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Abstract

Hopanoids are sterol-like membrane lipids widely used as geochemical proxies for bacteria.

Currently, the physiological role of hopanoids is not well understood, and this represents

one of the major limitations in interpreting the significance of their presence in ancient or

contemporary sediments. Previous analyses of mutants lacking hopanoids in a range of

bacteria have revealed a range of phenotypes under normal growth conditions, but with

most having at least an increased sensitivity to toxins and osmotic stress. We employed

hopanoid-free strains of Methylobacterium extorquens DM4, uncovering severe growth

defects relative to the wild-type under many tested conditions, including normal growth con-

ditions without additional stressors. Mutants overproduce carotenoids–the other major iso-

prenoid product of this strain–and show an altered fatty acid profile, pronounced flocculation

in liquid media, and lower growth yields than for the wild-type strain. The flocculation pheno-

type can be mitigated by addition of cellulase to the medium, suggesting a link between the

function of hopanoids and the secretion of cellulose in M. extorquens DM4. On solid media,

colonies of the hopanoid-free mutant strain were smaller than wild-type, and were more sen-

sitive to osmotic or pH stress, as well as to a variety of toxins. The results for M. extorquens

DM4 are consistent with the hypothesis that hopanoids are important for membrane fluidity

and lipid packing, but also indicate that the specific physiological processes that require

hopanoids vary across bacterial lineages. Our work provides further support to emerging

observations that the role of hopanoids in membrane robustness and barrier function may

be important across lineages, possibly mediated through an interaction with lipid A in the

outer membrane.
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Introduction

Hopanoids are pentacyclic triterpenoids present in some bacteria that are ubiquitous in sedi-

ments and sedimentary rocks. These types of molecules are among the best documented

organic geochemical biomarkers in the rock record, and have been detected in rocks at least

1.7 billion years old [1]. Hopanoids are widely used by geochemists as general indicators of

bacterial presence in ancient environments [2].

Previous studies of the physiological role and regulation of hopanoid production have

revealed diverse results across taxa. Streptomyces coelicolor synthesizes hopanoids only during

the formation of aerial hyphae, possibly to decrease the permeability of water across the mem-

brane [3], whereas Streptomyces scabies produced hopanoids during submerged growth [4]. In

the root nodule-colonizing bacterium Frankia alni, hopanoids were over-expressed in nodules

[5], and enriched in nitrogen-fixing vesicles in Frankia spp., where they may function as a per-

meability barrier to oxygen [6]. A permeability role for hopanoids was also inferred in the

alphaproteobacterium Zymomonas mobilis, which displayed an increased sensitivity to ethanol

concentrations when hopanoid production was diminished by the addition of azasqualene,

which inhibits the key enzyme squalene-hopene cyclase (SHC) that catalyzes the synthesis of

hopanoids [7]. In the gammaproteobacterium Frateuria aurantia, hopanoid production

increased with growth temperature [8]. Similarly, in the Firmicute Alicyclobacillus (formerly

Bacillus) acidocaldarius, the abundance of side-chain containing hopanoids is positively corre-

lated with growth at increased temperature or decreased pH [9]. The authors of the latter

study hypothesized that hopanoids help overcome the expected increased permeability and

decreased stability of biological membranes under these conditions.

Hopanoid-free mutants have yielded further insight into hopanoid function. A hopanoid-

free mutant of S. scabies showed no growth phenotype under normal conditions, formed aerial

hyphae, and did not differ from wild-type (WT) in its response to oxidative stress, osmotic

stress, or tolerance of ethanol, high temperature, or pH stress [4]. A hopanoid-free mutant of

the betaproteobacterium Burkholderia cenocepacia displayed no growth defect at neutral pH,

but was sensitive to pH stress, antibiotics, and detergents [10]. In Burkholderia multivorans, a

role for hopanoids in multiple antimicrobial resistance was suggested, based on increased

membrane permeability in the mutant [11], and susceptibility to polymixin antibiotics in the

presence of the isoprenoid synthesis inhibitor fosmidomycin [12]. Growth of a hopanoid-free

mutant of the alphaproteobacterium Rhodopseudomonas palustris was indistinguishable from

WT under standard conditions, but exhibited sensitivity to pH shock, bile salts, and antibiotics

[13]. A Bradyrhizobium strain, another alphaproteobacterium, was found to covalently link

hopanoids to lipid A in the outer leaflet of the outer membrane, and the hopanoid-free mutant

shows increased sensitivity to stress [14]. Furthermore, in B. diazoefficiens hopanoids are

apparently essential for growth [15]. In the cyanobacterium Nostoc punctiforme, a hopanoid-

free mutant grew more poorly than WT under temperature stress, but better at low tempera-

tures [16]. These results across organisms suggest that hopanoids play a role in membrane

rigidity and integrity, with a pronounced link with the outer leaflet of the outer membrane.

