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FairSight: Visual Analytics for Fairness in Decision Making
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Fig. 1. We propose a design framework to protect individuals and groups from discrimination in algorithm-assisted decision making. A
visual analytic system, FairSight, is implemented based on our proposed framework, to help data scientists and practitioners make
fair decisions. The decision is made through ranking individuals who are either members of a protected group (orange bars) or a
non-protected group (green bars). (a) The system provides a pipeline to help users understand the possible bias in a machine learning
task as a mapping from the input space to the output space. (b) Different notions of fairness — individual fairness and group fairness —
are measured and summarized numerically and visually. For example, the individual fairness is quantified by how pairwise distances
between individuals are preserved through the mapping. The group fairness is quantified by the extent to which it leads to fair outcome
distribution across groups, with (i) a 2D plot, (ii) a color-coded matrix , and (iii) a ranked-list plot capturing the pattern of potential biases.
The system provides diagnostic modules to help (iv) identify and (v) mitigate biases through (c) investigating features before running a
model, and (d) leveraging fairness-aware algorithms during and after the training step.

Abstract— Data-driven decision making related to individuals has become increasingly pervasive, but the issue concerning the
potential discrimination has been raised by recent studies. In response, researchers have made efforts to propose and implement
fairness measures and algorithms, but those efforts have not been translated to the real-world practice of data-driven decision making.
As such, there is still an urgent need to create a viable tool to facilitate fair decision making. We propose FairSight, a visual analytic
system to address this need; it is designed to achieve different notions of fairness in ranking decisions through identifying the required
actions — understanding, measuring, diagnosing and mitigating biases — that together lead to fairer decision making. Through a
case study and user study, we demonstrate that the proposed visual analytic and diagnostic modules in the system are effective in

understanding the fairness-aware decision pipeline and obtaining more fair outcomes.

Index Terms—Fairness in Machine Learning, Visual Analytic

1 INTRODUCTION

Data-driven decision making about individuals has become ubiquitous
nowadays. With the pervasive use of big data techniques, companies
and governments increasingly rely on algorithms to assist in selecting
individuals who meet certain criteria. In many cases, this process is
conducted by first “ranking” the individuals based on their qualifica-
tions and then picking the top k candidates based on the available
resources or budgets. These ranking-based decision processes that con-
cern rank-ordering individuals by their likelihood of success or failure
have been widely adopted in many domains ranging from policing,
recidivism, to job recruiting, and credit rating, which has a great impact
on individuals’ lives [8].
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A critical issue of data-driven decision making is the possibility of
intentionally or unintentionally discriminating against certain groups
or individuals. While decision makers try to best utilize available
information, including personal profiles such as race, sex, and age, the
increasing cases of discrimination in the use of such personal profiles
has been reported in real-world decision making. For example, a recent
news [34] reported that Amazon’s recruiting tool, trained from a 10-
year historically male-dominant resume dataset, has been found biased
in favor of men. Propublica [33] also reported that the recidivism
scores learned from the algorithms tended to assign a higher score to
an African-American defendant than to a White defendant who has
been convicted of the same degree of crime. As shown in these real-
world incidents, data-driven decisions are not free from existing bias. It
has been pointed out that algorithmic decision making from data with
inherent biases are just nothing but a systematic way of disseminating
such biases to large number of people at once [30].

Data-driven decisions are criticized not only for being biased but also
for lack of explanations. Even not limited to fairness problem, recent
studies are increasingly aware that a black-boxed machine learning
model lacks the explanation on predicted outcome [18]. The machine



learning models in societal decision making have assisted in judging
whether individuals are qualified or not, where any results with greater
performance metrics tend to be accepted without carefully examining
why.

Fair and transparent machine learning in the real-world practice of
decision making is in an urgent need; however, there is a lack of viable
tools available to assist data science practitioners and decision makers
in tackling the fairness problem. A variety of disciplines have made
progress in developing fair algorithms and measures, but those are
developed separately from decision-making contexts and not available
in practice. While new tools became available recently [15, 22], none of
these provide a comprehensive view and workflow to better cope with
various fairness issues in the decision-making pipeline. With advancing
research on measures, algorithms, and diverse perspectives on fairness,
we now move one step further: to propose a viable decision-making
tool to assist in fair decision making throughout the machine learning
pipeline.

We argue that it is time to bring the research into real-world prac-
tice to create an impact on societal decision-making. In this paper,
we present a fair decision-making framework, called FairDM, that
identifies a set of guidelines in the algorithmic-aided decision making
workflow. In this work, we focus on the problem of various high-
stakes decision-making process, such as credit rating and recidivism
risk prediction, which involve rank-ordering individuals. Moreover,
a variety of prediction problems, such as binary or multiclass classi-
fication/prediction, can be cast as a ranking problem. The proposed
FairDM is a model-agnostic framework that does not depend on a par-
ticular (ranking) algorithm, and it aims to provide a fairness pipeline to
guide the examination of fairness at each step (from input to output)
in the workflow. We develop FairSight, a visual analytic system that
integrates the FairDM framework and analytic methods into a viable
tool for fair decision making. Our main contributions include:

¢ Fair decision making framework (Fig. 1). We propose FairDM
framework that facilitates the contemplative decision-making pro-
cess [31] with a set of tasks to achieve fairer decision making.
Our framework incorporates the different notions of fairness (in-
cluding group and individual fairness) to support understanding,
measuring, identifying and mitigating bias against certain individ-
uals and groups.

¢ Fairness measures and methods for explainability. We intro-
duce a set of measures and methods to summarize the degree of
bias, evaluate the impact of features leading to bias, and mitigate
possible sources of bias. Our approach supports both global- and
instance-level explanation for the reasoning behind the fairness
of ranking decision.

 Fair decision making tool (Fig. 1). We develop a viable fair
decision making system, FairSight, to assist decision makers
in achieving fair decision making through the machine learning
workflow. We introduce a novel representation that visualizes the
phases in a machine learning workflow as different spaces where
individuals and groups are mapped from one to another.

« Evaluation. We present a case study to showcase the effective-
ness of our system in real-world decision-making practice. More-
over, we conduct a user study to demonstrates the usefulness and
understandability of our system in both an objective and subjec-
tive manner. Our study suggests that FairSight has a superior
advantage over an existing tool [15].

