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Abstract—Participatory civil issue monitoring has emerged as
an easy way for concerned citizens to report problems to their
local government. For reported issues to be timely processed and
addressed however, accurate, online and real–time processing
methods to infer issue types are necessary. To address this
challenge, we propose a computational, near–real–time civil issue
reports processing method to estimate the actual issue from
ambiguous and/or complementary information accurately and
efficiently. We demonstrate the effectiveness of the proposed
approach using a real–world dataset from SeeClickFix. We show
that our approach is both highly accurate and scalable.

I. INTRODUCTION

The wide spread of Internet–enabled, location–aware, smart

phone devices over the past 15 years has enabled all kinds

of users, regardless of their technical background and com-

petency, to gather and share data. This has led to new

“Government 2.0” applications [1], through which citizens can

actively participate to e.g., measure air quality [2], map fuel

consumption on city streets [3], predict bus arrival times [4],

and even hunt for grocery bargains [5]. On the other hand,

platforms for crowdsourced, mobile participatory civil issue

reporting such as FixMyStreet [6] in the UK and SeeClickFix

[7] in the US, have emerged lately to assist concerned citizens

to report problems to government agencies regarding their

local environment through easy–to–use technology.

The possibility to be heard on issues and the ability to

actively shape and connect to the urban spaces they live

in provides citizens with a strong intrinsic motivation to

enhance their living environment, resulting in a high degree of

participation in civil issue monitoring [7]–[9]. Administrative

bodies and policy makers can utilize such participatory sensing

data to gather information on civil issues in urban spaces,

however, they can count on the continuous engagement of

concerned citizens only if reported issues are timely processed

and addressed. Even though the automatic classification of

issues [10], their significance [11] and duplicate issues iden-

tification [12] have been previously explored, the scalability

and timeliness of such methods have largely been ignored.

Moreover, the concreteness of reported issues depends on the

reporter; the actual status and demand may not be described

clearly or either one may be misdescribed in the report, leaving

officials scrambling about what the actual problem may be.

This material is based upon work supported by the National Science
Foundation under Grant No. ECCS–1737443.

Finally, currently, each request must be manually evaluated

and acknowledged by a city official before being routed to the

appropriate agency or maintenance crew that is sent out to fix

the issue. Needless to say, this approach does not scale.

To address the aforementioned challenges, we propose a

computational, near–real–time civil issue reports processing

approach to estimate the actual issue from ambiguous and/or

complementary information such as textual descriptions and

photographs and assign reported issues to the appropriate au-

thorities accurately and efficiently. We formulate this problem

as a sequential hypothesis testing problem, in which features

extracted from issue reports are examined to infer the type of

issue as quickly as possible while ensuring that the risk of

missclassification is low. We show that the optimal strategy

in this decision problem is an optimal stopping rule: features

are sequentially reviewed starting from the most informative,

and at each step, the framework decides when to stop. Once

stopped, it can classify an issue based on features examined

thus far, and “safely” ignore the remaining features. Unlike

state–of–the–art classifiers that rely on a fixed set of features

for classification once trained, the optimal number of features

used by our approach to categorize a reported issue is a

function of the cost corresponding to the time and effort spent

evaluating each feature, and the classification quality. Given

the limited memory and time requirements of real–world

systems, our approach provides a viable, realistic solution

to participatory civil issue monitoring by efficiently utilizing

computational resources rather than invariably applying a

“brute force” classification using all features for all issues.

II. SEECLICKFIX PLATFORM & DATA COLLECTION

SeeClickFix, a community advocacy tool designed to bridge

the communication gap between residents and their local gov-

ernments about non–emergency issues (e.g., parking violation

or need for snow removal), allows citizens to collectively

improve their communities by simply “Taking a photo of

a pothole or other problem, geo–locate it and hit submit.

