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Abstract
Phonetic categories must be learned, but the processes that allow that learning to unfold are still under debate. The current study
investigates constraints on the structure of categories that can be learned and whether these constraints are speech-specific.
Category structure constraints are a key difference between theories of category learning, which can roughly be divided into
instance-based learning (i.e., exemplar only) and abstractionist learning (i.e., at least partly rule-based or prototype-based)
theories. Abstractionist theories can relatively easily accommodate constraints on the structure of categories that can be learned,
whereas instance-based theories cannot easily include such constraints. The current study included three groups to investigate
these possible constraints as well as their speech specificity: English speakers learning German speech categories, German
speakers learning German speech categories, and English speakers learning musical instrument categories, with each group
including participants who learned different sets of categories. Both speech groups had greater difficulty learning disjunctive
categories (ones that require an Bor^ statement) than nondisjunctive categories, which suggests that instance-based learning alone
is insufficient to explain the learning of the participants learning phonetic categories. This fact was true for both novices (English
speakers) and experts (German speakers), which implies that expertise with the materials used cannot explain the patterns
observed. However, the same was not true for the musical instrument categories, suggesting a degree of domain-specificity in
these constraints that cannot be explained through recourse to expertise alone.

Keywords Category learning . Categorization . Speech perception . Phonetics

Learning a language requires learning phonetic categories.
Speech sound tokens vary in their realization from speaker
to speaker and from utterance to utterance, making it impera-
tive for listeners to accommodate this variation when under-
standing speech (Lisker, 1985; McMurray & Jongman, 2011).
Despite this variability, listeners readily group speech sounds

together using labels that can extend to new instances. This
process of categorization has important behavioral conse-
quences. Theories of phonetic learning make different predic-
tions about how these categories are acquired.

In the present set of experiments, two topics of interest
are probed. First, we examine the extent to which there
are constraints on the types of phonetic categories that are
possible to learn. In doing so, we compare instance-based
(also known as exemplar-only) theories of phonetic cate-
gory learning (Hawkins , 2003; Johnson, 2007;
Pierrehumbert, 2003) to abstractionist theories, which
may take the form of decision-bound (Ashby &
Townsend, 1986), prototype (Samuel, 1982), or multiple-
system (Chandrasekaran, Koslov, & Maddox, 2014) theo-
ries of learning. Although both types of theory have an
impressive array of evidence behind them, the focus in
this article is on whether the learning process comes with
any assumptions about the structure of categories, which
the two sets of theories make different predictions about
(Ashby & Waldron, 1999). Second, to the extent that such
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constraints exist, we investigate the domain-specificity of
the constraints, comparing phonetic learning with non-
speech auditory learning.

We focus on the acquisition of disjunctive categories
within a unidimensional stimulus set. Disjunctive catego-
ries require Bor^ statements to describe, as in BA temper-
ature is uncomfortable if it is too hot or it is too cold.^
They are a subset of discontinuous categories, which also
include categories that span multiple parts of a category
continuum without a different category between those
parts of the continuum. These categories exist in a wide
variety of real-world contexts. For example, in baseball, a
strike is called when the batter hits the ball in foul terri-
tory, when the batter swings and fails to hit the ball, or
when the batter fails to swing when the ball transverses
the strike zone. This is a good example of a disjunctive
category in multidimensional stimulus space, as it is chal-
lenging to imagine a single dimension along which these
three types of actions could be considered continuous.
Most speech learning tasks are assumed to include multi-
ple dimensions; say, using patterns in F2 and F3 to char-
acterize the acquisition of the /ɹ/–/l/ distinction by
Japanese learners of English (Lotto, Sato, & Diehl, 2004).

For uncomfortable temperatures, on the other hand, the
idea of describing these unidimensionally is more plausible.
Temperature could be expressed in Celsius or Kelvin, with
temperatures above a certain level or below a certain level
being labeled under the single category of Buncomfortable.^
Other examples come from music. In music, identical mu-
sical note labels (e.g., BE-flat,^ BA^) are used to describe
disjunctive categories spaced throughout the single dimen-
sion of pitch. An E-flat is an E-flat no matter which octave it
occurs within. Similarly, notes can be perceived as off the
musical beat if they occur too fast (if a performer is rushing)
or too slow (if a performer is lagging behind), meaning that,
across time, there is a span of times perceived as on the beat
that are surrounded by notes that are off the beat.
Unidimensional, disjunctive categories are seemingly rare
in phonetic space. In American English, the category /t/ can
be realized as [t] (a voiceless alveolar stop, as in the word
stop), [th] (an aspirated alveolar stop, as in the word top), [ ]
(an alveolar flap, as in the word potter), and even [ ] (a
glottal stop, as in the word button). Although it is difficult
to describe all of these realizations without using a disjunc-
tion, it is also likely that these sounds vary across multiple
dimensions, not just one. In intonational phonology, pitch
accents can be either high (usually annotated H*) or low
(L*), but they buttress a set of intermediate fundamental
frequency points that are not perceived as pitch accents.

Under one set of theories—here referred to as instance-
based models, although often referred to as exemplar or
variationist models—listeners do not start with any assump-
tions about the nature of the categories being learned.

Instance-based models see category learning as the result of
the encoding of specific instance-to-category-label pairings.
Category membership is determined only by the similarity
between a new item and previously observed items.
Probably the most widely used instance-based theory is the
generalized context model (GCM) of Nosofsky (1986).
According to the GCM, categorization is essentially a special
class of item identification. Categorization requires calculat-
ing how closely a new item resembles previously identified
ones, using the most similar items to that new item to make a
hypothesis about its category label. Indeed, barring an inabil-
ity to perceptually discriminate individual items, instance-
based models can learn almost any category, even ones with
very patchy distributions within the stimulus space (Ashby &
Alfonso-Reese, 1995; McKinley & Nosofsky, 1995).

One particularly well-cited example of an instance-based
theory within speech perception is that of Pierrehumbert
(2003). Under Pierrehumbert’s (2003) model, speech sound
categories are the collection ofmultiple memorized pairings of
individual speech sound tokens (i.e., exemplars) to categories.
New items that are fed into the system are simply compared
with previously observed ones. The categories that the most
similar previous items belong to are compared with one an-
other, and the new item is paired with the category that has the
most (and most similar) category connections. The /p/ catego-
ry, then, is defined by the many specific instances of the /p/
sound that have been encountered on the part of a listener. The
model of Pierrehumbert (2003) and its instance-based peers
(Johnson, 2007) have explicitly been inspired by instance-
based theories of visual category learning, especially the
GCM (Nosofsky, 1986) and MINERVA (Hintzman, 1986;
Homa, Cross, Cornell, Goldman, & Shwartz, 1973). Under
instance-based speech perception theories, even very small
phonetic details describing the differences between sounds
can be critical, as the recollection of these fine phonetic details
may distinguish between categories (Hawkins, 2003; Johnson
& Seidl, 2008). This allows for straightforward accommoda-
tion of complex aspects of speech perception, especially sen-
sitivity to speaker-specific variation in phonetic cues
(Goldinger, 1998; Smith & Hawkins, 2012), as is shown
through, for example, speaker-specific studies of perceptual
adaptation (Dahan, Drucker, & Scarborough, 2008; Kraljic &
Samuel, 2007; Norris, McQueen, & Cutler, 2003).

Abstractionist accounts, on the other hand, can more read-
ily accommodate learner assumptions or prior beliefs about
the structure of phonetic categories. Abstractionist accounts
include decision-bound theories, prototype theories, and
multiple-system theories, all of which include a layer of ab-
straction above and beyond the level of individual item-to-
label mappings. The types of abstraction that are used within
each model vary widely. Under decision-bound models,
learners determine an abstract ideal boundary in perceptual
space to delineate multiple categories. The boundaries need
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not necessarily be linear, although generally under decision-
bound models the boundaries proposed are subject to process-
ing constraints that discourage overly complex boundaries
(Ashby & Gott, 1988; Ashby & Townsend, 1986; Maddox,
Molis, & Diehl, 2002). For example, a stop in English might
be classified as voiced if it has a voice onset time (VOT) of
35 ms or smaller, and voiceless if it falls above that boundary.
Prototype models store categories as either a single prototype
or set of multiple prototypes (Samuel, 1982). More recent
formulations of prototype theories involve each speech cate-
gory being formed from a mixture of Gaussian distribu-
tions (McMurray, Aslin, & Toscano, 2009; Toscano &
McMurray, 2010) that abstract away from specific in-
stances (although such mixture models inherently involve
disjunctions, as categories are described as falling into
one of many possible distributions).

