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Abstract

Storage systems make persistence guarantees even if the
system crashes at any time, which they achieve using recov-
ery procedures that run after a crash. We present Argosy, a
framework for machine-checked proofs of storage systems
that supports layered recovery implementations with modu-
lar proofs. Reasoning about layered recovery procedures is
especially challenging because the system can crash in the
middle of a more abstract layer’s recovery procedure and
must start over with the lowest-level recovery procedure.
This paper introduces recovery refinement, a set of condi-

tions that ensure proper implementation of an interface with
a recovery procedure. Argosy includes a proof that recov-
ery refinements compose, using Kleene algebra for concise
definitions and metatheory. We implemented Crash Hoare
Logic, the program logic used by FSCQ [8], to prove recovery
refinement, and demonstrated the whole system by verifying
an example of layered recovery featuring a write-ahead log
running on top of a disk replication system. The metatheory
of the framework, the soundness of the program logic, and
these examples are all verified in the Coq proof assistant.

CCS Concepts · Theory of computation → Program

verification; · Hardware→ System-level fault tolerance.
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1 Introduction

Storage systems, including file systems, databases, and persis-
tent key-value stores, must protect data from loss even when
the computer crashes (e.g., due to a power failure). These
systems provide crash-safety guarantees about what data
persists if such crashes occur. To achieve these guarantees,
many systems perform some form of repair in a recovery
procedure that runs after a reboot.
Storage systems are typically structured into several lay-

ered abstractions. For example, a storage system might use
several physical disks for redundancy. By replicating writes
across these disks, the storage system can implement an in-
terface presenting a single synchronous disk, and then use
write-ahead logging to implement a transactional API for
atomically writing multiple disk blocks (see Figure 1).

Multiple unreliable disks

Single disk

Transactional API

Replication

Logging

Figure 1. A simple storage system that uses recovery at
multiple layers of abstraction.

If the computer crashes, write operations may have oc-
curred on only some of the physical disks. To repair its state,
the storage system runs a recovery procedure after reboot.
First, it propagates missing writes to the remaining disks to
restore replication. Then, it reads the transaction log to de-
termine if transactions need to be aborted or applied, based
on whether the system crashed before or after they were
committed. The storage systemmay have to run the recovery
procedure several times, because the system can crash again
during recovery.
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Because a storage system needs to handle crashes at any
time,1 implementing and testing them is difficult. Storage
systems in practice have had bugs that resulted in data loss
and data leaks [16, 17, 23]. Since these bugs are costly, formal
verification is attractive because it can rule out large classes
of bugs. For verification to scale to modern, complex storage
systems, the proofs for the implementations in each layer
should be independent. This independence is hard to achieve
because crashes during one layer of abstraction’s recovery
procedure requires re-running all of the recovery procedures
of lower levels. For example, with the system in Figure 1, a
crash in the middle of the write-ahead log’s recovery proce-
dure may leave disks out-of-sync, which requires starting
over with the replicated disk’s recovery.
This paper presents Argosy, a framework for verifying

storage systems that supports layered recovery procedures
with modular proofs. Argosy introduces the notion of re-
covery refinement, a set of proof obligations for an imple-
mentation and recovery procedure. These obligations are
sufficient to guarantee clients observe the specification be-
havior, including with multiple crashes followed by recovery.
Furthermore, recovery refinement composes between two
implementations: this allows the developer to prove each
implementation separately and then obtain a proof about
the whole system with a general composition theorem. We
describe the metatheory behind recovery refinement in sec-
tion 4. The framework is encoded in the Coq proof assistant,
with machine-checked proofs of soundness.

There are several existing systems that support reasoning
about crashes and recovery, particularly in the context of
file-system verification [7, 8, 11, 26, 28]. Most have no sup-
port for layered recovery, since they consider only a single
recovery procedure at a time. The Flashix modular crash
refinement work [11] does consider layered recovery, but to
simplify proofs recovery procedures cannot rely on being
able to write to disk. Argosy supports active recovery proce-
dures which write to persistent storage; both the replicated
disk and write-ahead log implementations rely on active
recovery. Furthermore, the metatheory for a number of exist-
ing systems is based on pen & paper proofs, whereas Argosy
has machine-checked proofs for both the metatheory and
example programs.
To prove recovery refinement within a single layer, Ar-

gosy supports a variant of Crash Hoare Logic (CHL), the
logic used in the FSCQ verified file system [7, 8]. Argosy gen-
eralizes FSCQ’s CHL by supporting non-deterministic crash
behavior, whereas FSCQ modeled only persistent state and
assumed it was unaffected by a crash. The main benefit of
using CHL is that as long as recovery’s specification satisfies

1In this work we use łcrashž to refer to the entire storage system halting
and requiring restart, such as due to a power failure or kernel panic.

an idempotence condition, the developer can reason about re-
covery using only its specification and ignore crashes during
recovery.

To simplify the definition of recovery execution as well as
facilitate proofs of Argosy’s metatheory for recovery refine-
ment, we formulated the execution semantics and recovery
refinement using the combinators of Kleene algebra [18].
Kleene algebra is well-suited for this purpose because it
models sequencing, non-determinism, and unbounded iter-
ation, which arise naturally when reasoning about crashes
and recovery.
As a demonstration of Argosy, we implemented and ver-

ified the storage system of Figure 1. The disk replication
and write-ahead log are separately verified using CHL, each
with its own recovery procedure; section 6 details how this
proof works in CHL within Argosy. We then compose them
together to obtain a verified transactional disk API imple-
mented on top of two unreliable disks. The composed imple-
mentation extracts and runs, using an interpreter in Haskell
to implement the physical disk operations at the lowest level.

The paper’s contributions are as follows:

1. Argosy, a framework for proving crash-safety proper-
ties of storage systems that introduces recovery refine-

ment to support modular proofs with layered recovery
procedures.

2. Machine-checked proofs in Coq of the metatheory
behind recovery refinement that are simplified by ap-
pealing to properties of Kleene algebra.

3. An implementation of Crash Hoare Logic (CHL) for
proving a single layer of recovery refinement, which
we use to verify an example of a storage system with
layered recovery.

2 Related Work

Verified storage systems Crash Hoare Logic [8] and Yg-
gdrasil [28] are two frameworks for reasoning about storage
systems, in which the authors built verified file systems
(FSCQ and Yxv6, respectively). These frameworks address
a number of complications raised by storage systems, espe-
cially reasoning about crashes at any time, recovery follow-
ing a crash, and crashes during recovery. CHL introduces
the notion of a crash invariant, an execution invariant that
recovery relies on, as well as idempotence, a property where
recovery’s precondition is invariant under crashes during
recovery. Yggdrasil takes a different perspective on specifi-
cations and uses refinement from the abstract specification
to the code, proving the code’s crash behaviors are a sub-
set of the abstract crash behaviors. Both frameworks are
also careful to specify crashing and non-crashing behavior
separately; this is important since storage systems ought to
provide stronger guarantees for non-crashing execution (for
example, data buffered in memory might be lost on crash, but
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if the system does not crash reads should reflect all previous
writes).

