LOYOLA

VERSITY CHICAGO

LORIAM

Loyola University Chicago

OWIW-AvV §

Rl Loyola eCommons
Computer Science: Faculty Publications and Other Facultv Publications
Works SR
4-2019

Integrating Mathematics and Educational
Robotics: Simple Motion Planning

Ronald I. Greenberg
Loyola University Chicago, Rgreen@luc.edu

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Sara T. Greenberg
Loyola University Chicago, sgreenbergl @luc.edu

Author Manuscript
This is a pre-publication author manuscript of the final, published article.

Recommended Citation

Ronald I. Greenberg, George K. Thiruvathukal, and Sara T. Greenberg. Integrating mathematics and educational robotics: Simple
motion planning. To appear in Proceedings of the 10th International Conference on Robotics in Education (RiE 2019 in Vienna),
Advances in Intelligent Systems and Computing. Springer-Verlag.

This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in
Computer Science: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

Integrating Mathematics and Educational
Robotics: Simple Motion Planning

Ronald I. Greenberg*!:2, George K. Thiruvathukal'3, and Sara T. Greenberg!+

! Loyola University, Chicago, IL 60626, USA
2 rig@cs.luc.edu 3 gkt@cs.luc.edu 4 sgreenbergl@luc.edu

Abstract. This paper shows how students can be guided to integrate
elementary mathematical analyses with motion planning for typical ed-
ucational robots. Rather than using calculus as in comprehensive works
on motion planning, we show students can achieve interesting results
using just simple linear regression tools and trigonometric analyses. Ex-
periments with one robotics platform show that use of these tools can
lead to passable navigation through dead reckoning even if students have
limited experience with use of sensors, programming, and mathematics.

Keywords: computer science education, robotics, mathematics, trigonom-
etry, algebra, linear regression

1 Introduction

Providing robotics experiences has become a popular and successful mechanism
for broadening participation in computing and STEM more generally, retain-
ing more students in these fields, and improving their learning. For example,
one study of student responses to brief computing outreach visits found that
the most popular component of such visits was viewing of robotics videos [5].
The typical skill development focus in robotics programs is on logical thinking,
computer programming, and/or engineering design. Mentors may be aware of
the potential for integration with mathematics, but there is limited availability
of level-appropriate materials focused on such integration for middle school and
especially high school students. This paper focuses on motion planning built on
the algebra and precalculus background typical for high school students.

We will work with a robot drawn as shown below that must navigate through
a two-dimensional field. With two wheels that may be driven independently (for-
wards or backwards up to some maximum speed) and a third balance point such
as a caster wheel or track ball, such a robot is generally
referred to as a differential-drive robot, and this model is left 7 g right
a good fit for most educational robots. Some of these plat- *“bee! wheel
forms have a fixed distance w between the wheels, or track

* Supported in part by United States National Science Foundation grants CNS-
1738691, CNS-1543217, and CNS-1542971.

2 Ronald I. Greenberg, George K. Thiruvathukal, and Sara T. Greenberg

width, but this parameter can be a point of flexibility in many LEGO®)-based
designs. Intuitively, a small w makes the robot able to move more nimbly, as-
suming one avoids values that are so small as to lead to problems with rollover.

We focus on dead reckoning through a known terrain without substantial
sensor use. For experimental work, we do use a robot with a built-in functionality
of testing the amount of rotation of the motors controlling the robot wheels. This
makes the results more robust in the face of possibly varying levels of battery
charge, but passable results might also be achievable using only timing delays
as long as the battery is frequently recharged. Experienced teams in robotics
competitions do tend to make use of other sensors that are typically available,
for example a range finder to judge closeness of approach to a landmark or
a reflectance sensor to detect black/white boundaries on the driving surface.
While such sensors can provide still more robust results in the face of such
phenomena as imperfections in the driving surface, we show here that students
can use accessible mathematics to achieve passable results without advanced
sensors and to compare different navigation primitives and strategies. In addition
to providing an opportunity to integrate mathematical and statistical or data-
driven reasoning, the results can be valuable to beginning and advanced teams.
Beginning teams may not have yet mastered the use of sensors and the requisite
programming, while advanced teams may desire a fail-safe in case of failure of
a sensor, its mount, or its electrical connection. In all cases, dead reckoning is
likely to be helpful, even if only for initial rough positioning before using sensors,
since this often can be done at higher speed and lower power consumption.

