissement and
also tend to be more spread out from the affected areas. We suspect the difference in the
location distribution could be because of road-blocks in those places after the attacks.

6.2 Thanksgiving in NYC

In this section, we demonstrate PairFac as a general urban analysis tool to uncover the
changes in mobility patterns during holidays. Thanksgiving is a major national holiday in
the United States. In this case study, we want to understand the differences in the mobility
patterns revealed in the Thanksgiving holiday week over two consecutive years.

6.2.1 Dataset. We collected the taxi trips during Thanksgiving week of 2014 and 2015,
respectively, which accumulates to 4,845,322 trips. Table 3 lists the dataset used in this
case study. The information about each trip includes the pick-up location, drop-off location,
pick-up time, drop-off time, the number of passengers. Similar to the previous case study, we
also supply taxi trips with Foursquare data to model the location-time venue distribution.
It contains 554,791 check-ins from 62,120 POIs in the NYC area between April 2012 and
September 2013.
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Type of Data Dimensions extracted | Volume of raw data extracted
Taxi Trips Location, Time 4,845,322 Trips
554,791 check-ins with

62,120 POI information

Table 3. Data sources used in the case study of Thanksgiving holiday week in NYC.

Check-ins and POI database | Location, Time, Activity

Component Index 1 2 3 4 5 6 7 8 9 10
Before 1.1e—02 1.2¢e—02 0.027 0.00508 0.039 0.021 0.087 0.18 0.19 0.43
After 2.2e —05 1.2e—07 0.000 0.02174 0.000 0.060 0.098 0.18 0.20 0.45
Difference 0.0e+00 9.8e—04 0.014 0.00019 0.012 0.042 0.103 0.17 0.04 0.48

Table 4. The discriminative scores associated with each component in NYC case study. The third row
shows the difference between the components with the consecutive indexes.

6.2.2 Case Study Setup. Again, we construct three-mode tensors, where the three di-
mensions are location, time, and venue type, respectively. We keep the time and venue
dimension the same as the Paris attacks case study. For the location dimension, we extract
193 neighborhoods in NYC. For the data tensors, we first construct a matrix LT, where
LT;; is the total number of passengers that are dropped off in the i-th neighborhood at the
j-th hour in the week. Then, we construct a matrix F'T'V, where FT'V;;;, is the probability
of Foursquare check-ins in the k-th venue category that falls in the i-th neighborhood at
the j-th hour in the week. Thus, for each cell at a given hour in the week, we know from
the matrix F'T'V the probability distribution of activities over the nine categories. Finally,
the entries in the data tensor are computed following Eq. 38. In our experiments, we set
a=p3=10"8% 7v=10"7, and R = 10.

6.2.3 Results. The largest difference method suggests only one set of discriminative
components 10th component before (with discriminative score as .43) and 10th after (with
discriminative score as .45), with the rest being common components. However, our observa-
tion is that components starting from 8th have already shown different degrees of differences
in their distributions. This suggests that using a single cut-off to differentiate common and
discriminative components might be too simplified a measure to determine the categories of
the components. On the other hand, the discriminative score provided by our model can
potentially provide a more accurate measurement of the similarity of the components.

In this section, we show several interesting patterns revealed by our method. Again, we
first show two common patterns, followed by two sets of discriminative patterns:

Common Pattern 1. Fig. 15 shows the first components from 2014 (with discriminative
score as .001) and 2015 (with discriminative score as .000), respectively. Their activity
distributions reveal a pattern of mixed functions including professional places, outdoor
recreations, travel, and transportation, etc. The activities mostly center during the day-time
and the areas associated with this pattern (e.g., Times Square and Central Park) suggest the
associated activities (e.g., Times Square for professional places and transportation hubs). We
observe that these two patterns have almost identical distributions in all three dimensions
with Thursday (the day of Thanksgiving) being the least active day.

Common Pattern 2. Fig 16 shows the comparison between the 2nd components from
Thanksgiving week in 2014 (with discriminative score as .0.001) and 2015 (with discriminative
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Fig. 15. The first common patterns from NYC taxi trip. 1st component from 2014 Thanksgiving
week and 1st component from 2015 Thanksgiving week.

Location Distribution

thanksgiving 2014

ry@,‘

Jersey City @
iz New York 5 4
-] ~

@

Time Distribution Venue Distribution

,*}»”*‘h I 1
1 2 3 4 5 6 7 POP TT F

OR NS sS R AE CU

Fig. 16. The second common patterns from NYC taxi trips. 2nd component from 2014 Thanksgiving
week (red) and 2nd component from 2015 Thanksgiving week (blue).

score as .0.000). We observe that the patterns in 2014 and 2015 are almost indifferentiable
in all three dimensions. This set of patterns focuses on the nightlife spots activities around
Times Square with their peaks spanning from Mondays to Wednesdays while decreasing on.