This is supported by biophysical data suggesting that hopanoids are associated with lipid A in

the outer leaflet of the outer membrane, where they interact with glycolipids [17].

One type of microbial metabolism that has been little explored with regard to hopanoid

function is methylotrophy. During growth on single-carbon compounds like methanol,

methylotrophs generally oxidize these substrates to formaldehyde in the periplasm, and the

formaldehyde is then utilized in the cytoplasm. This partitioning of the production and use of

the toxic intermediate formaldehyde may make it necessary to maintain a high level of inner

and outer membrane integrity. Members of the alphaproteobacterial genus Methylobacterium
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have long been known to produce hopanoids. These hopanoids include C31 hopanoids con-

taining an additional methyl group at C2 [18,19], as well as those with side chains added

through the successive action of enzymes encoded by hpnG and hpnH [20]. The first indication

that the loss of hopanoids causes growth defects in Methylobacterium arose from having identi-

fied a M. extorquens DM4 isolate with a minitransposon insertion into shc that caused it to lose

the ability to grow on dichloromethane (DCM) [21]. The mutant strain was determined to be

hopanoid-free [20] [21]. Recently, a hopanoid-free M. extorquens PA1 mutant was used in a

biophysical study that reported this strain to have lowered membrane order [17]. That work

established that in Methylobacterium hopanoids are preferentially localized to the outer mem-

brane, where they interact with lipid A. The only phenotypic analysis of this mutant, however,

was to look at sensitivity to Triton X-100, which was increased by 1000-fold [17]. Here we

characterize the changes in lipid content for the previously-isolated M. extorquens DM4 shc::
miniTn5 strain (hereafter shc mutant) [21] and characterize a wide variety of growth defects.

Materials and methods

Media and growth conditions

M. extorquens DM4 WT strain (DSMZ 6343) and its hopanoid-free, shc mutant 41C5 [21] were

grown in minimal medium at 30˚C as previously described [22,23]. For liquid growth, carbon

sources were added alone or in combination at the following concentrations (unless stated oth-

erwise): succinate (3.5 mM), methanol (15 mM), DCM (10 mM) or betaine (i.e., trimethylgly-

cine, 10 mM). On 1.8% agar plates, substrate concentrations were increased to 15 mM succinate,

or 125 mM methanol. Where the pH of the medium was adjusted, it was via addition of HCl or

KOH. In some experiments, which we specifically note below, we utilized an optimized version

of Hypho medium described in [24], that we refer to as MPIPES. Where utilized, bile salts were

added to a concentration of 1.5%. Cell culture was grown aerobically to mid-exponential phase

in up to 50 mL batches for harvest for lipid analysis. Growth rate analyses were performed in

48-well plates (Costar) containing 640 μL of medium per well in an automated system situated

in a warm room (30˚C, 80% humidity) that consisted of a shaking plate tower (Liconic), a Twis-

terII microplate handler (Caliper), and a Wallac Victor2 plate reader (Perkin Elmer) operated by

the software program Clarity [25]. Plates were shaken at a rate of 650 rpm and optical density

was measured hourly at 600 nm. Growth rates for DCM were determined in 250 mM Erlen-

meyer flasks containing 50 mL medium supplied with 32 μL of pure liquid DCM (Fluka) with

gas-tight screwcaps equipped with miniert valves (Sulpelco). Tolerance to various stresses was

evaluated by triplicate measures of the sizes of growth inhibition halos on plates as described

previously [21]. Escherichia coli strains were grown at 37˚C in Luria-Bertani broth. Antibiotics

were added for selection at the following final concentrations: ampicillin 50 μg/mL, chloram-

phenicol 20 μg/mL, rifamycin 50 μg/mL, streptomycin 35 μg/mL, and tetracycline 10 μg/mL.

Liquid cultures were supplemented with an exogenous solution of cellulase enzyme to

reduce cell clumping and permit accurate calculations of growth rates from a time series of

optical density measurements. The cellulase solution was prepared by diluting 2 g of purified

Aspergillus niger cellulase (Sigma-Aldrich, St. Louis, MO) into 10 mL of molecular grade water.