Argosy incorporates ideas from both of these previous
lines of work, extending them to multiple layers with re-
covery, and with a fully machine-checked metatheory. In
contrast, both CHL and Yggdrasil assume a single, global
recovery procedure. Yxv6 consists of a number of verified
layers, but the end-to-end refinement is an informal theo-
rem, not a part of a proven metatheory. CHL does not use
refinement, so for modularity FSCQ specifications are by con-
vention structured into multiple abstractions. Refinement
makes this modularity explicit. In Argosy, recovery refine-
ment has the benefit that clients of an interface are also able
to use recovery procedures, even if that interface is itself
implemented using recovery; in FSCQ and Yxv6, clients of
the file system have no mechanism to prove crash safety of
their own recovery procedures.

Ernst et al. [11] also develop a theory of submachine refine-
ment for crashing and recovering systems, which they used
to verify their Flashix file system [10]. Their work has a sim-
ilar notion of a refinement between an abstract specification
and its implementation; their reduction from a white-box
semantics to a black-box semantics for submachines is analo-
gous to our notion of recovery refinement between interface
LA and LC , as described in section 4. However, the metathe-
ory of submachine refinement only holds when a strong
property holds of the entire submachine: all operations must
be łcrash neutralž, meaning there must be a way for every
operation to run such that its effects are obliterated by a
crash. This holds in the setting considered by the authors
because they permit all writes to storage to fail, but does not
support active recovery procedures that rely on writes, as
well as complicating higher-level APIs by always including
the possibility of failure. In contrast Argosy has a simpler
and more general presentation of refinement that handles
active recovery procedures.

Ntzik et al. [26] developed an extension to concurrent sepa-
ration logic to support reasoning about crashes in concurrent
systems. Similar to CHL’s idempotence principle, this logic
has a rule for verifying a recovery procedure which involves
showing that the precondition for recovery is an invariant
during recovery’s execution. However, as with CHL, this rule
applies to verifying a single recovery procedure, as opposed
to the multiple layers in Argosy.

The metatheory of Argosy is all accompanied by machine-
checked proofs, unlike Yggdrasil, submachine refinement,
and the logic of Ntzik et al. [26].

Concurrent notions of refinement There are systems like
RGSim [22] and CCAL [14] which support verification of
concurrent software using refinement between multiple im-
plementation layers. It might seem that crashes are simply a
special case of concurrency, since crashes interrupt threads
in a similar way to interleaving threads. However, recovery

requires new reasoning principles beyond what concurrency
frameworks provide. Crashes interrupt a thread with no pos-
sibility of resuming it, an unbounded number of crashes
can interrupt recovery itself before it completes, the defi-
nition of refinement should abstract away the behavior of
recovery, and crash-free executions should have a stronger
specification than post-crash behavior. No concurrent refine-
ment framework has direct support for these special aspects
of crashes and recovery. Indeed, these differences between
crashes and standard concurrency are what required Ntzik
et al. [26] to develop the extension to concurrent separation
logic described above. However, as mentioned, that logic is
for reasoning about a single layer of recovery, rather than
multiple layers. Adding crash safety support to a layered
concurrent refinement system like CCAL is an interesting
direction for future work, where Argosy’s ideas would be
informative.

Distributed Systems Refinement reasoning is widely used
for proving properties of distributed systems [15, 21, 25, 31].
Crashes occur in distributed systems, where nodes may sud-
denly fail. However, the existing work in this area does not
involve reasoning about storage systems running on individ-
ual nodes. Instead, these systems’ proofs assume correctness
of storage at each node and show consistency properties of
the aggregate system.

KleeneAlgebra forVerification Kleene algebra, especially
an extension called Kleene algebra with tests (KAT), has been
used for a variety of program verification tasks. Applications
range from proving the correctness of compiler optimiza-
tions [20], total correctness using refinement [30], and cache
coherence protocols [9], to more recently specifying and
analyzing software-defined networking systems [1].
Many extensions of Kleene algebra have been proposed,

including variants with types [19], temporal modalities [4],
probabilistic operators [12], monadic operators [13], and
with equational axioms [3]. These extensions often enjoy
completeness Ð any inequality that holds in the application
domain can be proven using the axioms of the algebraic
structure Ð and decidability Ð there is an algorithm to decide
if an inequality is true or false. These two properties together
make Kleene algebra attractive as a basis for automation, and
indeed this automation has even been verified in Coq [5, 27].
We do not develop an axiomatic variant of Kleene algebra,
and our variant embeds arbitrary Coq terms that certainly
make it undecidable; instead, we focus on only one model
and use Kleene algebra as a reference, manually proving any
desired property within the model. It would be interesting
to specify our variant axiomatically and try to identify a
decidable fragment that is sufficient for our needs; this could
automate our proofs considerably.
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3 Combinators for Crash Semantics

This section describes how we specify systems and program
in Argosy using combinators from Kleene algebra.

3.1 Overview

Argosy is centered around interfaces, which have a signature
specifying what operations programs can use and an oper-

ational semantics that specifies how the operations behave.
We’ll use L to denote interfaces and ProcL for the type of
programs using operations from the interface L. An inter-
face’s signature determines what operations are valid, so the
L stands for language, though programs in any ProcL share
a common syntactic structure that gives control flow and
additional operations to compose operations as we describe
in more detail in subsection 3.2.

Interfaces include a semantics for each operation. Argosy
defines the semantics of whole programs, composing to-
gether each operation’s behavior appropriately for normal,
crash, and recovery execution. On top of this common struc-
ture, Argosy includes a metatheory for reasoning about re-
covery execution. The semantics and metatheory leverage
Kleene algebra to simplify both definitions and proofs; we
describe our specific use of Kleene algebra in subsection 3.3.

3.2 Interfaces

Formally, an interface L in Argosy is a tuple (O, S, step, , P),
where

• O is the type of atomic operations the interface ex-
poses. Each operation is indexed by the type of values
it returns upon executing.O serves as the signature of
the interface.
• S is the type of abstract state used to describe the
interface’s semantics.
• step is a transition relation specifying the semantics
of each operation. If o is an operation of typeO(T ), the
relation step(o)(s, s ′,v) holds if the operation o can
transition from state s to state s ′ and return the value
v of type T .
•  (pronounced łcrashž) is a transition relation on pro-
gram states specifying the possible effects of a sys-
tem crash. For example, if the system state contained
volatile memory, then a  transition would erase this
memory.
• P is a predicate on S which holds for any valid initial
configuration of the system.

Example 1 (Transactional Disk API). Figure 2 gives the def-
inition of the transactional disk, the interface implemented
by the write-ahead logging scheme mentioned in the intro-
duction. The interface’s abstract state consists of a tuple
of disks of the form (dold ,dnew ), where dold represents the
state of the disk before the current transaction began, and
dnew represents what the disk will become after the trans-
action is committed. We use s .old for the first element of

the state s and s .new for the second element. Each disk is
modeled as a list of blocks. The initialization condition P

guarantees both disks are the same size, and all operations
preserve this invariant; the size operation returns this com-
mon length. The operation write(addr ,blk) sets the value
of addr to blk in dnew if it succeeds. (Out-of-bounds writes
have no effect). However, it may also fail, in which case
the disks are unchanged Ð this corresponds to the situation
where the transaction log is full. On the other hand, the
operation read(addr ) gets the value of addr from the old
disk, dold , so that it does not see the effects of uncommitted
writes. (Out-of-bounds reads return an arbitrary block). The
commit operation atomically sets the old disk to be equal to
the new disk. A system crash aborts the current transaction,
reverting the new disk to the old disk.

