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ABSTRACT

The increasing utilization of massive open online courses has sig-
nificantly expanded global access to formal education. Despite the
technology’s promising future, student interaction on MOOCs is
still a relatively under-explored and poorly understood topic. This
work proposes a multi-level pattern discovery through hierarchical
discriminative tensor factorization. We formulate the problem as
a hierarchical discriminant subspace learning problem, where the
goal is to discover the shared and discriminative patterns with a
hierarchical structure. The discovered patterns enable a more effec-
tive exploration of the contrasting behaviors of two performance
groups. We conduct extensive experiments on several real-world
MOOC datasets to demonstrate the effectiveness of our proposed
approach. Our study advances the current predictive modeling in
MOOCs by providing more interpretable behavioral patterns and
linking their relationships with the performance outcome.
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1 INTRODUCTION

While massive open online courses (MOOCs) have been attracting
an ever-increasing number of students, the low completion rate
(between 5%-10% [19]) has been a major obstacle to the transfor-
mative potentials of MOOCs. The predictive analysis of student
performance thus emerged an an important research topic offer-
ing insights to platform developers and instructors in arranging
proper learning support and allocating resources to students. To
find informative predictors, researchers have focused on extract-
ing features from students’ interaction with the MOOC platform,

*Corresponding author.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW 19, May 13-17, 2019, San Francisco, CA, USA

© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-6674-8/19/05.

https://doi.org/10.1145/3308558.3313713

2068

Yu-Ru Lin*
University of Pittsburgh
Pittsburgh, PA
yurulin@pitt.edu

Xi Liu
Texas A&M University
College Station, TX
xiliu.tamu@gmail.com

Jordan Barria Pineda
University of Pittsburgh
Pittsburgh, PA
jab464@pitt.edu

log(grade)
log(grade)

Less than Sec.Sec. Bachelor'sMaster's
(b) EducationXArea vs Grade

Less than Sec.Sec. Bachelor'sMaster's
(a) Education vs Grade

India=Other Europe = United States
ShortestStay H ShorterStay

(c) EducationXAreaXStay vs Grade

AverageStay LongerStay LongestStay

Figure 1: Association analysis of student performance on
MOOCs. (a) shows the positive association between the
grade and education level; (b) shows the mixed associations
when including the area where the student is from; (c) fur-
ther breaks down the observed groups into different level
of activity (five quantiles w.r.t. the number of days students

remained active on the platform).
such as watching videos, working on assignments, and viewing

or contributing to discussion forums. Applied predictive models
range from standard machine learning methods [23, 28] to more
advanced ones such as deep learning [7]. These prediction models
could be useful in predicting learning outcomes but are notably
limited in helping understand the underlying learning behavior.
There is abundant work that aims to better understand the be-
havior patterns that relate to the learning outcomes. For example,
Coleman et al. [4] correlates each “behavior topic” to the learning
outcomes based on topic modeling. However, the research to date
fails to consider the multi-dimensional nature of the features and
their potential interactions in outcome learning. Meanwhile, the
famous Simpson’s paradox points out that the direction of an associ-
ation at the population-level may be reversed within the subgroups
comprising that population [20]. To further explain this in the con-
text of the MOOC platform, we use the Edx MOOC dataset [14] and
investigate the factors associated with the students’ grade on it.
We extract the education, area (the region where the student is
from), the number of active days and the final grade of each student
in the course “Introduction to Computer Science and Programming”
offered by MITx in Spring 2013. The course had more than 44,000
online participants. Figure 1 shows the association between the
selected factors and the final grades of the students. By comparing
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Figure 1(a) and Figure 1(b), we observe that when the factor of area
is considered, mixed associations occur. For example, the subgroup
of Indian participants exhibited a negative association between
education level and grade, which potentially suggests a more con-
servative understanding of the relationship between educational
background and course outcome. Moreover, when we consider the
number of active days, as in Figure 1(c), we notice that for the par-
ticipants from the “other European” area, the positive association
has a strong presence— but only with ShortestStay and LongestStay.
Thus, in comparison to typical correlation analysis, a prediction
model that can take advantage of the multi-way interactions of the
features could potentially yield better performance.

A growing body of research seeks to resolve Simpson’s para-
dox through causality inference [34]. However, causality is not the
focus of this study as we aim for a data-driven approach to sub-
group comparisons and explorations. In many cases, this can be
interesting and important even in non-causal settings. A straight-
forward solution is to perform regression with feature interactions,
or use Factorization Machines [37] that allow for the estimation
of high-order interaction effects. However, the drawback of these
methods is that they offer little understanding of the underlying
multi-way learning behavior dynamics and their relationship to the
learning outcomes. On the other hand, Factorization models like
Matrix Factorization (2-way) and Tensor Factorization (m-way) are
able to provide an in-depth understanding of meaningful behavior
dynamics [9], but there are a few drawbacks preventing them from
being more widely adopted by researchers in the field. First, the as-
sociations are isolated, with each of them capturing a certain trend
of the behaviors separately (e.g., Figure 2(c)). Second, conventional
pattern discovery through factorization models provides little sup-
port for contrasting pattern exploration that aims to identify the
shared and discriminative behavior characteristics among different
groups of users. Being able to do this can tremendously improve
knowledge of user behaviors in the context of user group analysis.

In this work, we formulate the problem of understanding learn-
ing behavior in MOOCs as (1) the simultaneous factorization of
the association between students’ multi-aspect features and their
performance, and (2) the iterative discovery of interpretable shared
and discriminative patterns at multiple levels. The critical challenge
is how to utilize the multi-way interaction of the features while pro-
viding interpretable patterns to help domain experts understand the
learning dynamics. We propose a tensor-based learning method—
iterative Discriminative tensor factorization (iDisc)—that discov-
ers the common and discriminative learning patterns at multiple
levels, and based on which we project users to a latent space (i.e.
embedding for the downstream prediction tasks) to identify the
association between the multi-way interaction of the features and
the students’ performance. To this end, we first represent the be-
haviors of the students from the opposite performance groups as
coupled tensors. Since the coarse-grained joint factorization of these
behavior tensors may not be capable of revealing behavior patterns
at the subgroup level, iDisc iteratively performs discriminative
pattern discovery at multiple levels. To increase the interpretability
of the entire pattern space, we also introduce the inference of pat-
tern hierarchy. To make the solution capable of handling unseen
students, we project the students’ behavior tensors into a latent
space, by considering the multi-way interactions at different levels
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as the loading matrix. The empirical studies with the dataset from
different MOOC platforms have shown the promising results on
the effectiveness and efficiency of iDisc.