To remove chemical impurities, the cellulase was loaded into a pre-wetted 10K MWCO Slide-

A-Lyzer cassette (Thermo Fisher Scientific, Rockford, IL) and dialyzed twice for 1.5 hours in 4

L of deionized water at 4˚C; longer dialysis times were found to impair the integrity of the dial-

ysis cassette membrane. To ensure sterility, the dialyzed cellulase was passed through a 0.2 μm

syringe filter (VWR) and diluted with sterile molecular grade water to a final concentration of 10

mg/mL or 20 mg/mL, as quantified on a ND-1000 spectrophotometer (Thermo). The final solu-

tion was found to be stable at 4˚C for at least several months. Cellulase added to approximately
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0.1 mg/mL in growing cultures eliminated most of the noise in optical density measurements

caused by clumping, yet had no effect on cellular growth rate or yield (see below).

Lipid extraction and analysis

Lipids were extracted from M. extorquens DM4 cells following the method of Bligh and Dyer

[26], with phosphate-buffered saline (PBS) substituted for the aqueous portion of the mixture

to improve extraction of intact polar lipids (IPLs). Total lipid extracts were dried under a

stream of N2 and stored at -20˚C in the dark until analysis.

Hopanoids were analyzed by subjecting the total lipid extract to oxidation by periodic acid.

Aldehydes produced by this process were subsequently reduced to alcohols with sodium boro-

hydride (NaBH4) after the method of Rohmer et al. [27]. Alcohols were derivatized with N,O-

bis(trimethylsilyl)trifluoro-acetamide (BSTFA) and 1% trimethylchlorosilane (TMCS) in the

presence of pyridine, and analyzed via GC-MS on an Agilent 6890 gas chromatograph coupled

to an Agilent 5973 quadrupole MS operating in full scan mode between m/z 50 and 750. In

both LC-MS and GC-MS analyses, hopanoids were identified by comparison of retention

times and mass spectra to previously published information [28–30], or to samples with estab-

lished hopanoid compositions. Hopanoid quantification was via GC-MS relative to an internal

standard (epiandrosterone, Sigma). Squalene was also present in some samples and was quan-

tified relative to an internal standard (squalane, Aldrich).

The fatty acid content of M. extorquens DM4 strains was determined by converting fatty

acids to fatty acid methyl esters (FAMEs) in methanolic boron trifluoride (BF3/MeOH kit,

Sigma) for 15 minutes at 70˚C, followed by quenching with 2 mL of DCM-extracted deionized

water. Transesterified lipids were extracted from this mixture with hexane, and dried over

Na2SO4. Analysis occurred via GC-MS on the Agilent system described above, and FAMEs

were quantified relative to an internal standard (lignoceric acid methyl ester; Sigma-Aldrich).

Total carotenoid content was quantified by suspending Bligh-Dyer lipid extractions in

250 μL of chloroform and determining the absorbance of the extract at 512 nm utilizing a

Nanodrop 5000c spectrophotometer. Absorbance was converted to carotenoid concentration

by comparison to a carotenoid standard calibration curve and normalization to cell number.

Construction of a plasmid to complement the shc mutant

A plasmid for squalene-hopene cyclase expression was obtained by first amplifying the shc gene

from M. extorquens DM4 with primers that incorporated the ribosomal binding site from fae
[31], a highly-expressed protein that catalyzes the first step of formaldehyde oxidation [32].

The resulting product was cloned into pCR-BluntII TOPO (Invitrogen), yielding the plasmid

pAB169. The insert was then excised via XbaI/KpnI and ligated into the corresponding sites of

the plasmid pCM62 [33], resulting in pAB170. pAB170 was mated from E. coli (10-beta, New

England Biolabs) into the hopanoid-free mutant via tri-parental mating with M. extorquens
DM4 and E. coli strain pRK2073 [34], resulting in strain CM3926. After analysis of the plasmid-

complemented strain, a second plasmid, pPS10, was designed to complement the mutant by

reinsertion of the native shc gene onto the chromosome in place of the miniTn5 disruption.

pPS10 was constructed by amplifying the shc gene from M. extorquens DM4 and cloned into

pCM433 [35]. pPS10 was integrated into the shc mutant via tri-parental mating with E. coli
strain pRK2073, resulting in the double-crossover chromosomal shc restoration strain CM4201.

Toxicity disk assays

Toxicity assays were performed as described previously [21]. Briefly, on exactly 20 mL of solid-

ified mineral medium containing 1.5% agar containing 10 mM methanol, 2.5 mM succinate,
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and 10 μg/mL tetracycline base, an overlay was added of precisely 7 mL of the same medium

containing 0.7% agar to which a suspension of the strain to be investigated, grown in the same

medium, was added to a final OD600 of 0.2. One 6 mm filter disk was added to each plate and

spotted with 5 μL of a solution of the toxicant to be investigated, and plates were incubated

face-up for 4 days at 30˚C before measuring the diameter of growth inhibition.