2 RELATED WORK
2.1 Fair Ranking

Today’s decision making has increasingly relied on machine learning
algorithms such as classification and ranking methods. We mainly
discuss ranking in decision making due to its broad applications. In fair
ranking, early studies mainly focused on quantifying the discrimination
with proposed ranking measures in the top-k list [32], or indirect dis-
crimination [43]. Recently, fair ranking methods have been proposed
[2, 41, 23]. Asudeh et al. [2] scored items based on a set of desired
attribute weights to achieve fairness. On the other hand, Karako and

Manggala [23] presented a fairness-aware Maximal Marginal Rele-
vance method to re-rank the representation of demographic groups
based on their dissimilarity as a post-hoc approach. Zehlike et al. [41]
also proposed a re-ranking method of picking candidates from the
pools of multiple groups with the desired probability. Online ranking
systems, such as search engines or recommender systems, use rank-
ing algorithms to generate an ordered list of items such as documents,
goods, or individuals. The fairness problem here is to pursue the degree
of exposure and attention fairly for groups [37, 39] or individuals [4].
In this work, we go beyond the issue of fair exposure/attention in
ranking systems and broadly consider more broadly how a system can
and should best help decision makers to rank items fairly when consid-
ering the trade-offs among different notions of fairness and utility.

2.2 Explainable Machine Learning

Machine learning and Al approaches have been recently criticized for
the lack of capability in reasoning and diagnosing the logic behind
the produced decisions [18]. With the increasing awareness associ-
ated with this problem, explainable machine learning techniques have
been proposed. A number of studies have focused on interpreting the
interaction between inputs and predictions from the original model,
by training a secondary interpretable model to capture instance-level
[35] or global-level pattern [1, 14]. For example, feature-level auditing
methods seek to analyze the feature importance by permutation [11] or
quantifying feature interaction [6, 13, 25]. Instance-level explanations
that identify instances such as counterfactual examples or prototypes
[24] seek to generate an explanation with a single instance. Recent
research in visual analytics integrated machine learning tools with intu-
itive and manipulable representation and interface. Examples include
RuleMatrix [29]’s rule-based visual interface for explaining decision
rules based on the secondary decision tree model, the distribution-
based visual representation for global-level explanation, and Rivelo’s
instance- and feature-level representation [38]. Mainfold [42] sug-
gested a model-agnostic framework to interpret the outcome, inspect a
subset of instances, and refine the feature set or model, to facilitate the
comparison of models.

None of the aforementioned approaches have addressed the explain-
ability with respect to fairness. In this work, we leverage state-of-the-art
techniques, including feature auditing, to capture the feature-induced
bias at both global and instance levels. We further propose new metrics
via neighborhood comparison to capture both the global- and instance-
level fairness with evidence of potential unfair outcomes.

2.3 Frameworks for Promoting Fair Machine Learning

Fair decision-making aid is an emerging topic. With the increasing
awareness of the importance of fair machine learning, a number of
new tools, including API [3] and interface [40], as well as integrated
systems such as the What-if tool [15] or Al Fairness 360 [22], have
been developed. While these tools offered a combination of explain-
able machine learning techniques and fair algorithms, none of them
provides a comprehensive guideline to help users take proper actions to
address various fairness issues throughout the machine learning deci-
sion pipeline. In contrast, FairSight is developed based on the FairDM
framework, with a goal to empower users with a better understanding
of various potential biases and a suite of tools to identify and mitigate
the biases. In our evaluation study, we compare FairSight with the
What-if tool and demonstrate several strengths of our design.

3 FAIR DECISION MAKING FRAMEWORK

In this section, we present FairDM, a decision-making framework
that aims to support a better understanding of fair decision-making
processes. We consider such a process as a series of required actions
that decision makers need to take in order to ensure the fairness of
the decision-making process and outcome is in check as shown in
Fig. 1. We start by formulating the top-k ranking problem, followed by
elaborating on the stages and the rationale behind them.

3.1 Top-k Ranking Problem

In the framework, we assume that a decision maker requires to select the
best top-k individuals in the pool of n candidates C' = {1, 2,3, ...n}.



The goal is to rank the n individuals by the probability of being classi-
fied as qualified (positive) through learning a predicted value ;, where
y; represents the predicted level of qualification for an individual <. The
learning is based on a subset of p features X’ = {x1, ..., x, } selected
from full feature set X. The final outcome is an ordered list of ranked
individuals R = (r;)icc-

The following concepts will be involved when discussing the fairness
in ranking decisions. A sensitive attribute is a characteristic of a group
of individuals (e.g., gender or race) where, within existing social or cul-
tural settings, the group is likely to be disadvantaged/discriminated and
hence needs to be protected (as often regulated by a non-discrimination
policy). We refer to a protected group, denoted as S, as a group that is
likely to be discriminated in the decision-making process, and we refer
to the remaining as non-protected group, denoted as S~ . In addition, a
proxy variable is a variable correlated with a sensitive attribute whose
use in a decision procedure can result in indirect discrimination [9].

3.2 Machine Learning Pipeline

We consider the decision making process as a simple machine learning
pipeline consisting of three phases: Data, Model, and Outcome. The
primary machine learning task in this context is to select the top-k
candidates based on available features.

Data. Given a feature set X, a decision maker selects a set of
features X’ C X to represent the qualification of candidates and seeks
to learn the candidates’ true property (e.g., qualified or not), denoted as
atarget value y. Each individual ¢ is represented by a set of qualification
information, X, = {x;1, ..., Xip }, and a target value y;.

Model. A machine learning model is a function f(X') that maps
the individuals’ features to the ranking outcome.

Outcome. The outcome of the machine learning task is a ranking
R = (r1,r2, ..., Tn), where n individuals are ordered by their predicted
qualification.

3.3 Fairness Pipeline

Given the machine learning pipeline, we propose a comprehensive
workflow that consists of required actions to be supported by a fair
decision making tool. For all three phases in the machine learning
pipeline, a fair decision making tool should support the four fairness-
aware actions: (1) Understand how every step in the machine learning
process could potentially lead to biased/unfair decision making, (2)
Measure the existing or potential bias, (3) Identify the possible sources
of bias, and (4) Mitigate the bias by taking diagnostic actions. We
provide the rationale for each action in the following.