Contributions Our contributions can be summarized as follows:

e We formulate the problem of identifying the multi-way fea-
ture interaction with interpretable pattern discovery for un-
derstanding user behavior on the MOOC platforms.

e We propose a framework of iterative discriminant factoriza-
tion for multi-way data. By factorizing the residual tensors
at each level, our method enables the discovery of common
and discriminative patterns at different granular levels. To
ensure the parsimony of the discovered structure, we employ
sparse learning to effectively capture enforcing relationships
between the top-level and bottom-level patterns.

e We perform extensive experimentation of our methodology
using several real-world datasets, and show the efficiency
and interpretability of our proposed method.

2 RELATED WORK

Predictive Modeling in MOOCs. There are several types of predictive
models in MOOC:s that are closely related to this work. One direc-
tion is to utilize more complex feature types, including higher-order
n-gram representations of learner activity data. For instance, fea-
tures are constructed using the occurrence of pre-defined sequential
activities [44], or from sequential pattern mining [11, 17, 26, 40].
Another line of work proposes to utilize the temporal nature of the
activity data for student success prediction. Qiu et al. [36] propose a
latent dynamic factor graph (LadFG) to model and predict learning
behavior in MOOCs. LadFG captures the dynamic information and
homophily correlations between students. It also projects students’
learning behavior into a latent continuous space for predicting
student performance. Another approach is the latent variable mod-
eling as a way of inferring complex relationships between predic-
tors [13, 25, 27]. For instance, Halawa et al. [13] explore the use of
count-based learning activity features to predict dropout; this ap-
proach suggests that both observable learner activity and dropout
are driven by latent, unobservable “persistence” factors.

Common and Discriminative Subspace Learning. The increasing
availability of data from diverse sources has enabled the study on
joint analysis of heterogeneous data. Gupta et al. [12] propose a joint
Non-negative Matrix Factorization (NMF) approach to separate the
common and discriminative subspace. Following the same idea, Kim
et al. [22] relax the framework by requiring the shared subspace
to be similar rather than strictly identical. Wen et al. [46, 47] pro-
pose a data-driven method of jointly factorizing the paired tensors
with auxiliary tensors that preserve the common and distinctive
signals. However, existing works focus primarily on pattern discov-
eries. This limits their use in downstream tasks (e.g., prediction or
classification).

Multi-Level Tensor Factorization. Multi-Level Tensor Factoriza-
tion addresses the problem of approximating the hierarchical low-
rank tensor format. This process allows the representation of the
tensors in a nested subspace, in one of Tree-Tucker format [30],
tensor train format [29], or tensor networks format [3]. Huang et
al. [18] employ a tree-guided learning via tensor decomposition



Table 1: Description of Notations.

Symbol  Meaning
R the rank of tensor decomposition
l the level index
Ry the rank at /-th level
vl the tensor-based user embedding at [-th level
p! the projection matrix that maps from the [-th level

patterns to the patterns at the (I — 1)-th level
X, X, x, x Tensor, matrix, vector, scalar
X(i,j) the scalar at the {i, j} position of matrix X

X(r, the r-th row of matrix X
X(m) the mode-m unfolding of tensor X
U the set of factor matrices
Uﬁm) the m-th mode factor matrix from the tensor of class
c
Ul the I-th level factor matrix from the tensor of class ¢

c

L., Ipn the dimensionality of mode 1, ..., M

and matrix factorization in the context of experts recommenda-
tion in multiple areas simultaneously. However, there is limited
research that discovers hierarchical nested subspace in the tensor
subspace [31]. Ozdemir et al. [31] construct a data-dependent multi-
scale subspace to better represent the data. To do so, the authors
first construct a tree structure by partitioning the tensor into a col-
lection of permuted sub-tensors, and then construct the multi-scale
subspace by applying HoSVD to each sub-tensor.

Summary. The existing predictive analytics on MOOCs con-
siders various ways of constructing a matrix-based feature space.
We argue that tensors could be a more suitable representation for
student behavioral modeling due to their flexibility in representing
the multi-way interaction of the behavioral data. In this regard,
Sahebi et al. [39] have shown success in using a tensor-based ap-
proach to model the students’ learning process, and predict student
performance. However, the multi-way interactions as behavior pat-
terns have not been discussed, and a more interpretable pattern
discovery that can support a comprehensive understanding of stu-
dent behaviors is missing. On the other hand, most hierarchical
tensor factorization methods tend to recursively decompose the
tensor modes by a pre-specified dimension tree [3, 29]. Our work,
instead, is closer to the multi-level tensor factorization approach
by [32], which recursively factorizes the residual tensors to obtain
a multi-level representation of the subspace. However, to the best
of our knowledge, there has been no work yet that discovers the
common and discriminative patterns at multiple levels, especially
in the area of predictive modeling in educational data mining.

3 PROBLEM FORMULATION

In this section, we start with a brief introduction to tensor notions
and operations and then formulate the problem considered in this
study. Table 1 summarizes the notations used in this paper.

3.1 Preliminaries

3.1.1 Tensors. A tensor is a multidimensional array. Let x denote
a scalar, x a vector, X a matrix, and then X is the extension of
these concepts to higher dimensions. The order of the tensor is the
number of modes (or ways) in the tensor.

3.1.2  Tensor Operations. The basic tensor operations that we use
in this study are:
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Mode-n unfolding, or matricization, is the process of re-ordering
elements of tensor X to form a matrix X,), where n is the dimen-
sion index upon which the unfolding performs. In the case of the
three-way tensor X € Ri*EXB jts matricization in the first mode
can be denoted as X(q) € RIx(xl)

CP Decomposition [15] or CANDECOMP/PARAFAC decompo-
sition expresses an m-way tensor X of size [} X --- X Iy as X =
25:1 u(rl) 0-.--0 u(rM), where u € Rlmform = 1,...,M and
r =1,...,R By using “kruskal operator,” [24], we can shorthand
the CP decomposition as X ~ [U(I), . ,U(M)], where the factor

matrix U™ is defined as U™ = [ugm) ... ug")]‘

3.2 Problem Formulation with Tensors

To motivate the problem in the context of a real-world dataset, we
discuss the application of NMF, Non-negative Tensor Factoriza-
tion (NTF), discriminative NTF, and hierarchical NTF with a toy
dataset. This dataset was extracted from one of the most popular
courses in the XueTangX dataset (full dataset details in Section 5.1).
Each student event, or activity, is associated with three attributes:
time (d1, d2), source (s1, s2), and type (t1, ta, . . ., t7).