Illumina resequencing of mutant genome

Cells of the shc mutant were grown to an optical density of 0.2 and harvested by centrifugation.

Genomic DNA was extracted using a Wizard Genomic DNA purification kit (Promega) and

checked for purity using a Nanodrop 5000c spectrophotometer. Genomic libraries were pre-

pared at the Genome Technology Access Center at Washington University in St. Louis, fol-

lowed by paired end (2x101) sequencing on an Illumina HiSeq 2000. Sequence files were

compared to the M. extorquens DM4 reference genome using breseq [36].

Results

The shc mutant strain of M. extorquens DM4 lacks hopanoids

As a first stage in characterization of the M. extorquens DM4 shc mutant, its lipid content was

compared to WT. While the GC-MS trace of the lipid extracts analysis for WT showed the

presence of several hopanoid structures (Fig 1; Table 1), the shc mutant did not accumulate

hopanoids (Fig 1). Although hopanoid structures were absent in shc mutant, the hopanoid pre-

cursor compound squalene was observed. The concentration of squalene in the mutant was

lower than that of hopanoids in the WT cells (Table 1). Complementing the shc mutant with a

plasmid expressing shc from the E. coli lac promoter (which is constitutively expressed at a low

level in M. extorquens [31] recovered the hopanoid structures observed in the WT. The level of

hopanoid accumulation in the complemented mutant was not to the same concentration as in

the WT, and the level of squalene remained elevated (Table 1).

The shc mutant strain of M. extorquens DM4 has an altered fatty acid profile

Both WT and shc mutant strains contained C16 and C18 saturated and mono-unsaturated fatty

acids, with C18 mono-unsaturated fatty acid as the overwhelmingly most abundant fatty acid

(> 85% of total fatty acids in all strains). The IPL distributions suggested that the hopanoid-

free mutant strain produced relatively more C16 fatty acid than C18 fatty acid, as compared to

the WT. This was confirmed by analysis of the fatty acid content. The mutant strain had a

slightly higher proportion of C16 fatty acids overall (Fig 2A), and about twice the proportion of

saturated fatty acids as the WT (Fig 2B).

The shc mutant strain of M. extorquens DM4 overproduces carotenoids

Given that hopanoids and carotenoid pigments are both derived from isoprenoid precursors,

we examined the carotenoid content of the WT and mutant strains. Visually, the shc mutant

was substantially darker pink than WT (Fig 3). When quantified spectrophotometrically fol-

lowing Bligh-Dyer extraction, this difference was revealed to result from a greater than 10x

increase in carotenoid concentration compared to WT strain (Table 1).

Hopanoid-free mutant strain is hypersensitive to a wide range of stressors

In order to determine whether the shc mutant renders M. extorquens DM4 sensitive to external

stresses, we examined the inhibitory effect of a variety of agents relative to WT. It should be

noted that our complementation plasmid contains the tetA tetracycline resistance pump, which
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is well know for affecting sensitivity to other factors [37]. However, we needed to use this plas-

mid because the transposon already introduced kanamycin resistance into the chromosome.

Growth of the hopanoid-free mutant was inhibited on agar plates containing 1 mM formalde-

hyde, while WT strain and complemented strains grew normally (Fig 3). Similar results were

obtained during growth on bile salts (1.5%), although in this case the complemented strain did

not recover the ability to grow. We also examined the zone of growth inhibition imparted by a

number of potential toxins and antibiotics (Table 2). Many such compounds affected the shc
mutant more than the WT, consistent with the phenotype predicted by Saenz et al. [17]. In

some instances, these effects were only partially relieved by complementation–for example rho-

damine toxicity is only slightly alleviated through recovery of hopanoids by the shc plasmid.

Hopanoid-free mutant strain grows poorly in liquid media and flocculates

due to cellulose production

The hopanoid-free shc mutant strain was able to grow on both single-carbon and multi-carbon

substrates such as methanol, formate, succinate, acetate, ethanol, glycerol, pyruvate, and beta-

ine on agar plates, but was unable to grow on DCM in liquid culture, as reported previously

[21]. Regardless of the carbon substrate, however, growth of the mutant on liquid media

showed a defect in comparison to the WT, with low yields (as measured by total dry weight)

and pronounced flocculation (Figs 3 and 4).