Within this dead reckoning context, this paper uses an intermediate level
of mathematics (algebra and trigonometry) to analyze and experiment with in-
tuitive alternatives for basic navigation tasks. This contrasts with both very
simple exercises suitable for students as young as elementary grades (e.g. [6]),
and with studies using calculus or other heavy mathematics (e.g., inertial navi-
gation, overviewed in [2, p. 77-80] for example, or proofs regarding optimal path
types, using various constraints and criteria, for arbitrary changes in position and
orientation of a differential-drive robot and even more complex car-like robots
as in [1,3, 7] and references therein). While Ben-Ari and Mondada [2] provide a
rare example of explaining robotics concepts at primarily an intermediate level,
this paper adds depth to their elementary discussions of odometry while stopping
short of calculus-based discussions. (For a similarly intermediate-level discussion
of integrating mathematics and data analysis into robot building, see [4].)

2 Navigation Framework and Primitives

We will think about moving a reference point on the robot from a start position
at coordinates (0,0) to a target position (z,y) but keeping in mind that the
movement is constrained by the use of our two wheels at separation w. We also
assume the initial orientation, or heading, is 0°, and the analyses in this paper
relate to bringing the robot to a final orientation 6 that is also 0°; working with
other ending orientations would not add a great deal of complexity. As another

Simple Motion Planning for Educational Robotics 3

/% doticks is called by other procedures to move wheels correct number of ticks */
void doticks(float leftlim,float rightlim){int lticks,rticks; /* to track left/right wheels */
cmpc (LEFT) ; cmpc (RIGHT) ; /* cmpc & gmpc clear & get motor position counter */
do {lticks = abs(gmpc(LEFT)); rticks = abs(gmpc(RIGHT));
if (lticks>=leftlim) motor (LEFT,0); if (rticks>=rightlim) motor (RIGHT,0);
} while (lticks<leftlim || rticks<rightlim);}
void gostraight(float dist){ /* dist in millimeters */ int ticklim = straightfit(dist);
motor (LEFT, . 9*speed) ; motor (RIGHT,speed); doticks(ticklim,ticklim);}
/% .9 chosen empirically; straightens our robot using a primitive that sets motor speeds */
void rotate(float theta){ /* theta in positive/negative radians for right/left rotations */
float ticklim; float dist=theta*w/2; /* rotation radius w/2 */
if (dist>=0) {motor (LEFT,speed); motor (RIGHT,-speed); ticklim=rrotfit(dist);}
else {motor(LEFT,-speed); motor (RIGHT,speed); ticklim=lrotfit(dist);}
doticks (ticklim,ticklim);}
void swing(float theta){ /* theta in positive radians for right swings; negative for left */
float dist=theta*w; /* swing radius w */
if (dist>=0) {motor (LEFT,speed); motor(RIGHT,0); doticks(rswingfit(dist),0);}
else {motor(LEFT,0); motor (RIGHT,speed); doticks(0,lswingfit(dist));}}

Fig. 1. Example code for straight, rotation, and swing movements. LEFT and RIGHT
give port numbers controlling corresponding motors. straightfit, rrotfit, lrotfit
rswingfit, and lswingfit incorporate linear regression results described in Section 5.

simplification, and to focus on the most common navigational tasks, we assume
y > w, and we focus within this paper on x > 0, since negative values of = just
lead to a mirror image. (Much of the complication of more advanced works is
devoted to analyzing the much broader range of possibilities for z, y, and 6.)

We presume students will be most interested in comparing time from different
navigation strategies rather than total amount of wheel rotation or some other
criterion. To keep the math simple, we assume, as in some other works, that
the robot can accelerate and decelerate instantaneously as long as a bound on
velocity is respected. In practice, students may need to experimentally analyze
effects of inertia and compose overall movements from a sequence of navigational
primitives separated by brief delays that allow the robot to come to rest.

Advanced works regarding optimal trajectories of differential-drive robots
show that optimal paths always contain only a limited number of segments of
straight-line movements, rotations (about the reference point as one wheel moves
forward and the other backward), and swings (with one wheel moving so that
the robot pivots around the fixed wheel). These also are natural primitives for
students to program.