SeeClickFix publicly documents the issue and notifies local

governments and others who resolve the problem” [7]. Other

users can view and support issues in the form of “Thanks”

votes (similar to the “like” functionality in online social

media). Authorities (i.e., a verified account associated with

a city official) acknowledge the issue (and, if needed, direct
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TABLE I: Information associated with an issue in SeeClickFix.
Data field Description

Issue ID A unique 6-to-7 digit ID for each posted issue

Title Title of the issue

Status Signifies attention paid by authorities; one of “Open”,
“Acknowledged”, or “Closed”

Address Location of the issue

Image A user–provided photo (limit of one per issue)

Reporter ID A unique 4–to–6 digit ID for registered users

Reporter Name Screen name of registered users

Votes Count Number of up–votes the issue received from users

Thanks Count Number of “Thanks” the issue received from users

Category The type the issue belongs to

Reported Time Date and time in UTC ± 0

Reported Via Medium used to report an issue

Tags User–defined keywords for the purpose of simplifying
the discovery of “similar” issues by other users

Description Short comment provided by the user reporting the issue

Q&A Answers to predefined questions

Total Comments Total number of comments

Comment List Comments associated to an issue; each comment has
(i) a unique 6–to–8 digit ID, (ii) ID of the user who
commented, (iii) status, (iv) image (used to provide
additional photos), (v) comment text, (vi) time

it to the appropriate agency or maintenance crew), which is

subsequently resolved, at which time it is marked as “closed”.

In this work, we collected a total of 2, 195 SeeClickFix

issues for the metropolitan area surrounding Albany, the

capital of the U.S. state of New York, spanning a time period

between Jan 5, 2010 and Feb 10, 2018. Albany is the 4th

largest metropolitan region in the state and the 45th largest

in the US. Even though issues are publicly available through

SeeClickFix1, we provide a clean version of our dataset on

our website2 to improve the reproducibility of our results, and

to promote sustainable and comparable research in the future.

Each issue comprises information summarized in Table I. In

total, there are 34 categories broadly divided into genres,

including but not limited to, parking enforcement, repairs (e.g.,

potholes or overgrown trees), trash, parks and recreational

areas, noise, and housing. Despite the fact that a large portion

of the reports (68.6%) have been manually categorized by

concerned citizens, with the majority of issues being related to

parking enforcement (221), code violations (187), and traffic

signals (135), 31.4% of the reported issues have no associated

category. We provide two possible explanations of the high

percentage of uncategorized reports: (i) category choices are

tailored by SeeClickFix to the physical address provided by

the user, and (ii) Albany authorities began their partnership

with SeeClickFix in May 2013 leading to the introduction of

individual categories in the beginning of 2014; before 2014,

all issues reported are uncategorized.

We used labels to: (i) assess supervised classification models

(i.e., machine learning models trained on the already manually

classified data to learn to distinguish between issue types),

and (ii) evaluate the performance of the proposed approach

on previously “unseen” issues. We considered features directly

extracted from issues’ title, description, and tags. These intu-

itively capture the users’ intent to categorize an issue using

1https://seeclickfix.com/albany-county
2https://www.albany.edu/∼dz973423/projects/nsf-scc-2017/

the SeeClickFix portal website or mobile app. We tokenized

sentences into unigrams, removed punctuation (e.g., periods,

commas, and apostrophes), stopwords (e.g., “a”, “the”, and

“there”), and digits (e.g., “8th” and “31st”), and stemmed each

word to its root (e.g., replace “parked” with “park”). Feature

values correspond to the number of times a specific word or

tag appears in the issue report. We excluded words present in

≥ 95% and ≤ 2% of all issues, respectively.

III. PROBLEM DESCRIPTION

In this section, we formalize the problem of automatically

inferring an issue’s type from participatory reports with high

accuracy while accounting for the effort of the framework in

improving its chances of reaching highly accurate conclusion.

We describe our model and define our optimization function.

A. Description

We consider a set I of issues (i.e., issues reported by

citizens on SeeClickFix), were each issue i ∈ I has been

reported by a user u ∈ U , and has an associated title,

description, tags, and media object (i.e., photo), along with

a set of comments from users in U . Each issue i is described

by a vector f(i) = {y1, y2, . . . , yK} of features, where K

is the total number of features and yk ∈ Y . For illustration

purposes, we assume that each issue i may belong to one

of two hypotheses: HC1
, which denotes the true hypothesis

that i is of type C1, or HC2
, where i is of type C2. We pose

the challenge of automatic determination of the type of each

reported issue as a sequential hypothesis testing problem and

use an additive feature score to encode the belief that i is an

instance of one class versus another.