3.2.1  NMF. Let matrix X denote the aggregated activities that
users have been recorded engaging in on the XueTangX platform
for this course. The nature of matrix X is a two-dimensional array,
which restricts its capability of integrating further information [38].
In this way, we can either drop one of the attributes or force the
third dimension to be combined with the second dimension. Fig-
ure 2(a) shows the case where X' contains only sourcextype, and
Figure 2(b) shows the case where X" contains sourcex(type+type),
where (type+type) can be considered as a repeated vector to jointly
represent the event activity and the day.

With the behavior described by X, the bottom part of Figure 2(a-
b) show the respective low-rank factor matrices approximated by
NME, the source factors (left), and the type factors (right), since they
provide the low-dimensional representations of each source and
each activity, respectively. Compared to X', X" has the additional
advantage of revealing the low-dimensional representation of each
activity on different days.

3.2.2 NTF. Alternatively, we can use a tensor to represent the
same dataset (Figure 2(c)). With the given data of a ternary rela-
tion nature [43], we could use a third-order tensor X to denote a
sourcexdayxtype activity.

NTF techniques can be applied to obtain three low-dimensional
representations: source factors, day factors, and type factors, as
X = [S, D, T] . As aresult, each pattern comes with a set: a between-
activity vector t to describe the activity dynamics; a between-source
vector s to describe the usage tendency between different sources;
and an across-day vector d to describe the temporal dynamics (e.g.,
p1 in Figure 2(c)). Compared to factorizing the unfolding matrix
X’ (Figure 2(b)), NTF introduces the day-specific factors. This sig-
nificantly increases the presentation capability of the patterns by
revealing a more direct across-day (temporal) dynamics. Each pat-
tern now represents the interplay of three factors, describing the
tendency from different perspectives. With the rich attributes in
the behavioral dataset on MOOCs, we thus use tensors to model



the behaviors, with the hope that doing so can provide behavioral
patterns with the interpretations from different aspects.

3.2.3 Discriminant NTF. Standard NTF provides meaningful pat-
terns for simultaneously analyzing the behaviors from multiple
aspects. This substantially increases the capability of studying and
interpreting the behaviors on MOOC platforms with rich dynam-
ics. However, this still does not sufficiently serve the desire to
comprehensively understand and investigate student behaviors on
these platforms. For example, one of the most interesting ques-
tions is which behavior patterns are shared by completed students
and dropout students, and which differentiate the two groups (Fig-
ure 2(d)). Through understanding the commonality and differences,
researchers can better design course interactions and content to
help more students successfully complete the course.

One could easily use NTF to fit the behavior tensors from each
group of users, separately. However, this approach does not take
advantage of any shared behavior patterns between the two groups.
As the behavior moves to high-dimensional tensor space, this could
potentially lead to the under-fitting problem. Besides, with patterns
generated for each data tensor separately, it needs to perform an ad-
ditional post-hoc analysis to determine common and discriminative
patterns. This is a non-trivial attempt to align the common and dis-
criminative patterns, in the case of each pattern being represented
by multiple vectors from different aspects. In this regard, discrimi-
native NTF is set to jointly factorize the tensors constructed from
different groups of users with the following objective considering
CP decomposition:

Liise = ||XCompleted - [S’ D, T] ||2 + ”XDropout - [S/, D’7 T,] |2
+Q(S,D, T8, D, T),

1

where Q(-) is the function to promote the simultaneous discovery
of the common and discriminative patterns [22, 47].

3.24 Hierarchical NTF. Previous works on NTF or discriminative
NTF for unsupervised pattern discovery focus on finding a set
of patterns at equal granularity, or in a flat structure. Although
they are adequately expressive to reveal the behavior dynamics
from different aspects, they can not provide the relations between
patterns (such as parent-child and sibling relations).

A hierarchical non-negative tensor factorization (HierNTF) is
more desirable than a set of “flat” patterns, because one can work
with the pattern exploration in a hierarchy. As opposed to going
through each pattern individually, this results in more efficient
pattern understanding. HierNTF can be analogous to hierarchi-
cal topic modeling, such as hierarchical Latent Dirichlet Alloca-
tion (hLDA) [10], where patterns at higher levels in the hierarchy
present “abstract” behavior topics, and ones at lower levels reveal
more “specific” behavior topics.

3.25 Problem Statement. Our problem falls into the combination
of the discriminative NTF and HierNTF. We would like to identify
common and discriminative patterns nested at multiple levels for a
deeper understanding of the relationship between students’ multi-
way behavior dynamics and their course performance. Before we
give the formulation of the studied problem, we would like to first
clarify some basic concepts used later.
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Definition 3.1. Individual Behavior Tensor. Let X(#) € RI*l2+xIn

be an M-way tensor representing an individual user u, with each en-
try in the X () being an activity from user u that is jointly described
by M attributes.

The attributes can be data or platform dependent, such as a time-
varying attribute tensor constructed from demographic and behav-
ior attributes associated with users at different time stamps [36].
The individual behavior tensor can be considered as a multi-way
representation of each student. With that, for each performance
group, we can compute the collective behavior tensor.

Definition 3.2. Collective Behavior Tensor. Let X, € RIv<IzxIn
be an M-way tensor that users M attributes to describe the collective
activities from a group of users indexed by c.

Students at each performance group can be jointly represented
by a collective behavior tensor that captures the full multi-way
feature interactions of their activities. Then, we can combine the
tensors for the two opposite performance groups to construct the
coupled tensors.

Definition 3.3. Coupled Tensors. Coupled Tensors X = {X;} is a
pair of tensors with identical attributes, i.e., Ilc = If, IzC = IZE, e
It = I;I, where ¢ is the index of user group that tensor X is
constructed from and ¢ represents the counterpart class.