One approach to abstractionist accounts of learning that has
been gaining steam has been to propose the use of multiple
systems in category learning. Motivated in part by multiple
system accounts of memory (Squire, 2009), multiple-system
accounts of category learning propose that listeners make use
of both instance-based and rule-based systems. Under
RULEX (RULes and EXceptions; Nosofsky & Palmeri,
1998; Nosofsky, Palmeri, & McKinley, 1994), learners first
attempt to sort items into categories according to simple, linear
rules, then attempt successively more complex rules until fi-
nally falling back on simple memorization of exceptions.
Another dual-system model, COVIS (COmpetition between
Verbal and Implicit Systems; Ashby, Alfonso-Reese, Turken,
& Waldron, 1998), combines a familiar rule-based system
with a second decision-bound system, albeit one that largely
replicates instance-based learning. Dual-system models have
been proposed at a variety of levels of analysis. The acquisi-
tion of morphosyntax (Ullman, 2004, 2016), lexical items
(Davis & Gaskell, 2009; Lindsay & Gaskell, 2010), and pho-
netic categories (Chandrasekaran, Koslov, et al., 2014) have
all been approached using multiple-system models that, by
and large, rely on one rule-l ike system and one
memorization-like system. This path has much in common
with more recent approaches to phonetic category learning
that incorporate neurobiological insights (Myers, 2014). It al-
so provides a way to comfortably incorporate the impressive
pool of evidence for the idea that listeners are acutely sensitive
to fine phonetic detail in speech (Bybee, 2002; Hawkins,
2003; Hay, Nolan, &Drager, 2006; Pierrehumbert, 2002) with
findings that seem to require a level of abstraction in phonetic
processing (Pajak & Levy, 2014; Pycha, 2009, 2010).

Other approaches to finding a middle ground between
instance-based and rule-based models do not rely on multiple
systems. SUSTAIN, short for Supervised and Unsupervised
STratified Adaptive Incremental Network (Love, Medin, &
Gureckis, 2004) is one such example. Like single-system
models, SUSTAIN does not explicitly represent two different

pathways to learn categories, but the single system that is
postulated forms Bclusters^ of stimuli that have similar cate-
gory properties, resembling mixture models. When few clus-
ters exist, the model’s behavior is said to take the form of a
rule-based model. This model behavior might be seen in cases
when categories are simple and easy to describe and, thus,
when few st imulus clus ters need to be posi ted.
Characterizing a pitch as Blow^ or Bhigh^ is a good example
of a category learning scenario that would require few clus-
ters. If additional clusters are necessary, though, the model
behaves more like an instance-based model, storing new clus-
ters to accommodate the unusual exceptions in a way that
resembles instance-based computation. The example of musi-
cal notes given earlier is a good example of a category learn-
ing scenario that might require many stimulus clusters; each
instance of, say, B-flat would give rise to a cluster that would
be assigned to the B-flat category.

Although instance-based and abstractionist theories can be
described in mathematically interchangeable terms (Ashby &
Maddox, 1993; Rosseel, 2002), we focus here on a key dif-
ference between these theories: the possibility of constraints
on the structure of categories. The relevance of the structure of
categories to the speed of learning has been a topic of interest
from virtually the beginning of psychological studies of cate-
gorization. The classic study performed by Shepard, Hovland,
and Jenkins (1961), for example, examined the acquisition of
categories of simple geometric objects that varied in their size,
shape, and shade. They found that more complex categories
(i.e., categories that combined objects of disparate sizes,
shapes, and shades) were harder to learn. Under abstractionist
theories, these patterns are usually explained in terms of the
complexity of the rules or the prototype structures that are
necessary to describe the complex categories.

Under instance-based theories, the fact that complex cate-
gories are harder to learn results from interstimulus
confusability or selective attention across dimensions
(Nosofsky, Gluck, Palmeri, McKinley, & Glauthier, 1994).
To explore why, consider the generalized context model
(GCM) of Nosofsky (1986). The computational implementa-
tion of the GCM is fairly simple. The distance between a
current item and previous ones is computed using a
Gaussian distance function. This distance function is used to
compute the weight that each item has toward categorizing the
stimulus into any of the possible categories under consider-
ation. The weighting is dependent on how confusable an item
is with its neighbors. The new item is assigned to the category
with the greatest summed weight. In this case, neither the
exact labels chosen nor whether those labels are repeated
across the stimulus space affect categorization, as the category
labels themselves are only used as labels for items.

However, when participants can easily discriminate indi-
vidual tokens, instance-based theories allow for almost limit-
less flexibility in the end point of learning. As previous
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authors have testified, Ball [tested] exemplar models predict
that with enough training, subjects will respond almost opti-
mally in any categorization task, no matter how complex^
(Ashby & Alfonso-Reese, 1995, p. 227). For the GCM in
particular, the model Bbasically predicts that given enough
experience with training exemplars, participants’ response
patterns should eventually approximate the underlying cate-
gory distributions^ (McKinley & Nosofsky, 1995, p. 145),
with the trajectory of learning only hampered by interinstance
discriminability. One way to test this idea is to provide multi-
ple, well-separated pockets of instances. Instance-based theo-
ries have a hard time explaining differences that result from
category structure when the stimuli fall along a single dimen-
sion with easily differentiable items. When instances are dif-
ferentiable, the structure of the categories being learned
should not affect the rate of learning; essentially any assign-
ment of instances to categories should be relatively easy.
Instance-based theories predict that an almost limitless number
of categories could be learned. When instances are confusable,
instance-based models predict that learners should find catego-
ries challenging to learn. However, rather than responding
with specific patterns, participants should behave ap-
proximately according to chance, responding in line
with a broad sample of items from the stimulus set.

Previous studies along similar lines have shown mixed
patterns. Kingston (2003) examined the ability of English
speakers to learn to contrast sets of German vowels that dif-
fered in vowel height, rounding, and tenseness. Although the
English speakers were affected by exemplar-like effects when
learning to categorize by tenseness (e.g., by showing better
learning when more vowel contrasts were available in train-
ing), no such effects were found for vowel height and
rounding, where an abstractionist theory of learning seems
to be a better match for the results obtained. Intriguingly, when
such patterns were tested in the phonotactic domain, examin-
ing learners’ abilities to pick up on regularities of phonologi-
cal segment coincidence within words, learners did not find
more complex categories monotonically more challenging to
learn (Moreton, Pater, & Pertsova, 2017). This finding chal-
lenges some of the predictions of simple abstractionist
theories within the speech learning literature. The results
were replicated in the visual domain for participants
learning to categorize varieties of cake. However, both
studies used classes of segments that varied in a binary
(either–or) fashion across multiple dimensions and, in
the case of Moreton et al. (2017), relied on matching
or mismatching sets of segments across a word rather
than single segment categories. Examining multidimen-
sional categories complicates the predictions of both ab-
stractionist and instance-based theories. Further, catego-
ries in phonetic space (such as voicing categories) tend
not to be discrete, instead relying on the categorization
of instances in continuous space.

A second question of interest is whether the processes that
underpin phonetic learning, and the constraints that might make
some aspects of learning more challenging, are shared between
speech and nonspeech domains. For most strictly instance-
based accounts of phonetic category learning, the process of
learning itself is no different from learning any other auditory
object. The lack of constraints on the category structures that
can be learned should be identical in speech and category learn-
ing elsewhere (Port, 2007, 2010). If constraints are uncovered,
on the other hand, it is an open question whether these con-
straints are domain-specific. It could be the case that any con-
straints on phonetic learning are also found in the auditory
modality more generally. Many erstwhile speech-specific prop-
erties have been found with other auditory objects (Diehl,
Lotto, & Holt, 2004; Holt & Lotto, 2008), and many of the
properties of phonetic categories can be explained with re-
course to audition-general constraints alone (Diehl, 2000,
2008; Holt, Lotto, & Diehl, 2004). Yet speech must somehow
be different from the rest; after all, speech is used as an input to
broader language systems, such as syntax and semantics. The
sound of jangling keys cannot become a part of a syntactic
phrase (Poeppel, Idsardi, & van Wassenhove, 2008). For pho-
netic learning, the massive amount of experience with speech
categories or even innate predispositions might lead learners to
make different assumptions about the structure of categories
within an unknown phonetic space. Alternatively, dealing with
the likely very warped perceptual space in which phonetic cat-
egories are learned may require domain-specific dimensional
processing. This makes experience a key component of the
study of domain-specificity of constraints on phonetic learning.

Many studies examining the acquisition of disjunctive cat-
egories outside of the phonetics literature have focused on
categories that are disjunctive across multiple dimensions.
Although this does accurately reflect many kinds of disjunc-
tive categories, this leaves open the question of what learners
will do with categories that are disjunctive within a single
dimension. Abstractionist and instance-based theories of cat-
egory learning make predictions for unidimensional catego-
ries as well as multidimensional ones. Making predictions
within unidimensional category spaces is simpler than doing
so for multidimensional categories.

Four studies were used to test claims about the learnability of
different category structures. Experiment 1 includes a test of the
dimensionality and comparability of speech and nonspeech con-
tinua. Experiment 2 includes a set of three subcomponents,
assessing either different populations or different stimuli. In
Experiment 2a, we examined whether there are constraints on
the acquisition of disjunctive speech sound categories, as
assessed with English speakers learning categories of German
speech sounds. In Experiment 2b, we tested whether these con-
straints would also apply to German speakers, experts with this
dimensional space, whowere learning to categorize soundswith-
in the same set of items. And, finally, in Experiment 2c, we
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determined whether the constraints would also appear for a set of
nonspeech sounds, using a synthetic musical instrument contin-
uum. In each case, participants heard items from a 10-point con-
tinuum, with different points on the continuum associated with
various colored squares (as category labels). Each participant
completed one of six different learning conditions, with the cat-
egories being learned changing from condition to condition
based on which sounds are paired with which squares.