Unique Patterns 1. Fig.17 shows both 8th component of 2014 (with discriminative score
as .18) and 8th component of 2015 (with discriminative score as .18) center their activities
around Midtown. However, during the Thanksgiving week of 2014, the focus of the activities
from this pattern is related to professional places or colleges and universities, while the focus
moves to food and professional places in 2015. For the time dimension, we observe there is
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Fig. 17. The unique patterns from NYC taxi trips. 8th component from 2014 Thanksgiving week

and 8th component from 2015 Thanksgiving week.

a higher volume of activities over the weekend in 2015 and slightly more activities on the
Thanksgiving day, comparing to the one in 2014.
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Fig. 18. The unique patterns from NYC taxi trips. 10th component from 2014 Thanksgiving week

and 10th component from 2015 Thanksgiving week.

Unique Patterns 2. Fig.17 shows both 10th component of 2014 (with discriminative score
as .43) and the 10th component of 2015 (with discriminative score as .45) that center
their activities around Midtown, LaGuardia, and JFK. Although two patterns have almost
identical location preferences, the time and the venue associated differ. While the pattern in
2014 has an array of activities (food, professional places, shopping and services and travel
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& transportation), the one in 2015 primarily focuses on the shopping and services (e.g.,
shopping in 5th Ave). In the time mode, the pattern in 2014 has a relative low volume of
activities during the weekdays with a higher volume over the weekend, while in 2015 the
pattern seems to posses relatively less changes between the weekdays and the weekends.
This could be due to the effect of the weather conditions during these two periods of time.
In Thanksgiving holiday week 2014, there was a significant winter storm and it wasn’t until
the weekend that the temperature were back in the high 40’s”. However, the Thanksgiving
holiday week in 2015 has seen sunny weather all week with high temperatures from the
upper 40’s to the mid-60’s.

7 DISCUSSION

In what follows we discuss some open issues with our study as well as our future directions:

(1) As the first step of this study, we undertook the effort of removing the need to
manually pre-determine the number of common and discriminative components. Despite the
advancments we made, there still exists the challenging question of the choice of the number
components for PairFac. Although it is a common question for tensor factorization, and
dimensionality reduction tasks in general, it is also an essential step towards a more robust
discovery of latent patterns, and the impact of an event in our study in particular. As part
of our future work, we plan to investigate a more systematic way of determining the number
of components, particularly for the application of event analytics.

(2) PairFac is useful in discovering the changes in multidimensional data during two time
periods. There are two potential issues with the current model: a) compared to existing
literature [19], it does not offer insights on the changes over multiple periods of time; b)
the current model focuses on finding the changes in the whole subspace rather than in any
particular dimension. The latter could potentially be tackled through a dimension-specific
regularization term in PairFac’s optimization objective. However, the task of analyzing
changes over multiple time-periods could be more challenging, since PairFac requires the
computation of the auxiliary tensors that host the pair-wise common and discriminant
signals. The number of auxiliary tensors needed would increase dramatically as the number
of original tensors (i.e., time periods) increases. Hence, more research is required to determine
how to scalably model persistent and changing patterns over multiple time periods.

(3) The impact of disasters can be measured from different aspects based on the availability
of different datasets. By investigating the disasters using multiple datasets, it is possible to
discover the impact that might otherwise be obscured in isolated datasets. The construction
of input tensors and the interpretation of the output from the different data sources would
depend on the nature of the datasets (i.g., their meanings and granularities). For example,
Twitter data contains specific information regarding activities such as locations, times, and
content, while sensor data provides broad information about traffic flow as measured by the
vehicles. These two datasets provide complementary aspects of human mobility — the kinds
of places they visited and tweeted about or how they use vehicles to move around the city.
For example, in our previous study of the immediate impact of urban mobility after the
Paris attacks [37], we observed more Twitter activity close to night entertainment areas, but
much less traffic. In a scenario of disaster aftermath, Twitter data could help identify how
people went out to the streets to show solidarity, or commemorate the victims, whereas the
traffic sensor data could show how people’s activities on the streets subsequently blocked

Shttps://www.nbcnewyork.com/news/local/New-York-City-New-Jersey-Snow-Thanksgiving-Travel-Delays-
Roads-Forecast-283718461.html
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road segments and reduced the automotive traffic in the same region. As different datasets
illuminate distinctive aspects of city dynamics, it is an interesting next step to investigate
the correlations among different datasets in order to devise models that can be utilized to
discover patterns.