The coupled tensors X can be constructed in various ways, de-
pending on the performance metric selected, such as ¢ € {dropouts,
completion} or ¢ € {certificates, no-certificates}. Inspired by [35],
we construct the coupled tensor as follows:

Xe= = 3T X0, @)

Uel &4,

where Uy is the subset of users u with u belonging to class c. While
each individual behavior tensor captures the full-order feature in-
teractions explained by her activities, the full interplay between
the M attributes for each group of students can be contained within
the tensor structure corresponding to the group.

Definition 3.4. Multi-way Behavior Pattern. A multi-way behavior
pattern is a a collection of M vectors (x(l), x(z), . ,x(M)), M > 2,
where x(™) € RIm js a vector to describe the pattern with the m-th
attribute.

Definition 3.5. Pattern Hierarchy. Let P! € RRX Ri-1 denote a pat-
tern hierarchy that specifies the relationships between the behavior
patterns in the consecutive levels, i.e., level [ and level [ — 1, where
1 < [ < L P! can be considered as a projection matrix that maps
the pattern from the I-th level to the ones at the (I — 1)-th level.

Definition 3.6. Tensor-based User Embedding. A tensor-based user
embedding v € RR is the student’s vector representation that
preserves each student’s behavior tensor with a lower-dimensional
feature space RR, given the tensor’s rank R.

With the definitions above, we define the iterative common and
discriminative pattern analysis as follows:
Problem 1. Given a set of individual behavior tensors X®) ¢
RIOXExIm (y =1,2,...,N) corresponding to C categories, C = 2,
and a set of unseen test data X() € RI<k >l (p = 1,2,...,7T),
our goal is to iteratively identify a set of patterns that reveal the
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common and discriminative behaviors at multiple levels, and then
use the learned patterns as bases to infer the user embeddings for
prediction of the group membership from the unseen students.

Specifically, the task is threefold: (1) collective behavior pattern
inference for discovering the common and discriminative patterns;
(2) iterative pattern discovery at multiple levels with hierarchy; and
(3) embedding projection for test samples based on the iterative
patterns for classification. In other words, the first two tasks are
aimed at revealing interpretable patterns that could explain the
interplays between the behavior attributes, and the last task is to
discover the relationship between student performance and the
multi-way patterns.

4 SOLUTIONS

In this section, we introduce an iterative tensor factorization method
named iDisc for the coupled tensors, X = {X.}. Figure 3 illustrates
the overview of iDisc. There are two-stages: (1) iterative appli-
cation of discriminative tensor subspace learning; and (2) repre-
sentation learning for the unseen student based on the multi-level
patterns.

4.1 TIterative Discriminative Tensor Subspace
Learning

This component iteratively applies the following two-step approach:
(1) discriminant low-rank tensor approximation, followed by (2)
computing and passing the residual tensor into the next level.

4.1.1

torization seeks a set of N factor matrices [U] =

Discriminant Tensor Factorization. Conventional tensor fac-
[UD, U@, .

from a behavior tensor X/ at level [ for class c. One such example
is:

Ll

®)

—_—
Loss for Coupled Tensors Factorization

Through Eq. 3, we could obtain a set of independent factor ma-
trices (or behavior patterns) for each of the performance groups,
respectively. However, this does not consider the commonality and
differences among the coupled tensors.

In order to take the commonality between the two behavior ten-
sors into consideration and allow discrimination against each other,
we introduce two sets of auxiliary tensors Si and Zg that capture
the shared behavior and the discriminative behaviors among the
coupled tensors. Inspired by [47], S(I: and Zé are computed based
on the coupled tensors X with the clamping function (Eq. 7 and
Eq. 9 in [47]). The rational behind the auxiliary tensors is that; we
would like to have discriminative tensors that contain only the
unique signals for each class, and common tensors to hold what is
shared among the coupled tensors. A collective tensor factorization
framework is then leveraged to jointly factorize the coupled tensors

’U(N)]l
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and the auxiliary tensors as follows:

g'=lean( Sz - [wzol [« Sl - [wsoll])

Loss for Auxiliary Tensor Factorization

+ f(ULulL, wl) + g(ubtulpt) + (Pl
L1 penalty

Loss for Pattern Alignment  Loss for Pattern Hierarchy

(4)
where:

e W7 and ‘Wg are the core tensors with super diagonal en-
tries;

of ( . ) is the function to enforce the similar components to
be aligned correspondingly and defined as:

£ (Ve Ve Ws) = 2

2
Z ( ”dlag((WSq) - dlag(WSC) ); (5)
3 g( ) is the function that learns the shared mapping p! by
the coupled tensors, between the patterns at the consecutive
levels. We can consider this operation as performing a matrix
decomposition from Ué‘l to Ué and P! as:

(UL UL P = “U1 1yl

(6)

assuming that we already have the values of Ué‘l for I-th
level pattern discovery;
h( . ) is an L1 penalty function that encourages sparsity in

P! to promote the exclusive mapping between the factor
matrices at the consecutive levels. Considering a more in-
terpretable pattern hierarchy, we use L1-norm, since it can
function as a proxy for the L0 norm, to minimize the number
of nonzero elements while maintaining the convexity of the
cost function when estimating P the others fixed. In this
manner, we ensure the higher-level patterns are mapped to
exclusive lower-level ones; and

Ao, A1, A2, A3 are the respective parameters to weigh in each
objective.

With Eq. 4, common and discriminative patterns discovery at
the I-th level becomes an optimization objective as:

()

1 _ 1 1
0 —argmmgj,

where 0! =

(U, Wz, Ws.P}L.

4.1.2 Obtain the residual tensors. Once 6! is determined, the re-
constructed tensor can be obtained by:

X~ Ui, 8)
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and therefore the residual tensor can be computed as:
sl=xt-XLve. )

Let X, Cl“ denote the tensors for the identification of common and
discriminative patterns at the next level [ + 1. We first obtain (\’CI“
as: X1 = 8L, where L is the residual tensor as aforementioned.
With X Cl“, we can further identify the common and discriminative
patterns at level [ + 1 with Eq. 4.

Algorithm 1: Algorithm iDisc for discovering the shared and
discriminative subspace from coupled tensors at multiple levels.