For each interface L, Argosy defines a type of programs
ProcL , which have a common syntactic structure that turn
the layer operations o into a monad. We further index the
type ProcL by the type of values a program can return. Pro-
grams are generated by the following grammar:

e ::= call(o) | ret v | bind e (λx . e ′)

A call to an operation o from O returning values of type
T is written call(o), which is a program of type ProcL(T ).
Programs also include the monad operations ret and bind.
In our Coq implementation, bind e f shallowly embeds a
Coq function f of type B → ProcL(A); that is, programs
can include arbitrary Coq functions to sequence operations
together. Similarly, we can write any Coq expression v in
ret v . Note that this includes Coq if expressions and recursive
functions, which can be used to write loops. The only caveat
is that Coq recursion is always terminating, so unbounded
loops are not supported.
It is straightforward to lift the operation transition rela-

tion step(o) to give a semantics for non-crashing executions
of programs expressed in the monad ProcL . However, doing
so for crashing executions, which run an associated recov-
ery procedure (which may itself crash), is more involved.
Although it is possible to do so directly by specifying an
inductively defined big-step relation, as in FSCQ [8], the re-
sulting definition can be difficult to understand and reason
about. Instead, Argosy expresses this relation using a variety
of relational combinators, which we explain next.

3.3 Kleene Algebra Combinators

We define a type for transition relations Rel(A,B,T ) ≜ A→

B → T → Prop. For some relation r : Rel(A,B,T ), the
proposition r (a,b,v) holds when r allows a transition from
state a : A to state b : B, returning value v : T . We allow
transitions to change the type of state to support transitions
across layers, but often both state types are the same, such
as for step.
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S ≜ List Blocks × List Blocks

O ≜ write(addr ,blk) | read(addr ) | size | commit

 ≜ λs1, s2. s2 = (s1.old, s1.old)

P ≜ λs . s .old = s .new

step(o) ≜ λs1, s2, r .




(
s2.old = s1.old ∧ s2.new = s1.new[a := blk] ∧ r = ⟨⟩

)
∨ (s2 = s1 ∧ r = failed) if o = write(a,blk)

s2 = s1 ∧ r = s1.old[a] if o = read(a)

s2 = (s1.new, s1.new) ∧ r = ⟨⟩ if o = commit

s2 = s1 ∧ r = length(s1.old) if o = size

Figure 2. Semantics of Transactional Disk Layer

We define equality, ordering (p ⊆ q), and operations for
non-deterministic choice (p+q), sequential composition (p ·q),
and zero-or-more iterations (p⋆):

p = q ≜ ∀a1,a2, t .p(a1,a2, t) ↔ q(a1,a2, t)

p ⊆ q ≜ ∀a1,a2, t .p(a1,a2, t) → q(a1,a2, t)

p + q ≜ λx,y, t .p(x,y, t) ∨ q(x,y, t)

p · q ≜ λx,y, t . ∃z, t ′.p(x, z, t ′) ∧ q(z,y, t)

p⋆ ≜ λx,y, t . ∃n : N.pn(x,y, t)

where p0 ≜ (λx,y, t . x = y) and pn+1 ≜ p · pn

These three operations appear in algebraic structures known
as Kleene algebras [18], which axiomatize the familiar prop-
erties of regular expressions. Our operations differ from
Kleene algebra, however, because they are typed, so that
certain operations are only defined when the types of the
operands match appropriately, which is not the case in a
Kleene algebra.2 For example, our definition of p · q is well-
typed only when the type of p is of the form Rel(A,B,T1)

and the type of q is of the form Rel(B,C,T2), i.e. the types of
states that p transitions to must match the type of states that
q transitions from. The type of the composition p · q is then
Rel(A,C,T2).
Despite this difference from Kleene algebra, in our Coq

formalization we have proven that most of the axioms of
Kleene algebra hold for these combinators, as well as many
other derived rules, a selection of which we list in Figure 3.
This means that by defining our semantics using these com-
binators, we are able to take advantage of these equational
laws to simplify statements that we must prove.
Any relation of the form A→ B → Prop can be lifted to

an output-producing relation of type Rel(A,B,Unit) which
always returns the unit value ⟨⟩. We will use this implicit
coercion throughout.
The sequential composition p · q above always runs the

transition q regardless of what output value is returned by
p. We therefore define an additional combinator that allows

2Typed variants of Kleene algebras have been studied by Kozen [19].

seq-monotonic

p ⊆ p ′ q ⊆ q′

p · q ⊆ p ′ · q′

sliding

p · (q · p)⋆ = (p · q)⋆ · p

denesting

(p + q)⋆ = p⋆ · (q · p⋆)⋆

simulation

r · p ⊆ q · r =⇒ r · p⋆ ⊆ q⋆ · r

Figure 3. Selected theorems from Kleene algebras that hold
in our model, when the statement type checks.

sequencing transitions based on intermediate output:

andThen p f ≜ λx, y, t. ∃z, t ′.p(x, z, t ′) ∧ f (t ′)(z,y, t)

We also define an operator that returns a particular value,
leaving state unchanged:

ret v ≜ λx, y, t. x = y ∧ t = v

For a fixed type A of state, Rel(A,A,−) forms a monad with
andThen and ret as the bind and unit. Note that we use ret
to mean both a pure program and a pure relation, which are
distinguishable from context (and closely related). Therefore,
wewill use the traditional bind notation for andThen, writing
x ← p ; f (x) for andThen p (λx . f (x)). Similarly, to improve
clarity we will use p ; q instead of p · q when mixing bind
notation and sequential composition. We use this notation
even for sequencing relations with different input and output
state types, since in this case relations form an instance of a
more general structure called parameterised monads [2].

3.4 Execution Semantics

These relation operations provide a convenient way to spec-
ify the crash and recovery behavior of programs. We start by
defining the crash-free execution of a program e , written JeK.
For a program e of type ProcL(A), its crash-free semantics
is a relation JeK of type Rel(S, S,A) (recall S is the state type
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for the interface L), defined inductively as:

Jcall(o)K ≜ step(o)

Jret vK ≜ ret v

Jbind e f K ≜ x ← JeK ; Jf (x)K

This definition simply maps the free monad generated by the
operations of L into the relation monad: binds and returns of
programs become the binds and returns of relations, while
operations are interpreted according to step(o).
Next, we define a relation JeK which describes a partial

execution of e , interrupted by a crash that can occur non-
deterministically at any step. The definition of JeK captures
the behavior of crashing programs after a crash but before
recovery take place. We ignore any partial return value of
such an interrupted program and just return ⟨⟩, but any state
modifications are preserved:

Jcall(o)K ≜  +
(
step(o) ·  

)

Jret vK ≜  

Jbind e f K ≜ JeK +
(
x ← JeK ; Jf (x)K 

)

When executing an operation o, the system may crash before
or after executing o; this means operations are atomic with
respect to crashes (modulo the effects of the subsequent
crash itself). When executing a pure program ret v , a crash
will erase the return value ofv . For bind e f , the system may
either, (1) crash while executing e , or (2) finish executing e
but then crash while executing f .
We also define recovery execution of a program e with a

recovery procedure r : ProcL(Unit), written as Je ⟲ rK. Note
that ⟲ is just part of the notation, not an operation of the
ProcL(A) monad. Recovery execution involves a crashing
execution of e , followed by potentially multiple crashing
executions of r , and then a final complete execution of r :

Je ⟲ rK ≜ JeK · JrK
⋆

 · JrK

Giving concise definitions of crash and recovery semantics
like the above is important because these definitions are
trusted: if we omit some possible behavior of crashing from
our definitions, then the results we prove about crash safety
may not apply to real executing programs.

