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Abstract. In this paper, we present an adaptive rescaling method for computing a shrinking
interface in a Hele-Shaw cell with a time increasing gap width b(t). We focus our study on a one-
phase interior Hele-Shaw problem where a blob of fluid, surrounded by air, dynamically responds
to the changing gap width. Linear analysis suggests that there exist transient fingering instabilities
and noncircular self-similar evolutions depending on the dynamics of the gap b(t). Using linear
theory, we identify a critical dynamic gap thickness b., (f) that separates stable shrinking behavior
(shrinkage like a circle) from unstable shrinkage (shrinkage like a fingering pattern), where k is the
wavenumber of the perturbation. The gap b., tends to infinity at a finite time. To explore the full
nonlinear interface dynamics, we develop a spectrally accurate boundary integral method in which
a new time and space rescaling is implemented. In the rescaled frame, the motion of the interface
is slowed down, while the area/volume enclosed by the interface remains unchanged. This method,
for the first time, enables us to adaptively remove the severe numerical stiffness imposed by the
rapidly shrinking interface (especially at late times) and accurately compute the dynamics to far
longer times than could previously be accomplished. Numerical tests demonstrate that the method
is stable, efficient, and accurate. We perform nonlinear simulations for different dynamics of gap
widths and, while the transient interface dynamics can be very complex, we find behavior generally
consistent with the predictions of linear theory regarding the critical gap width. In particular, we
find that when the b(f) increases exponentially in time, the nonlinear interface undergoes transient
and sometimes dramatic morphological instabilities but eventually shrinks as a circle. When b = b,
or larger gap widths are used, our simulations reveal that at long times, the interface exhibits novel,
strikingly thin k-fold morphologies that do not vanish as the interface shrinks, suggesting there exists
mode selection in the nonlinear regime though the evolution is not self-similar.
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1. Introduction. In the classical radial Hele-Shaw problem, a less viscous fluid
is injected into a more viscous fluid confined in a fixed narrow gap between two
parallel plates. During injection, the inner less viscous fluid displaces the outer viscous
fluid and the interface separating the two fluids exhibits fingering patterns due to the
Saffman—Taylor instability [42]. In particular, the tip of a finger may split and develop
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into new fingers. The repetition of this process leads to dense branching morphologies
[42, 39, 33, 6, 29, 8, 36, 3].

Besides the classical Hele-Shaw setup, there are several variants related to the
viscous fingering problem [37, 21, 20, 4, 12, 14, 13, 40]. For example, Hele-Shaw cells
where the top plate is lifted uniformly at a prescribed speed and the bottom plate
is fixed (lifting plate problem) [5, 12, 35, 43, 47, 45, 46] have been used to study
adhesion related problems such as debonding [16, 2, 38, 11] and the associated probe
tack test [51, 25]. In the lifting plate problem, the gap b(t) between the two plates is
increasing in time but uniform in space. As the plate is pulled, an inner viscous fluid
shrinks in the center plane between the two plates and increases in the z-direction to
preserve volume. An outer less viscous fluid invades the cell and generates fingering
patterns. The patterns are visually similar to those in the classical radial Hele-Shaw
problem, but the driving physics is different in the sense that the flow in this problem
is extensional (e.g., free-surface instabilities seen in [32]). Using linear stability theory
and weakly nonlinear analysis, [12] related the rate of change of the gap width with
the number of developing fingers and derived a critical rate that selects the number of
fingers observed and obtained good agreement with experiments [13]. Similar results
are observed using a Hele-Shaw cell with one edge of the plate lifted, which makes
the gap width a function of time and space [48, 14].

There are two numerical issues when computing the nonlinear dynamics of a
shrinking interface. The first challenge is that one has to solve a stiff dynamical system.
The stiffness comes from the fast dynamics of the interface when the top plate is lifted
rapidly (e.g., an exponentially increasing gap b(¢) = exp(t) for large t), which requires
a significant reduction in time steps to maintain the accuracy and stability of long-
time computations. The second difficulty is, as the interface shrinks and develops
complex fingering patterns, one may have to increase the spatial resolution (e.g.,
by adding more mesh points) to resolve the interface, which again compounds the
temporal resolution and demands even smaller time steps. Explicit time stepping
methods suffer from a third order time step constraint At ~ As®, where As is the
arclength spacing between computational nodes along interface. These severe time
step constraints substantially increase the computational cost and make long-time
computations prohibitive in practice.

To overcome these difficulties, we develop a spectrally accurate boundary integral
method in which a new time and space rescaling is implemented. The rescaling idea
[29, 49, 50] is to map the original time and space (X,t) into new coordinates (X, )
such that the interface can evolve at an arbitrary speed in the new rescaled frame.
In particular, for the shrinking interface problem, we choose (1) the space scaling
function R(f) so that the shrinking interface is always mapped back to its initial
size, i.e., the interface does not shrink in the rescaled frame; (2) the time scaling
function p(%) to slow down the motion of the interface, especially at later times when
the interface becomes very small and shrinks extremely rapidly. We note that an
alternative time and space rescaling scheme was implemented in [9, 10] to accurately
simulate vanishing bubbles in a Hele-Shaw cell. Here, we use a semi-implicit, nonstiff
time stepping method developed originally in [23] to remove the third order time
step constraint. The slow interface dynamics in the rescaled frame, together with the
nonstiff time stepping method, allows one to use large time steps in calculations, which
solves the temporal stiffness issue. For example, the original exponentially increasing
gap b(t) = exp(t) may be slowed down to b(£) = 1 + 0.5¢ in the new frame.