(4) The case studies presented in Section 6 construct tensors with three dimensions
(locations, time, venues), where each employs a pre-determined level of details in the
corresponding mode revealed from PairFac. For example, we use neighborhoods for the
location dimension. We proceed to this level because it enables us to further study the
potential factors that lead to the observed changes in different neighborhoods. These factors
can be obtained from readily available data, such as demographics, which are usually
aggregated at the level of city neighborhoods. It is important to note that, with different
settings, we might obtain understandings of the urban dynamics in different resolutions. The
choice of resolutions at this moment is rather application dependent. In our future work,
we aim to develop an extension of our method that can automatically disclose the most
interesting details.

(5) Despite the issues and limitations of acknowledged as above, PairFac provides in-
teresting insights in evaluating the impact of events in the city. In our first case study of
the Paris attacks, we reveal the changes in the mobility patterns based on two datasets,
social media data (geo-tagged Twitter content) and traffic sensors, separately. Compared
to [37], the results show that most of the patterns resumed to the same orders as they were
before the attacks (e.g., Work-related patterns in Fig. 9 and 13, Food-related patterns in
Fig. 10 and 12). However, according to the Twitter data, the outdoor-recreation pattern in
the northern part of Paris has not been as exercised as much as it was before. Particularly,
Thursdays see one of most reduced activities. We guess this might be due to the police
raid in the northern suburb of Paris, Saint-Denis, which is close to Parc de la Villette,
on November 18th. Although the siege was ended in the morning of November 18th, it
wasn’t until the next day that French officials announced the primary suspect in the Paris
attacks was killed in the raid . On the other hand, from the traffic sensor data, we show the
transportation pattern has seen the distinct focus of regions, where people tend to alternate
their choices of transportation to the areas that are away from the attack sites. This change
in transportation patterns was only observed from the traffic sensor data. We guess this
could be due to the road blocks in the areas close to the attack sites where the access could
be limited to foot traffic. The results from the NYC Thanksgiving case study (comparing
2014 to 2015 are contradicting to our expectations as we observe almost identical patterns of
Outdoor, Transportation (Fig. 15) and Nightlife activities (Fig. 16), and surprisingly more
food activities (Fig. 17). Although FBI has warned that the media officer of ISIS had called
the Macy’s Thanksgiving Day parade an “excellent target,” our analysis shows that the
mobility patterns do not vary much over the two years even under the influence of potential
and imminent terror attack. However, this could also because of reinforced security due to
the terror threat as 2,500 police officers were deployed on the ground for the Thanksgiving .

8 CONCLUSION

In this work, we propose a new analytic approach PairFac that aims to discover the impact
of an exogenous event on multiple aspects of human activities in the urban environment.

6https://en.wikipedia.org/wiki/2015_ Saint-Denis_ raid
Thttp://www.nydailynews.com/new-york/hundreds-turn-thanksgiving-parade-balloon-inflation-article-
1.2447267
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With the multidimensional nature of the mobility /behavioral data, we formulate the impact
discovery as the problem of identifying common and discriminative subspaces from these
datasets. Compared to the existing methods, our approach has the advantage of automatically
distinguishing the common and discriminative components. This is realized through the
introduction of auxiliary tensors and additional column regularization for the learning
optimization objective of discriminative weights. We conduct extensive experiments with
synthetic data to demonstrate PairFac’s effectiveness and scalability.

We apply PairFac in two case studies and demonstrate its capability to reveal persistent
and changing mobility patterns with respect to events of interest. For example, in our first
case study using data from the terrorist attacks in Paris of 2015, we see that activities
around professional life and food venues experienced the least changes. Using PairFac
process results, they appear to have identical location and time distribution over the course
of the period of study. The most dramatic change was seen in outdoor recreation activities
in the 1st and 19th Arrondissements. Although they share the same location distribution,
we observe that their associated times became irregular.

PairFac is not only for use in determining disaster impact, as seen in the Pairs terrorist
attacks case study, but also as a general urban analysis tool to identify changes in the
activities of the city’s inhabitants over the different periods of time. This use of PairFac can
be seen in the example of our second case study. We applied PairFac to the data regarding
taxi travel during the Thanksgiving holiday week in 2014 and 2015, in order to investigate
the changes, if any, in mobility patterns. The results suggest that most of the patterns
remain consistent and reveal the unique attributes of mobility in NYC during this major
American holiday. For example, in the Times Square area, both nightlife and professional
activities decrease between Thanksgiving Thursday through Sunday. When we compare the
two Thanksgivings, there are some differences in activities. Specifically, in Thanksgiving
2015, in midtown Manhattan, there are less professional and academic activities, but a
greater number of food related activities in the same area with similar time distribution.
One potential explanation for the increase in food related activities for Thanksgiving 2015
is that people were not influenced to change their behavior by the conceivable increase in
risk of terrorist attack. Additionally, the police took extra precautions and placed heavy
police force on the ground to safeguard the areas of the city most at risk®.