For each feature yn, the probability p(yn|HC1
) (similarly

p(yn|HC2
)) of the evaluation of the nth feature to observe

value yn when the true hypothesis is HC1
(similarly for true

hypothesis HC2
) is empirically computed from training data.

The a priori probability P (HC1
) = p of i being an instance

of C1 is also estimated empirically. The probability of i being

an instance of C2 can be computed as P (HC2
) = 1− p.

To calculate the belief for i, the framework evaluates

features sequentially as illustrated in Fig. 1. At each step, the

framework has to select between stopping and continuing the

evaluation process based on the accumulated information thus

far and the cost of reviewing additional features. The cost

coefficient cn > 0, where n = 1, . . . ,K, represents the value

of time and effort spent evaluating the nth feature. We also

consider misclassification costs Mmj � 0,m = C1, C2, j =
1, . . . , L, where Mmj denotes the cost of selecting type j

when the true hypothesis is Hm, and L denotes the number of

decision choices (e.g., C1 and C2). We factor misclassification

costs into our approach to quantify the relative importance of

detection errors. Note that a model that includes costs may

not produce fewer errors than one that does not, and may not

rank any higher in terms of overall accuracy, but it is likely

to perform better in practical terms because it has a built–in

bias in favor of less expensive errors towards one class versus

another.
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Fig. 1: Sample posterior probability evolution for HC1 : “Code violations” (upper plot) and HC2 : “Signs” (lower plot) issues

as more features are extracted and evaluated.

We now formally describe our proposed sequential eval-

uation process to minimize the number of features used to

accurately classify issue i. Specifically, our proposed sequen-

tial evaluation process comprises a pair (R,DR) of random

variables. Random variable R (referred to as stopping time

in decision theory) takes values in the set {0, . . . ,K}, and

indicates the feature that the framework stops at. Random

variable DR denotes the possibility to select among L choices.

It depends on R and takes values in the set {1, . . . , L}. As

an example, when L = 3, DR = 1 corresponds to “C1 issue”,

DR = 2 denotes “C2 issue”, and DR = 3 indicates “human ex-

pert inspection required”. Assuming that the random variables

yn are independent under each hypothesis Hm,m = {C1, C2},

the conditional joint probability of {y1, . . . , yn} is given as

P (y1, . . . , yn|Hm) =
∏n

k=1 p(yk|Hm). Both the decision to

stop at stage n (i.e., the event {R = n}), and the selection of

possibility j (i.e., DR = j) depend only on the accumulated in-

formation {y1, . . . , yR} by the stopping time R. Equivalently,

features that may be examined in the future are not used.

B. Optimization Setup

To minimize the number of features considered for classi-

fying issues without sacrificing accuracy, the stopping time R

and the classification rule DR have to be selected. To this end,

we first define the following cost function:

J(R,DR) = E

{ R∑

n=1

cn+

L∑

j=1

∑

m=C1,C2

MmjP (DR = j,Hm)

}
.

(1)

The first expression in the cost function regularizes the number

of features, whereas the second expression penalizes the aver-

age cost of our classification rule. Our goal can be interpreted

as finding the minimum average cost with respect to both

random variables R and DR, i.e., min
R,DR

J(R,DR), to derive

the optimal stopping and classification rules. To prove that

the optimal rule is to stop at corresponding stopping time R,

we must first show how to obtain the optimum classification

rule DR for any given stopping time R. Once the optimal

classification rule has been established, the resulting cost

becomes only a function of R, and can thus be optimized

with respect to R. Since DR depends only on the accumulated

information {y1, . . . , yR} by stopping time R, the a posteriori

probability πn � P (HC1
|y1, . . . , yn), which corresponds to a

sufficient statistic of the accumulated information, must be

updated as more features are extracted and evaluated. Lemma

1 shows how to compute πn iteratively.