In Experiment 2, six different intersubject conditions were
used to probe the influence of category structure on learning
(see Fig. 1). Two of them, the Normal and Shifted conditions,
were easy to learn under every theory of category learning. Two
of the conditions, meanwhile, were predicted to be much more
challenging for participants to learn: the Odd One Out and
Picket Fence conditions. Both conditions included a large num-
ber of disjunctions within the stimulus continuum. Although
they both could theoretically be learned, given enough expo-
sure, by a precise instance-based theory, interitem confusability
would likely doom an instance-based model in practice.
Including both hard and easy conditions allows for the calibra-
tion of the relative difficulty of conditions that should be inter-
mediate in difficulty between the two sets.

The key conditions for distinguishing between abstractionist
and instance-based learning accounts were the remaining two,
the Neapolitan and Sandwich conditions. Both conditions in-
volved two category boundaries along the continua, in the same
locations, but the Sandwich condition included a disjunctive cat-
egory, whereas the Neapolitan condition did not. Here, the theo-
riesmake divergent predictions. Under instance-based theories of
category learning, both categories should have an equivalent
difficulty: if the Neapolitan condition is challenging, the
Sandwich condition should also be challenging. As previously
mentioned, instance-based theories of category learning are very
flexible, and the difficulty of categorization depends on interitem
similarity. Because the Neapolitan and Sandwich conditions in-
clude equally confusable items and equally confusable bound-
aries, they should be equally easy to learn. No matter where a
novel item fell within the speech sound continuum, the distances
to adjacent and nonadjacent categories were the same across the
conditions. Thus, it should have been equally difficult to identify
individual items across the conditions, because the instances

being sampled across the two conditions would be approximate-
ly identical; the only difference would be in the label of some of
the tokens in that sample.

The behavior of abstractionist models, meanwhile, depends
on the treatment of the disjunctive red category. Many propo-
nents of dual-system models, for example, have suggested that
disjunctive categories may sometimes be learned using the rule-
based learning system, rather than the instance-based one
(Minda, Desroches, & Church, 2008; Zeithamova & Maddox,
2006), including in speech sound categories (Maddox et al.,
2014). However, such ideas have generally been based on mul-
tidimensional stimuli, such as visual stimuli that depend on both
shape and color, rather than on unidimensional stimuli more
like the ones encountered in the present experiment. If both
the Sandwich and Neapolitan conditions are processed using
identical systems, they should both be equally easy to learn.

Other abstractionist approaches would suggest that the dis-
junctive, unidimensional category in the Sandwich condition
should make it harder to learn than the nondisjunctive ones of
theNeapolitan conditions. In theRational Rulesmodel of concept
learning (Goodman, Tenenbaum, Feldman, & Griffiths, 2008),
hypotheses take the form of rules. In learning scenarios that in-
clude nondisjunctive categories along a single dimension, these
rules are formed from conjunctions or disjunctions of sets that
describe parts of a dimension. Participants make responses in line
with the small number of hypotheses that they are entertaining at
any one point about the categories that they learn, with a small
probability of responding incorrectly. Individual items also have
the chance of being labeled as an outlier if they belong to a
category unexpected by the rules currently under consideration.
Simple rules are preferred to more complicated ones due to a
strong prior for simple rules. Under the Rational Rules model,
participants have strong priors toward simple categories. If lis-
teners find the disjunctive Sandwich condition more difficult
than the nondisjunctive Neapolitan condition, this would pro-
vide evidence for one of these types of abstractionist theories.

Comparing the subcomponents of Experiment 2 (speech stim-
uli in Experiments 2a and 2b vs. musical instrument stimuli in
Experiment 2c, and English speakers in Experiments 2a and 2c
vs. German speakers in Experiment 2b as participants) will allow
for a comparison of the effects of expertise to the effects of the
materials being used. Both groups of English speakers were
equally unfamiliar with the stimuli being used, regardless of
whether those stimuli were speech based or instrument based,
when compared with the German speakers. Thus, any biases
shared by the English speakers but not by the German speakers
may reflect the influence of expertise (or the lack thereof) on
category learning. Conversely, both the English and German
speakers learning phonetic categories were learning sounds taken
from the speech domain. This implies that any bias shared by the
English and German speakers learning phonetic categories, but
not shared by the English speakers learning instrument catego-
ries, may reflect the influence of speech-specificity.

Fig. 1 Six conditions used in each component of Experiment 2. Each
column shows one of 10 steps in the unidimensional continuum, and
each row shows a condition. The cells are colored according to the
assignment of step to category in each condition. (Color figure online)
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Experiment 1: Stimulus properties

Method

Before discussing the acquisition of the auditory categories
used in this project, the perceived properties of the stimuli that
were being used had to be established. After all, any differ-
ences that would be found between the acquisition of phonetic
and instrument categories could either be the result of differ-
ences in the processing of items inside and outside of language
or simply due to differences in the discriminability or dimen-
sionality of the stimuli. Two continua were created through
weighted averaging: a speech continuum, used in Experiment
2a and Experiment 2b, and a musical instrument continuum,
used in Experiment 2c. It was believed that both continua
would be perceived in a unidimensional manner, showing
stepwise increases in discriminability between stimuli of suc-
cessively larger intervals along the continuum. To test this
idea, and to determine the extent to which two continua were
well matched, participants performed a simple discrimination
task to determine the distinctiveness of the stimuli.

Participants

Twenty-seven participants were recruited from Amazon’s
Mechanical Turk crowdsourcing database. One participant
was removed from analysis due to previous experience with
German, leaving 26 native English speakers (seven female,
19 male). No participants were old enough that significant
high-frequency hearing loss would be expected (Mage = 34.7
years, range: 25–47 years). Although participants were asked to
use headphones, three participants reported using external or
built-in speakers. Despite uncertainty about the precise qualities
of the sound equipment that the participants used, previous
studies using Mechanical Turk (Buxó-Lugo & Watson, 2016;
Slote& Strand, 2016) have generally foundMechanical Turk to
be an appropriate venue to run speech perception experiments.

Materials

To create the phonetic stimuli, materials from a previous study
(Key, 2014) were used as a starting point. The [x] and [ç] end
points of the palatal-to-velar continuum were excised from
tokens produced by a native speaker of German, selected from
a variety of recordings of [ç] and [x] in nonword frames. The
now-isolated tokens, each 95-ms long, were cut at zero cross-
ings, with the longer token cut in size to match the length of
the shorter token, and the peak intensities of each file were
scaled to an identical 0.9 Pa. The spectral content of these
natural tokens was then linearly combined using Praat
(Boersma & Weenink, 2001) to create a 10-step continuum,
with intermediate points that entailed a linear combination of
the acoustic noise that characterizes each fricative. Each

intermediate step was therefore a weighted average of the
energy found in each end point. The steps were numbered,
with Step 1 defined as the most palatal item and Step 10 as
the most velar item, with each intermediate number indicating
the precise titration of the two end points.

To examine the acquisition of rich and acoustically complex
nonlinguistic categories, we created a continuum of synthetic
musical instrument sounds. This was done using the Wind
Instruments Synthesis Toolbox or WIST (Rocamora, López,
& Jure, 2009) and Praat (Boersma & Weenink, 2001). The
WISTwas used to create two 500-ms musical instrument notes,
one synthesized from a trumpet template and one synthesized
from a trombone template. Both notes were synthesized with
identical fundamental frequencies and identical intensity prop-
erties; the only thing distinguishing the two notes was their
timbre. The instrumental tokens were a great deal longer than
the fricative stimuli due to the properties of the WIST.
However, such differences would likely only impact the learn-
ing of each class of item insofar as the instrument items were
differentiable to a different extent from the fricative items.

Next, the notes were spectrally rotated around a 4 kHz
midpoint, a type of acoustic manipulation that redistributes
information across frequencies in an acoustic signal. This
spectral rotation was used to construct synthetic musical in-
struments that have much of the rich acoustic signature of
brass instruments, but without a true connection to the instru-
ments. The trumpet and trombone sounds were low-pass fil-
tered to remove information above 8000 Hz, then spectrally
rotated using two channels (split at 4000 Hz) to create two end
points for the musical instrument continuum. That is, the in-
tensity and spectral information found in the signal was mir-
rored around 4000 Hz, with, for example, points of relative
prominence at 3500 Hz now being reflected in points of rela-
tive prominence at 4500 Hz. The long-term average spectrum
of the original sound was then overlaid on the spectrally ro-
tated sounds. This preserves the overall acoustic profile of the
original brass sounds while putting a new spin on the relative
prominence of different frequencies within the signal. This
renders them analogous to the German fricative stimuli:
acoustically complex and clearly instrumental, but unfamiliar.
The end points of this continuum were labeled the Bpettrum^
and the Bbonetrom,^ respectively, and were peak scaled to
ensure their intensities matched. Next, Praat was used to line-
arly combine the two end points to make a 10-step continuum.
As with the speech stimuli, this was accomplished through use
of spectral blending: each point along the continuum repre-
sented a linear combination of the two end-point signals. The
pettrum end was arbitrarily labeled Step 1, while the bonetrom
end was labeled Step 10.