To provide insight to the problem, we revisit the linear stability analysis of a
slightly perturbed circular interface. We identify a dynamic, critical gap thickness
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be (t) = (1 — %ckt)_zf 7 that separates unstable and stable shrinkage of perturba-

tions with wavenumber k and ¢; ~ k2. That is, linear theory predicts that when

%(b_-;l‘,-'f - b—%rg) < 0 mode k shape perturbations will eventually decrease in time while
ke

for %(% — tﬂ%) > 0 mode k perturbations will increase as the interface shrinks.

When b = b, , the perturbation evolves self-similarly. Note that b, () becomes un-
bounded at a finite time.

For more slowly increasing gaps, such as those that linearly or even exponentially
increase in time, we identify a critical time t* such that after t* the perturbation
starts to decay. Before the critical time t*, nonlinear simulations reveal that the inter-
faces may show dramatic, transient fingering instabilities. For instance, under such
conditions the interfaces develop multiple fingers and new modes arise as the interface
shrinks initially. However, unlike fingering patterns observed in the classical Hele-Shaw
problem, here the number of fingers decreases over time and the fingers do not split
during evolution. After the critical time, the fingers decay and the interface tends to
a circle as it vanishes, consistent with predictions from linear theory.

From linear theory, we also derive a mode selection criterion based on the mode
with the maximum growth rate k4, and the mode with the maximum perturbation
amplitude k*. Defining a more general gap dynamics b,(t) = (1 - %c . t) 27 we may
select kinqe or k* by taking different values of ¢. Using these rapidly increasing gaps,
nonlinear results reveal that at long times the interfaces exhibit nontrivial k-mode
dominant morphologies, suggesting there also exists a mode selection mechanism in
the nonlinear regime. In these cases, the interface does not seem to tend to a circle
as it vanishes.

In [43], the authors constructed a so-called fission interface (two connected circles)
that would split into two separate circles in the absence of surface tension. For a
finite surface tension, short-time simulations using b(t) = exp(t) show that the fission
interface might split at the center of the channel region [43], which would be in
agreement with the lubrication approximation for flows in a thin channel [1]. Note
that in the lubrication approximation, the interface is assumed to be smooth and no
fingers develop. Here, our nonlinear simulations demonstrate that the neck region
of the fission interface develops multiple fingers and that the interface ultimately
shrinks like a circle even for a small surface tension. We find that the fission interface
experiences four dynamical stages as it shrinks: Dumbbell Stage I, Fingering Stage,
Dumbbell Stage II, and Circular Stage.

This paper is organized as follows: in section 2, we present the governing equations
and linear stability analysis; in section 3, we develop a rescaled boundary integral
method; in section 4, we discuss the numerical results; and in section 5, we give
conclusions and discuss future work.

2. Governing equations and linear analysis. We consider a radial Hele-
Shaw cell with a time dependent gap b(¢); see Figure 1 for a schematic plot. The
upper plate is lifted perpendicularly to the cell, while the lower plate stays fixed.
The interior fluid (e.g., 0il) meets with the exterior less viscous fluid (e.g., air) at the
interface 9€). Assuming that the two fluids are immiscible and incompressible, we
have the following governing equations [43]:

_ P : 2
(2.1) u=-— 2 VP inQ CR?

_ by . 2
(2.2) V-u= b(2) in 2 C R*,
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Fi1c. 1. Schematic for the lifting plate Hele-Shaw problem. The interior region 1 is oil with
viscosity p. The exterior region is air. b(t) is the time dependent gap. The normal n to the interface
A9 points inward.

(2.3) [Pls =7k on 00 cR?
2

(2.4) vy _CWOP L s0cRre
12p dn

Equation (2.1) follows from Darcy’s law, where u is the velocity, P is the pressure,
and p is the viscosity of the fluid. Equation (2.2) is the gap-averaged incompressibility
condition that reflects the conservation of fluid volume, where b(t) = db(t) is the lifting
speed. Equation (2.3) is the boundary condition, where the pressure _]ump [P]¢ across
the interface is given by the product of surface tension 7 and the curvature of the
interface k, known as the Laplace—Young condition. Equation (2.4) describes the
normal velocity of the interface V' and n is the unit normal vector pointing inward.
See [26, 17] for a derivation of this system.

Using the equivalent radius of the initial interface Lo as the length scale (radius
of a circle with the same enclosed area), the characteristic time T' = %;l as the time
scale, the pressure F, = %’E as the pressure scale, where by and by are the initial

. a
values of b and b. Defining the nondimensional surface tension as 79 = _%__ the

12ubo L3’
nondimensional version of (2.1), (2.2), (2.3), and (2.4) is

(2.5) u=—-b%(t)VP in Q,
(2.6) V.ou= zg; in 0,

(2.7) V2ZP = % in Q,

(2.8) [Pl, =7k on 8Q,

(2.9) V= —bz(t)% on 0,

where we have retained the same notation as before but now b(0) = 1 and 7 = 7o.
Following [43], we define a harmonic function P = P — 429(1) |x|? and rewrite (2.7),
(2.8), and (2.9) as
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(2.10) V2P=0 inQQ,
AT b(t) | o
(2.11) [Pl; =1k 0 [x]* on 89,
. ap
—_ _ 12
(2.12) V=-bt(t)5- on 02

That is, the new normal velocity is given by

5 b(t)
(2.13) V=V+ 2b(t))(-n.
Linear stability analysis. We consider the interface to be a slightly perturbed
circle, r(a,t) = R(t) + €d(t) cos(ka), where € < 1, the perturbation mode k > 2 is an
integer, a € [0, 27| is the polar angle, and §(t) is the amplitude of the perturbation.