We utilized an automated, robotic growth analysis system to determine growth rates for the

mutant strain on C1 and multi-C substrates. Due to the flocculation in the shc mutant, how-

ever, it was difficult to determine a growth rate for this strain. Other reports had demonstrated

that minor flocculation in M. extorquens can be ameliorated through removal of genes re-

quired for cellulose synthesis, suggesting a role of cellulose in biofilm formation [24]. This sug-

gested that the severe flocculation in the shc mutant might be similarly ameliorated, and when

the media was supplemented with purified cellulase, a large decrease in flocculation occurred.

This allowed accurate determination of growth rates for wild-type and mutant strains. During

growth on succinate in media amended with cellulase, the WT and complemented strains

doubled in 2.6 hours, while the shc mutant had a doubling time of 4.9 hours. Similarly, on

methanol plus cellulase the WT and complemented strains doubled in 2.9 hours, while the shc
mutant had a doubling time 5.6 hours (Table 3), with final optical densities of the mutants

Fig 1. GC-MS m/z = 191 trace of total lipid extracts of Methylobacterium extorquens DM4. A) wild-type:

hopanoid peaks shown are diploptene (I) and diplopterol (II) + methyldiplopterol (III). B) hopanoid-free shc

mutant showing absence of hopanoids C) shc mutant complemented with an shc-expressing plasmid showed

a product accumulation similar to WT. Roman numerals refer to structures given in S1 Fig.

https://doi.org/10.1371/journal.pone.0173323.g001

Table 1. Lipid content of M. extorquens DM4 strains grown on succinate (μg/mg dry wt ± 1σ). Homohopanoids are defined as hopanoids containing a

side chain.

Lipid wild- type shc mutant shc mutant + shc plasmid

squalene nd 0.22 ± 0.09 0.61 ± 0.10

diploptene 0.11 ± 0.07 nd 0.10 ± 0.02

diplopterols 4.83 ± 0.41 nd 1.05 ± 0.01

% methylated 61.80% nd 34.80%

homohopanoids 2.15 ± 0.18 nd 0.64 ± 0.01

carotenoids 0.03 ± 0.01 0.36 ± 0.03 n/a

nd = not detected, n/a = not measured

https://doi.org/10.1371/journal.pone.0173323.t001
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indistinguishable from that of the wild type. The growth defect was also severe on formate,

where the WT doubling time was 4.5 hours, while the mutant doubling time was 7.2 hours.

This analysis confirms a substantial, generic growth defect for the mutant strain, in addition to

the observed clumping (Fig 5).

Hopanoid-free mutant strain grows poorly under pH stress

We grew the WT and mutant strains of M. extorquens DM4 in liquid media amended with cel-

lulase, with succinate as a growth substrate under a range of pH conditions. We found that at

A

B

DM4 sh
c

sh
c +

 

plasm
id

DM4 sh
c

sh
c +

 

plasm
id

Fig 2. Fatty acid production of wild-type and shc mutant strain grown on succinate. A) Ratio of

total C16 fatty acids to the sum of C16 + C18 fatty acids. B) Ratio of saturated/unsaturated fatty acids.

Complementation plasmid carries the shc gene.

https://doi.org/10.1371/journal.pone.0173323.g002
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Fig 3. Growth of wild type and mutant. A) Growth on succinate in liquid media of WT DM4, shc mutant

(showing clumping), and complemented shc mutant. B) Growth on succinate plates showing over-

accumulation of pigmentation in shc and complemented shc relative to WT strain. C) Growth on plate

containing succinate as growth substrate and 1 mM formaldehyde. WT strain and complemented mutant

grow, but shc mutant is unable to grow. Complementation plasmid carries the shc gene.

https://doi.org/10.1371/journal.pone.0173323.g003
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near-neutral pH, the growth rate of the mutant strain lagged behind both the WT and the

complemented strains. When grown in media where the pH had been adjusted to more

extreme alkaline or acidic values, the growth rate of the mutant strain became markedly worse,

with growth rates dropping to levels that were approximately 10% that of the WT and comple-

mented strains (Fig 6).

Partial complementation reveals that the hopanoid-free mutant strain

accumulated another mutation

A plasmid expressing shc was generated to complement the mutant phenotypes observed. The

growth defects observed for the shc mutant were partially reversed when complemented (Table 3).

This included the previously reported [21] growth defect of the shc mutant with DCM as the sole

carbon source. The intermediate growth phenotypes of the complemented strain may either be

due to an incomplete return to the lipid profile of wild-type (see above) and/or toxicity from

expressing shc from a multi-copy plasmid, polar effects of the transposon insertion, or to the accu-

mulation of secondary mutations that were acquired during the mutagenesis of the WT.