3.3.1

The first action of the fairness pipeline is to clearly understand the
machine learning process and its consequences to fairness in decision
making. The challenge is how to facilitate such an understanding as
many practitioners do not fully recognize how every step in the process
could potentially lead to biased decision making [21]. To address
this, we propose that a fair decision-making tool should take proactive
action to help decision makers understand the possible unfairness at
each machine learning stage, by providing an overview with a step-by-
step workflow to guide users to examine different notions of fairness.

3.3.2 Measure

With an overall understanding of various fairness issues, the next step
is to quantify the degree of fairness and utility and evaluate how each
machine learning phase impacts fairness. While many studies working
on proposing the measures primarily focus on measuring the outcome
bias, we argue that quantifying bias throughout all phases of the pipeline
should be made available to users to detect not only consequential bias
in Outcome, but also procedural bias in Data and Model phase as
well.

3.3.3

Upon understanding and measuring bias, decision makers need to re-
move the potential bias. As a crucial step to achieve this, we emphasize
the importance of identifying bias from features in the dataset. In
data-driven decision making, feature selection is an important step that
captures information based on which individuals’ qualification should

Understand

Identify

be evaluated. Feature inspection tools should help identify potential
bias with respect to not only the sensitive attribute but also the likely
proxy variables.

In our framework, we incorporate per-feature auditing modules to
investigate bias being involved in all phases of the machine learning
process: pre-processing, in-processing, and post-processing bias within
features.

3.3.4 Mitigate

Informed by the aforementioned diagnostic actions, Mitigate is where
decision makers take actions to remove bias within the machine learning
pipeline. We consider mitigating the bias in each of the following
phases: (1) Data/pre-processing: How does one incorporate fairness-
aware feature selection? (2) Model/in-processing: How does one select
machine learning model with less bias? (3) Outcome/post-processing:
How does one adjust ranking outcome to make it fairer?

4 METHOD

Based on the FairDM framework, we propose FairSight to enable fair
decision making in machine learning workflow. This section presents
our analytical methods to support each of four required actions (Under-
stand, Measure, ldentify, and Mitigate), and the system design will
be introduced in the next section. Table. 1 provides a summary of the
requirements, tasks, and corresponding methods.

4.1 Understanding Bias

FairSight seeks to facilitate an effective understanding of machine learn-
ing process by introducing a novel “space-mapping” representation.
Inspired by Friedler et al. [12], we consider the Data and Outcome
phases as two metric spaces (Input and Output spaces), and the ma-
chine learning model as “the interactions between different spaces that
make up the decision pipeline for a task” (Fig. 1a). Then, biases can be
introduced in each space or through the mapping between two spaces.

Input space. We denote the Input space as Z = (X, dx ), where X
is the feature space and dx is a distance metric defined on X.

Output space. The Output space is noted as O = (O, do), where
O is an ordered list where individuals are ranked by a decision pro-
cess, and do is a distance metric defined on O. Both ranking and
classification algorithms may be involved in such a process. When
a classification model is used, the probability of each instance being
classified as positive can be used to generate the ranking.

Mapping. A machine learning model is amap f : Z — O from the
Input space Z to the Output space O.

4.2 Measuring Bias

FairSight provides a comprehensive set of measures to support the
Measure requirement (Fig. 1b) covering the following aspects: (1)
These measures are defined and organized consistently with the afore-
mentioned the space-mapping representation (Section 4.1). (2) It covers
different (complimentary) notions of fairness, including individual and
group fairness (details below). (3) The fairness individuals and groups
are measured at both instance-level and global-level to enable exam-
ining the detailed and summative evidence. (4) In addition to fairness
measures, we also introduce utility measures in the context of the rank-
ing decision that allows for trade-off comparison. We first describe the
metrics defined in spaces and then present the various measures.

4.2.1

Distance and distortion are two fundamental notions in FairSight.
Given two individuals 4 and j, a pairwise distance d(i, j) indicates
how the two individuals are dissimilar to each other in a space. When
two individuals are mapped from one space to another, the pairwise
distance may not be preserved. The distortion is defined as the discrep-
ancy between two pairwise distances, indicating the degree of which
the mapping is not preserved. We incorporate two different distance
metrics for the Input and Output spaces. For Input space, we calculate
the Gower distance dz(-) [16] between X} and X, which measures
the pairwise distance of the two individuals’ feature representations.
For Output space, the pairwise distance is computed using the abso-
lute ranking difference do (-) of two individuals r; and r;. Then, the

Distance and Distortion



Pipeline Task

Data (D) Model (M) Outcome (O)

Understand (U) (sec 41)
Measure (M)

Instance-level
(sec 4.2)

Can we measure and summarize biases?

Is an individual not treated similarly?
Is the distortion advantaged or disadvantaged?

Global-level
Individual fairness Are similar individuals treated similarly?
(sec 4.2.2)
Group fairness Are groups treated equally?
(sec 4.2.3)
Utility How is the model accurate?
(sec 4.2.4)
Identify (I) (sec 4.3) Can we identify features as a potential source of bias?
Mitigate (MT)(sec 4.4) Can we mitigate biases?

Can we understand how individuals and groups are distributed?

Input space Mapping space Output space

NN (eq. 2) -
rNN-gain (eq. 3)

rNN-S+,- (eq. 5)
rNN-mean (eq. 4) -

Group Separation
(eq. 5)

Group Skew (eq. 6) Between: GFDCG (eq. 8)

Within: Statistical parity

- Between: utility@k (eq. 9)
Within: Precision@k

Feature perturbation
Reranking algorithm (FA*IR)

Feature distortion
Fair algorithm (ACF)

Feature correlation
Feature selection

Table 1. FairDM tasks & FairSight measures

distortion of two spaces is computed as the absolute difference of two
pairwise distances between the Input space and Output space, as:

distortion; jy = |dI(X;,X;) —do(ri,r;)], €))
42.2

By the definition of individual fairness, “similar individuals should
be treated similarly” [10], we measure individual fairness based on
the degree to which the pairwise distances in Input space is preserved
in Output space through the mapping, i.e., based on the notion of
distortion (Section 4.2.1). FairSight provides both instance- and global-
level examinations for individual fairness as follows.

Instance-level bias. Instance-level bias is measured as the amount
of distortion with respect to an individual compared with other similar
individuals. We capture the “similar individuals™ of an individual ¢
based on i’s h nearest neighbors (i.e., the closest neighbors in the Input
space), denoted as N Nj, (h = 4 in this work). Then, fairness with
respect to an individual ¢ is measured based on how 7 and the nearest
neighbors in Input space are close to each other in the Output space
(based on the ranking outcome), as follows:

>

JENNp (i)

Individual Fairness

|ri — 1y

rNN((i)=1-— ,
(1) i

@3

S =

where the absolute ranking difference is normalized both by the number
of individuals |C'| and the number of nearest neighbors h.