Input :Coupled tensors X, {R } and {Ag, A1, A2, A3}
Output.{@}l , where 0 = {U, WZ,’WS,P}C
1 Letl =0;

2 while! < Ldo

3 Construct {Z.}! and {Sc}l from {X,} based on Eq.7 and
Eq.9 in [47];

4 Obtain 6/ by solving Eq. 4;

5 Reconstruct {XC}I based on Eq. 8;

6 Compute 8£ based on Eq. 9;

7 Letl=1+1;

8 Let X! =

9 end

4.1.3  Parameter Optimization of iDisc. For simplicity of notation,
we omit the level [ in all notations since the optimization is per-
formed per level with the focus on the unknown 6! and the §/~1 are
learned at level [ — 1. We also omit the mode notation m because all
modes share the same optimization process. Let U, represent the
mode-m factor matrix at level-/, instead of the rather complex form
of {Ugm) }1. We use U, to denote the set of factor matrices for X,
that correspond to modes other than m, and ¢ to denote the class
that is not c.

Since objective function J is not convex with respect to 6, we
aim to find a local minimum for J by iteratively updating each in

0.
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1. Update U, fix others. The optimization of U, is equivalent to
the following least squares loss functions [47]:

Ue « argmm ||X -Uc (OUc)T”F

Uc20
+ /10( Zc - UCAWZC( GﬁC)T“F + Sc _UcAWSC (GGC)THZF)
+ A1 [UeAws, —Ushwg_ ‘i + A ||Ulc—l —u.p|,

(10)
where X, is the mode-m unfolding of tensor X,. Then the gradient
update of U, can be computed as:

e = e (Ve©Te)T -Xe) (Te)
+ Ao( (Vetwy, @0e)T -z} ©Te)ak ; +(Verws, (©Te)T -sc) (@Teindg, )

A (UCAWSC —UEAWSE)AWC —AZP(Uifl _UCP).
(11)

2. Update Wyz_, fix others.
Let wz_ denote w for tensor X.. The optimization of wz,_ is
equivalent to the following problem:

(12)

2
Wz, < argmin Ag “ZC Aw,, (0U,) | s
we >0
where Ay, € RRXRXR s the tensor with w7, as its super-diagonal
entries. The gradient update of w is:

Vwze T = o (Awz, (OU)T = Z.) (0U,). (13)

3. Update Ws,_, fix others.
Let ws, denote w for tensor X.. The optimization of wg, is
equivalent to the following problem:

W, « argmin Ao ”Sc = Aws, ((DUC)T”2 + M ”UCAWSC - UEAW\%”2

o (14)
The gradient update of wg, can be derived as:
Se) (OU) - Ay (UCT(AWSC U, - AWS?UE))
(15)

szc J = (Awsc (@UC)T -

4. Update P, fix others. The optimization of P is equivalent to a
co-regularized collective matrix factorization problem with sparsity
constraints [6, 41]:

R R R PR

1
P « argmin /12(
P20 2



Since the sparsity is applied to each row of P, each row P(,. .) can
be updated based on the following gradient:
(T = =22(UL (1 (U = U Pir.)
UL ) (UF = Uz( yPiry)) + Assgn(Pr. ).

The details of iDisc are summarized in Alg. 1 1.

(17)

4.1.4 Time Complexity Analysis. The time complexity is mainly
consumed by updating each factor matrix U in iDisc from comput-
ing vy, J . From Eq. 11, we need to compute UC(OUC) (OI[_J'C) and
X (®U,) in the first term. Note U, € RIm*R and X, € RIm*[lizm Li
and therefore we have U, (0U.)7 (0U,) € RIm*R and X.(0U,) €
RIm*R The operation of matricized tensor times Khatri-Rao prod-
uct (X (0U,)) is often considered a bottleneck for CP decomposi-
tion due to the expensive computational cost [48]. In practice, the
sparsity of the tensor is leveraged for an efficient computation for
this operation [2, 48]. Particularly, the complexity can be reduced
by only considering the computation for nonzero observations in
Xc. Let xj, denote the h-th nonzero observation in X, and its sub-
scripts in X¢ as (Iy,, Iz, . .. ,IMh). If there are H non-zeros, i.g,
H = nnz(X.), we would just need an H-vector to store the real val-
ues of X¢. In this case, the element-wise computation for X, (@UC)
can be written as:

(XC(Oﬁ ) (i, r) Z *h ﬂ E;n') r)’

h—z

(18)

m#m

fori=1,...,,,andr=1,...,R,

where the computation of Khatri-Rao product can be ignored when
xp, = 0. Therefore, the time complexity for computing X (0U,) for
each mode per iteration is O(nnz(X.)ImR). The element-wise of
U (0U.)T (0U,) can be efficiently computed as [1, 42]:

R

Z Uiy H Zug"j)) Ui |- (19)

Ue(eT.)7 (oTe))
(

m+m
Therefore, the time complexity as O( R2), where [ = Z]"n’[,ﬂ Iy -
I, and the overall time complexity for the above two terms is
O(HIuR +I R?). Similarly, the time complexity for terms involving
tensors Z and S becomes O(H InR? +1 R3) due to the additional
loop introduced by the weight vector w, where H "is the respective
nonzero observations in the auxiliary tensors. Since H < H, with
M < H,R < H, and I < H, we can see that the running time is

expected to scale linearly with the number of nonzero observations
in Xe.

4.2 Embedding Learning for the Unseen
Student

This section explains the inference of the student’s embedding in
the latent space anchored by the factor matrices. The individual
behavior tensor X; for unseen student ¢t with an unknown class is
constructed based on his or her logs with the system. The mode
settings of tensor X; are the same as for the collective behavior
tensors (e.g., X¢). With the students’ individual tensor and the

1Code is available at https://github.com/picsolab/iDisc
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Table 2: Dataset and Tensor Modes Description.

Dataset ~ Course #Users #Activity #Areas #Education Stay

Course A 57,715 -
edX Course B 66,731 - 34 5 5
Course C169,621 -

#Days  #Events #Source

Course 1 12,004 652,701
XueTangX Course 2 10,321 877,805 14 7 2
Course 3 9,382 907,118

#Problems  #KC

#Views #Duration

Year 2004 912 580,785 376 58 7 10
ASSISTmentsYear 2005 2,392 521,751 266 59 4 10
Year 2006 2,584 686,868 409 69 4 10

factor matrices, we follow iDisc to first obtain the corresponding
auxiliary Z tensors at [-th level, Zl , V¥ ¢ € {c,c}, for student t, by
following the clapping function in Eq 7 in [47]. Then, the equation
to compute the embedding becomes:

vi, = Zip %
which follows a typical computation of the core tensor, given the
data tensor and its factor matrices.