To account for inertial effects, we recommend teaching students to gather
data points experimentally and perform linear regression to obtain formulas for
performing straight line motions of specified distance and rotations and swings
of specified angle. While linear regression sounds a little advanced, it is actually
an easy task using ubiquitous spreadsheet programs, but is still a meaningful
way of integrating mathematical understanding into the motion planning task.

As an example, we gathered data for a LEGO-based robot built from parts
provided in the Botball educational robotics program and wrote functions for
straight, rotation, and swing movements parameterized by the distance to travel
or the angle to turn through as in Figure 1.

4 Ronald I. Greenberg, George K. Thiruvathukal, and Sara T. Greenberg

Depending on the reliability of the routines to rotate or swing to a specified
angle, students may also want to write routines that specifically turn 90° left
and 90° right. In any case, we will begin by considering simplified navigation
schemes in which all the straight-line motions are horizontal or vertical and the
turns are all by 90°. Then we will consider more general navigation.

3 Horizontal and Vertical Navigation

With all navigation along horizontal and vertical lines with turns of 90°, the
navigation primitives for turns can be simplified. Instead of gathering data and
doing linear regression to write routines to swing and rotate through an arbitrary
angle, one could just determine what is needed to turn right and left by 90°. In
this context, an interesting first exercise for students (in addition to the testing
and programming to create the navigation primitives) is to compare the effects
on overall navigation from using rotations versus swings.

Figures 2(a) and 2(b) show the paths using rotations and swings when moving
the reference point from (0, 0) to (z,y) on a “middling” path through the terrain
that is likely to avoid obstacles in a typical educational robotics setting. (If there
is actually some more particular need to avoid an obstacle, the point where the
first turn is taken can be easily adjusted without affecting the navigation time.)

Under the rotation approach of Fig. 2(a), both wheels are always in motion,
so we can compute the time as being proportional to the distance traveled by
either wheel, i.e., x + y + 7w/2. Under the swing approach of Fig. 2(b), we can
again consider either wheel, but when that wheel is stationary, we must account
for the distance traveled by the other wheel; thus the time is proportional to
(x —w)+ (y—w)+ 7w =z +y+ (7 — 2)w. The swing approach is therefore
superior at a time savings proportional to 2w — mw/2 &~ .43w.

In practice, as previously noted, one may need a brief delay before and after
each turn to allow for inertial effects where the theoretical path calls for a dis-
continuity in velocity, but we will have the same number of discontinuities, four
(not counting start and end), whether using rotations or swings.

4 Generalized Navigation

While the navigational approach of the prior section is simple, we would expect
to be able to navigate more quickly by proceeding on a path closer to a straight
line. In addition, we can define paths with fewer points of velocity discontinuity
at which we insert delays for inertial effects. As long as we have gathered enough
data to calibrate the rotations and swings according to the angle desired, we just
need to do some trigonometric calculations.

Figures 2(c) and 2(d) show the paths under the rotation and swing ap-
proaches when moving the reference point from (0,0) to (z,y) assuming we
use the rotations or swings just to line us up for straight-line navigation. Both
of these paths have just two (internal) points of velocity discontinuity.

Simple Motion Planning for Educational Robotics 5

(z,9) (z,9) N CAN)
o o

(z,y)
o)

Fig. 2. The paths of the robot wheels for the routing methods considered in this pa-
per. (a) and (b) for horizontal and vertical navigation, using rotations and swings,
respectively. (c) and (d) for general navigation, using rotations and swings, respec-
tively, and (e) and (f) for two other path types designed to avoid hitting a competition
field boundary as may occur in (c). In (e), straight segments are added at the beginning
and end of the path; these lengths are exaggerated for visual effect. In (f), we follow
two mirror-image circular arcs.

Under the rotation approach of Fig. 2(c), both wheels are always in motion,
so we can compute the time as being proportional to the distance traveled by
either wheel, i.e., \/22 + y? + w6 with 6 in radians and tanf = z/y. Under the
swing approach of Fig. 2(d), we can again consider either wheel, but when that
wheel is stationary, we must account for the distance traveled by the other wheel,;
thus the time is proportional to \/(z — w + wcos 0)2 + (y — wsin §)2 4 2wl with
 in radians and tanf = (z — w + wcos) /(y — wsin). We have not found an
analytical solution for this 6, but writing tan # as sin 6/ cos 6, cross-multiplying
and using the identity sin? 6 + cos?# = 1, we can obtain a somewhat simplified
function of 0 for which we seek to find a zero: y sin @ — (x — w) cos @ —w. Students
can be taught to write a simple routine using the bisection method to find a
root in the range [—m/2, /2] Without an analytical solution for 6, it is difficult
to make a full comparison of the times for rotations and swings, but we can at
least say immediately that as x or y or both get large, the values of 6 in these

6 Ronald I. Greenberg, George K. Thiruvathukal, and Sara T. Greenberg

two cases approach the same value, and the swing approach takes longer by an
amount of time proportional to fw.