Following standard perturbation analysis and using the volume conservation of

the viscous fluid (the nondimensional volume is 7) [13, 43], we have —g = —21 and

6 _ bk—1) _ 'rbz(;::a_k) . We define the shape factor % to characterize the evolution of

3 P2
the perturbation [34],

(2.14) (1%)_1% (%) _ l;_?; B sz(k;; k)

Equation (2.14) is the linear growth rate of the kth mode perturbation. Using the
relationship R =1/ v/b from volume conservation and nondimensionalization, we can
rewrite (2.14) as

s\ td /6 1 d [ 1 1
2.15 O L (%N _Zp.piel L _
(2.15) (R) dt (R) 7 dt (b;{? b7/2) ’

where b, is the critical gap that satisfies

be,

(2.16) 75/7 = 2r (K* —1),
Cl
or equivalently,
7 —2/7
2.17 be(t) = (1 — =cp t with ¢ = 27 (k2 —1).
. 2

This critical gap b, (t) was also derived in [12]. Observe that perturbations grow (or

decay) when
d 1 1
dt \ 172 b7/2
Ck

is positive (or negative). When b = b,,_, the shape perturbation is unchanged in time,
that is, the configuration is a dynamical equilibrium state (linear self-similar solution)
[29, 30, 28]. Note that the time dependent gap in (2.17) only exists for a finite time
T, = % The gap increases slowly at early times, but as ¢ approaches Ty, the gap

grows rapidly and becomes unbounded.
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Solving (2.14), or equivalently (2.15), we obtain

6 6 k tpT/2
— == 3 o(k) [5 b7/ %(s)ds
(2.18) =) ( R)Ob (e ,

where (%)0 is the initial perturbation, and o(k) = 7(k — k3). We have the following
results.

STATEMENT 2.1. For any mode k, if %(# — b?%) changes sign from positive at
“k

early times to negative at late times, then there is a critical time t* after which %(t)
starts to decay. The critical time t* is characterized by

(2.19) b(t*) = B(k)b/*(t"),

where B(k) = %(k) Further, if b(t) — +oo as t — +oo, then for all s > 0,
S (t) ~ o(b™%(t)) as t — +oo.

To find the critical time t*, we set the right-hand side of (2.15) to be zero. The
result b(t*) = B(k)b”%(t*), where B(k) = 27(k* — 1), immediately follows. Since
b(t) — +oo as t — +oo, we conclude b(t) ~ o(b' 1€ (t)) as t — +oo for any €; > 0. If
b(t) ~ O(b1€1(t)), then b(t) ~ O((1 — e;ct)~1/€1). It indicates b(t) goes unbounded
at a finite time, which is in contradiction with b(¢) — +o0 as t =+ +oco. Then we have
b(t) ~ o(b'*€1(t)) as t — +oo for any €; > 0. Using (2.18), we have

5 (t) _(a) o b

t—PE-’lG b_s(t) “\R ot e— (k) [y 07/2(s)ds

R

b% +so(bel—7/2)

t—roo _J(k)e—o(k) fu‘ b7/2(s)ds

lim
i
) lim
i
T}]Je second equality comes from I’'Hopital’s rule. The last equality is due to
bi"'so(b"(el_?/ 2)) approaching zero after repeating ’Hopital’s rule finite number n
times.

For linearly and exponentially increasing time dependent gaps, the perturbation

grows at early times. After the critical time t*, the perturbation starts to decay, and

the interface eventually tends to a circle as it vanishes. This has been observed in
experiments [31, 2, 11].

s bitels

E t—r00 _J(k)e—a(k) o b7/2(s)ds
9

R

STATEMENT 2.2. The mazimum growth rate mode kpaz 1

b 1
(2.20) kmaz = 6z T3
and associated gap b(t) = (1 — %cﬂf)_z/7 with ¢ = 27 (3k* —1). The mode k* with

the mazimum perturbation amplitude is given by

. In b(t) 1
(2.21) k* = \/61r oD +3

If b(t) is a linear or exponential function of time, then both kmag and k* tend to 1/1/3
as t — +oo.
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We find the maximum growth rate mode by setting

s\'d (s
R dt \ R
and solving for kp,q>. We get the maximum perturbation amplitude mode by taking

the derivative of (2.18) with respect to k, then using Ur) _ 0 to solve for k*. Tt is

straightforward to verify that for linearly or exponentiafl; increasing gaps b(t), kmaz
and k* tend to 1/1/3 as ¢t = +o0.

Recalling that kper and k* are integers (perturbation modes), the limit value
4/1/3 merely implies the interface eventually reduces to a circle. Usually, kpqap and &*
are different and there are two different criteria for mode selection in a nonequilibrium
state. One is the commonly used k4 criterion, which has been shown to provide a
good estimate of the number of growing fingers [35]. The other is the k* criterion,

which shows agreement with experimental data on the total number of fingers [13].

d

dk

3. Numerical method and rescaling.

3.1. Boundary integral formulation. The reduced pressure P is harmonic.
From potential theory, we can write P as a double layer integral,

P = [ 30¢) | 1] dstx),

where (x) is the dipole density on 9€). Assuming the exterior fluid is air, we only
need to solve the interior fluid problem. Using the boundary condition, 4 satisfies a
Fredholm integral equation of the second kind,

; 1 [ _, , [0nx—x| " b(t)
(31) ")/(X) + ; _/39 "}((K ) [W + 1:| dS(K ) =2TK — Qbs(t) |X|2,

with
(3.2) /an (x)ds(x) = 0.