It is worth noting that since PARAFAC decomposition does not
enforce the orthogonal property in each of the factor matrices,
direct computation of Eq. 20 is not feasible. Recent work by [8]
proposes an efficient estimation of the core tensor for PARAFAC
decomposition. By following the algorithm 1 in [8] to efficiently
estimate v, , and then the embedding of student s at I-th level
vi € R2R1 can be obtained by:

= [Vlc |Vtc] (21)

{U<m)} Yéelc e}, (20)

5 EXPERIMEN TS

In this section, we conduct systematic experiments to evaluate the
quality of iDisc. In following, we first describe the data used for
the experiments. The content of the rest of this section is structured
to answer the following questions:

e Can iDisc reveal meaningful patterns?

e How does iDisc perform in comparison with state-of-art
methods from predictive modeling in learning analytics?

e Can iDisc scale for the dataset at a massive scale?

5.1 Data

We experiment with nine courses/sessions from three publiclly-
available MOOC platforms: edX, ASSISTments, and XueTangX. The
statistics of the datasets are provided in Table 2.

edX. The edX [33] dataset is comprised of de-identified data
from “Introduction to Computer Science” (Fall 2012, Spring 2013,
and Summer 2013) from MITx (Course A and B in Table 2) and
HarvardX (Course C). This dataset does not have detailed event
logs. However, the data are aggregated records, where each record
represents the summary statistics for one individual’s activity in
the edX course with her demographic information. We select the
three most popular courses from this dataset. For this dataset, we
construct a 34x5x5 tensor as AreaxEducationxStay. Our goal is to
predict whether the course completion certificate is earned by a
student at the end of the course.
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Figure 4: Output generated by iDisc on the MITx dataset. (e)
shows the relationships between patterns in the first two lev-
els; (a-d) show the associated patterns in the hierarchy.

XueTangX. XueTangX [50] is one of the largest MOOC platforms
in China. The full dataset includes 79,186 students enrolled in 39
classes. Each enrollment is associated with a log of the student’s
activities, including watching lecture videos, working on course
problems, accessing course modules, and so on. In total, there are
8,157,277 activity logs, and the longest lifetime of enrollment is five
weeks. We take the three most popular courses from this dataset.
The dataset statistics are shown in Table 2. We use the first two
weeks to learn the factor matrices by constructing a 14x7x2 tensor
as DayxEventTypexEventSource. The goal is to correctly predict
course completion.

ASSISTments. ASSISTments [16] is an online tutoring system
used by more than 50,000 students around the world [5]. On AS-
SITments, students attempt to solve problems and receive feedback
on those attempts. To assist the learning process, each problem
is also associated with multiple knowledge components. We take
the public dataset of the Math course on ASSISTments over three
years (2004, 2005, and 2006) and the dataset characteristics are
shown in Table 2. For each dataset, we construct a four-way tensor
as ProblemxKnowledgeComponentx ProblemView X ActionDuration.
Our aim is to classify the students as over-performing students and

under-performing students, in terms of error-rate 2.

5.2 Qualitative Examination of the Patterns

In this section, we use “Introduction to Computer Science” on MITx
during Spring 2013 to illustrate the outputs of iDisc. We first qual-
itatively examine the patterns, as well as the pattern hierarchy
generated and then explain the relationship between the patterns
and the performance outcome.

5.2.1 Common and Discriminative Pattern Discovery. Figure 4 de-
scribes the outputs by iDisc, with {R}{‘ = {4,2} (rank-4 at the
first level and rank-2 at the second level). Particularly, Figure 4(e)
shows the project matrix P! € R?*4 that represents the hierarchical
relationships between the set of patterns at the first two levels,
where darker colors indicate stronger associations. We observe that
pattern #1 at level 1(P1@L1) is strongly associated with pattern #2
at level 0(P2@L0). This suggests that P1@L1 could be a child pat-
tern for P2@LO. Similarly, we observe the parent-child relationship

https://psledatashop.web.cmu.edu/help?page=terms#error_rate
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Table 3: Regression results for course end performance. Ex-

planatory variables are the students’ embeddings that cor-

respond to the patterns presented in Figure 4 (a-d) (e.g.,

v? _ (2) refers to the values in students’ embedding vec-
certified

tor v for P2@LO from the certified group). Note: **:p<.05;

Certified (M1) Certified (M2)
0 _ 1 _
Vgemﬁed(Z) 0.058 (0.046) v%emﬁed(l) 0.28*2* (0.188)
vgertiﬁed@ —0.004*(*0.046) vgertiﬁed(z 2.285 **§0.649)
¥ ertifed 2) —0.113** (0.048) . crtfed 1) ~0.620" (0.080)
Vcertified(d) 0:026 (0.046) V! rifiea(® 0.733** (0.061)

between P4@L0 and P2@L1. Since the projection matrix is shared
by the factor matrices from the coupled tensors, it is important to
note that each of figures 4(a) through 4(d) refers to both patterns
for the certified and non-certified group (i.e. as shown left and right
in Figure 4(a)).

Due to the space limit, we only discuss the details of two sets of
multi-way patterns as word clouds in Figure 4(a) for P2@L0 and Fig-
ure 4(c) for P1@L1. Figure 4(a) describes a subgroup of students that
are from the most populated countries (e.g., the United States, India,
and Poland, based on U(?7€@)) with education background mostly
from Secondary to Master’s (Uleducation)y 3nd most of whom tend
to stay on the edX platform (U(?@¥)) for a relatively long period.
While the pattern from the certified group of students shares almost
identical distributions in the area and educational background, what

makes them slightly different was primarily the time spent on the

platform; certified students(U(s tay)
certifie
(stay)

un-certified students (U___ - ;). The set of patterns in Figure 4(c)
is the child patterns of the Figure 4(a). Compared to their counter-
part in level 0, they primarily describe the students from Indian
(although the area distribution from the un-certified group of stu-
U(area)

-certifie:

) spend relatively longer than
4/ SP y long

dents spans more countries ( d)) with more focus on the mid-

dle level of education background (e.g., Secondary(Uizi?ﬁce‘ation))).