With the observations just above, students can see that rotations seem to
be better than swings for general navigation, in contrast to what was observed
when using horizontal and vertical navigation. In addition, the math is simpler
for rotations, but this navigational approach may often be impractical in robotics
competitions, because the robot may often butt right against a boundary of the
competition field at the start or end of the path and therefore be unable to do
a pure rotation at that point.

There are two more simple navigation strategies that students might like to
analyze to cope with the potential problem of boundary walls abutting the start
and end positions as shown in Figure 2(e,f).

In Figure 2(e), straight segments of length d are added at the beginning and
end of the path, while otherwise using the basic rotation approach. A sufficient
value for d to avoid hitting a boundary running horizontally just below the robot
would be the difference of the distance from the reference point to the lower right
corner of the robot and the distance from the right wheel center to the lower right
corner of the robot. The resulting angle of rotation is such that tan 0 = x/(y—2d),
and the time spent on wheel rotation is y/22 + (y — 2d)? + 2d + wé.

Typically, the displacement d should be very small compared to other dis-
tances so that it should have little effect on the angle and wheel rotation time.
But another difference is that we are adding two more points of discontinu-
ous velocity where we will insert delays to handle inertial effects; this brings us
back to the same number of internal discontinuities, four, as when we restricted
movements to be horizontal and vertical.

In Figure 2(f), we consider an approach that reduces the number of velocity
discontinuities within the path to just 1. For z # 0, we route the reference point
along a circular arc to (3,%) and then along a mirror image arc to the final
destination. From the right triangle drawn for reference in the figure, we can see
that the angle of rotation for each of the two arcs is given by /2 = arctan(z/y),
and the radius of the arc traced by the reference point is r = (22 +y?)/(4x). The
left wheel initially rotates on an arc of radius r +w/2 and the right wheel on an
arc of radius r — w/2, and then the roles reverse. These arcs can be realized by
running the outer wheel at full power and the inner wheel at a relative power of
(r —w/2)/(r +w/2); in practice, an adjustment may be needed for wheels that
do not behave entirely identically, similar to the adjustment in relative powers
that may be needed just to make the robot drive straight. Aside from such an
adjustment, the total time spent on wheel rotation is proportional to the lengths
of the two wider arcs, which is (r + w/2)20 = ([2% + y?]/x + 2w) arctan(z /y).
For z of large magnitude, the path traced by the wheels is longer than under
previous methods but with just one internal delay for switching wheel powers.

Simple Motion Planning for Educational Robotics 7

5 Empirical Results

To perform empirical tests, we began by writing routines as in Figure 1 for
straight, rotation, and swing movements parameterized by the distance to travel
or the angle to turn through; these routines loop until reaching a specified value
from a built-in gauge measuring the amount of rotation (number of ticks) of the
motors controlling the wheel(s). We initially coded straightfit, rswingfit,
lswingfit, rrotfit, and lrotfit to just return the argument given, and we
gathered data for millimeters traveled or degrees turned when running the rou-
tines of Figure 1 with various limits. For turns, we separately handled positive
(right turn) and negative (left turn) arguments. Then we fitted a line to each
data set using a spreadsheet program; we also verified with a short R program.
After fitting the lines, a simple algebraic manipulation allowed us to rewrite
the corresponding navigation primitives to actually travel a specified number of
millimeters or turn a specified number of radians. Students can exercise their
trigonometry and algebra knowledge by solving for ticklim after replacing « with
ticklim in the regression line from gostraight (y = .1882+31.086), ticklim/w for
swing, and ticklim/(w/2) for rotate. They also must replace y in the regression
lines by dist for gostraight and by 9% for swing and rotate for radian/de-
gree conversion. Finally, for swing and rotate, we also replace 6 by dist/w or
dist/(w/2), respectively. In all cases, we complete simple algebraic manipulations
to express ticklim in terms of distance. The numerical results obtained appear
in the code squeezed into the white space in the graph below.