To distinguish between these three possibilities, we compared the growth of the WT and

mutant strain to a second complemented mutant strain in which the shc gene was inserted

into the chromosome of M. extorquens, thereby restoring the shc locus to its wild-type state

(Table 4). These experiments were performed in media optimized for Methylobacterium [24].

Results demonstrated that even with insertion of shc into the site of Tn5 disruption, full recov-

ery of the WT phenotype was not achieved.

After observation that neither complementation of shc on a plasmid nor insertion of shc
back onto the chromosome resulted in full recovery of the wild-type phenotype, we hypothe-

sized that mutations had occurred during the mutagenesis of the WT to recover the shc
mutant. We sequenced the genome of the shc mutant to detect these mutations. This analysis

Table 2. Sensitivity of strains to toxic compounds in disk diffusion assays.

Toxicant a Relative growth inhibition b Comments

shc mutant shc mutant+vector shc mutant+shc plasmid

SDS 347 mM 2.44 1.53 1.08 Detergent, membrane disruption

Rhodamine 210 mM 2.08 1.86 1.71 Genotoxicity

Novobiocin 163 mM 1.91 1.23 0.97 DNA gyrase inhibitor

Chloramphenicol 62 mM 1.83 1.6 0.93 Protein synthesis inhibitor

Ethidium bromide 1.3 mM 1.72 1.1 0.99 Genotoxicity

Tetracycline HCl 45 mM 1.56 0 0 Protein synthesis inhibitor; plasmids confer TetR

Formaldehyde 12 M 1.56 1.09 1.12 Genotoxicity

Methylglyoxal 5.5 M 1.4 1.32 1.21 Genotoxicity

Triclosan 35 mM 1.39 1.05 1.06 Fatty acid synthesis inhibitor

Streptomycin 43 mM 1.28 1.28 1.1 Protein synthesis inhibitor

Ampicillin 286 mM 1.27 1.01 0.97 Peptidoglycan biosynthesis inhibitor

Hydrogen peroxide 10 M 1.22 1.11 1.09 Oxidative stress

Crystal violet 56 mM 1.12 1.08 0.97 Genotoxicity

a 70% or 100% ethanol, 100% DMSO, 0.3M NaOH or 3 M sodium acetate were used to solubilize toxic compouds and had no growth inhibition when used

alone. Bacitracine (14 mM), cycloheximide (180 mM), trimethoprim (35 mM), Cr3+, Pb2+, Co2+, Zn2+, Cd2+, Cu2+ (2 M), As3+ (13 mM) had no effect on

growth under the used experimental conditions with both strains tested.
b The measured diameter of growth inhibition observed with the wild-type strain M. extorquens DM4 in at least duplicate assays was set to 1. Numbers are

reported as averages of replicates (n = 2 or 3).

https://doi.org/10.1371/journal.pone.0173323.t002
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revealed only a single confirmed mutation, a single nucleotide polymorphism (CCT ! CCC)

at site 216230, which results in a synonymous mutation in a proline of a gene encoding a sulfo-

nate transport system binding protein (METDI0211).
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60
0

time (hours)
Fig 4. Growth curves of M. extorquens DM4 strains with succinate as the growth substrate. The colors represent triplicate

experiments for A) wild type (pink circle) and mutant (blue diamond) strains without cellulase addition, and B) wild type (pink circle) and

mutant (blue diamond) strains with cellulase addition.

https://doi.org/10.1371/journal.pone.0173323.g004

Growth defects and carotenoid overproduction of hopanoid-free Methylobacterium

PLOS ONE | https://doi.org/10.1371/journal.pone.0173323 March 20, 2017 11 / 18

https://doi.org/10.1371/journal.pone.0173323.g004
https://doi.org/10.1371/journal.pone.0173323


Discussion

Although hopanoids are not required for the growth of M. extorquens DM4, their absence

imposes myriad constraints on growth. This result is similar to that observed in two other

Table 3. Doubling times (hours ± 1σ) of M. extorquens DM4 strains grown on various substratesa. Mean of three replicates per strain/substrate

combination.