4 Recovery Refinement

This section discusses implementing interfaces, specifying
correctness of implementations using refinement, and the
metatheory Argosy provides for composing layers.

4.1 Implementations

An implementation of an interface is a program written
against the target, lower-level, concrete interface for each
primitive operation in the higher-level, abstract interface. A
software stack is then a sequence of implementations com-
posed together. In this section we’ll discuss implementing

LC

LA

M

Figure 4. An implementation M = (c, r , i) of LA using LC
provides a way to run abstract programs ProcLA using a
concrete interface by compiling them with CM , running the
recovery procedure r after each crash, and initializing the
interface with the procedure i .

one interface in terms of another, returning to the issue of
composition in subsection 4.3. To improve readability, we
will color-code the abstract interface in blue and concrete
interface in red. More formally, an implementation of ab-
stract interface LA using concrete interface LC is a tuple
M = (c, r , i), where

• c is a function mapping each operation o from LA with
return type T to a procedure ProcLC (T ) implementing
the operation.
• r is a designated recovery procedure of typeProcLC (Unit).
• i is an initialization procedure of type ProcLC (Bool),
which returns a boolean indicating whether initializa-
tion succeeded.

We use the meta-variableM for implementations because
we think of them as modules implementing all of the opera-
tions of the signature LA; see Figure 4 for an illustration of
how an implementation relates two layers. Given such an
implementation, we can łcompilež programs written in LA
into programs in LC :

CM (call(o)) ≜ c(o)

CM (ret v) ≜ ret v

CM (bind e ′ f ) ≜ bind CM (e
′) (λx . CM (f (x)))

When compiling a recovery procedure rA, we need to first
ensure that the implementation recovery procedure r is run,
and then translate the operations in rA:

C⟲
M
(rA) ≜ bind r (λ_. CM (rA))

Next, we want to show that these implementations are cor-
rect. Before giving our specific conditions for an implemen-
tation, we give a general definition for refinement between
relations. A refinement involves first picking an abstraction
relation R : SA → SC → Unit→ Prop that relates abstract
and concrete states (the unit value makes the abstraction rela-
tion an output-producing relation of type Rel(SA, SC ,Unit)).

Definition 2. For an implementation transition relation
impl and a specification transition spec , we say the imple-
mentation refines the specification under the abstraction
relation R, written impl ⊑R spec , if whenever R(sA, s) and
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retspec

retimpl

=
spec

impl

R R

Figure 5. Definition of the refinement impl ⊑R spec .

Jcall(o)K 

Jc(o)K 

absr absr

JrK

JrK 

Figure 6. Abstraction for crash and recovery.

impl(s, s ′,v) hold, there exists an s ′A such that spec(sA, s ′A,v)
and R(s ′A, s

′).

Figure 5 depicts this definition graphically. We can give an
equivalent, compact definition of refinement by using rela-
tion composition with a varying state type, as follows:

impl ⊑R spec ≜ (R ; impl) ⊆
(
v ← spec ; R ; ret v

)

Building on this abstract notion of refinement, we propose
recovery refinement as a simple set of conditions developers
can prove about an implementation to establish correctness.

Definition 3. We say that an implementationM = (c, r , i)

is a recovery refinement of abstract interface LA = (OA, SA,

stepA, A, PA) into LC = (OC , SC , stepC , C , PC ) if there ex-
ists an abstraction relation R with the following four proper-
ties:

compile-exec: For all o, Jc(o)K ⊑R Jcall(o)K
recover-op: For all o, Jc(o) ⟲ rK ⊑R Jcall(o)K 

recover-ret: Jret ⟨⟩ ⟲ rK ⊑R Jret ⟨⟩K 

init-abs: For all s and s ′,
PC (s) ∧ JiK(s, s ′, True) → ∃sA. PA(sA) ∧ R(sA, s

′)

Note that in this definition we folded some definitions to
give some intuition as to why these conditions make sense;
the conditions require that each operation is implemented
correctly, using recovery on the implementation side to trans-
parently achieve the abstract interface’s crash behavior  A.
We can unfold some definitions to re-write the first three
conditions as follows:

compile-exec: For all o, Jc(o)K ⊑R stepA(o)

recover-op: For all o, Jc(o) ⟲ rK ⊑R  A+
(
stepA(o)· A

)

recover-ret: Jret ⟨⟩ ⟲ rK ⊑R  A

The compile-exec obligation is straightforward and stan-
dard for forward simulation using an abstraction relation.

Recovery execution is more interesting, and requires two
obligations. recover-ret is somewhat of a technicality for
the case where the system crashes before any operations are
run, in which case the only impact of recovery should be an
abstract crash step.

recover-op is the main obligation of recovery refinement;
we illustrate the obligation (with Jc(o) ⟲ rK unfolded) in
Figure 6. Intuitively, the developer must show that recovery
correctly handles a crash during any operation. Recall that
the semantics of the abstract layer state that operations are
atomic with respect to crashes, so this means a crash during
c(o) combined with recovery should simulate either just an
abstract crash step  A or the entire operation followed by a
crash step step(o) ·  A. Proving this obligation is non-trivial
since recovery execution internally loops for crashes during
recovery. We later show how we use Crash Hoare Logic’s
idempotence principle for recovery, which gives an inductive
invariant to prove recover-op.

The last obligation, init-abs, the only one for initialization,
is not stated in terms of refinement. The reason is that it
serves as the base case for simulation between the compiled
code and the specification: it constructs an abstract state
satisfying the abstraction relation, as long as initialization
succeeds. Once the abstraction relation is established, the rest
of the obligations apply, and because they are all refinements,
they maintain the abstraction relation with some abstract
state.

4.2 Correctness

We now show that recovery refinement is strong enough
to guarantee that the behavior of compiled programs is
preserved, even with intermediate crashes and recoveries.
Throughout this subsection, we’ll assume we have an im-
plementation M = (c, r , i) that is a recovery refinement of
interface LA into LC , where the associated abstraction rela-
tion is R, and will leave off theM subscript in CM (p).
The obligations in recovery refinement only talk about

single operations from the abstract layer. We start by proving
that we can extend refinement to whole abstract programs
for crash-free execution (this is a standard forward simulation

[24]):

Theorem 4. For any program e : ProcA(T ), its compiled
version refines the abstract program; that is, the following
holds:

JC(e)K ⊑R JeK

Proof Sketch. The proof is by induction over e . The base cases
follow from the recovery refinement conditions. For the
bind e1 e2 case, unfolding the definition of ⊑R , we have
as inductive hypotheses

R ; JC(e1)K ⊆ v ← Je1K ; R ; ret v

∀v .R ; JC(e2(v))K ⊆ v
′← Je2(v)K ; R ; ret v ′
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The proof proceeds by showing a sequence of inequalities:

R ; JC(bind e1 e2)K

⊆ R ;
(
x ← JC(e1)K ; JC(e2(x))K

)

⊆ x ← Je1K ; R ; JC(e2(x))K

⊆ x ← Je1K ; v ← Je2(x)K ; R ; ret v

⊆ v ← Jbind e1 e2K ; R ; ret v

□

There’s nothing too interesting in Theorem 4, except per-
haps that its proof follows from the algebraic structure of
transition relations. However, the analogous result for recov-
ery execution is the crux of the Argosy metatheory:

Theorem 5. For any program p : ProcA(T ) and recovery
procedure rA : ProcA(Unit), the following refinement holds:

JC(p) ⟲ C⟲(rA)K ⊑R Jp ⟲ rAK

What does this theorem accomplish? First, recall that
C⟲(rA) = bind r C(rA); it includes the layer recovery proce-
dure r in addition to the abstract recovery procedure rA. The
idea is that running this r after a  C is analogous to a  A

transition, at which point it makes sense to run C(ra). The
theorem re-arranges the left-hand side to prove this end-to-
end result, including a high-level recovery procedure, from
the per-operation obligation recover-ret.