It is hard to show all the data from our experiments compactly, but if we per-
form the above transformations to convert measured turning angles to distances
(with w = 150mm for our robot), and look at absolute values of tick limits, then
the data all falls very close to the regression line for the gostraight data as
shown here, and we added code as shown based on the regression results and
algebraic manipulations:

I I
800 | e straight data N
e} —— straight fit
g /' rrot data
~— 600 [8
8 . Irot data
= > rswing data
+ .
% 400+ | < Iswing data |
el
o ’
% 200 | float straightfit(float dist){return(5.3191*dist-165.35);} |
g float rrotfit(float dist){return(5.2120*xdist-128.94);}
E float lrotfit(float dist){return(5.4221*dist-138.27);}
float rswingfit(float dist){return(5.3423*dist-141.80);}
0L float lswingfit(float dist){return(-5.3209*dist-99.743);} |
| | | | | | | |
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

tick limit
Then we ran some tests of navigating along paths as defined in Figures 2(a—
d) using general procedures we wrote, incorporating delays as short as 100ms

8 Ronald I. Greenberg, George K. Thiruvathukal, and Sara T. Greenberg

at velocity discontinuities. We tested with (x,y) as (100,400), (300,600), and
(600, 300). Almost all runs resulted in orientation and positions within a few
percent of the target, but (100,400) did not work very well for general naviga-
tion with rotations, because very small rotations were not generated reliably. In
general, however, these results show promise for students to be able to use the
techniques in this paper to achieve handy navigation to specified coordinates.

6 Conclusion

We have overviewed several ways in which students in the middle school to high
school range can use algebra, data analysis, and trigonometry to compare motion
planning strategies for a typical educational robot and program general routines
to navigate by dead reckoning. Some qualitative observations are that routings
considered in Section 4 are shorter and/or have fewer velocity discontinuities,
but the horizontal and vertical routings considered in Section 3 are simpler to
implement. Further, navigation is faster with swings than with rotations when
routing horizontally and vertically, though rotations are generally a better ba-
sis when routing along more of a straight-line path. The results also show the
expected result that navigation time generally increases with the track width.
A valuable next step would be to create worksheets directed towards students
to help them work through the types of analyses in this paper. It would also will
be nice to incorporate consideration of the case in which the orientation (angle)
of the robot is to be changed in the final position relative to the start position.

References

1. Balkcom, D.J., Mason, M.T.: Time optimal trajectories for bounded velocity differ-
ential drive vehicles. International J. of Robotics Research 21(3), 199-217 (2002)

2. Ben-Ari, M., Mondada, F.: Elements of Robotics. Springer-Verlag (2018)

3. Chitsaz, H., La Valle, S.M., Balkcom, D.J., Mason, M.T.: Minimum wheel-rotation
paths for differential-drive mobile robots. The International Journal of Robotics
Research 28(1), 66-80 (2009). https://doi.org/10.1177/0278364908096750

4. Greenberg, R.I.: Pythagorean approximations for LEGO: Merging educational robot
construction with programming and data analysis. In: Proceedings of the 8th In-
ternational Conference on Robotics in Education, RiE 2017, Advances in Intelligent
Systems and Computing, vol. 630, pp. 65-76. Springer-Verlag (2017)

5. McGee, S., Greenberg, R.I., Reed, D.F., Duck, J.: Evaluation of the IMPACTS
computer science presentations. The Journal for Computing Teachers pp. 26—40
(2013). International Society for Technology in Education, http://www.iste.org/
resources/product?id=2853

6. Thiruvathukal, G.K., Greenberg, R.I., Garcia, D.: Understanding turning radius
and driving in convex polygon paths in introductory robotics. http://ecommons.
luc.edu/cs\facpubs/202 (2018)

7. Wang, H., Chen, Y., Souéres, P.: A geometric algorithm to compute time-optimal
trajectories for a bidirectional steered robot. IEEE Transactions on Robotics 25(2),
399-413 (2009)

	Loyola University Chicago
	Loyola eCommons
	4-2019

	Integrating Mathematics and Educational Robotics: Simple Motion Planning
	Ronald I. Greenberg
	George K. Thiruvathukal
	Sara T. Greenberg
	Author Manuscript
	Recommended Citation

	tmp.1554891328.pdf.2L2tk