While r NN quantifies the degree of bias/fairness with respect to
an individual, the individual may be disadvantaged (i.e., ranked much
lower than the neighbors), or advantaged (i.e., ranked much higher than
the neighbors). To understand the differences in bias, a signed ranking
distortion for an individual ¢ is defined as:

(ri —rj)
2 T ©

JEN Ny, (3)

7N Ngain(i) =1 —

=

Global-level bias. The global-level measure of individual fairness
can be obtained by aggregating (averaging) over all instance-level
measures, as:

rNNmeu,n = ﬁ Z TNN(’L) (4)
i€C

4.2.3 Group Fairness

Group fairness relates to equalizing outcomes across the protected S
and non-protected S~ groups in Data and Outcome phase, and the
mapping between two spaces. The analysis of group fairness can be
richer than that of individual fairness because, by definition, individual
fairness concerns “similar treatment for similar individuals”, which
indicates the consistency in the mapping between the Input and Output
spaces, while group fairness concerns the distribution across groups,
in terms of data representation (data bias), mapping data to outcome
(mapping bias), and prediction (outcome bias), as detailed below.
Data bias. Data bias regarding group fairness seeks to uncover any
bias already inherent in the input dataset. It is captured by the degree
of separation between the two groups in the Input space — as ideally,

the group membership should not be uncovered until revealing the
sensitive attribute. Here, we adopt the symmetric Hausdorff distance
[19], referred to as Group Separation score, to measure the separation
between the individuals from the two groups A and B:

h(A, B) = maz(h(A, B), h(B, A)), 5)

where h(A, B) = maxaca{minsep d(a,b)} is the one-sided Haus-
dorff distance from A to B.

Mapping bias. Mapping bias regarding group fairness seeks to
uncover any unfair distortion between the Input and Output spaces
at the group level. It is defined based on comparing the pairwise
distortions, distortion(i, j), between the two groups (for i € ST and
j € §7) against the distortion within the groups (for i, j € S)). For
example, when the pairwise distances between Men and Women are
distorted (i.e., when greater between-group distortion is observed), the
mapping has a systemic, or structural bias. We adopt the Group Skew
concept [12] to measure such bias as:

Distortion
Group Skew = ——— BTN (6)
Distortionwrn
where Distortionprny = ) g+ jes— it distortion(i,j) and

Distortionwrn = 3, jcg() 4z; distortion(i, j).

Mapping bias per group. The group-specific mapping bias can be
quantified based on how individuals in the group receive the mapping
bias (ref. Equation 2). It is thus defined by averaging the mapping bias
of individuals in either the protected group S or non-protected group

ST
1 :
rNNgy = ] ezﬁ rNN(i),
N
rNNg- = 5 > rNN(i).
€S~

Outcome bias. Outcome bias regarding group fairness should cap-
ture how decision outcomes are fairly distributed across groups. In
the context of ranking decisions, fairness should be evaluated between
different rankings (different ordered lists). Furthermore, fairness should
also be evaluated based on the choice about the top-£ threshold within
a given ranking list (i.e., to choose the most qualified k& individuals
from the list). A popular method for comparing rankings is nDCG [7],
which involves logarithmic discount to favor items at the top ranking
positions. While this method has been widely adopted in online ranking
systems to reflect users’ scarce attention toward only a limited few top
items, in FairSight, our primary concern is about whether an individual
being ranked on the top-k is fair or not, rather than how much attention
the individual received from the ranking position. Therefore, we con-
sider a linear rather than a logarithmic discount in order to differentiate
rankings with different orders without heavily favoring a very few top
items. Our measure, called GFDCG (Group-Fairness DCG) is defined
based on comparing the quality of the top-k ordering in one group
against another, as:

linear DCG@Qk(S™)
linear DCGQKk(S—)’

GFDCG = ®)



where linear DCGQE(S")) = > ies(IARM Yi X T, R™ is the
top-k list truncated from the whole ranking list R, r; is the ranking
position of an individual ¢, y; is the true qualification of ¢, and n is the
total number of individuals in the dataset.

While GFDCG is useful for comparing a different threshold &
within the same ranking (referred as within-ranking comparison), it
is less effective in comparing different rankings when k is large due
to the discounting effect. Therefore, to compare the fairness between
different rankings, we adopt the statistical parity, which calculates the
ratio of two groups without ranking discount.

4.2.4 Utility

In this work, we consider the utility of a ranking as the quality of the
ranking. Similar to the GFDCG, the quality is evaluated based on the
extent to which the top-k ordering captures truly qualified individuals,
and thus a linear discount is also adopted. The utility is defined by
comparing the linear DCG from the predicted top-k ordering against
the ideal top-k ordering (IDCG):

linear DCGQEk
linear IDCGQEk’

where linear DCGQk = Y7, po yi X %, linear IDCGQE =

n

utility@Qk = )

Zie (D Vi X " R™) s the top-k list from the predicted ranking

and Rﬁk) is the top-k list from the true ranking (based on individuals’
true qualifications). In the same manner, we define the within-ranking
utility measure by adopting the widely used information retrieval mea-
sure PrecisionQk.

4.3

FairSight provides three different strategies in each of the machine
learning phases to detect possible biases due to feature selection: (1)
Data: feature correlation between sensitive attribute and other features,
(2) Model: per-feature impact on outliers that received most distortions
from the model, and (3) Outcome: feature importance by ranking
perturbation.

Feature correlation. At the Data phase, feature correlation analysis
offers a way to detect bias regarding group fairness, by removing the
information that can reveal the group membership of individuals. In
FairSight, a highly correlated feature to a sensitive attribute is detected
by comparing the distributions of the feature values by groups. If
two distributions from the protected and non-protected groups are
very distinct, the features are subject to be used as a proxy for the
sensitive attribute. In this work, we compute the difference between
the two distributions using Wasserstein distance [36], which measures
the transportation cost from one distribution to another. The greater the
distance, the more likely the feature can be used to distinguish the two
groups and can lead to indirect discrimination.