In using unidimensional, flat continua, a level of validity
was sacrificed. Flat distributions with perfectly covarying cues
are not typical for acoustic categories, particularly ones with
only 10 items. Studies of cue trading in phonetics, for
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example, have shown that many, if not all, phonetic contrasts
are signaled with a wide variety of cues, all capable of com-
bining together in many different ways to yield a coherent
percept (Repp, 1982). The rich trade-offs between these cues
were not available in the present data set. In this case, weight-
ed averaging means that whatever multiple cues that listeners
use to perceive the differences between the end points are
completely and inextricably correlated. This continuum there-
fore provides an avenue to measure the perception and acqui-
sition of simple auditory categories, akin to unidimensional
voice onset time (VOT) continua used to examine the percep-
tion of word-initial voicing. Spectral slices of the midpoint of
each stimulus are available in Fig. 2.

Procedure

Participants heard two blocks of trials: one with the speech
stimuli, the other with the musical instrument stimuli. The
order of the blocks was counterbalanced across participants.
Within each trial, participants heard two paired stimuli from
one of the continua, back-to-back, with a 500-ms interstimu-
lus interval (ISI). With 10 possible stimuli as both the first and
second item, there were 100 possible ordered pairs per con-
tinuum. Participants heard all 100 pairs exactly once and were
then asked to rank how similar the items within the pair were
on a scale from 1 to 9.

Analysis

The similarity judgments for each participant were converted
into difference scores, ranging from 0 (not different) to 8 (most
different). These difference scores were used to create a 10 ×
10 symmetric data matrix for each participant, with each row
and each column being a step within the continuum. These
symmetric data matrices were analyzed using the IDIOSCAL
(Individual Differences in Orientation Scaling) functionality
of the Bsmacof^ package within R (Mair, De Leeuw, Borg, &
Groenen, 2016). IDIOSCAL is a generalization of Individual
Differences Scaling, INDSCAL (Carroll & Chang, 1970),
which has been used extensively in the category learning lit-
erature; for example, in determining naïve listeners’
parcellation of Mandarin tone categories (Chandrasekaran,
Sampath, &Wong, 2010) or to examine the effects of training
on categorical perception (Livingston, Andrews, & Harnad,
1998). In INDSCAL and IDIOSCAL, dimensionality analysis
requires multiple possible dimensionalities, n. For each di-
mensionality, an n × 10 matrix is generated, showing the co-
ordinates of each stimulus step in an n-dimensional space.
Traditionally, the approach to determine the best number of
effective dimensions is to calculate badness-of-fit measures
for each n and to look for an Belbow,^ a point at which addi-
tional possible dimensions do not lead to appreciable drops in
badness ratings.

Results and discussion

Participants by and large perceived both continua as unidi-
mensional. Table 1 shows averaged difference scores for each
pair of items.

Figure 3 shows a scree plot with badness-of-fit values
across different possible dimensionalities. Higher stress values
indicate larger badness of fit. The lines do not show a clear
Belbow^; badness of fit decreases gradually across the possi-
ble dimensionalities for both continua. Although the largest
numeric difference across dimensionalities occurs between
one and two dimensions (0.049 for the fricatives, 0.076 for
the instruments), that difference is not particularly large nor
much bigger than the next largest difference, between two and
three dimensions (0.030 for the fricatives, 0.033 for the instru-
ments). There does not appear to be a reason to reject the
unidimensional interpretation of the continua.

To the extent that the stimulus similarity ratings did not
conform to a unidimensional distribution, participants gener-
ally found the end points of the continuum to be more similar
to each other than would be expected given a uniform pro-
gression frommost to least similar items. This is an interesting
contrast to the anchor effects found in other domains, where,
for example, studies of intensity discrimination have shown
that intensities closer to the end points of a continuum are
more easily discriminable than those in the middle (Braida
et al., 1984). This can be seen in Fig. 4, which shows the
one-dimensional and two-dimensional IDIOSCAL solutions.
Although the scree plots of Fig. 3 do not provide conclusive
evidence that the unidimensional interpretation of this contin-
uum should be rejected, it is important to note that Dimension
2 in Fig. 4b is scaled to about half the width of Dimension 1.
Although the interpretation of absolute differences between
the end points of single dimensions is not entirely one to one
with estimates of variability explained by that dimension, this
indicates that Dimension 2 may be doing important work in
the two-dimensional solution obtained in this study.

The dimensions revealed in Fig. 4 are roughly comparable,
with slightly lower interitem discriminability on the extreme
ends of the continuum for the instrument continuum compared
with the fricative continuum. In Fig. 4a, this corresponds to
the one-dimensional solution showing bunched-up items on
the bonetrom end of the continuum for the instruments to an
extent not found in the fricatives. Some portion of these dif-
ferences between the stimuli may be related to individual dif-
ferences in the familiarity of the items to the listeners.
Although we did not explicitly ask about musical training as
a part of our demographic survey, differences in experiences
with musical stimuli may have led to differences in the per-
ceived properties of the stimuli.

In Fig. 4b, one possible interpretation of the two dimen-
sions uncovered roughly corresponds to the position in the
stimulus along the continuum (Dimension 1) and to whether
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the stimuli are extrememembers of the continuum or fall some-
where in the middle (Dimension 2). Although IDIOSCAL is
naïve to the true nature of the putative dimensions uncovered,
Dimension 1 could be said to show how English-speaking par-
ticipants sorted the items into categories, whereas Dimension 2
could show the level of certainty that the participants had in that
label (with higher values indicating increasing certainty).
Regardless of the interpretation of the dimensions, the two-

dimensional IDIOSCAL solution shows the Bextremely
palatal^ or Bextremely pettrum^ items (Steps 1–3) and the
Bextremely velar^ or Bextremely bonetrom^ items (Steps 8–
10) as less distant from each other than one would expect based
on stimulus step alone. In general, the items are classified sim-
ilarly across the sets of stimuli, with roughly equal distances
from step to step across the two continua. This suggests that
comparing the two continua is appropriate.
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Fig. 2 Spectral slices showing the energy found at various frequencies at the midpoint of Steps 1, 4, 7, and 10 within the fricative continuum (a) and
instrument continuum (b). All displayed spectral slices show a range from 0 to 8000 Hz with a window length of 5 ms
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Experiment 2: Auditory category learning

Method

With the relevant characteristics of the stimuli established,
three experiments were carried out. In Experiment 2a,
American English speakers were trained to learn perceptual
categories of German fricatives. In Experiment 2b, native
German speakers were trained on these sameGerman fricative
categories. And in Experiment 2c, native English speakers
were trained on categories of instrument sounds. Because
these studies often involve parallel analyses, they are
discussed in tandem.

Participants

Experiment 2a Sixty-eight participants were recruited at the
University of Maryland, College Park. Participants were com-
pensated either with class credit in introductory linguistics or
hearing and speech sciences courses, or with financial compen-
sation. Data points were excluded from three participants who
had accrued more than incidental exposure to the German lan-
guage, either through formal training or by living in a German-
speaking country for at least a month; from one participant who
was missing a demographics sheet; from six who were out of the
target age range; and from one whose data file was corrupted.
The participants remaining (n = 57) came from a typical under-
graduate population (Mage = 20.2 years, range: 18–27 years, 34
female, 17 male, six not stated). All participants self-reported
normal hearing and no history of speech or language disorder.
Many participants had studied languages with a voiceless velar
fricative in their phonological inventories (e.g., Spanish), but
none of these languages had both velar and palatal fricatives.

Experiment 2b Sixty-three participants were recruited at the
University of Tübingen to perform this experiment.
Participants were given €5 as payment for their participation
in the task. They were recruited from linguistics-related
LISTSERVs on campus or from previous participation in ex-
periments within the linguistics department at the University
of Tübingen. Two participants were excluded due to technical
issues during the experiment, leaving a total of 61 participants.
Of the 61 participants remaining—all young adults, between

Fig. 4 Two-dimensional IDIOSCAL solution, Experiment 1, for the dimensions in the (a) one-category and (b) two-category fits. (Color figure online)

Fig. 3 Badness-of-fit values in Experiment 1, across different numbers of
considered dimensions (x-axis) for each continuum (color). Higher stress
values indicate a worse model fit. (Color figure online)
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the ages of 19 and 34 years (Mage = 23.7 years)—nine were
male, 51 were female, and one did not indicate a gender. All
participants gave informed consent, which was conducted in
German. Experiments were performed in line with German
ethics standards, which do not require explicit ethics panel
review for language-related experiments.