Proof Sketch. The key part of the proof is to decompose run-
ning the recovery C⟲(rA) into first running r , and then run-
ning C(rA) with r as its łsub-recoveryž procedure. That is,
we first prove:

JC⟲(rA)K 
⋆ · JC⟲(rA)K

= JrK 
⋆ · JrK · JC(rA) ⟲ rK⋆ · JC(rA)K

This equivalence is shown entirely using Kleene algebra
identities. Once we have this equivalence, the rest of the
proof is intuitive. First, we have that r recovers the system
(after crashing some number of times) to a state where we
can execute other LC programs. Then, we can reason about
JC(rA) ⟲ rK as a crashing program in LC , and show that it
refines JrAK ; this follows by using the simulation theorem
from Kleene algebra, which states that p ⊑R q implies p⋆ ⊑R
q⋆. Finally, JC(rA)K is a crash-free execution, so it refines
JrAK by Theorem 4. □

These results show that abstraction is preserved across a
single program’s complete execution or crash and recovery.
What about an entire interaction with the system, with mul-
tiple programs, each of which may crash and recover? We
extend the single-execution correctness result of Theorem 4
to interactions represented as a sequence of programs and a
user-specified recovery procedure, all written at the abstract
layer. As before, the intuitive correctness definition is that
the behavior of this abstract sequence is preserved by compi-
lation. Formally, we model such a sequence as an inductive
type ProcSeq generated by:

• seqCons e f , where e has type ProcL(A) for some A
and is the next program to run, while f : Option(A) →

ProcSeq(R) determines what to run afterward.
• seqNil, the empty list.

To define execution of such a sequence, we first define a
helper functionwhich non-deterministically decideswhether
to execute or crash a program, and tags the result:

exec_or_rexec(e, r ) ≜ (x ← JeK ; ret some(x))

+ (x ← Je ⟲ rK ; ret none)

Execution of a sequence ps with recovery procedure r is
defined by

execSeq(seqNil, r ) ≜ ret nil

execSeq(seqCons e f , r ) ≜

x ← exec_or_rexec(e, r ) ;

l ← execSeq(f (x), r ) ; ret (x :: l)

This definition recursively executes or crashes each program
in the sequence, passing the resulting values to a function
that decides which to execute next. All of the intermediate
results are accumulated in a heterogeneous list, which is
returned at the end. The final list represents what the user
may observe as they execute the whole sequence.
We then have a function compileSeqM (ps) that compiles

the programs in a sequence ps . Given ps and a user-specified
recovery procedure rA, we define a complete execution of
the compiled program by the relation

execCompileM (ps, rA) ≜

x ← JiK ;

if x then

v ← execSeq(compileSeqM (ps), C
⟲

M
(rA)) ;

ret some(v)

else (ret none)

which models running the initialization procedure, and if
it succeeds, running the compiled sequence. For simplicity
we assume here that the program does not crash during
initialization.
Finally, we will want to consider all possible outputs of

programswhen run from initialized states satisfying P . Given
q : Rel(S, S,A), we define the predicate

output(q) ≜ λv . ∃s1, s2. P(s1) ∧ q(s1, s2,v)

The following theorem shows that compilation using a
recovery refinementM preserves an entire interaction con-
sisting of a sequence of programs:

Theorem 6 (Correctness for sequences).
If some(v) ∈ output(execCompileM (ps, rA)), then
v ∈ output(execSeq(ps, rA)).

Proof Sketch. If some(v) is in the output of the compiled
program, then initialization succeeded for that execution.
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init-abs shows that the abstraction holds after initialization.
We then proceed by induction on ps . Based on whether the
next program in the sequence executes normally or crashes,
we use one of the two preceding theorems to show that
abstraction is preserved. This then guarantees that the return
values for each intermediate compiled program are equal to
some possible return value for the original. □

Theorem 6 only guarantees that the return value of the
executable code sequence matches some expected behavior
from the abstract program sequence. The theorem is stronger
than it may at first appear since these abstract programs
can embed arbitrary Gallina functions to inspect intermedi-
ate results, and can maintain state between functions using
the general bind p f constructor common to all languages
ProcLA . For example, ps could track all intermediate return
values of LA’s operations and include them as part of the
return value v .

Return values can capture all internal behavior but not any
additional externally visible behavior emitted by operations;
for example, we assume that clients of a file systemwritten in
Argosy have no way of directly observing low-level storage
writes. Indeed, this low-level behavior would not even be
part of the file system’s specification.

4.3 Composition

The workflow for the developer is to construct a refinement
of some intermediate abstraction LI into LC , and then to use
the intermediate abstraction and prove a refinement of LA
into LI , possibly repeating this several times with multiple
intermediate interfaces Ð one verified file system, FSCQ,
describes a stack with seven layers, and another, Yggdrasil,
has five. In order to get a complete system, the developer
needs to compose these recovery refinements and compile
across the intermediate layer of abstraction.
The following theorem lets us combine two recovery re-

finements:

Theorem 7 (Composition). If M1 = (c1, r1, i1) is a recovery
refinement of LA into LI , and M2 = (c2, r2, i2) is a recovery
refinement of LI into LC , then the following implementation
is a recovery refinement of LA into LC :

c = λo. CM2
(c1(o))

r = (x ← r2 ; CM2
(r1))

i = (x ← i2 ; if x then CM2
(i1) else false)

We writeM2 ◦ M1 for this composed implementation.

The proof of this theorem has two main ideas: using
Kleene algebra laws (specifically denesting) to re-arrange
the execution of the nested recovery procedure, and apply-
ing Theorem 5 on the recovery procedure compiled to LI .
Of course recovery refinement also requires proving that
normal execution is preserved, but this is a comparatively
simple application of Theorem 4.

Note that because the composed implementation is a re-
covery refinement, Theorem 6 above applies to the composi-
tionM2 ◦ M1 and the developer has a proof of correctness for
the entire stack, built from modular proofs that only reason
about adjacent interfaces.

5 Embedding Crash Hoare Logic

So far we’ve described recovery refinement, but how does a
user prove that an implementation is a recovery refinement?
We have designed Argosy to separate out the metatheory of
recovery refinement from the reasoning about implementa-
tion behavior needed to prove refinement. To address this
latter program-specific reasoning we implemented Crash
Hoare Logic (CHL), the logic used to verify the FSCQ file
system [8]. We prove all the rules of CHL as theorems in our
Coq development. We review the basics of CHL and then
describe what its implementation in Argosy looks like.