This is a well-conditioned problem that can be solved efficiently using an iterative
method such as GMRES [41]. Once we obtain 4, the normal velocity V' can be
computed via the Dirichlet—Neumann map [18]:

PO [ (¢-x)tn

of 5 ds’
27 Jasa |x’ — x|

(3.3) V(1) =

¥

where x = (z2, —x;). Using (2.13) we have the normal velocity of the interface,

1

i) [ . (x—x)tn_, b
(3.4) V(t) = —? /aﬂ Ya' st — %X - 1.

Notice that V(t) ~ b%(t). In particular, for the case b(t) = (1— %ct)_%, we have
b(t) — +oc as time approaches to Tk. Thus the normal velocity becomes unbounded at
later times, which prohibits one from computing the dynamics of a shrinking interface
as time approaches Tj. Thus, we introduce the following rescaling scheme to slow
down this accelerated dynamics.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/19/19 to 128.200.174.78. Redistribution subject to SIAM license or copyright; see http://www .siam.org/journals/ojsa.php

COMPUTING SHRINKING INTERFACES IN A HELE-SHAW CELL B1213

3.2. Rescaling idea. Introduce a new frame (X,%) such that
(3.5) x = R(OX(E o),

1
(3.6) t= / dt’,
o P(t')

where the space scaling R(f) accounts for the change in size of the interface due to
the gap dynamics and is determined by requiring the area in the scaled frame to be
independent of time (see below). X is the position vector of the scaled interface, and
a parameterizes the interface. The time scaling function p(t) = p(f) maps the original
time ¢ to the new time Z and p(¢) has to be positive and continuous. The evolution of
the interface in the scaled frame can be accelerated [50, 49] or decelerated by choosing
a different p(¢). A straightforward calculation shows the normal velocity in the new
frame

— p X- ndR
(3.7) v = Evem - X2,
where V is the normal velocity in original frame. In the scaled frame, we require
the area enclosed by the interface is a constant, i.e., A(f) = A(0). In particular, this
means that the integration of the normal velocity V along the interface in the scaled
frame is zero, |, o9 Vds = 0. Using the volume conservation condition of the viscous
fluid, we have

~1dR _ pb(t(D))
(35) B = o)

where the dot means the time derivative in the original frame. Plugging (3.8) into
(3.7) and using (2.13), we have V = £V ().
In this paper, we consider the time dependent gap b(¢) in the form of
b
(3.9) p= o b,
where a3 > 0 and [ can be a positive or negative real number. In the new frame, we
let the scaling factor satisfy

(3.10) R = _a,R™,

where az > 0 and m can be a positive or negative real number. The negative sign
indicates the interface shrinks (R decreases). Plugging (3.9) and (3.10) into (3.8), we
obtain

2y
(3.11) p= 2 pm+2,

ay

As a result, we have -
,_ [ &1-F@), 1£0
—C% InR(t), [=0.

Note that different choices of m and as lead to different evolution speeds of the
interface in the new frame. For m < —2I and a1 < 2a2, p > 1 indicates the evolution
of the interface is accelerated in the new frame. For m > —2[ and a3 > 2a9, p < 1
indicates the evolution of the interface is decreased in the new frame.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Taking ¥ = 7R ™!, (3.1) can be rewritten as

(3.12) (%) + % /m@ (%) [% n R(E)] d5(x') = 277 — %Rﬂil?-

Using (3.7), V can be computed as

(3'13) "'7()—{) — _bz(t(a)ﬁ /BQ ’?ﬁ (i! — i)J_ ) n(g)dgf,

2r R3 X' — |2

where X+ = (Z3,—Z;). Now we evolve the interface in the scaled frame through

(3.14) d’_‘g%a) n=V{Ea).

Here, we focus on a scheme that slows down the evolution of the interface in the

2

rescaled frame. For example, let us consider the specific gap b(t) = (1 — %ct)_7,
under which linear theory predicts a self-similar shrinking interface (see (2.17)). We
obtain ay = ¢ and [ = 7/2 following (3.9). Then we take az = 1/4, and m = 2 to get

a linear gap b(f) = 1 + 0.5 via a time scaling 5 = R?/2c. As a consequence, in the

rescaled frame, the normal velocity is decelerated V (X) = —zﬁ /. 80 78 %dﬁ .

In summary, we discretize (3.12) in space using a spectrally accurately discretiza-
tion following [22, 24], evaluate the integral using the fast multipole method [19],
and solve for rescaled dipole density 4 using GMRES [41]. Because (3.12) is well-
conditioned, no preconditioner is needed. Once the solution 7 is obtained, we com-
pute (3.13) for the rescaled normal velocity V' via the Dirichlet-Neumann map [18]
using a spectrally accurate discretization [22, 24, 27] . Finally we evolve the interface
in the scaled frame (3.14) using a second order accurate nonstiff updating scheme in
time and an equal arclength parameterization of the interface [22, 24, 27].

R

4. Numerical results.

4.1. Comparison with linear theory. In this section, we present a compar-
ison of our nonlinear results with the prediction from linear analysis. Consider a
shrinking air-oil interface whose initial shape is a slightly perturbed circle, r(e,0) =
1+4-0.01 cos(4ex), where a parametrizes the interface. The upper plate of the Hele-Shaw
cell is lifted exponentially rapidly b(¢) = exp(¢) in the original frame and is slowed
down to b(f) = 1+ 0.5% in the rescaled frame. We set N = 4096 mesh points along
the interface, the time step Af = 1 x 10~%, and the surface tension 7 = 4 x 1075,
To characterize the interface morphology, we compute the shape factor numerically
using (%(t)) N = MaXq ||)‘((a, t)|/Ress — 1|, where X is the position vector measured
from the centroid of the shape to the interface, Ress = 1/ A/7 is the effective radius
of the viscous fluid in the rescaled frame, and A is the constant area enclosed by the
interface.