Experiment 2c Sixty-three participants were enrolled in the
experiment. Of those, eight participants were excluded from
further analysis: one because of a missing demographics sur-
vey, three due to technical errors, and four due to a failure to
follow directions (as indicated either by pressing every single
key simultaneously on every trial or 10 or more trials without
a timely response). That left 55 participants with analyzable
data (27 female, 28 male). All participants were at least 18
years of age (Mage = 20.5 years, range: 18–29 years) and had
no history of hearing impairment. Participants were recruited
from the University of Maryland, College Park, community
for either course credit or paid compensation.

Materials

All stimuli were identical to the ones used in Experiment 1.
Experiments 2a and 2b used the fricative stimuli, and
Experiment 2c used the instrument stimuli.

Procedure

For all experiments, a time-to-criterion paradigm was used to
explore learning using these items. Participants were first given
brief instructions, telling them that they would hear speech
sounds and that they would be asked to pair them with colored
squares using the keyboard in front of them. They then heard a
single sound chosen at random from the relevant 10-step contin-
uum. Other than the stimuli used, all other procedures were iden-
tical across the three subcomponents of the present study. This
sound was presented simultaneously with a bank of three possi-
ble responses: a blue square, a yellow square, and a red square,
presented in a single visual row on the screen. Note that the order
of these squares did not reflect anything about the correct re-
sponses depicted in Fig. 1. Participants were given 5 seconds to
pair the sound that they just heard with one of the three squares
using one of three buttons on keyboard. They then received
feedback about their selection in line with the condition they
had been assigned to, as described below, which appeared
250 ms after the participant selected a square and stayed on the
screen for 1 second. The feedback took the form of a yellow X if
the participant responded incorrectly or a green checkmark if the
participant responded correctly. The feedback was followed by a
500-ms interstimulus interval (ISI).

The order of trials was randomized in blocks of 10 steps
each, such that participants heard all 10 steps every 10 trials
with no predictable order within the block. Participants heard

trials until one of two conditions was met: either 450 trials
elapsed, or when the participant responded correctly to 90%
of the last quasiblock (the last 10 unique items), which could
span portions of the last two successive blocks. This meant
that participants had to correctly respond to the most recent
appearance of 9 out of 10 items on the continuum to complete
the experiment early. There were six conditions, assigned on a
between-participant basis, with participant numbers in each
condition approximately balanced. These conditions differed
in which responses were considered correct on each trial.
They are outlined in Fig. 1, in the Introduction. For example,
the correct answer for Step 8 was yellow in the Neapolitan
condition, red in the Sandwich condition, and blue in the
Picket Fence condition. Note that item-color associations were
not counterbalanced across participants. All three possible re-
sponses were available for all conditions, including the five
conditions in which only two responses were correct.

The conditions differed in the numbers of possible categories
and the number and composition of items assigned to each
category. In the Normal condition, items were assigned to cat-
egories on the basis of the phonetic categorization preferences
of English-speaking and German-speaking listeners from Key
(2014), with a single boundary between Items 6 and 7. In the
Shifted condition, the category boundary was moved to be-
tween Items 3 and 4. Almost every theory of category learning
would predict that both of these conditions should be easy to
learn if listeners start with a clean slate in learning the catego-
ries. Alternatively, because prior work using these stimuli (Key,
2014) suggests that the Normal condition represents listeners’
initial subdivision biases for the fricative stimuli, it might sug-
gest that this boundary location represents a natural acoustic
discontinuity that could easily be latched onto (Diehl, 2000;
Holt et al., 2004). If so, it may prove easier to learn than the
Shifted condition, although both should be easily learnable.

In the Neapolitan condition, the category boundary of the
Shifted condition was preserved, while a third category was
added between the Stimulus Steps 7 and 8. In the Sandwich
condition, the yellow stimuli from the Neapolitan condition were
coded as red, thus making the red category disjunctive (including
Items 1–3 and 8–10). Both these conditions involved two Bcuts^
along both continua. In the Neapolitan condition, there are then
three categories along the continuum: red, blue, and yellow. In
the Sandwich condition, meanwhile, there are just two catego-
ries, with the categories alternating along the continuum: red,
blue, and red. In both cases, the boundaries are in the same
places. As such, the interstimulus similarity is kept constant
across conditions, as the yellow items in theNeapolitan condition
are exactly as confusable with the adjacent blue ones as the
second set of red items are in the Sandwich condition; the only
difference is in which items are assigned to which categories.

In the Picket Fence condition, the assignment of items to
categories went back and forth across the continuum, with
Items 1, 2, 5, 6, 9, and 10 assigned to red, and Items 3, 4, 7,
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and 8 assigned to blue. Finally, in the Odd One Out condition,
a boundary was placed between the red and blue categories
between Items 5 and 6 (near where the boundary was in the
Normal condition), but with a single item on either side (Items
3 and 8) being assigned to the category on the other side of the
boundary (blue and red, respectively). The complexity in
these last two conditions means that they should be hard to
learn under any category learning theory—abstractionist the-
ories because of the complexity of the category structure for
both categories, and instance-based theories because the items
should be relatively confusable across category boundaries.

Analysis

Most analyses for category-learning studies include a metric of
the proportion of trials correct over time, averaged across
blocks. Such experiments are based onmultiple blocks, perhaps
spaced across many sessions, where participants never quite
reach an optimal learning strategy (Nosofsky, 1986), which
was not the case here. Many category learning experiments also
make use of mixed modeling to examine whether learners are
improving over time within the experiment. Given that the pri-
mary interest in this article is whether participant learning
would differ between conditions, the usual course of action
would be to look for an interaction between trial number and
condition using mixed models (Chandrasekaran, Yi, &
Maddox, 2014; Scharinger, Henry, & Obleser, 2013).
However, that approach is not ideal for the present methodolo-
gy, where participants were cut off after a certain criterion point.

Instead, we used survival analysis. A survival analysis is
meant to model how long it takes for a specific event to occur
(e.g., death, recovery) across multiple groups. Under a survival
analysis, the main dependent measure is the number of trials
needed until the objects of study reach the criterion assigned to
them. In epidemiology, where such analyses are common, this
criterionmight be something related to a health outcome, such as
mortality or remission. In the present experiment, this criterion is
getting 9 out of the 10 steps along the continuum correct themost
recent time that criterion was reached. Participants can be cen-
sored if they do not reach criterion, allowing their data to be
retained in the survival model without being logged as reaching
criterion at the end of the study. The variation in the number of
trials needed to reach criterion is used to create a hazard function,
which is a model of the likelihood that a participant will reach
criterion on each trial. These functions always increase over time;
they differ in how quickly they increase, since, in some condi-
tions, participants are faster to reach the criterion than others.
These functions can then be compared across conditions.

Multiple statistical analyses were performed to analyze the
time-to-criterion data. The Cox proportional hazards model
(Lin & Wei, 1989) can allow for a global assessment of the
significance of the influence of condition on time to criterion,
as well as coefficients comparing each condition with a baseline

value. The Cox proportional habits model also allows for outlier
detection by way of deviance residuals, which pick out times to
criterion that are unusually fast or slow relative to the expected
values that could be calculated from the rest of the data set
(Therneau, Grambsch, & Fleming, 1990). In line with best prac-
tice in survival analyses, Cox models, however, do not allow for
a pairwise comparison of all of the conditions in the current
experiments; the log-rank test (Mantel, 1966; Peto & Peto,
1972) can be used to compare hazard functions across conditions
in a pairwise fashion to examine differences in the time to crite-
rion. The R packages Bsurvival^ and Bsurvminer^ were used to
analyze and graph the survival curve models (Kassambara,
Kosinski, Biecek, & Fabian, 2018; Therneau, 2015).

Results and discussion

The results are presented in Fig. 5. As can be seen from the graph,
there is a stark difference between the first three conditions and
the last three conditions for the English speakers learningGerman
fricatives (Experiment 2a). Participants generally found the
Normal, Shifted, and Neapolitan conditions much easier than
the Sandwich, Picket Fence, and Odd One Out conditions.
Nobody failed to learn in any of the first set of conditions, for
example. In general, the German-speaking participants of
Experiment 2b were just as likely to struggle with disjunctions
as were English speakers, despite their massively larger exposure
to the speech sounds being learned over the course of the exper-
iment. Some of the results for English speakers learning instru-
ment categories (Experiment 2c) resemble those found for pho-
netic categories: the Normal and Shifted conditions are easy to
master, whereas the Picket Fence and Odd One Out categories
are difficult. However, a more detailed examination of the results
indicates that the distinction between the Neapolitan and
Sandwich conditions shrank for the nonspeech categories.

Figure 6 shows the proportion of participants who reached
criterion across time for each condition and each experiment.
From this figure, it appears that participants in the Normal and
Shifted conditions were fastest to reach criterion in all studies,
with the vast majority reaching 9 of 10 steps correct within just
50 trials. The Odd One Out and Picket Fence conditions were
always much harder, with few participants ever reaching crite-
rion. Meanwhile, the Neapolitan and Sandwich conditions dif-
fered from study to study in their difficulty. For Experiments 2a
and 2b, the Sandwich condition was learned more slowly than
the Neapolitan condition, whereas for Experiment 2c, there was
little difference between the two conditions.