Feature impact on outlier distortions. At the Model phase, outlier
distortion analysis measures how a feature is correlated with the overall
distortion from the mapping. To compute this, a distortion distribution
is first generated from the distortions of all instances. Outliers are those
having greater distortions than other instances (the right tail of the
distribution). For a given feature, the distance between the distortions
received by the outliers and by the rest of individuals are computed to
reveal the impact of the feature on the outlier distortions. Here, the
Wasserstein distance is used to compute the distance between the two
distortion distributions.

Feature perturbation. At the Outcome phase, the feature impor-
tance of each feature to the fairness and utility of ranking outcome is
analyzed. We adopt the feature perturbation method [5], a widely-
used feature auditing technique to evaluate the feature impact on
a model. To compute this, we permute the values of a feature x4
into %, from the selected feature set X’ and re-train the model with
X; = [x1, R ST ] The permutation is performed by swapping
the feature values {xq1,Xg2, ..., Xq(2/n) } With {Xq(2/n41), -, Xgn}
as suggested by [11]. Then, the impact of the feature is measured by
how much the fairness and utility measures (ref. Equation 8 and 9)
drop compared with the model with the original non-permuted features.

Identifying Bias

4.4 Mitigating Bias

FairSight provides three types of methods for reducing biases in each
of the three phases in the machine learning pipeline: pre-processing,
in-processing, and post-processing methods.

Pre-processing. Pre-processing method can be considered as a pre-
emptive action to make the feature selection step as free from bias
as possible. To achieve group fairness, decision makers should avoid
using the sensitive attribute as part of the selected features. In ad-
dition, any other features that are highly correlated with any of the
sensitive attributes, if used intentionally or unintentionally, can lead
to indirect discrimination and should be avoided as much as possible.
Such features can be detected during the Identify stage as described in
Section 4.3.

In-processing. This method seeks to mitigate bias by selecting fair
machine learning algorithms. FairSight incorporates Additive Counter-
factually Fair (ACF) model [26]. ACF assumes that the counterfactual
probabilities of two individuals choosing from either group should
be the same with respect to a given (non-sensitive) feature. We also
provide a plug-in architecture in FairSight to allow a variety of fairness-
aware algorithms to be added in the system, which can be utilized to
compare multiple fair algorithms and to choose one that better mitigates
the bias while having a high utility value.

Post-processing. Here, we aim to achieve a fair ranking outcome
independently of the Data and Model phases by adjusting the ranking.
This approach is especially useful in situations where decision makers
do not have full control of phases before the outcome. With access to
the ranking outcome, a post-processing method provides a safeguard
against biases in the outcome. FairSight incorporates a fair ranking
algorithm proposed by [41], which re-ranks a ranking list by randomly
choosing an individual from either of two group rankings with a pre-
defined probability. Other re-ranking algorithms can also be included
through the plug-in architecture in the system.

5 DESIGN GOALS

We identify a set of requirements based on FairDM that integrates the
aforementioned methods with relevant tasks.

R1. Enable examining different notions of fairness in the
data-driven decision with consistent visual components and
interactive tools.

T1. A fair decision making tool should enable users to select a sen-
sitive attribute and a protected group to pursue different notions
of fairness, including individual fairness and group fairness. The
system also should provide an integrated interface and intuitive
representation consistent with various fairness notions.

R2. Facilitate the understanding and measuring of bias.

T2. The system should help users to understand the distribution of
individuals and groups to figure out whether or to what extent
each phase of machine learning process is biased.

T3. The system should provide the degree of fairness and utility
in a summary to help users to obtain fair decisions among the
trade-offs.

T4. The system should enable the instance-level exploration to help
understand the reason behind how individuals and groups are
processed fairly/unfairly.

R3. Provide diagnostic modules to identify and mitigate bias.

TS. The system should support feature evaluation with respect to
fairness in three machine learning phases. This task seeks the
evidence of features selection in pre-processing the data.

T6. The system should allow users to mitigate the bias to obtain
better rankings. This module also should provide the mitigating
methods in all three phases to achieve the procedural fairness.

R4. Facilitate the comparison of multiple rankings to evaluate
ranking decisions.
T7. The system should allow users to repeat the process to generate
multiple rankings and evaluate the trade-off between fairness and
utility across them.
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Fig. 2. The workflow of fair decision making in FairSight. (a) It starts with setting up inputs including the sensitive attribute and protected group.
(b) After running a model, the ranking outcome and measures are represented in Ranking View. (c) Global Inspection View visualizes the two
spaces and the mapping process of Individual and Group fairness provided in the separate tap. (d) When an individual is hovered, Local Inspection
View provides the instance- and group-level exploration. (e) In Feature Inspection View, users can investigate the feature distortion and feature
perturbation to identify features as the possible source of bias. (f) All generated ranking outcomes are listed and plotted in the Ranking List View.

6 FAIRSIGHT - SYSTEM OVERVIEW

In this section, we discuss the system architecture of FairSight and
present the major six visual analytic components.

6.1 Generator

Generator allows users to set up all required inputs for fair decision
making (Fig. 2a) (R1). Users can start the setting with the selection of
the sensitive attribute and protected group (T1). In the feature table,
we provide the feature correlation measures (ref. Section 4) to aid the
feature selection. Each feature has two bar charts which indicate the
by-group feature value distribution (e.g., orange bar chart for Male, and
green bar chart for Female), and the correlation measure (i.e., how the
two distributions are dissimilar to each other). Users can scrutinize how
each feature has a potential to be used as proxy variable of the sensitive
attribute (e.g., ‘marriage’ of the feature table in Fig. 2a — where the
distributions across groups are quite different and hence can be used as
a proxy for the sensitive attribute) (T5).

Generator also provides a list of available machine learning algo-
rithms, including popular classification and ranking models such as
Logistic Regression, Support Vector Machine, and Ranking SVM. We
also include the in-processing model (Additive Counterfactual Fairness
(ACF)) [26]) and the post-processing method (FA*IR [41]) as a way of
mitigating bias (R3). The system also has a plug-in architecture that
allows users to flexibly include more machine learning algorithms.