In Figure 2, we plot the shape factor %(t) as a function of R and show sam-
ple interface morphologies as insets. Because of the simple initial configuration and
less pronounced fingering pattern, we are also able to perform a simulation using the
original (unscaled) method and obtain the same numerical results as the new scaled
method, as expected. From linear theory, we know the interface will first develop a
fourfold fingering pattern before ultimately shrinking to a circle as it vanishes. The lin-
ear shape perturbation evolves following %(t) = (%)0 R (t)exp [ (1 - R7"(t))].
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Fic. 2. Comparison between linear theory and nonlinear simulations using both the rescaled and
original frames. The shape factor % from linear theory and nonlinear simulations using b(t) = exp(t)
is shown as a function of R. There are good agreements between all three. Inmsets show simulated
interface morphologies at the indicated R.

In particular, linear theory predicts %(t} obtains its maximum value 0.26 at R = 0.38

and t = 1.94, which is in good agreement with our nonlinear results, (%) N =027
at R=0.37 and t = 1.9.

4.2. Performance of the rescaled numerical method. In this section, we
test the performance of our scheme by computing the long-time nonlinear dynamics of
a shrinking interface where the fingering pattern is complex and dynamic. We take the
initial interface as a mode mixture, r(a,0) = 1+ 0.02(cos(3a) + sin(7a) + cos(15a) +
sin(25a)). The gap increases exponentially rapidly, b(t) = exp(t). Here we implement
a time scaling factor p = R?/2 to slow down this accelerated evolution such that in the
rescaled frame, b(f) = 1 + 0.5 and R = (1 + 0.5¢)~'/2. From linear theory, we know
that the interface will develop dynamic fingering patterns as it shrinks. The accuracy
of our rescaled method is checked in a number of ways. Here we show convergence
estimates, e.g., O(A#?) in time and spectral accuracy in space. All simulations are
performed on a single node in a cluster with 1.6 GHZ CPUs running Linux.

Convergence test. First we perform a temporal resolution study using N =
8192 mesh points along the interface. We use time steps At = 4.0 x 1074,2.0 x
107%,1.0x107%, and 0.5x10~%. The surface tension 7 = 1x 10~°. The numerical error
is measured in term of the area difference in the rescaled frame, Error = |A(f)— A(0)],
where A(0) is the area enclosed by the initial interface, and A(f) is the area computed
at time . In theory, the area difference should be zero following (3.7). In Figure 3(a),
we plot the base 10 logarithm of the temporal error as a function of the scaling factor
R(t) = R((t)), which decreases from 1 to 0.35 in these calculations. The morphologies
of the interface are shown as insets, which are almost identical at the same radius for
these calculations. When the time step is reduced by half, the distance between two
neighboring curves decreases uniformly by a factor of 0.6 indicating the expected
second order convergence in time.
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Fic. 3. In (a), the convergence in time is demonstrated using spatial resolution N = 8192.
In (b), the convergence study in space is presented. Sample morphologies of the interface at the
indicated radii using N = 8192 are shown as insets. The initial shape is r(a,0) = 140.02(cos(3a) +
sin(7a) 4 cos(15a) 4 sin(25a)), T = 1.0 x 1075, and b(t) = exp(t).
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We next test the resolution in space using N = 2048, 4096, 8192, and 16384 points
along the interface. The time step is fixed as Af = 4.0 x 104 for all calculations.
The error is again measured by the area difference, Error = |A(f) — A(0)|. Figure
3(b) shows the base 10 logarithm of the space error plotted versus scaling factor. At
R = 0.69 the run with N = 2048 points starts differing from the runs with higher
resolutions and then quickly fails. This indicates that more points are needed to
resolve the interface. This behavior also occurs at R = 0.5 for N = 4096. When
using N = 8192, the results are the same as for N = 16384. We notice that while
the simulations remain resolved, all these calculations produce almost identical nu-
merical results at the same time, indicating spectral accuracy in space. Four sample
morphologies of the interface are shown as insets. The interface evolves to a vanish-
ing circle as it shrinks, and the morphologies with different spatial resolution nearly
overlap and are geometrically indistinguishable.

Comparison with the original nonrescaled scheme. To illustrate the effi-
ciency and necessity of our rescaling scheme (especially for small surface tensions that
can lead to striking fingering patterns), we set the surface tension to 7 = 1 x 10—°
and the gap to be exponentially increasing b(t) = exp(¢) and compute the dynamics
using the original method and then make a contrast with the rescaled scheme where
the speed of the gap is reduced to b() = 1 + 0.5¢. We summarize our simulation
results in Figure 4(a). Using N = 4096 mesh points along the interface and the
time step At = 4 x 10™*, the simulation using the original nonscaled method fails at
4(0.48,1.04), where the first coordinate corresponds to the radius and the second
to the shape factor. This occurs because N = 4096 does not provide enough grid
points to resolve the complex fingering morphology; see the first image in Figure 4(b).
Doubling the mesh point only prolongs the simulation to @g(0.3,1.62). Redoubling
the spatial resolution does not help the simulation to run further. We then reduce
the time step to At = 1 x 104 and find the simulation only extends slightly to
Qc(0.28,1.71), indicating a severe numerical stiffness. An analysis of the morpholo-
gies at points Q 4, @B, Q¢ (shown in Figure 4(b)) reveals that the interface develops
small “buds” connected with the bulk fluid via thin necks. To accurately resolve the
fluid motion in these narrow regions, the original scheme demands small time steps, as
large time steps may result in a crossing of the interface and blow-up of the numerical
solution.