The difference in their length of stay on the platform was more

prominent in this set of patterns, where certified students have the
(stay)
(staygertiﬁe
U—certiﬁed)'
5.2.2 Simpson’s Paradox Revisited. We performed multivariate lo-
gistic regression analysis to identify the patterns that can explain
students’ variation in obtaining the certificate for each level (M1
for level 0 and M2 for level 1). The dependent variable is whether or
not the users are certified at the end of the course. The explanatory
variables include the students’ embeddings for the aforementioned
patterns in Figure 4(a-d) in each level (e.g., Viertiﬁe d(1) refers to the
embeddings corresponding to P1@L1;ertified)- The embeddings are
standardized to facilitate comparison among different variables.
Table 3 shows the estimated coefficients for M1 and M2. The
only significant variable in M1 is the embeddings v?certiﬁe 4@ @B =

—0.113, p < .05). This suggests that users who have shown more

longest stays with the edX platform (U ) and un-certified

students generally have the least (



activities in line with pattern P2@LO._cetified @appear to have less
chance to earn the certificate. M2 shows that both embeddings
Viertiﬁed(z) (B = 2.285, p < .01) and embeddings v_lcemﬁed(Z) B =
0.733, p < .01) reveal a significant and positive effect towards
earning the certificate, with Véertiﬁe 4(2) having a much larger effect
size. On the other hand, M2 also shows a significant and negative
effect of having a larger value in v-lcertiﬁed(l) (B =—-0.620,p < .01).

We can consider multi-way patterns as principal components
in PCA that bridge the original feature interactions in the high-
dimensional space and the associated loadings. In this case, we
would expect students from one class to have higher loading scores
associated with patterns that are extracted from the same class.
The regression result in M1 shows that the un-certified group of
students does have larger loading scores. However, that is true
only in V?certiﬁe d(2) for P2@LO0 . This is not surprising, because
in level 0 the two sets of patterns are in fact very similar to each
other, as shown in Figure 4. The results in M2 confirm this ex-
pectation, with significantly higher loading scores viertiﬁe 4(2) for

certified students and significant higher loading scores v ... .(1)

for un-certified students. Contrary to our expectation, the certified

group of students also have higher loading scores in vl .. (2)
-certified

(although much lower than Viertiﬁe d(2)). This could be explained
by our observation in Figure 1, where P2@L1 captures a cluster of
highly-educated students from certain European areas. They have
a much higher chance of obtaining the certificate, regardless of
having the longest stay or shortest stay with the platform.
Summary. We qualitatively examine the outputs generated by
iDisc. The results show interesting properties of the proposed
method. Our model reveals common and discriminative patterns
at each level with their relationship explained via the projection
matrix. Our regression analysis first explains the discriminative
capability of the students’ embeddings based on this set of pat-
terns. More importantly, the analysis validates that the students’
embeddings can be used to measure the relationship between the
performance outcome with multi-way patterns from iDisc.

5.3 Quantitative Comparison

In this section, we report the results from the quantitative exper-
iments in comparison with existing work commonly used in pre-
dictive analytics. Specifically, we conduct a classification task, in
which the goal is to predict the students’ performance at the end of
the course defined in Section 5.1.

5.3.1 Baselines. We include baselines that are commonly seen in
the area of predictive analytics in educational data mining as:

e Raw. We use the raw activity counts each day as features
to train classifiers for prediction. This is the most common
approach in predictive modeling for MOOCs.

e LDA. Coleman et al. [4] use LDA to capture the temporal
element of the behavior data. We first discover the latent
behavior patterns from Raw features with a varying number
of topics, and use the topic membership of each student for
the classification task.

e LadFG [36]. As one of the most cited works in MOOC predic-
tive modeling, LadFG is a latent dynamic factor graph model
that finds a mapping from students’ time-varying attribute
tensor to the observed learning outcome. We only evalu-
ate the performance of LadFG in XueTangX dataset because
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it is the only one of the three that contains the necessary
temporal dynamics.

e Factorization machines (FM) [37]. Factorization machines
have been proposed and successfully applied to recommenda-
tion and prediction tasks. As the factorization model projects
the input feature space into a latent space, it enables the learn-
ing of more complex interactions between features. We first
convert each dimension as dummy variables for each stu-
dent, and then concatenate all dimensions as a wide feature
matrix.

It is worth noting the recent use of Deep Neural Nets (DNN)
and their variants have shown promising performance compared
to conventional machine learning approaches (e.g., [21, 45, 49]).
However, the lack of interpretability of these models prevents their
further application in problems driven by both interpretations and
performance gains. We also compare iDisc with the existing work
on discovering the common and discriminative patterns from multi-
way data.

e SDCDNTF. SDCDNTF extends [22] and learns the common and
discriminative patterns with different ranks. The input to
the model consists of the rank and the number of shared
patterns, along with the coupled tensors.

e PairFac. PairFac [47] learns the common and discrimina-
tive patterns with different ranks. Comparing to SDCDNTF, it
does not require the input of the split.

We would like to point out that standard tensor factorization
could serve as another baseline to compare with, in which students
or their class reside as one of the dimensions and the corresponding
factor matrix can naturally become features for downstream pre-
diction tasks. However, we did not include it for two reasons: first,
because the aforementioned baselines work as inductive models,
where unseen students can be predicted based on the learned pa-
rameters, while simple tensor factorization serves as a transductive
model and only predicts for the students that are available in the
factorization; and second, because student populations on MOOC
platforms can be of any size, from small to very large, the efficiency
of standard tensor factorization with a large dimension size could
be a practical problem for its real-world application.

5.3.2 Experiment Settings. For each dataset, we draw a training set
of students from each class with replacement, and then obtain the
embeddings of the out-of-bootstrap students. For this set of students,
we perform a five-fold cross-validation with a k Nearest Neighbors
classifier. We conduct five independent trials of this experiment
and report the average classification accuracy. We select accuracy
since both the training and testing dataset are constructed in a
way that each class has an equal amount of students. For SDCDNTF,
we experiment with &, f and y € {107,107%,1073}. Finally, we
set @ and f in the same range, and R = 6 for both PairFac and
SDCDNTF and derive two versions of SDCDNTF using K € {2,4}.
To make a fair comparison with PairFac and SDCDNTF , we use
two-level pattern discovery with rank-4 and rank-2 in each level
for iDisc, respectively. For LDA and FM, we experiment with a
varying number of topics /factors and report the best performance.
For LadFG, we keep the suggested parameters from their paper.



Table 4: Classification Results in Accuracy.