6.2 Ranking View

Ranking View (Fig. 2b) provides an overview of the current ranking
outcome. First, we report all outcome measures of fairness and utility,
which includes between-ranking and within-ranking measures. While
the between-ranking measures help determine whether the current
ranking is better than other generated rankings, the within-ranking
measures are useful to find the best top-£ threshold. Along with the top-
k slider is the interval slider to determine how many individuals are to
be represented in Global Inspection View and Feature Inspection View.
Ranking View also visually represents the current ranking outcome as
shown in Fig. 3. Each individual is encoded as a bar, with the group

membership as a small rectangle at the bottom. A bar is filled with
diagonal patch if the individual has false target label (e.g., “not likely
to pay back a loan” in credit risk prediction) from the target variable.
On top of the bars are the trend line of within-ranking utility (dark red)
and fairness (dark blue).
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Fig. 3. The visualization of ranking outcome supports the exploration of
cumulative ranking quality in terms of fairness and utility. The individuals
are encoded as vertical bars with the group indicator at the bottom, with a
blue rectangle (fairness) and a red circle (utility). It facilitates the selection
of different &k values, by helping users recognize the score change as k
increases, as the trade-off between the fairness and utility.

6.3 Global Inspection View

Global Inspection View (Fig. 2c) provides an overview of the fairness
in three phases of the machine learning process to help Understand
and Measure bias (R2). We present two notions of fairness, Individual
and Group fairness, in the separate tabs to represent individuals and
groups with corresponding measures independently.

This view consists of the visual components of three spaces. Each
space visualizes the distribution of individuals in each phase (T2). The
Input Space View visualizes the feature representation of individuals
as circles in a 2D plot using t-SNE [28]. For Mapping space, Matrix
View represents all pairs of individuals in the mapping process with
the amount of pairwise distortion between two spaces. As mentioned
in Section 4.2.3, two kinds of pairs (between-group and within-group
pairs) are colored as purple and pink. Darker colors indicate greater
distortion, as opposed to no distortion with white color). Along with
the two spaces and the mapping, fairness measures of each space are
presented to provide the summary of bias in each phase (T3).



6.4 Local Inspection View

Local Inspection View (Fig. 2d) supports the exploration of information
on a specific individual (T4). As shown in Fig. 4, when users hover an
individual in any three spaces views of Global Inspection View, the in-
dividual is highlighted with black stroke, and its nearest neighbors with
blue stroke. Local Inspection View displays the detailed information:
Instance-level bias (rNN) and gain (rN Ngqin ), and feature value of
the individual and its nearest neighbors. The feature table enables
comparing the feature value of the individual, and the average feature
value of nearest neighbors, so that users can do reasoning about what
feature contributed to bias and gains. We also support the comparison
of two groups. We provide group-level bias (rN Ng+ and rNNg-)
for users to compare which group has more bias, but also the average
of feature values for each group to show the difference (Fig. 2d).
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Fig. 4. Local inspection View. Once users hover over an instance
(selected individual as black), nearest neighbors are also highlighted
as blue. The feature table shows the difference of feature values (the
individual’s vs. the average of neighbors’).

6.5 Feature Inspection View

Feature Inspection View (Fig. 2e) lists all selected features to support
the identification of the feature bias in Model and Outcome phase
(TS). It is composed of two components: Feature distortion and feature
perturbation (ref. Section 4.3).

For the feature distortion, we plot the overall distribution of instances
with respect to their distortions. We then identify outliers that have
greater distortion within 5% of the right tail. For each feature, we
represent the whole individuals (gray circle) with outliers (red circle) in
a histogram along with feature correlation score. The more distinct two
distributions are, with respect to certain feature, such feature is likely
to be a source of bias.

Also, the result of feature perturbation for each feature is represented
as the visual component of perturbed ranking in the feature table as
shown in Fig. 5. Each individual is represented as a bar, which is
ordered by after-perturbation ranking in the z-axis. To represent the
ranking difference by perturbation, we color the individual bars based
on whether they were previously in the top-k (blue) or not (gray),
and set the height as before-perturbation ranking. We also encode
the information of group membership as a small rectangle (orange or
green) and target label as a black striped patch (negative label). Any
individuals who were in the top-£ in before-perturbation ranking are
represented with a semi-transparent blue bar to indicate how they are
ranked.

[l Previous top-k individual [ Protected group

[l Previous non top-k individual [ Non-protected group Negative target label
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Fig. 5. Visual ranking component of feature perturbation. This view
represents how the ranking changes after perturbation (x-axis) compared
to one before perturbation (y-axis: the height of bars as previous ranking).
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6.6 Ranking List View

The Ranking List View provides the summary of all generated ranking
outcomes as shown in Fig. 2f. This view serves to compare the fairness
and utility measures of rankings so that users can consider the trade-off
between fairness and utility in their decision making. In the table, we

list rankings which consist of Group fairness, Individual fairness, and
Utility measures as columns. In particular, Fig. 2f presents a number
of representative measures, one for each type of fairness and utility,
via multiple linear gauge plots. Each of the plots consists of an ideal
score for the corresponding measure (encoded by a diamond shape) and
the current score (as a triangle marker). Additional fairness or utility
measures are numerically presented (Fig. 2f).

7 CASE STUDY

We present a case study of the loan approval decision to showcase the
effectiveness of FairSight in achieving the fair data-driven decision
(Fig. 6). In this scenario, a credit analyst, Julia, working for a credit
rating company aims to pick the best qualified k£ customers to grant
a loan. She has a fairness goal to protect female customers as the
persistent discrimination against women in financing has been reported.

Settings. We utilize the German Credit Dataset published in UCI
dataset [20]. For this case study, we randomly select 250 instances
with 10 features. We sample the same number of individuals from two
groups (Men:Women = 5:5) and keep the ratio of target label (Credit
risk: Yes or No) of each group the same as the original dataset. For
the initial run, we select 9 features (Fig. 6g) with & = 45 as the top-k
threshold. We illustrate this case by showing how Julia iteratively went
over the machine learning pipeline for six iterations. In the following,
we use the abbreviated notation Sp x Sy for Sp € {U, M, |, MT}
and Sy € {D, M, O} to highlight how each action correspond to the
machine learning and FairDM stages, e.g., UXxD denotes the action of
using tools at the Data phase to meet the Understand requirement.