To further assess the results, in Figure 4(c) we plot the maximum normal veloc-
ity in the original frame |V |mqee and show the normal velocity in the rescaled frame
|V'|;maz as an inset. Note that in the rescaled frame, the maximum velocities |V|paz
are smaller than |V|maer (computed at the same R in the original scheme). When the
normal velocity |V |maz is mapped back to the original frame, it coincides with the nor-
mal velocities from the original scheme before Q 4, Q g, Q¢ where the original scheme
fails. After these failure points, the calculations of velocity |V|max lose accuracy and
increase rapidly, leading to failed simulations.

However, as shown in Figure 4(a), our rescaling enables one to compute the whole
evolution using Af = 4 x 1074 and N = 8192. The reason for such high efficiency is
demonstrated in Figure 4(d), where we map the fixed time step Af =4 x 10~ back
to the original time frame following At = In(1 + ‘MTRE). At early growth stages, the
equivalent time step in the original (nondimensional) time frame decreases adaptively
as the interface shrinks and develops complex fingering patterns. For example, as
indicated by the dashed lines in Figure 4(d), at @g(R = 0.3), the rescaled time step
At =4 x 107 equals to At = 1.8 x 107 in the original frame, while at Q¢ (R = 0.28),
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Fic. 4. Interfacial dynamics with an exponentially increasing gap. (a) The nonlinear shape
factor (%) NL (see text) using the rescaling scheme (red) and the original scheme using different
time and spatial discretization sizes as labeled. Only the rescaled scheme is able to simulate the
full evolution, which ultimately tends to a circle as the interface shrinks. (b) Morphologies of the
interface at Qa, Qp, Qc, and Qp using the rescaled scheme. The neck velocity at the red marker
point is specified: V' in the original frame and V in the rescale frame. The initial shape is r(a,0) =
1+ 0.02(cos(3a) + sin(7a) + cos(15a) + sin(25a)), T = 1.0 x 1075, and b(t) = exp(t).
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Fic. 4. (cont.). Interfacial dynamics with an exponentially increasing gap. (c) The mazimum
normal velocity in original frame using rescaled and original schemes (as labeled in (a)). The maz-
imum normal velocity in rescaled frame is shown as an inset. (d) The corresponding time step in
original frame for the rescaled scheme (red) and original scheme (black). The vertical dashed lines
indicate points at which the time steps for the two schemes are compared. The initial shape is
r(a,0) = 1 4 0.02(cos(3a) + sin(7a) + cos(15a) + sin(25a)), T = 1.0 x 105, and b(t) = exp(t).
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the rescaled time step Af =4 x 10~ is equivalent to At = 1.57 x 10~° in the original
frame. After the peak point Q) p, although the time step Af continues to decrease, the
shape factor decays monotonically to a circular shape as the fingers are smoothed out
(Figure 4(a)). We note that one may use another time scale function to speed up the
calculation in this time period to gain more efficiency, e.g., following the idea in [50].

4.3. Noncircular shrinking shapes. From linear analysis, we know the shape

_z
factor of mode k grows fastest when using a gap, b(t) = ( - %ct) ", where ¢ =
2(3k? —1)7. The gap remains finite for ¢ < Ty, where the critical time T} = TETD

Ast — Ty, b(t) and b(t) blow up rapidly. As a matter of fact, we know from (3.4) that
the magnitude of the normal velocity |V| will become infinitely large as R shrinks to
zero. Numerically, it is impossible to use the original scheme to simulate the whole
shrinking dynamics. We are interested in testing the performance of our algorithm and
exploring this superfast dynamics under such a gap. Consequently, we implement a
time scaling factor p = R°/2c to slow down this fast evolution such that in the rescaled
frame, the gap evolves linearly in time, b(f) = 140.5¢. We set N = 8192 and the time
step At =1 x 10~%. We choose ¢ = 527, with 7 = 1 x 104, such that mode 3 grows
the fastest, or equivalently mode 5 evolves self-similarly, based on linear theory.

We consider three different initial shapes, r(a,0) = 1 + 0.02(cos(3a) + sin(7a) +
cos(15a) +sin(25a)), (e, 0) = 14 0.02(sin(6c) 4 cos(15a) + sin(25«)), and r(a,0) =
1+40.02(cos(3a) +cos(5a) +cos(6a)) (labeled respectively first, second, and third). In
Figure 5(a), we plot the shape factor against the interface size R for each simulation
and two sequences of the morphologies are shown as insets, with the upper and lower
plots corresponding to the first and second initial conditions, respectively. We notice
that the interface morphologies are eventually dominated by mode 3 for all simulations
as the interface shrinks. The sequence of morphologies using the third initial shape
is shown in Figure 5(b). As the interface shrinks, the shapes exhibit the three long
thin channels with three tiny “buds” at the tip of each channel. In Figure 5(c), we
show the normal velocities at the tip of the “bud” (marked by O4 in Figure 5(b))
and the inner end of a channel (marked by Op in Figure 5(b)) as a function of R.
As R decreases to zero, the normal velocity in the original frame goes unbounded.
However, in the rescaled frame (shown as an inset) the normal velocity decreases and
tends to zero (albeit with an infinite slope). In practice, we find our simulations stop
approximately at T3 —t =~ 2 x 10~11, Note that while the interface shrinks, the size
of the “bud” keeps decreasing, as evidenced by the fact that the curvature becomes
unbounded as shown in Figure 5(d). In addition, we find the neck width also decreases
and the thin channel keeps being stretched even thinner.