Substrate WT shc mutant mutant + shc plasmid WT + vector

succinate 2.6 ± 0.1 4.9 ± 0.3 3.1 ± 0.1 2.5 ± 0.1

methanol 2.9 ± 0.1 5.6 ± 0.5 3.4 ± 0.1 2.8 ± 0.1

DCM 9.0b no growthb 6.0b 7.5b

acetate 4.5 ± 0.8 8.2 ± 0.4 7.6 ± 1.2 4.8 ± 0.2

ethanol 5.1 ± 0.5 5.3 ± 0.7 4.1 ± 0.2 3.6 ± 0.1

formate 4.5 ± 0.5 7.2 ± 1.3 4.9 ± 0.2 4.1 ± 0.3

pyruvate 2.8 ± 0.1 5.2 ± 0.1 3.6 ± 0.1 3.1 ± 0.2

betaine 4.0 ± 0.5 5.2 ± 1.0 3.9 ± 0.3 3.5 ± 0.2

a Growth under conditions described in Lee et al., 2009 except were noted
b Growth under conditions described in Muller et al., 2011 with tetracycline (10 μg/mL) for plasmid maintenance as required

https://doi.org/10.1371/journal.pone.0173323.t003
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Fig 5. Growth curves of M. extorquens DM4 strains in optimized media. Succinate is the growth substrate. The colors represent 6x

replicate experiments for wild-type (dark pink), shc mutant (dark blue), shc mutant with shc plasmid (green square), and shc mutant that has

been rescued with chromosomal shc insertion (purple hexagon).

https://doi.org/10.1371/journal.pone.0173323.g005
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alphaproteobacteria, Bradyrhizobium [14], and R. palustris [13], which had shc mutants that

display phenotypes under osmotic and pH stress. In M. extorquens a growth rate defect is

observed even under optimal conditions, but final cellular densities of the mutant are as great

as the WT. This suggests that the general importance of hopanoids is most significant under

particular environmental conditions, which may relate to their physiological function. While

this function is unknown, it likely relates to membrane permeability, and perhaps to cell divi-

sion [38]. A recent suggestion, based on data from M. extorquens PA1, is that hopanoids

order the outer membrane allowing for critical functions such as multidrug efflux [17]. Some

hopanoid structures have been suggested to have a more particular function: for example,

methylation at the C2 position has been related to membrane rigidification [39] and correlated

with plant-microbe associations [38] [40]. Accumulation of high amounts of methyldiplop-

terol in Methylobacterium strains–a plant-associated microbe [41]–is consistent with this

hypothesis. Deletion of the gene responsible for hopanoid methylation results in accumulation

of enhanced amounts of tetrahymanol in R. palustris TIE-1 [42]. Methylobacterium does not
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Fig 6. Doubling times of M. extorquens DM4 wild-type and mutant strains as a function of medium pH.

The colors represent triplicate experiments for wild-type (pink circles), wild-type with empty vector (orange

triangles), shc mutant (blue diamonds), shc mutant with shc plasmid (green square). Growth rates measured

in the presence of cellulase.

https://doi.org/10.1371/journal.pone.0173323.g006

Table 4. Doubling times (hours ± 1σ) of M. extorquens DM4 strains on succinate in optimized media.

Mean of three replicates per strain/substrate combination.

Strain Doubling time

WT 2.7 ± 0.05

shc mutant 3.7 ± 0.10

shc mutant + shc plasmid 3.3 ± 0.04

shc mutant + chromosome rescue 3.4 ± 0.08

WT + vector 2.0 ± 0.01

https://doi.org/10.1371/journal.pone.0173323.t004
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accumulate tetrahymanol, a hopanoid-derived lipid that is produced in some hopanoid-con-

taining bacteria by an additional enzymatic step [43].

Despite the fact that the shc mutant was highly sensitive to formaldehyde, and that growth

with methanol leads to formaldehyde production, the relative growth defect of the shc mutant

was similar for growth on methanol as on succinate, or almost any of the other compounds

tested. Except for DCM, where it is essential to have shc, and ethanol, where there was no sig-

nificant growth difference, the shc mutant grew 50–100% slower on all other substrates tested.

We had expected to see a defect on methanol or betaine in particular, as these compounds lead

to formaldehyde production, but this result suggests that either the formaldehyde level during

methanol (or betaine) growth was sufficiently low to have less effect than 1 mM exogenous

formaldehyde, or that the growth substrate may alter other aspects of sensitivity to formalde-

hyde. One possible explanation is that the documented induction in formaldehyde oxidation

capacity (e.g., the tetrahydromethanopterin pathway) during growth on methanol is sufficient

to buffer the effects of formaldehyde production [44,45].

Although the particulars of the selective environments of hopanoid-containing microbes

clearly differ, there may still be some generalities as to their immediate biochemical role.