Dataset edX edX edX | XueTangX | XueTangX | XueTangX | ASSISTments | ASSISTments | ASSISTments
Course A | Course B | Course C| Course 1 | Course 2 | Course 3 Year 2004 Year 2005 Year 2006
Raw 90.50 91.55 87.34 61.99 69.15 69.37 64.23 57.20 60.36
LDA 76.83 75.04 75.17 66.93 71.39 70.44 62.79 66.50 66.44
M 93.98 94.21 88.89 65.31 70.50 69.43 74.10 69.32 70.20
Baselines | LadFG - - - 68.35 72.63 73.56 - - -
SDCDNTF2 94.42 96.55 93.43 67.23 71.50 71.27 61.52 59.79 60.94
SDCDNTF4 94.37 96.47 93.46 67.15 72.56 71.19 61.49 62.32 60.88
PairFac 94.44 95.54 93.19 67.40 71.96 72.22 69.54 67.59 70.26
P d iDisc-1st 94.10 95.28 93.01 66.56 71.24 72.36 72.82 69.47 66.50
A;:g::; iDisc-2nd 9537 | 96.86 | 94.58 | 69.39 73.27 7313 78.37 72.84 73.26
iDisc-Comb. 94.79 96.14 93.76 69.35 74.00 74.12 77.47 72.65 71.49

5.3.3 Experiment Results. Table 4 shows the classification results.
The raw features perform poorly, especially in XueTangX and AS-
SISTments dataset, with the score on accuracy in the range of
60-70%, which suggests the difficulty of the prediction task. LDA
saw different performance, with noticeable drops in the edX dataset
in comparison to raw features. We conjecture that the construction
of the raw features results in a high dimensional and sparse feature
space, which could potentially cause LDA to suffer from learning
merely meaningful latent topics. Factorization machines slightly im-
prove the performance. FMs can be considered as a generalization
of tensor factorization with the additional modeling of interactions
within each dimension [37]. Although we observe noticeable gains
from FMs over Raw features and LDA, FMs do not perform as well
as tensor-based methods. We suspect there might be two reasons
for this: 1) the current feature space might not be as well tuned
for general prediction tasks as it is for the more commonly seen
recommendation tasks; 2) compared to tensor-based methods that
only consider the interactions between different dimensions, FMs
could potentially over-fit the interaction effects between and within
dimensions in the training data. We observe that LadFG achieves
large gains over the raw features for the XueTangX dataset. This
indicates there could exist some hidden patterns that can capture
the temporal elements of the behavior data. We also notice that
tensor-based models such as PairFacand SDCDNTFperform better
than LDA, especially in Course 2 and Course 3. This suggests that
by systematically considering the multi-way interactions, the per-
formance could be further improved. Finally, the best performance
of iDisc is statistically comparable with the state-of-art LadFG and
significantly better than the rest of the baselines. While LadFG is
geared towards student performance predictions, iDisc can pro-
vide comparable prediction performance as well as meaningful
patterns.

Summary. iDisc constructs students’ embeddings that inte-
grate relations between the multi-way interactions and the per-
formance outcome. The quantitative experiment demonstrates the
discriminative capability of iDisc, and iDisc outperforms the base-
lines in nine datasets from three MOOC platforms. Higher-level
embeddings from iDisc have shown stronger discriminative pow-
ers over ones from the lower levels, which we will discuss in next
section. Since there is no trivial solution in determing the rank
of the tensor decomposition, we experimented with different rank
settings for iDisc (e.g., {2, 4}, {3, 3}) and this observation still holds.
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Table 5: Running time for varying number of observations.

#observations 102 103 10* 10° 10°

running time/epoch  0.31s  0.35s 1.13s 1.23s 2.05s

5.4 Scalability

Since many of the education platforms have seen exponential
growth in usage, scalable solutions of learning analytic are another
critical aspect of adoption. In this section, we test the scalability
of iDisc. In this experiment, we choose the ASSISTments dataset
for the year of 2006, since it has the largest tensor settings in our
experiment. We run iDisc with a varying number of entries in the
data tensor, from {102, 103,104, 10°, 10°}. Table 5 reports the aver-
age running time per epoch, and we observe that the running time
scales almost linearly with the exponential increase in observations
in the tensor. This result is consistent with the analysis in Section
4.1.4.

6 CONCLUSION

In this paper, we present a tensor-based learning framework, iDisc,
to perform common and discriminative pattern discovery at multi-
ple levels for understanding of high-dimensional student behavior
and performance prediction in MOOCs. We first use tensors to
represent each user’s behavior, and construct coupled tensors to
aggregate behavior for users with contrasting performance groups.
Then, we iteratively identify the shared and distinct behavioral pat-
terns at various levels, while revealing the hierarchical relationship
between them to further increase the interpretability of the output.
Finally, we use these patterns as anchors to generate the students’
latent representation for down-stream performance prediction. Our
qualitative examination of the patterns has shown the multi-level,
multi-aspect and hierarchical characteristics of behavior patterns
on the edX platform. The quantitative experiments, compared to
both traditional predictive methods as well as existing discrimi-
native tensor factorization models, suggest promising results by
iDisc in several datasets from different MOOC platforms.

To the best of our knowledge, this is the first attempt to tackle
the joint problem of discriminant tensor factorization and hierarchi-
cal pattern discovery for understanding such behavior on MOOC
platforms. This enables the in-depth comprehension of students’
multi-way behavior dynamics, as well as its association with course
performance. Nevertheless, one of the limitations is that it merely



provides the relationships between the latent multi-way interaction
and the performance outcome, with no intention to draw causal
reasoning between them. In practice, iDisc can be developed as
a plugin for MOOC platforms, where instructors can examine the
multi-aspect contrasting behavior and connect the difference to
the course outcome. Considering the XueTangX platform, one of
the multi-aspect patterns could refer to a set of events at the begin-
ning of the course that trigger from the server. if iDisc reveals its
positive association to the success of students’ course end perfor-
mance, this pattern can be used as guidance of promotions for both
the instructor and the platform to improve the students’ learning
outcome. Last, but not least, compared to other tensor factoriza-
tion methods, iDisc provides a more efficient exploration of the
multi-aspect patterns due to its multi-level nature. However, we
understand that the interpretation of the multi-aspect pattern itself
is not straightforward in general. In our future work, we would
like to follow a more human-centric approach and develop a visual
analytic system that helps domain experts interpret and understand
the multi-aspect patterns.
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