Iteration 1. Julia started the initial run with 9 features (Fig. 6g)
including “Sex” feature selected with Logistic Regression model. After
the model running, she realized that the ranking outcome was signif-
icantly discriminated against women (GF DCG = 0.3) in Ranking
View (Fig. 6d-i1). When she took a closer look at the distribution
of individuals, the ranking outcome was severely favorable towards
men, especially within the top-15. In Global Inspection View, all Data
and Model phases were biased. Specifically, two groups were clearly
separated due to inherent group bias in Input space (Ux D) (Fig. 6a-
il). In Mapping space, Group skew was over 1 indicating there is a
structural bias (Fig. 6e-i1). There was also a gap between the amount
of bias per group as well (rINNg+: 0.4, rNNg-: 0.32). By excluding
the sensitive attribute from the decision making, she deleted the “Sex”
feature and generated the second ranking (Ix D).

Iteration 2. Without “Sex” feature involved, she checked that two
groups are more scattered throughout Input space though she could
detect two groups that formed the clusters (Group separation = 0.27)
(UxD) (Fig. 6a-i2). There was still inherent bias, so she decided
to continue examining the other potential features that brings in bias
in Data phase. While investigating Feature Correlation table (I x D)
(Fig. 6b), she found that “Marriage” feature is highly correlated to the
sensitive attribute with the score of 0.62 (M x D). The distribution plot
showed that almost all men are in single status, whereas most women
are in the status of married or divorced. She judged that “Marriage”
feature could be a potential proxy variable to discriminate against
certain group.

She also noticed in Input Space that there is an individual (Woman,
ID: 82) plotted in a distance from other female individuals (Fig. 4).
When she hovered over the individual, she found that the individual
had the distortion (rN N = 0.67), but it turned out to be the disadvan-
tage against the individual (r N Ngqin = -0.13). She investigated the
feature value table to see how the individual is different from neighbors.
She noticed that the individual was significantly different in “Account
check status”, “Marriage”, and “Job”. Especially, the individual had a
significantly different account check status (0: No account), and was in
“Married” status (Marriage = 1) compared to the average of neighbors’
marriage status 0.5, which is closer to “Single” status (0: Single). This
instance-level exploration enabled her to explore how each individual
was biased or disadvantaged, with the difference of feature values ex-
plained. Taking all pieces of evidence from this iteration, she decided
to remove “Marriage” feature (MT x D).

Iteration 3. She instantly noticed that removing the “Marriage” fea-
ture improved the fairness score. For Input space, Group separation
score dropped to 0.12 (MxD) (R3 in Fig. 6h). In Input space, she
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Fig. 6. Summary of case study in loan approval (g) with the initial features and method. Users can understand (a) the distribution of groups and
individuals in Data phase. With the feature auditing modules to detect (b) feature correlation and (c) feature distortion, the visual components of (d)
Matrix View in Mapping and (d) Ranking View in Outcome phase represent that the fairness in each phase improves. (f) Within-ranking module helps
adjusting better top-k threshold. (h) Ranking List View displays the trade-off between fairness and utility to help users comparing the rankings.

found that two groups were not clearly separated by their cluster any-
more (Fig. 6a-i3). She also found that Group Skew score in Model
phase improved by 0.05. But GFDCG score in Outcome phase was
still severely biased towards men, which still left much room to improve
(score = 0.53). At this time, she observed in Feature Inspection View
that “Account check status” feature had the highest feature distortion
(score = 0.44) and high feature correlation bias (score = 0.28) (Fig. 6¢).
She finally decided to remove this qualification feature.

Iteration 4. She immediately found that Group Separation and
Group Skew score improved by 0.03 and 0.02 (From R3 to R4 in Fig.
6h), and Individual fairness slightly increased by 0.02, but GFDCG
score was still dragged around 0.6. After all feature exploration, she
decided to finalize the feature set with 7 features and run the fair method
to make an improvement (M T x M).

Iteration 5. When she ran the in-processing model, it improved the
fairness of ranking outcome (GF DCG = 1.26) (Fig. 6d-i5) with a fair
number of women within the top-20 shown in Ranking View. Finally,
she found that the overall fairness score highly improved in two spaces
and also Mapping (Group Separation = 0.09, Group skew = 1.01,
GFDCG = 1.26). The amount of biases per group was also closer
to each other (rNNg+: 0.34, rN Ng-: 0.33). In Ranking List View,
she was able to compare all generated rankings with Group fairness,
Individual fairness, and Utiliy measures. While there was a trade-off
between rankings (RS in Fig. 6h), the last ranking outcome achieved
both higher fairness and utility scores.

Iteration 6. While she settled down with 5th ranking, she had to
decide how many individuals she should pick. As she moved on to
Ranking View, the ranking visualization conveyed the information
of within-ranking fairness and utility trend (Fig. 6f). Observing the
nearby positions, she found that within-ranking fairness improved by
0.14 when she slightly increased the threshold to £ = 50 while within-
ranking utility remains the same as 0.82. She decided to finalize the
ranking decision with the last ranking by selecting 50 candidates based
on the top-k threshold.

8 USER STUDY

We evaluate FairSight’s design in terms of its understandability and
usefulness in decision-making by conducting a user study. We com-
pared FairSight with >What-if” tool [15] developed by Google, which
is one of existing tools for probing the machine learning models on
their performance and fairness.

We recruited 20 participants (age: 23-30; gender: 8 female and 12
male participants), a majority of which were graduate students who
study Information and Computer Science and have the knowledge of

machine learning to ensure they are familiar with the typical machine
learning workflow and terminologies. We conducted a within-subject
study where each participant was asked to use both tools in a random
order. We gave participants the tutorial (25 mins) and let them explore
the two systems (15 mins).

Questions and tasks. Participants were given tasks in a decision-
making situation similar to our case study (Section 7) based on the
German credit rating dataset [20]. The task is to predict which can-
didates are most likely to pay back a loan, with a fairness goal of
protecting female customers against discrimination. Due to the differ-
ences in the two systems’ output decisions (i.e., FairSight: ranking;
What-if: classification), the participants were asked to conduct the task
differently where (1) with FairSight: to select k qualified customers
among n candidates (n = 250), while (2) with What-if: to classify
qualified customers. Participants were asked to start with seven out of
the ten features (Fig. 6g) with Logistic Regression as initial setting.