CHL is a variant of Hoare logic which features a judgment
{P } e ⟲ r {Q}{QR }. This recovery specification of procedure
e recovering with r has three parts: P and Q are the familiar
pre- and postcondition from Hoare logic, while QR is a new
recovery postcondition. The interpretation of this judgment
is that if e runs in a state s1 satisfying P , then:

• If the system does not crash, e will terminate and re-
turn some valuev in a final state s2 such thatQ(s1, s2,v)
holds.
• If the system crashes and runs r for recovery, then
r returns some value v in a final state s2 such that
QR (s1, s2,v) holds.

The postconditions are full relations over the input state, out-
put state, and return value, instead of the traditional version
of Hoare logic in which they do not depend on the initial
state. While not strictly necessary, we use this formulation
since it often makes writing the postcondition and recovery
postcondition more convenient.
This judgment can be encoded straightforwardly using

the Kleene algebra semantics.3 We first recast the pre- and
postconditions as relations over pairs of an initial state and
a final state:

specRel(P,Q) ≜ λs1, s2,v . P(s1) → Q(s1, s2,v)

Then the recovery quadruple is defined by:

{P } e ⟲ r {Q}{QR } ≜ (JeK ⊆ specRel(P,Q))

∧ (Je ⟲ rK ⊆ specRel(P,QR ))

Once we have proven recovery specs for the implemen-
tations of each operation in an interface, proving recovery
refinement is straightforward: we just need to show that the

3In their use of CHL to verify FSCQ, Chen et al. [8] used a shallow embed-
ding of separation logic to be able to write assertions using the separating
conjunction ∗. We have not needed to use these connectives in our examples,
but a similar shallow embedding could be used.
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abstraction relation implies the precondition of each opera-
tion’s spec, and conversely, that the post/recovery conditions
imply the abstraction relation for the updated states. Specif-
ically, for every operation o in the abstract interface, we
need to show its implementation c(o) satisfies the following
specification, using R for the abstraction relation:

∀sA. {λs .R(s, sA)}

c(o) ⟲ r

{λs, s′, v. ∃s ′A.R(s
′
, s ′A) ∧ step(o)(sA, s

′
A,v)}

{λs, s′, _. ∃s ′A.R(s
′
, s ′A) ∧(

 A(sA, s
′
A) ∨ (step(o) ·  A)(sA, s

′
A)
)
}

This is simply a slight rephrasing of recover-op and recover-
ret from the definition of recovery refinement.
Proving recovery specs directly is hard, since they mix

reasoning about the behavior of the program e and the recov-
ery procedure r . Instead, CHL relies on another judgment, a
crash spec, of the form {P } e {Q}{Q }. Crash specs have the
same interpretation for the precondition P and postcondition
Q . However, instead of the recovery condition, they have a
crash conditionQ , where if e crashes in state s2 at any point
during its execution starting from s1 (that is, if the program
halts followed by the effects of a crash  ), then Q (s1, s2, ⟨⟩)

must hold.4 The crash specification is defined as

{P } e {Q}{Q } ≜ (JeK ⊆ specRel(P,Q))

∧ (JeK ⊆ specRel(P,Q ))

Rules for proving crash specs are shown in Figure 7. The
rule prim-op lets us deduce specs for primitive operations.
Its reading is straightforward: if the operation o executed
normally, then the relation between the starting and end-
ing states is precisely described by step(o), so this becomes
the postcondition. Otherwise, if there was a crash, it either
happened before or after step(o) finished, so the crash condi-
tion is the non-deterministic choice between  immediately
occurring or taking place after o runs. We chain together
crash specs with the rule seqencing, a monadic variant of
the usual Hoare sequencing rule. Finally, we have the rule
conseqence, which as usual lets us strengthen preconditions
and weaken postconditions, while also weakening the crash
condition.

Using these rules, we can first derive crash specs for pro-
grams and the recovery procedure itself. CHL then provides
the following idempotence rule, which we use to derive a
recovery spec from a crash spec:

idempotence

{P } e {Q}{Q }
{P ′} r {S}{Q } ∀s1, s2.Q (s1, s2, ⟨⟩) → P ′(s2)

{P } e ⟲ r {Q}{S}

4The FSCQ paper [8] and corresponding thesis [6] also use the term łcrash
specž, but they use the term to refer to an invariant that holds if the program
halts at any time, not incorporating the effect of a crash.

The premises of this rule ensure that the crash conditions
for e and r followed by a crash must imply the precondition
for r . This is necessary because r may itself crash. Then, in
the derived recovery spec, the postcondition comes from the
postcondition of e , and the recovery condition is r ’s postcon-
dition. Note that the crash condition is this specification is
an invariant over crashes during recovery. However, when
applying CHL to recovery refinement, different operations
can use different specifications for the recovery procedure,
and thus can use different invariants (our examples do indeed
exploit this property).
Although this rule captures the main principle behind

going from crash to recovery specs, it is not convenient to
use as stated. The reason is that often the crash spec one
proves about the recovery procedure is of the form:

∀a. {P(a)} r {Q(a)}{Q (a)}

That is, we quantify at the meta-level over some variable a
which all assertions in the Hoare quadruple depend upon.
Often, this a represents state from an abstract interface, and
then the assertions in the quadruple can state how the effects
of r correspond to operations applied to this abstract state.

The problem that arises whenwe try to use the rule idempo-
tencewith such a specification is that we would need to pick
a single fixed value to instantiate a with. However, this does
not work: the abstract state we are simulating may change
as a result of a crash, meaning that the crash condition of the
recovery procedure does not imply the precondition with
the same choice for a.

To resolve this issue, we prove the following stronger rule:

idempotence-ghost

{P } e {Q}{Q } (∀a. {P ′(a)} r {S(a)}{Q ′ (a)})
∀s1, s2.Q (s1, s2, ⟨⟩) → ∃a. P

′(a, s2)

∀s1, s2,a.Q
′
 (a)(s1, s2, ⟨⟩) → ∃a

′
. P ′(a′, s2)

{P } e ⟲ r {Q}{λs1, s2 . ∃a. S(a)(s1, s2)}

In this version, the a we quantify over at the meta (Coq) level
is a kind of auxiliary łghost-statež, and it may change each
time recovery crashes: from the crash condition followed by
a crash stepwe only need to show that there exists some a′ for
which the preconditionwill hold. Below the line, the recovery
condition then holds for some existentially quantified a′.
As we’ll see in the examples in section 6, we use this a to
encode a kind of state transition system that recovery moves
through.

CHL does not have a sequencing rule to extend a recovery
spec {P } e ⟲ r {Q}{QR } with an additional recovery proce-
dure r ′. The only option in CHL is to re-prove the premises of
the idempotence rule with the extended recovery procedure
_← r ; r ′. This is the limitation that makes it infeasible to
reason about layered recovery with CHL alone. However,
this is no longer a problem in the context of Argosy, since
we only use CHL to prove recovery refinement for a single
implementation at a time, and then use Argosy’s general
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prim-op

{True} o {step(o)}{ + step(o) ·  }
ret

{True} ret v {ret v}{ret ⟨⟩}

seqencing

{P } e {S}{Q } (∀s1, s2,v . S(s1, s2,v) → S ′(s2)) (∀v . {S ′} f (v) {Q}{Q })

{P } x ← e ; f (x) {Q}{Q }

conseqence

P → P ′ Q ′→ Q Q ′ → Q {P ′} e {Q ′}{Q ′ }
{P } e {Q}{Q }

Figure 7. Inference rules for crash specs.

transitivity theorems to reason about a whole stack of com-
posed implementations.