A detailed exploration of the results was undertaken using
survival analyses. First, Cox proportional hazard tests were
used to determine whether there was a global effect of condi-
tion on participant times to criterion. The global likelihood
ratio test showed that the conditions differed from each other
significantly in every individual study: in Experiment 2a,
χ2(5) = 63.3, p < .001; in Experiment 2b, χ2(5) = 50.3, p <
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.001; and in Experiment 2c, χ2(5) = 50.1, p < .001. Thus,
participants differed in their speed to reach criterion in each
experiment based on the condition.

Inspection of deviance residuals flagged a handful of values
in each experiment as possible outliers, which were operation-
ally defined in the present study as values more than two stan-
dard units from the expected value. These included four

participants in Experiment 2a (Participant A0024, who took
384 trials to learn in the Shifted condition; Participant A0050,
who took 20 trials to learn in the Shifted condition; Participant
A0022, who took 76 trials to learn in the Normal condition; and
Participant A0020, who took 22 trials to learn in the Odd One
Out condition), two participants in Experiment 2b (Participant
B0051, who took 10 trials to learn in the Normal condition, and

Fig. 5 Results for English speakers hearing German speech sounds (a),
German speakers hearing German speech sounds (b), and English
speakers hearing instrument sounds (c). Each row represents a single
condition with individual participants shown as single circles.
Horizontal displacement along the graph shows the time to criterion
(90%: 9 of 10 steps) for each participant, with participants located at

the vertical line at far right being participants who failed to learn within
450 trials. Points are jittered to better display the number of individual
participants at each location. Red diamonds show the median time to
criterion for each condition, including participants who did not reach
criterion within 450 trials. (Color figure online)
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Participant B0041, who took 415 trials to learn in the Shifted
condition), and two participants in Experiment 2c (Participant
C0015, who took 11 trials to learn in the Shifted condition, and
Participant C0016, who did not learn within 450 trials in the
Neapolitan condition). The following results are primarily re-
ported with outliers included, although special note is made
where excluding the outliers would affect significance.

Finally, pairwise log-rank tests were performed to compare
the hazard functions for each pair of conditions. These tests
were Bonferroni corrected to account for multiple

comparisons. Results of the log-rank tests are shown in
Table 2 on an experiment-by-experiment basis.

The pairwise comparisons and the data graphed indicate that
there were approximately three tiers of difficulty across the six
conditions in Experiment 2a, although there was some overlap
between the second and the third tiers. The Normal condition
was the easiest to learn for English speakers learning German
fricative categories; the hazard ratio for the Normal condition
did not overlap with any of the other conditions. The
Neapolitan and Shifted conditions were the next easiest;

Fig. 6 Proportion of participants who reached criterion over time for each condition in Experiment 2, with different lines showing conditions, for
Experiments 2a (a), 2b (b), and 2c (c). (Color figure online)
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although they were both harder than the Normal condition, they
did not significantly differ from each other. The hardest group
was the Sandwich, Picket Fence, and Odd One Out conditions,
none of which differed from each other. The only potential
overlap between these distributions was in the Shifted and
Odd One Out conditions, which did not reach significance after
Bonferroni correction for multiple comparisons, although this
difference was significant after removing outliers.

Like the English speakers, the German speakers learning
German categories (Experiment 2b) found the Sandwich,
Picket Fence, and Odd One Out conditions quite hard; they
were not significantly different from each other in the time to
criterion. Also like the English speakers, the German speakers
in the Sandwich condition were generally slower to reach
criterion than the German speakers in the Neapolitan condi-
tions were. The divergences in the speaker groups were large-
ly peripheral. Most notably, for the German speakers, but not
for the English speakers, the Normal and Shifted conditions
were not different from each other in the expected likelihood
to reach criterion. There was also no significant difference
between the Shifted condition and the Sandwich condition
in their hazard functions, perhaps reflecting the influence of
the single participant in the Shifted condition who took more
than 400 trials to complete the experiment. The difference
disappeared after removing the outliers of Experiment 2b,
and, interestingly, was replaced instead with a significant dif-
ference between the Shifted and Neapolitan conditions, with
the Neapolitan condition also being harder than the Shifted
condition. Indeed, comparing Fig. 6a with Fig. 6b suggests
that native German speakers found the Neapolitan condition

more challenging relative to the English speakers, perhaps due
to their experience with encountering only two categories
within this particular phonetic continuum.

For the English speakers learning instrument categories
(Experiment 2c), on the other hand, the results are relatively
complicated. Some patterns emerge. Unlike in Experiment 2a,
the Normal and Shifted conditions are no different from each
other; this is unsurprising, given that there should be no reason
for the musical instrument categories to be biased toward any
specific partition of the stimulus space. The Picket Fence and
Odd One Out conditions are both very difficult. And, most
importantly, the Neapolitan and Sandwich conditions are also
not significantly different from one another. The Sandwich
condition was learned as quickly as the Neapolitan condition,
although it is not clear whether the Neapolitan condition was
easily differentiable from any of the other conditions in the
present data set. The Sandwich condition was learned more
slowly than the Normal and Shifted conditions, but more
quickly than the Picket Fence condition. The Neapolitan con-
dition, meanwhile, was not learned at a significantly different
pace from any of the other conditions, perhaps due to the
unusual distribution of times to learn in this condition—
most participants reached criterion quickly, but one did not
learn within 450 trials. Removing the outliers of Experiment
2c leads to a significant difference between the Neapolitan
condition and the Picket Fence and Odd One Out conditions
in their times to criterion. Regardless of whether the outliers
are removed, though, the likelihood that a participant would
complete the experiment on any single trial was not different
between the two key conditions.

Table 2 Pairwise log-rank test
significance levels for
Experiments 2a, 2b, and 2c

Normal Shifted Neapolitan Sandwich Picket Fence

Exp. 2a

Shifted .04 – – – –

Neapolitan .007 1 – – –

Sandwich <.001 .049 <.001 – –

Picket Fence <.001 <.001 <.001 .42 –

Odd One Out .002 .20 .005 1 .14

Exp. 2b

Shifted 1 – – – –

Neapolitan .008 1 – – –

Sandwich <.001 .11 .04 – –

Picket Fence <.001 .004 <.001 1 –

Odd One Out <.001 .002 .002 1 1

Exp. 2c

Shifted 1 – – – –

Neapolitan .95 1 – – –

Sandwich .006 .03 1 – –

Picket Fence <.001 <.001 .18 .06 –

Odd One Out <.001 <.001 .05 .002 1
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The behavior of participants in the Sandwich condition
seems particularly instructive, since abstractionist and
instance-based theories of category learning make different pre-
dictions even about the learning shown by participants who are
not successful learners. Instance-based theories predict that un-
successful learners should be approximately at chance for many
of the stimuli, while abstractionist accounts predict that some
participants may operate on the basis of (inaccurate) rules or
abstractions. Figure 7 shows the responses for all the partici-
pants in the Sandwich condition within the last 25% of trials in
the experiment within each participant group.

If participants were basing their responses only on the sim-
ilarity of adjacent items, the ends of the continuum should be
reddish, and the middle stimulus steps should be bluish, with

purple (reflecting both blue and red responses for a certain
point along the continuum) being likely around stimulus
boundaries. This is what is seen for Participants A0006,
A0038, B0011, C1014, and C1020, for example. Yet there
are also participants with quite different patterns of responses.
Participant A0013 had an almost linear grading from uniform-
ly red on the velar end of the continuum to uniformly blue on
the palatal end of the continuum. In many ways, the results are
strikingly similar for German speakers to those of English
speakers when learning German fricative categories. Only
one large difference was present between Experiments 2a
and 2b. Namely, most participants who did settle on the cor-
rect answer in Experiment 2a seemed to do so by anchoring
the red category to the palatal end of the continuum, whereas

Fig. 7 Experiment 2a (a), 2b (b), and 2c (c) results for the Sandwich
condition during the last 25% of trials; the legend on the right shows
sample combinations of response patterns. Each row is an individual
participant; each column is a step. Cells are colored in line with the
proportion of responses pairing the step in question with a particular

colored square (see legend). Pure red, blue, and yellow colors show
near-universal responses of one type for a step, whereas colors like purple
or gray represent a mix of responses. The white cell for Participant C1022
indicates that that participant did not have any responses for Stimulus
Step 9 in the final 25% of trials. (Color figure online)
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participants in Experiment 2b were just as likely to start from
the velar end as from the palatal end.

Most strikingly, Participants A0010, A0025, A1010,
B0050, and B0062—of whom all but A1010 did not learn at
all within 450 trials—continued pressing Byellow^ for the
velar end of the continuum until almost the very end. They
were so certain that there must be three putatively rule-based
categories within the continuum that they were giving a yel-
low response through to the end of the experiment, even
though they were always told that such a response was wrong!
This was not merely a by-product of the fact that participants
in the Sandwich condition had to learn to ignore a possible
response. Participants in the Normal and Shifted conditions
had to do the same thing, but had little problem ignoring the
yellow square. The responses of participant A0025, in partic-
ular, show a clear categorical separation: Steps 1–5 as red, 7–
10 as yellow, and 6 as blue, with some noise in responses.
Many participants do not seem to be using similarity alone
to categorize the fricative stimuli. This pattern of responses
was also found in the Picket Fence conditions, where some
participants showed a random pattern of responses across the
continuum but others showed rule-like behavior.