Participants were asked to conduct 12 sub-tasks (4 fairness stage
x 3 machine learning phases). These tasks correspond to the tasks
listed in Fig.2 but with more specific question that has a correct an-
swer, e.g., MTxO: “Can you quantify the degree of fairness in the
ranking outcome?”. The users were expected to correctly identify the
directly relevant information offered by the system (e.g., the answer
to this question could be “a fairness score of 0.85”). We also asked
users 3 additional questions for Decision (e.g., ask users to compare
the differences in two iterations) and Explain (e.g., ask users to find
the explanation on instances or features). The accuracy was measured
based on whether a user can correctly point out the directly relevant
information. We also asked users to rate the understandability “How
well does the system intuitively capture and represent the bias/fairness
in the decision process?” and usefulness “How is the information pro-
vided by system useful for fair decision-making?” in a Likert scale from
1 to 5 for each task. Since the two tools have different functionality
(What-if tool is able to support 9 out of 15 tasks while FairSight pro-
vides all the functionality), we measured and compared the accuracy on
9 questions which can be answered by both systems. We also collected
the subjective feedback after completing the tasks.

Result. The result is presented in Fig. 7. The overall accuracy of two
tools was 95% for FairSight, and 80% for What-if. Per-criteria accuracy
with their average accuracy is shown in Fig. 7. Fig. 7a summarizes the
evaluation result of each stage of fairness pipeline. The result, based
on the t-test, indicated that FairSight significantly outperformed the
What-if tool in terms of understandability and usefulness (Fig. 7a).

We also measured the result when ratings are aggregated by three cri-
teria: Fair, Decision, Explain, as shown in Fig. 7b. The statistical test
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Fig. 7. Subjective ratings (understandability and usefulness) and accu-
racy (a) in the four stages of the fairness framework and (b) in three
criteria of the decision making tool: Fairness, Decision, and Explain.

proved that FairSight was more effective in terms of understandability
and usefulness (Fig. 7b). What-if tool was relatively good at providing
reasoning behind instance-level inspection using counterfactual exam-
ple, and feature importance with partial dependence plot, with the score
of 3.5, but lacked in comparing multiple outcomes.

Subjective feedback. We gathered the subjective feedbacks from
users. Those are summarized in three aspects: (1) FairDM as a guide-
line of increasing the awareness of fairness, (2) Visualization as a
fairness-aware overview of machine learning task, and (3) Comprehen-
sive diagnosis of discriminatory features. First, most of participants
appreciated how the framework and system enhanced the understanding
and awareness of fairness. Several participants provided feedback on
how the system improves their awareness, e.g., “It was the first time
1 recognized/learned how machine learning can result in the fairness
problem.” Second, FairSight with visual components not only served
as a diagnostic tool for fairness, but also helped users understand how
the distribution of individuals changes with the fairness improved in
three machine learning phases, as mentioned by a user, “Three space
views are intuitively show how the process is going with the degree of
fairness”. Lastly, most of the users were surprised by how the system
supports evaluating features as possible sources of direct or indirect
discrimination in each phase. As a user mentioned, “Feature selection
is sometimes arbitrary, but it provides the feature-level measures as
evidence of fairness-aware decision.” — this demonstrated how the sys-
tem can help decision makers to achieve fair decision making through
better explainability.

9 DISCUSSION

In this section, we discuss our observations on the use of FairSight,
and extend it to the general context of fair decision making. We also
summarize the limitations of our system based on findings from the
user study.

Importance of pre-processing stage. Although all stages of
FairDM have an important role in achieving fair decision making,
the most critical part was found to be the pre-processing stage. As
shown in the case study, the first 4 iterations were primarily concerned
with the pre-processing stage, where the fairness scores can be sig-
nificantly improved. We also observed that participants in the user
study spent 80% of their exploring sessions in detecting and removing
bias from features. It is also the case of the real-world practice that,
according to [17], the data collecting and processing is the most prefer-
able and time-consuming task. Based on our study, a fair decision tool
that simply offers a package of fairness-aware algorithms and outcome
measures will be not sufficient to meet the needs of data scientists and
practitioners to combat the various bias and fairness issues in real-world

practice, and our proposed design helps address this challenge with
comprehensive support at the pre-processing stage.
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Fig. 8. Visualization of three stages from (a) 9 features (lteration 1 in
Case study) with the in-processing method (b) 6 features (Iteration 5 in
Case study) with Logistic regression.

Interaction between spaces. FairSight represented the machine
learning process as the mapping between Data and Outcome. With
the perspective of space, our observation is that the entire pipeline
coordinates in such a way bias is reinforced from data to outcome
through the mapping. As illustrated in Fig. 8, features without the
pre-processing step create more bias in the mapping (Fig. 8a), whereas
features from fairer data representation were found to be less biased in
the mapping and ultimately resulted in greater fairness in the ranking
outcome (Fig. 8b).

Subjectiveness of feature selection. While it is possible to identify
feature-level bias through the well-defined metrics provided by our
system, human scrutiny through the interactive visualization is still
required. Feature selection often requires domain knowledge; determin-
ing how a feature is important and fair may differ across contexts and
domains [27], and is also subjective to people’s perception on fairness
[16]. There is no generally acceptable criteria for evaluating the trade-
off between fairness and utility over decision outcomes. Therefore,
it is desirable to have a decision-making tool that helps incorporate
the domain knowledge and human judgment to achieve fair decision
making.

Limitation. Despite the comprehensive framework and system im-
plementation in our study to go towards fair decision making, we
observe that a few drawbacks still exist. First, our visualization creates
visual clutters as a number of instances increase while it enables the
instance-level exploration. Second, the visualization can be misleading
depending on group population. For example, in the case when the
sensitive attribute has a skewed ratio of two groups (e.g., Men:Women
= 8:2), the visualization of linearly ordered ranking outcome may look
unfair even for a fair ranking. Our system also treats the sensitive at-
tribute as dichotomy between protected group and non-protected group,
which may not fit into some cases.

10 CONCLUSION

In this work, we presented FairDM, a decision making framework to
aid fair data-driven decision making. We also developed FairSight, a
visual analytic system with viable methods and visual components to
facilitate a real-world practice of comprehensive fair decision making.
The evaluation of our system demonstrated the usefulness of the system
in fairness work over the existing tool. In the case study, we illustrated
how the system was effective to measure and mitigate bias using a
well-known dataset. For future work, we plan to extend the current bi-
nary representation of sensitive attribute in FairSight to handle multiple
groups and sub-groups, as well as user-defined groups. Furthermore, to
tackle industry-scale dataset, we will develop a scalable visual repre-
sentation of rankings (e.g., how to make the matrix representation or
reordering to efficiently present the fairness).
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