6 Examples

We now return to the motivating example from the introduc-
tion, and describe recovery-refinement proofs for the disk
replication and write-ahead logging implementations. These
examples are intended to illustrate how CHL enables recov-
ery reasoning within Argosy for individual refinements. The
logging design we use is comparable to the log used in the
original FSCQ paper [8] and in Yggdrasil [28], although it is
simplified compared to the followup system DFSCQ [7] or
the journaling in Linux’s ext4 file system. We believe both
implementations demonstrate the main issues that arise in
crash and recovery reasoning and that Argosy could be used
to verify designs that give better performance with more
engineering work.

6.1 Disk Replication

Disk replication implements an interface exposing a robust
one-disk single disk on top of two unreliable disks. We as-
sume that at least one of the two disks in the system is
functional, so the state in the two-disk interface consists of
either two active disks, written TwoDisks(d0,d1) or a single
disk tagged with an identifier id , writtenOneDisk(id,d). The
interface provides operations to read, write, and get the size
of a disk, all taking a disk id as a parameter. Just before each
operation, if both disks are active, one of them may fail (this
is independent from system crashes, which halt execution
and trigger recovery). The system may thus transition from
TwoDisks(d0,d1) toOneDisk(id,did ), at which point the sys-
tem will continue to run with a single disk. If an operation
attempts to access a failed disk, then it returns an error code.

The robust one-disk interface that replication implements
is straightforward. The state consists of a single disk, again
modeled as a list of blocks. Crashes halt system execution but
leave the disk unchanged. This interface provides the same
read, write, and size operations, without a disk id parameter.

Wewill refer to the implementations of these operations in
the two-disk interface as Write, Read, and Size, respectively.

These implementations are simple.Write(a,blk) writes blk
to address a in both of the disks. Read(a) first tries to read
a in disk 0. If this succeeds, it returns the corresponding
value, and otherwise it reads and returns a from disk 1. Size
similarly tries to query the size of disk 0, and then tries disk
1 if necessary. The initialization procedure checks that the
two disks are the same size, and zeros out all blocks in both
of them.

Setting aside crashes momentarily, why does this correctly
implement the one-disk API? The relationship is captured by
a simple abstraction relation maintained by replication: the
two disks, if they are both active, are equal to some disk d
representing the state of the one-disk interface. To state this
more formally, we introduce some notation to give the status

of the disk(s). Given a two-disk state s , we define s
?
= (d0,d1)

as follows:

s
?
= (d0,d1) ≜




d0 = d
′
0 ∧ d1 = d

′
1 if s = TwoDisks(d ′0,d

′
1)

d0 = d if s = OneDisk(0,d)

d1 = d if s = OneDisk(1,d)

Then the abstraction relation maintained by the implemen-

tation is absr ≜ λs,d . s
?
= (d,d).

However, this abstraction is broken if the system crashes
in the middle of a write, when only the first disk has been
updated. The situation is summarized by the halt spec we
proved for Write, which is shown in Figure 8. The precon-
dition assumes the abstraction relation holds between the
initial state and some disk d . The halt condition has three
cases, corresponding to a crash before the entire operation,
after the entire operation, and in the middle of Write.

The recovery procedure Recv restores the abstraction rela-
tion in a situation like this. It works by iterating through all
addresses, copying from disk 0 to disk 1. If it notices that one
of the disks has failed (because an operation returns an error
code), it stops. We have proven two specifications for this
procedure, shown in Figure 9, because the effects of recov-
ery depend on whether the disks were originally the same
(łsynchronizedž) or different (łout-of-syncž). In the former
case, the disks stay the same in both the postcondition and
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{λs1. s1
?
= (d,d)} Write(a,blk)

{λs1, s2, r . s2 ?
= (d[a := blk],d[a := blk])}

{λs1, s2, r . s2
?
= (d[a := blk],d[a := blk]) ∨ s2

?
= (d,d)

∨ s2
?
= (d[a := blk],d) }

Figure 8. Halt spec for replicated disk writes. (d is univer-
sally quantified.)

Synchronized Spec:

{λs1. s1
?
= (d,d)} Recv

{λs1, s2, r . s2 ?
= (d,d)}{λs1, s2, r . s2 ?

= (d,d)}

Out-of-sync Spec:

{λs1. s1
?
= (d[a := blk],d)} Recv

{λs1, s2, r . s2 ?
= (d[a := blk],d[a := blk]) ∨ s2

?
= (d,d)}

{λs1, s2, r . s2
?
= (d[a := blk],d[a := blk]) ∨ s2

?
= (d,d)

∨ s2
?
= (d[a := blk],d) }

Figure 9. Halt specs for replicated disk recovery.

the halt condition. In the latter case, where disk 0 contains
an additional write setting a to blk in d , the final state can
vary. In the postcondition, either the write to a is copied
to disk 1 or disk 1 fails, so that the abstraction relation is

restored with s2
?
= (d[a := blk],d[a := blk]); or disk 0 itself

fails before the write is copied, in which case the abstraction
relation holds with disk d instead. When this happens, it is
as if the entire high-level write did not take place. The halt
condition contains cases for these two scenarios, but also
one where the disks remain out-of-sync.

It is helpful to visualize what can happen during recovery
with the following state transition system:

(d,d)

(d[a := blk],d)

(d[a := blk],d[a := blk])

syncout-of-sync

sync-write

Each node is labeled with what s is
?
= related to. If the disks

are synchronized (sync and sync-write states), then they
stay so. However, if they are not (out-of-sync) then the
system can ultimately transition to either, or stay in the
middle state while repeatedly crashing.

We use this state transition system to establish the premises
of idempotence-ghost, in order to prove a recovery spec for

commit?
length n

256
addrs

b1 . . . b256 . . .

Physical Layout

Logical Layout

(commit?, (a1,b1) :: . . . :: (an,bn) :: nil,dold )

header descrip. log values data region

Figure 10. Physical and logical layout with write-ahead log-
ging.

Write. The ghost state a we use in the rule is the state of a
node in the above transition diagram, and on the basis of
that state we use either the synchronized spec or out-of-sync
spec for recovery. We obtain the following recovery spec for
Write:

{λs1. s1
?
= (d,d)}

Write(a,blk) ⟲ Recv

{λs1, s2, r . s2 ?
= (d[a := blk],d[a := blk])}

{λs1, s2, r . s2 ?
= (d[a := blk],d[a := blk]) ∨ s2

?
= (d,d)}

The disjuncts of the recovery condition show that the ab-
straction relation holds for some appropriate disk, in which
the write either did nothing or succeeded atomically, which
is precisely what we need to establish the obligations of re-
covery refinement for this operation. We reason about the
other operations similarly.