Lemma 1. The posterior probability πn when the nth feature

is evaluated to generate outcome yn, and π0 = p, is:

πn =
p(yn|HC1

)πn−1

πn−1p(yn|HC1
) + (1− πn−1)p(yn|HC2

)
, (2)

Using Lemma 1 and the fact that xR =
∑K

n=0 xn {R=n}

for any sequence of random variables {xn}, where A is the
indicator function for event A (i.e., A = 1 when A occurs,
and A = 0 otherwise), the average cost in Eq. (1) can be
written compactly as:

J(R,DR) = E

{ R
∑

n=1

cn

}

+ E

{ L
∑

j=1

(

MC1jπR +MC2j(1− πR)
)

{DR=j}

}

. (3)

IV. OPTIMAL STRATEGIES

A. Classification Strategy

In order to obtain the optimal classification rule DR for any

stopping time R, an independent of DR lower bound for the

second part of Eq. (3) is needed. Since DR contributes only

to this portion of the average cost, the optimal classification

rule DR for a given stopping time R can then be derived.

Theorem 2 provides such bound.

Theorem 2. For any classification rule DR given stopping

time R,
∑L

j=1

(
MC1jπR +MC2j(1− πR)

)
{DR=j} � g(πR),

where g(πR) � min1�j�L

[
MC1jπR + MC2j(1 − πR

)]
. The

optimal rule is defined as follows:

D
optimal
R = argmin1�j�L

[
MC1jπR +MC2j(1− πR

)]
. (4)

From Theorem 2, J(R,D
optimal
R ) � J(R,DR), since the

optimal classification rule results to the smallest average cost.

Based on the this fact, Eq. (3) can be written as follows:

J̃ � J(R,D
optimal
R ) = min

DR

J(R,DR) = E

{ R∑

n=1

cn+g(πR)

}
,

(5)

which depends only on the stopping time R.
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B. Stopping Strategy

The solution for optimizing J̃ with respect to R can be

determined by solving the optimization problem:

min
R�0

J̃(R) = min
R�0

E

{ R∑

n=1

cn + g(πR)

}
, (6)

which constitutes a classical problem in optimal stopping

theory for Markov processes [13]. We derive our optimal

stopping strategy as described in Theorem 3 based on the

observation that (i) the optimum strategy will consist of a

maximum of K + 1 stages since R ∈ {0, 1, . . . ,K}, and (ii)

the solution we seek must also be optimum, if instead of the

first stage we start from any intermediate stage and continue

toward the final stage [14].

Theorem 3. For n = K − 1, . . . , 0, the function J̄n(πn) is

related to J̄n+1(πn+1) through the equation:

J̄n(πn) = min

[
g(πn), cn+1 +

∑

yn+1

An(yn+1)×

J̄n+1

(
p(yn+1|HC1

)πn

An(yn+1)

)]
, (7)

where An(yn+1) � πnp(yn+1|HC1
) + (1 − πn)p(yn+1|HC2

)
and J̄K(πK) = g(πK).

The optimal stopping strategy derived by Eq. (7) has a

very intuitive structure, i.e., stop at the stage where the

cost of stopping (the first expression in the minimization)

is no greater than the expected cost of continuing given

all information accumulated at the current stage (the second

expression in the minimization). Specifically, at each stage n,

our method faces two options given πn: (i) stop evaluating

features and select optimally between the L possibilities,

or (ii) continue and evaluate the next feature. The cost of

stopping is g(πn), whereas the cost of continuing is cn+1 +
∑

yn+1
An(yn+1)J̄n+1

(
p(yn+1|HC1

)πn

An(yn+1)

)
.