Again, qualitatively different patterns emerged for the par-
ticipants of Experiment 2c. Participants in the Sandwich con-
dition were only very rarely using the yellow button to re-
spond, unlike for the fricatives, and most of the participants
seemed to have little trouble positing a red category that was
on both ends of the continuum. Errors in the Picket Fence
condition were more evenly scattered across the continuum.
Meanwhile, participants in the Odd One Out condition across
all experiments almost uniformly ignored the exception items
on both sides of the continuum.

General discussion

We set out to test the learnability of auditory and auditory-
phonetic categories. In Experiment 2, we trained native English
speakers to categorize tokens from a German voiceless fricative
continuum, native German speakers to learn categories with the
same German fricatives, and native English speakers to learn
categories of unfamiliar musical instrument sounds. We found
that conditions that included easy-to-describe binary categories
(the Normal and Shifted conditions), which should be easy under
just about every theory of category learning, were indeed easy for
all participants learning each set of items. Conditions that includ-
ed complex categories (the Odd One Out and Picket
Fence conditions) were challenging to learn for all participants
and each set of items. The most interesting comparison was
between the Sandwich and Neapolitan conditions, where the
only difference between the conditions was in the assignment
of one end of the stimulus continuum being learned. The
Sandwich condition, on the other hand, was challenging for both

English speakers and German speakers when learning categories
in German fricative space, yet was no more difficult than the
Neapolitan condition for English speakers learning musical in-
strument sound categories.

These patterns of results—in particular, the distinction be-
tween the Neapolitan and Sandwich conditions for the fricative
stimuli—are challenging to explain using solely instance-based
models of category learning. Strictly instance-based learning
theories, such as GCM (Nosofsky, 1986), predict that categories
with equally differentiable items should be equally easy to learn
essentially no matter their structure. But this is not what was
observed; instead, the Sandwich condition, which included a
disjunctive category structure, was learned more slowly than
the Neapolitan condition, which did not include one.

A subtler point of note relates to the performance of partici-
pants who failed to learn the pairings of speech sounds to colored
squares. According to the GCM, there are essentially two possi-
ble outcomes for participants in conditions such as the Picket
Fence condition: learning or guessing. Participants will learn
the categories under consideration if they can discriminate the
items on the continuum. If they cannot discriminate the individ-
ual items, however, participants will use items taken from multi-
ple categories to determine category membership, choosing a
category roughly in proportion to the items sampled from each
category. Even the participants who failed entirely did not show
this pattern. Instead, many participants in the three challenging
conditions failed in ways that differed systematically from the
input they were given. Unsuccessful learners seemed to be im-
posing some amount of structure on the input they were being
given. Again, models that rely only on instance-based learning
would find it challenging to accommodate this level of
systematicity, particularly the behavior of the participants in the
Sandwich condition who doggedly continued using the yellow
response button even when such a response was never rewarded.

Explaining the differences between the Sandwich and
Neapolitan conditions can be accommodated under many ab-
stractionist theories of learning. Of course, the amount of ab-
straction necessary, and the precise mechanisms by which that
abstraction occurs, are up for debate. However, not every ab-
stractionist theory can predict the patterns observed here.
Many abstractionist theories of category learning permit dis-
junctive rules (Minda et al., 2008; Zeithamova & Maddox,
2006), and, in fact, some studies of disjunctive phonetic learn-
ing have claimed that it is optimal for participants to use ab-
stract rules to learn these categories (Maddox et al., 2014).

Instead, it seems that the abstractionist theories supported
by the present data set should have a bias toward simpler
categories, at least for speech items. These theories could,
theoretically, involve very small changes to strictly instance-
based conceptualizations of categorization. For example, a
simple prototype theory of category learning, with a single
prototype per category, could easily accommodate some as-
pects of this pattern of results, as the prototypes from both the
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blue and the red categories in the Sandwich condition would
be centered in the exact midpoint of the continuum. Many
modern formulations of prototype theories would still suggest
that learning such categories would be hard, as the proximity
of the category prototypes would make the categories highly
unstable (Toscano & McMurray, 2010).

Under other abstractionist theories, learners may have a
metacategorical bias against disjunctive categories. Recall the
rational rules model of concept learning (Goodman et al.,
2008), where hypotheses take the form of rules that are com-
posed of conjunctions or disjunctions of sets when
nondisjunctive categories along a single dimension are present.
Rational rules suggests that learners have priors toward simple
categories, priors that seem to be respected in the results of the
phonetic components of Experiment 2. The RULes and
EXceptions model (RULEX) provides another avenue of ex-
ploration (Nosofsky& Palmeri, 1998; Nosofsky, Palmeri, et al.,
1994). In RULEX, categories are formed through a multistage
process. First, learners try to identify simple rules to character-
ize the categories being taught to them. If those rules are cate-
gorically (or close-to-categorically) successful at characterizing
the stimulus space, the rules are kept unaltered. If they are
entirely unsuccessful, the learners try instead to learn more
complex rules (i.e., multidimensional ones) that involve inter-
actions between categories. And if the rules are moderately
successful—say, successful 75% of the time—learners memo-
rize exceptions to the rule, with the number and specificity of
the exemplars depending on the learner’s memory constraints.
Again, this build-up from simple to more complex categories
could explain the difference between the Neapolitan and
Sandwich categories found for the speech stimuli.

A model like SUSTAIN (Love et al., 2004), meanwhile,
where categories are treated as the sum of various Bclusters^ in
the stimulus space, also shows some promise. SUSTAIN is
said to attempt to learn simple category mappings before
switching to more complex ones. Similar items tend to form
clusters that pattern together. So, plausibly, having category
learning situations in which dissimilar items formed clusters
that patterned together (e.g., the Sandwich condition) would
be more challenging to learn than when only similar items
worked together (e.g., the Neapolitan condition). However,
SUSTAIN must be modified to incorporate the partially su-
pervised nature of the present experiment, where learners re-
ceived incomplete feedback about their responses. That is,
learners were informed their choice of color/category was
wrong, but not which of the two alternative answers was cor-
rect. Meanwhile, multiple-system theories (Chandrasekaran,
Yi, et al., 2014; Maddox & Chandrasekaran, 2014) predict
that learners start with a bias toward simpler, rule-based cate-
gories, but fall back on instance-based learning if rule-based
learning proves insufficient to learn the categories in question.
However, like some of their abstractionist peers, the success of
multiple-system theories in understanding the acquisition of

disjunctive categories depends on whether the rule-based
learning system comes with a bias against disjunctive catego-
ries, something that is underspecified in most accounts.

Besides the implications of this work for theories of category
learning, this work also can shed light on the role of expertise
and domain-specificity on category learning. The English and
German groups showed far more similarities than differences
when learning the German fricative categories. Like English-
speaking participants, German-speaking participants found dis-
junctive phonetic categories harder to learn than nondisjunctive
categories. The differences between English and German
speakers learning fricative categories were relatively minor,
constrained primarily to the Normal and Shifted conditions.
The English speakers found the Normal condition easier than
the Shifted condition, whereas the German speakers found the
two conditions equally easy to learn.

Why should the English speakers show a bias in learning
that is not present for the German speakers, who have much
more expertise with a category boundary at exactly the loca-
tion of the boundary in the Normal condition (Key, 2014)?
Although computational descriptions of the possible effects of
expertise are myriad (Palmeri, Wong, & Gauthier, 2004),
many focus on the discriminability of items that one has ex-
pertise with. In particular, many conceptions of expertise in-
volve sharpening the representations of items, whether
through improving the quality of the representations them-
selves (Nosofsky, 1987) or through decreasing perceptual
noise throughout a stimulus space (Goldstone, Lippa, &
Shiffrin, 2001). If German speakers’ representations of the
speech sounds along this continuum, or of the space itself,
are less subject to noise, this could help explain why, for them,
the Shifted condition was no harder to learn than the Normal
condition. English speakers, meanwhile, might still be subject
to simple perceptually driven biases that later training might
make it possible to overcome (Diehl, 2000). Given the crucial
role of discriminability for both abstractionist and instance-
based theories of learning, these differences in discriminabil-
ity could be used to explain observed discrepancies between
English and German speakers in their learning. Interestingly,
this is rather different than many accounts of categorical per-
ception in speech contexts, which emphasize decreases in the
discriminability of items within categories (Goldstone &
Hendrickson, 2010).

Regarding domain-specificity, meanwhile, the results are
more striking. The main finding of the studies with fricative
categories was not replicated for the instrument categories. In
the musical instrument continuum, there was no difference in
the learning of the disjunctive and nondisjunctive categories,
even though, in Experiment 1, it was shown that the two
continua were well matched. The difficulty of the Sandwich
condition for the fricatives cannot be explained by recourse to
expertise alone, given the similarity of the results of English
speakers (phonetic Bnovices^) to those of German speakers
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(phonetic Bexperts^). These experiments provide a useful fu-
ture target for studies of domain-specificity in phonetic cate-
gory learning: disjunctive, unidimensional categories.
Interestingly, these sorts of disjunctive rules seem to describe
some other categories: Recall that musical notes are identical-
ly categorized across a single pitch space. Why should pho-
netic categories work any differently? And how might lis-
teners learn cases where categories could be said to be dis-
junctive—say, the many realizations of the phoneme /t/ (Pitt,
Dilley, & Tat, 2011)? The answers to such questions require
more study, but pilot data indicates that the antidisjunctivity
bias also extends to consonant length categories.