Altered susceptibility to bile salts was interpreted to indicate that membrane damage occurs in

the hopanoid-free versions of R. palustris [13], B. cenocepacia [10], B. multivorans [11,12], and

Bradyrhizobium [14]. This prompted speculation that hopanoids play a role in membrane per-

meability to cations and/or protons [13]. The hypothesis that hopanoids play a role in mem-

brane permeability has a long history [6,9], and our results are consistent with this idea. Other

work has demonstrated that hopanoids are localized to the outer membrane, where they inter-

act with peptidoglycan and play a role in cell division [38]. The increased toxicity of a broad

range of compounds in the absence of hopanoids suggests that hopanoids play a role in modu-

lating toxicity, and perhaps hopanoid-free mutants render cells prone to leakiness or other

inability to deal with toxins. Nevertheless, the peptidoglycan biosynthesis inhibitor ampicillin

does not produce significantly different zones of inhibition in these two strains, suggesting

that the potential barrier role of hopanoids is not involved in resistance to ampicillin. Recent

data imply that diplopterol may function in modulating the membrane ordering of saturated

fatty acids [46], a suggestion supported by observations that hopanoids localize to particular

cellular locations in some strains [47]. Saturated fatty acids comprise less than 10% of the

membrane lipids in Methylobacterium, but saturated moieties are also present in the lipid A

present in the outer membrane, which may also be modulated by diplopterol [46]. This sup-

ports previously suggested [46] interactions between hopanoids and lipid A.

Although we have thus far treated hopanoids as a single category, the diverse structures of

hopanoids may play different physiological roles in bacteria. In M. extorquens AM1, approxi-

mately half the hopanoid product is diplopterol, which is the simplest amphiphilic hopanoid

[4]. Adenosylhopane is not accumulated, but is an intermediate in hopanoid synthesis which

is converted to bacteriohopanetetrol cyclitol ether (BHT-CE; structure VI), and guanidine-

substituted BHT-CE (structure VII) [20]. Yet other bacteria, such as Rhodopseudomonas and

Nitrosomonas, accumulate adenosylhopane under some conditions [30]. It remains unresolved

whether these are biosynthetic by-products or whether this biosynthetic pathway is tightly reg-

ulated by the bacterium to produce a specific suite of products, each with different function.

Recent work on expressing hopanoid genes in a cell-free system derived from Methylobacter-
ium organophilum has begun to shed light on the function of these genes [48]. The wide range

of hopanoid structures suggests the possibility that they serve a wide range of functions; this is

consistent with biophysical evidence suggesting a diversity of functional roles [49].

Complementation by providing shc via a plasmid or as a chromosomal replacement

resulted in a full return to wild-type for several phenotypes, such as lipid composition, but
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only partial restoration for growth rate. These results suggested that the original 41C5 isolate

with the shc::miniTn5 allele contained an additional compensatory mutation. Accordingly, we

identified an additional mutation relative to WT DM4. This was in a sulfonate transporter,

which is consistent with hopanoids functioning in membranes. It is currently unclear whether

the synonymous mutation identified affects expression of this gene, but there is precedent

for single synonymous mutations to result in large changes in expression and fitness in other

metabolic pathways in M. extorquens [50]. Future work will be required to determine whether

this mutations underlies the lack of complementation, as well as to determine it arose as a

suppressor mutations that was selectively advantageous in strains lacking hopanoids. These

results may be quite interesting in terms of further uncovering the physiological function of

hopanoids.

Our results indicate that hopanoids contribute to the fitness of M. extorquens DM4 under

nearly all tested conditions. We observed a series of growth defects for the shc mutant beyond

what had been previously tested, including extreme flocculation that appears to be related to

cellulose biosynthesis. Consistent with other microbes, the shc mutant displayed increased

sensitivity to a wide variety of toxic agents. These results confirm an emerging picture of the

physiological role of hopanoids as important agents of membrane barrier function, while the

cellulose interaction suggests that the specific functions that are dependent on hopanoids may

differ among organisms.

In many other hopanoid-containing bacteria in which hopanoid-free mutants have been

examined, growth defects have been seen under extremes of pH, temperature, and when

subjected to stresses such as detergents and antibiotics [4,10–12]. These phenotypes are also

present in Methylobacterium, which additionally shows growth defects under usual growth

temperature and pH. However, hopanoids are not required for growth as in B. diazoefficiens
[15]. The phenotype of hopanoid-free M. extorquens DM4 offers one more example to the

growing set of model organisms showing membrane stress in the absence of hopanoids.

Understanding the important role of hopanoids may inspire new hypotheses to understand

how most bacteria have adapted to life without hopanoids [51].

Supporting information

S1 Fig. Structures of hopanoids and hopanoid precursor in M. extorquensDM4. I) diplop-

tene, II) diplopterol, III) methyldiplopterol, IV) C32 hopanol V) bacteriohopanetetrol, VI) bac-

teriohopanetetrol cyclitol ether, VII) guanidine-substituted bacteriohopanetetrol cyclitol ether,

VIII) tetrahymanol, IX) squalene.
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