For the simulation using the initial shape r(a, 0) = 14 0.02(sin(6c) + cos(15a) +
sin(25a)), in which mode 3 is not included initially, the nonlinear interactions among
the existing modes eventually create mode 3. From Figure 5(a), we observe the shape
factor actually decreases until mode 3 is created at R = 0.16. Therefore, this specific
gap dynamics selects mode 3 as the fastest growth mode and drives the interface to a
symmetric threefold pattern. Unlike an expanding interface, for which the interaction
among modes introduces nonlinear stabilization and leads the interface to nonlinear
dynamical equilibrium states (nonlinear self-similar evolution [29, 30, 28])), here we
do not observe any nonlinear self-similar evolution. This may be because unlike the
expanding case, there is insufficient time for the system to lock on to a stable nonlinear
self-similar shape before the radius of the drop vanishes at a finite time. However,
what is apparent from our simulations is that there is mode selection during the
nonlinear dynamics. We cannot rule out that there may be special nonlinear, stable
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Fic. 5. Interfacial dynamics under the special gap b(t) = (1 — %ct)_w 7 where ¢ is chosen
such that k = 3 is the fastest growing linear mode (see text). (a) The evolution of the nonlinear
shape factor for three different initial conditions (see tert); the insets show the morphologies from
the first two initial conditions at the indicated radii. (b) The simulated interfacial morphologies
during shrinkage for the third initial condition. (c¢) The normal velocity in the original frame |V| at
O, and Opg in original frame (see (b)) and the normal velocity in the rescaled frame |V| is shoun
as an inset. (d) The curvature of the shrinking threefold shape at O4 and Opg. Surprisingly, the
interface does not shrink like a circle but rather as a one-dimensional slender rod-like morphology
with a threefold symmetry (see Figure 6).
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F1G. 6. Scaling characteristics of the interface from Figure 5: the relation between the enclosed
area A(t) and perimeter L(t) of the interface in the original, unscaled frame. When the interface
is compact, A ~ LY with v = 2. As the interface shrinks, v increases as shown in the inset, which
indicates that the area shrinks much faster than the length.

self-similar shrinking interfaces such as those observed in [9, 10] when a bubble is
driven to extinction by the presence of a sink in a Hele-Shaw cell.

In Figure 6, we show a relation between the enclosed area A(¢) and the perimeter
L(t) as A(t) ~ L¥(t). Both the area and the perimeter are measured in the original
(nondimensional) time frame. At early times, when the interface is compact, we have
A(t) ~ L?(t), e.g., v = 2 as expected. At later times, we see all three curves decrease
rapidly as the interface develops a mode 3 dominated geometry. In particular, the
value of v goes up to 45 as shown in the inset, indicating the area A shrinks much
faster than the perimeter, though both A(t) and L(¢) decrease monotonically (not
shown).

4.4. Dynamics of a fission interface. In [43], the authors constructed an
interface that would fission into two distinct interfaces under zero surface tension.

2 4
The general shape is given by (z? + z2)? = (14:?;6})2 + (1?5-32)2! where 7 = %‘LR 15

Wy = \/ % — (%)2 — 1, and R; is the radius of the circle when the fission occurs.

Using the parameters 7 = %, wo = 1/2, Ry = 1, and b(t) = exp(t), the analytical
solution suggests the interface pinches off into two separate circles with radius 1 at
t; = 0.75 [43].

Here we are interested in exploring the long-time nonlinear dynamics under a small

surface tension. We use the parameters listed above and take the surface tension 7 =
2 2

2x 107>, Thus the initial shape is (22 +232)% = %1_,_9_21 or r(a,0) = 1/§ + 4cos?().

We use N = 8192 points along the interface and rescale time such that in the rescaled

frame b(£) = 1 + 0.5¢. The time step is Af = 2 x 1074,
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Fic. 7. The dynamics of an interface that would fission into two circles at the original (unscaled)
nondimensional time t = 0.75 if the surface tension T = 0 and the gap erponentially increases (see
text). Here, the surface tension is small but finite (T = 2x 10~5 ). The scaled interfacial morphologies
(same area) are shown as a function of the original time and R as labeled. Note the development
of fingers in the neck region and a long neck that separates two bulbs of fluid. Eventually though
the interface shrinks as a circle. There are four stages of the dynamics: 1. a dumbbell stage; 2. a
fingering stage; 3. a dumbbell stage; and 4. a circle stage (see text and Figure 8). The red points of
each plot are the locations where the interfacial necks are narrowest.