There are several future directions for this work. (1) In this study, we present the case
studies from the perspectives of two datasets with distinct nature of their origins and
representations separately (e.g., Twitter check-ins and traffic sensors from Paris). In our next
step, we also would like to investigate what stands in common for these two data sources.
We believe this would shed light on how we could better understand the phenomenon that
originates from different data sources. (2) It is also our desire to study how the patterns differ
and evolve over a period of time instead of only considering before and after the events. We
should note that pairwise computation of common and discriminative tensors as introduced in
this study make sense for the purpose of probing the shifts during these two periods. However,
such design should be used with caution since it could be too computationally expansive for
a sequence of tensors over time. In this case, a different design for the computation of the
common and discriminative signals might be required. We believe that using the mean of a
sequence of tensors could be a more natural way to capture the common signals over time.
However, future work is needed to comprehensively understand the problem and to explore
potential solutions. (3) Another natural extension of our work is to investigate the driving

8https://nypost.com/2015/11/26 /nypd-beefs-up-security-ahead-of-thanksgiving-day-parade/
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factors that direct the observed changes. This can be particularly insightful in building
disaster impact predictions. (4) As the current output of our algorithm ties to the choice of
the number of components, we are not guaranteed to obtain meaningful patterns with a
certain designated number of components. To resolve this issue, we want to extend PairFac
under the framework of hierarchical impact discovery by including a component ranking
approach across multiple levels.
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APPENDIX A PROOF OF THEOREM 2
Proof. Suppose p = (I_Jf]m),v_vq) is a limit point of {p = (Uéir,?,wqyk)}. Then there exists a

subsequence {p¥i} converging to p. Based on the above analysis, the sequence {p*i*1} also
converges to p. According to the update rule 23, it holds that:
UZZ_H = max (O, Ul(;;g U(m /EU“" > ,Vq and Vm.
Letting j — oo, we have
U((Zm) = max (0, I_Jf]m) — Gﬁgn)/ﬁﬁgn)) ,Vq and VYm,
where L- = A (Fk ! TFk ). This implies U is a minimizer of the linearized
Ugm) = Amazx U(m) (m) p q

proximal regularization of ‘P(UE]’ k) ) regarded as a function with respect to Uém) at point
ol e
q 9 e *y

L
U™ = argmin(G, ), U — Ty Yo ‘U<m> o H (39)
U™ >0 Y
Assume U((Z + 1s a solution of problem
argmin‘I/(Ufzm), Wg)- (40)
ul™>o0

Using Lemma 2, we have ‘I/(Ufﬁ),\Tvq) - ‘I/(I_J'flm),v_vq) > 0, which implies I_Jf]m) is also a
solution of 40. Therefore [_I(qm) must satisfy the KKT-conditions of 40. It is easy to see
that Eq. 37 is the KKT conditions for J3. This completes the proof. The proof of the KKT
conditions for w, can be obtained similarly and is thus omitted.o

APPENDIX B ADDITIONAL EXPERIMENTS ON THE SYNTHETIC DATASETS
Ezxperiment Setting. We conducted additional experiments with three more synthetic data
generation settings with a varying number of different modes:
I None of the three modes are different (all modes are similar: similar in UZ, UT, and
uv);
II Two modes are different with one being similar (similar in UZ; but different in U” and
uv);
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Fig. 19. Experiment results on various settings of synthetic data generation. The x-axis shows
different modes (L, T, V) under three settings of synthetic data generation (I, 11, I11). The y-axis shows
the quality of recovered common components. Note that the modes where the synthetic data tensors
shared are not included in (b) since they do not have discriminative components.

IIT All three modes are different (different in U*, U7, and UY).

We added random sparse Gaussian noises to all three modes and followed the same parameter
settings as in our manuscript. In terms of baseline, as SDCDNTF performs best in all the
baselines. In this set of additional experiments, we compared PairFac with SDCDNTF.
SDCDNTF can be considered as a representative approach that requires the pre-defined
numbers of common and discriminative components, whereas PairFac automatically identifies
the common and discriminative components in a data-driven manner.

Results. Fig. 19 (a) and (b) show the results the quality or recovered common and
discriminative components under the three experiment settings, respectively. The x-axis
shows different modes (L, T, V) under different synthetic data settings (I, II, IIT) and the
y-axis shows the quality of the recovered components if applicable. We observe that PairFac
consistently achieves superior performance compared to SDCDNTF in all settings.
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