Interestingly, this bias was present even though participants
were not always confident that the fricative stimuli were
speechlike, as might be expected given the fact that they were
fricatives presented in isolation. We did not ask participants
explicitly what they thought the sounds they were hearing
were, but we did ask participants if they noticed any patterns
in the experiment. Of the participants who reported a pattern
that involved characterizing the sounds used in Experiments
2a, approximately one third mentioned something explicitly
speechlike (e.g., Bs,^ Bts,^ or Bch^), many of the others men-
tioned something that could be characteristic of speech or
nonspeech (usually Bhigh pitch^ vs. Blow pitch^), and a few
mentioned some other possible sound (coughing sounds and
phlegm were popular descriptions of the velar fricatives). The
German speakers of Experiment 2b, meanwhile, almost never
mentioned something unambiguously speechlike in their de-
scription of the patterns in the experiment, although most
seemed to make the connection when the pattern was explic-
itly pointed out during the debriefing.

At the same time, the bias against disjunctive categories is
just that, a bias. A domain-specific bias is quite challenging to
accommodate under almost any theory of learning, primarily
because these theories were initially formulated within a sin-
gle domain (usually the visual domain). Indeed, most
instance-based learning theories borrowed into language
made the specific and strong prediction that learning processes
in the phonetic domain are identical to those found outside of
it (Port, 2007, 2010), which, if these results reflect domain-
specificity, cannot be supported. Many participants were able
to successfully learn to pair sounds to disjunctive categories
eventually. If the difference in results reflects differences be-
tween speech and nonspeech domains in terms of category
learning, this suggests a more nuanced picture of domain-
specificity that allows for very similar learning processes in-
side and outside of language, but the possibility of different
constraints for the two domains. It might be the case, for
example, that the rule-based category learning system has dif-
ferent properties for phonetic and nonphonetic stimuli such
that it is constrained to positing nondisjunctive categories for
speech in a way that it is not required to do for nonspeech
stimuli. In other words, the Boverhypotheses^ of phonetic

learning would be different from the Boverhypotheses^ of
nonphonetic learning, in the terminology of hierarchical
Bayesian models (Kemp, Perfors, & Tenenbaum, 2007).

Learners may be biased in this way because of the relative
frequency of disjunctive categories in language versus dis-
junctive categories in music. Disjunctive categories are rarely
present in language, barring occasional counterexamples, as
with allophones of /t/. Music, however, contains at least one
highly salient example of disjunctive categories—namely, the
musical pitch categories described in the Introduction. On the
other hand, the fact that participants only infrequently catego-
rized the speech tokens as being speechlike also suggests the
possibility that the differences between the speech and non-
speech tokens could instead be explained by idiosyncratic
properties of the stimuli. Teasing apart domain-specificity
from stimulus-specific processing requires the study of addi-
tional speech and nonspeech contrasts.

An alternative explanation of the differences between the
speech and nonspeech stimuli relates to the perceived dimen-
sionality of the continua used in the present experiment.
Experiment 1 showed that the speech and nonspeech stimuli
used were roughly comparable. However, they were not iden-
tical, and, in some ways, it appears that the nonspeech stimuli
were perceived to be less unidimensional than the speech
stimuli. Could this difference in perceived dimensionality
have led to the differences in the patterns observed across
the two sets of stimuli?

On the face of it, the idea is plausible. Although the differ-
ences in the reported scales of similarity between the items do
not seem large, quantifying those differences poses a chal-
lenge. The predictions of all theories of category learning de-
pend strongly on the dimensions that make up stimulus cate-
gories. Consider, again, the example of categories within tem-
perature. If one considers how to categorize temperatures as
Buncomfortable^ along a linear continuum of temperatures
(with a scale from very cold to very hot), uncomfortable tem-
peratures are disjunctive. If, on the other hand, the dimension
of similarity of temperatures is reframed in terms of a devia-
tion from the most perfectly comfortable temperature (i.e., the
scale is now from completely comfortable to completely
uncomfortable), uncomfortable temperatures now form a
nondisjunctive category.

For our stimuli, if the categories are perceived in a multi-
dimensional fashion, it may be possible to obtain the pattern of
results seen here even under a single-system, instance-based
theory. Doing so would require an interesting set of supposi-
tions. Under theories such as the GCM (Nosofsky, 1986),
changing the perceived importance of an individual dimen-
sion for categorization takes time. Consider a situation in
which the two-dimensional solution of Fig. 4b is the one that
matches the true dimensionality of these stimuli. The two
dimensions could be labeled Bstimulus step^ (x-axis) and
Bcertainty^ (y-axis), given that the latter dimension seems to
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sort extreme items from less extreme items along the stimulus
continuum. If participants come into the category learning
scenario with a strongweight on one dimension over the other,
the cost to switch between dimensional weights to a more
optimal configuration might explain differences in learning
times between conditions. For example, a learner with a strong
weight on certainty but a weak one on stimulus step would
thrive in the Sandwich condition, as characterizing the stimuli
by certainty alone is an excellent strategy for learning a dis-
tinction between the red and blue categories; the members of
each category are very similar to each other in terms of cer-
tainty. Learners with the opposite dimensional weights would
take time to switch to a more optimal configuration, making
their learning slower.

This story is complicated by the patterns of similarity in the
speech and instrumental continua. In the instrumental contin-
uum, the end points were rated as more similar to one another
than in the speech continuum. This means that the stimulus
step dimension would be a worse determinant of category
membership for the nonspeech items than the speech items.
Thus, if learners start with a bias toward weighting the stimu-
lus step dimension highly, they should find the instrumental
categories more challenging than the fricative categories, as
the instrumental categories would be more confusable. But, if
anything, the opposite effect appeared; the Sandwich condi-
tion is easier for the nonspeech stimuli than the speech stimuli.
If, on the other hand, learners start with a bias toward attend-
ing to the certainty dimension, there should be no particular
reason for the Sandwich condition to be harder than the
Neapolitan condition for either stimulus group—and, in fact,
the Sandwich condition may in some ways be easier than the
Neapolitan condition, as the yellow and red stimuli would
then be confusable in the Neapolitan condition. Such a story
would require an interaction between dimensional bias and
stimulus group, with participants in Experiment 2c being bi-
ased toward weighting stimulus step strongly and participants
in Experiments 2a and 2b weighting each dimension roughly
equally. This is possible, but requires more study, perhaps
including tests of discriminability or similarity before and af-
ter training. Alternatively, the speech continuum may be uni-
dimensional while the nonspeech continuum is multidimen-
sional. However, again, this would lead to the prediction that
the nonspeech continuum would be harder than the speech
one in general, which does not seem to be the case.

Both the results suggesting a bias against complex category
formation and the notion that these results may be domain-
specific provide an interesting contrast to the results reported
by Moreton et al. (2017), who showed almost the opposite
pattern. That is, learners of complex phonotactic patterns were
not always slower or worse learners than learners of simpler-
to-describe patterns in the study of Moreton et al., and those
patterns were identical across phonotactic categories and vi-
sual categories. This is unexpected under many of the

abstractionist category learning theories previously cited, in-
cluding rational rules (Goodman et al., 2008) and RULEX
(Nosofsky & Palmeri, 1998), where categories that rely on
complex rules are almost universally nonpreferred. The results
described presently are on the face of it challenging to recon-
cile with those of Moreton et al. However, Moreton et al.
(2017) studied phonotactic categories, which contrast with
phonetic categories on many dimensions. Primary among
these is the fact that the phonotactic constraints studied by
Moreton et al. (2017) included several binary dimensions
(e.g., ± voiced for consonants, ± high for vowels), whereas
the present experiments concentrated on a single continuous
dimension. The categories being learned were also distributed
over time, as the constraints were enforced on the co-
occurrence of nearby segments rather than on a single catego-
ry. Further, the nonlinguistic category learning task that was
chosen in Moreton et al. (2017) was in the visual domain
rather than the auditory domain. It is not clear how those
methodological differences would map onto the differences
between the results described here and those of Moreton
et al. (2017), but dimensionality in particular is known to
strongly influence categorization.

To conclude, an investigation of auditory category learning
uncovered evidence, using speech category learning on the
part of English-speaking and German-speaking participant
groups, of a bias against disjunctive categories in category
learning. This bias was not present for musical instrument
categories. These studies have two major implications. First,
instance-based theories, in which constraints militating
against certain types of category structures are challenging to
include, may require some revision to accommodate these
findings. And, second, these biases appear to be domain-spe-
cific, appearing in the speech domain but not in a relatively
similar set of nonspeech items.
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