In Figure 7, we show a time sequence of the evolution in the rescaled frame (the
original times are shown along with R). The red stars in each plot are the points
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Fi1G. 8. The minimum distance between interfacial necks from the simulation in Figure 7T during
the four stages of the dynamics, as labeled. The results are presented in the original, unscaled frame.

used to compute the least distance between interfacial necks measured in the original
frame (defined later). We observe the interface experiences a four-stage evolution.
During Dumbbell Stage I (the first row of Figure 7), the interface develops two near
circular buds connected by a flat channel. Small fingers appear around the channel
regions when the size of the interface shrinks to R = 0.7. During this stage, we define
the least distance as the width at the center of the channel region (z = 0). As the
interface continues to shrink, the dynamics transits into the Fingering Stage (eight
snapshots are shown in the second and third rows of Figure 7). We observe that more
fingers appear on both the buds and the channel, while the channel gets thinner. We
define the least distance as the minimum width of a fjord (shown as an inset in each
snapshot). In fact, the least distance measures the neck width of a fjord. Because
the least distance is defined differently for each stage, the least distance curve in
Figure 8 shows a jump at the transition time. During the Fingering Stage, the fingers
show remarkable growth. At the end of this stage, most fingers decay and the neck
width of a fjord is comparable to the width of the channel. The interface then enters
Dumbbell Stage II, at which the least distance is again measured by the neck width
of the channel. During this stage, the fingers continue to decay and the two buds are
connected by a very thin channel. The least distance positions are located near the
connection region between the bud and the channel. As R continues to shrink, this
position moves back to the center of the channel region (x = 0). Linear theory also
predicts all modes decay at t* = 3.20 during Dumbbell Stage II. At the Circle Stage,
the two buds merge into one and the least distance is the diameter of the circle. In
Figure 8, we notice the least distance reaches a local minimum dy,;, = 2.36 x 103 at
t = 2.59 (the neck width of a fjord), and another local minimum d,,;n, = 1.20x 10~2 at
t = 4.19 (the width of the channel center). Once the system enters the Circle Stage,
R shrinks exponentially fast R ~ e~ %! with ¥ = —0.5.
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Fic. 9. Scaling of the interface from Figure 7. It shows that the relation between A(t) and L(t)
ig highly dynamic.

Figure 9 shows the relation between the area A(t) and the arclength L(t), A(¢) ~
L¥(t). The relationship is dynamic. From the beginning to point Us(L = 11.5, A =
7.85), the viscous fluid stays in a compact shape, A(t) ~ L399(t). After Ua, L(t)
turns to grow, while A(¢) continues to decay, and the scaling parameter changes from
v = —0.73 to v = —1.97. The interface experiences multiple fingers. At Ug(L =
24.2, A = 2.62), L(t) reaches its maximum there and a transition occurs. After this
point, both A(t) and L(¢) decay. The scaling parameter v decreases from 1.53 to
0.67. The second transition occurs at (L = 11.75, A = 0.89). The scaling parameter
v decreases from 1.76 to 0.88 as most fingers are smoothed out and the compact buds
tend to be formed. Later at (L = 5.89, A = 0.39), the third transition occurs, where
the scaling parameter v decreases from 1.68 to 0.65 and then 0.18, as the buds tend
to merge. After Ug(L = 1.46, A = 0.17), the interface evolves as a vanishing circle.

5. Conclusion. In this paper, we have studied the Hele-Shaw problem with a
time increasing gap b(t). Using linear theory, we have shown that for a special choice

of the gap b(t) = (1 — %ct)_7, with ¢ ~ k2 where k is a wavenumber, the interface
separating an inner viscous fluid from air can evolve self-similarly with k-fold sym-
metry using one choice of ¢ or that mode k is the fastest growing wavenumber using
another choice of ¢. For other choices of gap widths, such as linearly or exponentially
increasing time dependent gaps, there exists a critical time after which shape pertur-
bations start to decay.
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We have implemented a boundary integral method with spatial temporal rescaling
to simulate the nonlinear dynamics of the interface. As the interface shrinks, a small
time step is needed [43, 31|, especially when the size of the interface is small. We
implement rescaling to slow down the evolution speed of the interface in the rescaled
frame such that this time step constraint can be removed. Though the time step
At is fixed in the rescaled frame, the equivalent time step At in the original frame
decreases adaptively via the time scaling function. Our results demonstrate that the
new rescaling algorithm is capable of accurately simulating the interface dynamics for
far longer times of the evolution than could be done previously. In particular, when we

used the gap b(t) = (1 — %ct) % such that mode k = 3 is fastest growing according to
linear theory, we found that rather than shrinking like a circle, the interface acquires
a one-dimensional slender rod-like geometry with a threefold symmetry as it vanishes.

We also studied a fissioning interface under an exponentially increasing gap b(t) =
exp(t) using a small surface tension. The evolution exhibits four stages of dynamics.
During Dumbbell Stage I (Stage 1), the interface develops few fingers and remains
compact with the appearance of two buds connected by a thin channel. During the
Fingering Stage (Stage 2), the interface develops long fingers on both of the buds
and the channel connecting them. During Dumbbell Stage II (Stage 3), fingers decay
and the interface evolves into two buds which attract each other and merge. During
the Circle Stage (Stage 4), the interface tends to a circle as it vanishes. Our simu-
lation shows the interface does not separate, which is different from the zero surface
tension solution [43] and the lubrication approximation [1]. Thus, surface tension
here provides a smoothing effect that prevents the occurence of these morphological
singularities. However, we do not rule out the possibility that there may be initial
conditions that could lead to pinch-off [7, 15], but this is beyond the scope of our paper.

In the future, we plan to perform a more complete investigation into the dynamics
of shrinking interfaces in a Hele-Shaw cell. In particular, following our prior work [28],
we plan to develop a morphology diagram of shrinking interface shapes as a function

of ¢ when the gap b(t) = (1 - %ct)_% is used. We also plan to further investigate the
fissioning interface to determine the behavior in the limit as the surface tension 7 — 0.
We plan to study the singularities formed due to a small surface tension solution [44]
and understand the coupling/competition effect between the surface tension and the
driving force introduced by the increasing gap.
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