6.2 Write-Ahead Logging

Write-ahead logging implements the transactional disk in-
terface described in Figure 2 on top of the one-disk interface.
Recall that in the transactional interface, the state is a pair
of disks (dold ,dnew ) where dold represents the persistent
state of the disk before the current transaction, and dnew
represents what the state will be if the current transaction
is committed. Reads return values from dold , while writes
modify dnew . The commit operation replaces dold with the
current dnew , and crashes do the opposite.
To implement this interface on top of a single disk, we

use write-ahead logging. The system uses a region of disk to
keep track of the current transaction in the form of a log. The
log holds the writes in dnew that are not yet committed to the
data region dold , which is represented by the rest of the disk.
The transaction is stored separately so that upon crash the
system can revert the disk by ignoring the pending writes
and clearing the log. Committing these writes needs to be
atomic even if the system crashes, so the commit operation
first sets a commit flag to true on disk and then applies the
writes in the log; if the system crashes in the middle, it checks
the commit flag and if it is true, re-applies the log. Crucially,
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re-applying parts of the log is equivalent to applying once,
since these are overwrites of disk blocks.
The logical state tracked is a tuple (b, loд,d) where b is

a boolean commit flag, loд is a list of address-value pairs
representing the current transaction, and d is the data re-
gion. Given a physical state (a disk) s , we write s ∼ (b, loд,d)
to mean that s decodes into that tuple. The physical rep-
resentation that encodes the logical state into disk blocks
is depicted in Figure 10. The log header contains both the
commit flag and the logical length of the log. The data in
the log is stored in two fixed-size regions: a descriptor block
encodes addresses and a log value region of 256 blocks holds
the data for the current transaction’s writes. The length of
the log in the header determines how many of these address-
value pairs are part of the log, while the rest are ignored. For
simplicity we use a single descriptor block for addresses, and
since we use 1KB blocks and 32-bit values for addresses, this
limits transactions to 256 writes.
The implementation of read is straightforward, as it sim-

ply accesses the corresponding block in the data region, after
first shifting the address by the size of the log. The imple-
mentation of write(a,blk) first accesses the header block to
figure out how long the current transaction is. If there is no
space left in the log, it returns an error code. Otherwise, it
writes back the header block with the length incremented
by 1, then updates the descriptor block to store a, and fi-
nally writes blk to the corresponding slot in the log value
region. The commit implementation first reads the header
block and writes it back with the committed bit set to true. It
then calls a function doApply which actually applies all the
operations: it loads the descriptor block to get the addresses
for the writes that need to be applied, then iterates through
each operation in the log and performs the corresponding
write. Once all operations have been done, or if the commit
flag was initially false, it writes back the header block setting
the commit flag to false and the length to 0.

The abstraction relation is:

absr ≜ λs, (dold ,dnew ). ∃loд. s ∼ (False, loд,dold )

∧ logApply(loд,dold ) = dnew

where logApply is just a pure Coq function which represents
the effects of applying each operation in the log to a disk.
The abstraction relation states the current transaction is
uncommitted, and that the new disk is exactly what the
logical disk would contain if the log were applied. The halt
specs for the read and write operations are straightforward.
For instance, the spec for write says that it appends an entry
to the log list.
The recovery procedure checks if the log is committed,

and if so, calls the doApply subroutine used to finish a com-
mit. Much of the time the transaction is uncommitted and in
case of a crash the commit flag is false, so to recover doApply
simply clears the log by setting its length to 0. This reverts
dnew to dold , which is the specified crash behavior in the

Two disks

Single disk

Transactional API

Mrep (ğ6.1)

Mlog (ğ6.2)

CHL
Mrep ◦ Mlog

(Thm. 7)

Correctness
(Thm. 6)

Figure 11. The verified composed stack. Each layer is inde-
pendently verified using CHL as described in each imple-
mentation’s subsection, then the two recovery refinements
are composed to produce an overall correctness theorem.

transactional disk API. The interesting case is when a crash
occurs during a commit or recovery itself when the transac-
tion in the log is committed but not yet applied. To carry out
the idempotence proof, it’s again helpful to visualize things
as a state transition system. Suppose that before the crash,
the last time the abstraction relation held, the abstract state
was (dold ,dnew ), and the logical list representing the log was
loд. Then, we have the following states and transitions:

s ∼ (False, loд,dold ) s ∼ (False, nil,dold )

∃d . s ∼ (True, loд,d)

∧ logApply(loд,d) = dnew
s ∼ (False, nil,dnew

aborting aborted

applying
applied

where each node is labeled with what physical states it cor-
responds to. When the system crashes without committing
and a partial transaction in the log it is in the aborting state.
Eventually the transaction is aborted by clearing the log (ig-
noring the partial transaction), transitioning to aborted.
The applying state corresponds to a crash after the commit
flag has been set but before all the writes in the log have
been applied to the data region. The invariant here is that
whatever the current physical data region is, if doApplywere
to apply everything in the log to it, it would end up equal to
dnew . This continues to hold even after a crash in the middle
of doApply, because applying a prefix of the log a second
time has no effect. Eventually recovery will finish applying
all of these operations and move to the applied state. From
either aborted or applied the desired abstraction relation
holds.

6.3 Composing Replication and Write-Ahead

Logging

We illustrate the overall result of our example development
in Figure 11. Applying Theorem 7 to the two refinements
we have established, we get a single implementation, which
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recovers the replicated disk followed by the log on crash.
Because the composition is a recovery refinement, Theorem 6
shows that for any sequence of interactions, including with
crashes and recovery, the implementation behaves as the
transactional API promises.

7 Implementation

We implemented Argosy in the Coq proof assistant [29].
The code is open source and available at https://github.com/

mit-pdos/argosy. We give a breakdown of the code in the
framework below, with non-comment, non-blank lines of
code. The entire framework is 3,200 lines of code, around half
of which is in re-usable libraries. The relation library includes
many theorems that hold in Kleene algebras (adjusted to our
typed, monadic setting) with some automation for equational
reasoning.
Our two example refinements use a shared array library

for reasoning about disks as arrays of blocks. Disk replica-
tion is around 1,300 lines, while logging, which has a more
complicated recovery proof, is around 2,000. Much of the
code in these examples comes from proving and especially
stating many intermediate CHL specifications.

Component Lines of code

Core framework 1,440
Relation library 1,020
Reusable libraries 740
Argosy total 3,200

Array library 530
Disk replication proof 1,350
Write-ahead logging proof 1,950
Examples total 3,830

In order to demonstrate that Argosy can be used to build
working systems, we used Coq’s extraction feature to run the
composed logging and replication implementation. First we
extract the Gallina implementation to Haskell. An interpreter
written in Haskell runs the two-disk layer primitives, and a
command-line interface exposes the logging API.

The resulting system has several trusted components. We
trust that the semantics of the lowest layer (with two unre-
liable disks) is correctly implemented by our Haskell inter-
preter, and that the combination of extraction and the GHC
compiler preserve the behavior of the Coq implementation.
We trust that Coq checks the proofs correctly. Finally, we
trust that the top-level specification reflects the intended
behavior of the system.

8 Conclusion

Argosy is a framework for verifying storage system that sup-
ports layered recovery procedures and modular proofs. We
introduce the notion of recovery refinement, a set of condi-
tions for an implementation and its recovery procedure, that
(1) guarantees correctness for clients of the specification,

and (2) composes with other recovery refinements to prove
a whole system correct. The semantics and refinement are
modeled with combinators inspired by Kleene algebra, which
informs our metatheory. To prove each implementation is a
recovery refinement Argosy has an implementation of Crash
Hoare Logic. We used Argosy to modularly verify an exam-
ple of layered recovery, write-ahead logging implemented
on top of a replicated disk.
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