C. Practical Considerations and Implementation

In this section, we describe ACTION, a novel algorithm

for Automatic classification of civil issue reports with optimal

online feature selection based on Theorems 2 and 3. Initially,

the posterior probability π0 is set to the prior probability p of

an issue being an instance of type C1, and the two terms in

Eq. (7) are compared. If the first term is less than or equal to

the second term, ACTION stops and classifies the issue based

on the optimal rule of Eq. (4). Otherwise, the first feature is

evaluated. ACTION repeats these steps until either it decides to

stop, at which case it classifies the issue using < K features, or

all features are evaluated, in which case the issue is classified

using all K features.

Note that the K + 1 functions J̄n(πn), n = 0, 1, . . . ,K,

are calculated using Theorem 3 by quantizing the inter-

val [0, 1] and computing the corresponding values. This

computation relies only on a priori information to pro-

duce a (K + 1) × d matrix, where each row corresponds

to the value of the J̄n(·) function for different values

of πn ∈ [0, 1]. This computation needs to be performed

only once and can be pre–calculated. Furthermore, proba-

bilities p(yn|HC1
), p(yn|HC2

), n = 1, . . . ,K, yn ∈ Z�0, are

empirically estimated from training data as p̂(yn|HC1
) =

N(yn,C1)∑
y′
n
N(y′

n,C1)
and p̂(yn|HC2

) = N(yn,C2)∑
y′
n
N(y′

n,C2)
, where

N(yn, C1) and N(yn, C2) denote the number of issues that

give rise to outcome yn after extracting and evaluating the nth

feature and constitute C1 and C2 issues, respectively. We also

estimate the a priori probabilities as [P (HC1
), P (HC2

)]T =

[p, 1 − p]T =

[
NC1

NC1
+NC2

,
NC2

NC1
+NC2

]T
, where NC1

and NC2

denote the number of issues in the training set that constitute

C1 and C2 issues, respectively. Hence the complexity of

calculating J̄n(πn) is independent from the actual number of

issues, which can be huge.

Finally, the ordering of features is crucial to the computation

of the optimum average cost J̄0(π0). Consider for example

the case of two features y1 and y2, where y1 is the number

of appearances of keyword “sign”, and y2 is the number of

tags in an issue. The appearance of the type name (e.g., sign)

in the title of an issue would intuitively discriminate issues

better than the number of tags. Thus, if feature y2 was to

be examined first, it would be very probable for feature y1
to be examined as well to improve the chances of accurate

classification. Alternatively, if y1 was to be evaluated first,

our framework could reach a decision using one feature only.

To avoid the computational complexity of evaluating all K!
possible feature orderings, we sort features in increasing order

of cn(εC1
+ εC2

) to promote low cost (i.e., cn) features that at

the same time are expected to result in few errors (i.e., εC1
+

εC2
). To implement this heuristic, we find where the mass of

observations lie for each issue type, and sum the probabilities

that are left out. Our framework can be easily extended to

accommodate other heuristics.

V. NUMERICAL RESULTS

In this section, we present the evaluation of ACTION and

compare its performance to (i) a linear SVM classifier [10],

and (ii) a standard Bayesian detection approach [15] that uses

all features. In our experiments, L is set to 2 (i.e., issues may

belong to one of two categories), varying feature costs cn ∈
{0, 0.00001, 0.0001, 0.001, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 10} and

misclassification costs MC12,MC21 ∈ {1, 1.5, 5, 10, 25, 50}
are considered, and five–fold cross validation results are

reported. To test the robustness of ACTION, we experimented

with three overlapping scenarios of closely related categories:

(i) “Code Violations” and “Signs”, (ii) “Parking Enforcement”

and “Code Violations”, and (iii) “Parking Enforcement” and

“Signs”. In each case, a balanced training (and testing) dataset

is created comprising ∼ 300 issues from each corresponding

type, whereas the total number of features considered

surpasses 1K (1, 286, 1, 064, and 1, 111, accordingly).

Fig. 2 illustrates the error probability achieved by ACTION

as the average number of features used by the algorithm

increases. Results are reported for constant misclassification
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Fig. 2: Probability of error as a function of the expected number of features for (a) “Code Violations” and “Signs”, (b) “Parking

Enforcement” and “Code Violations”, and (c) “Parking Enforcement” and “Signs”, respectively. Insets show the distribution

of number of features used by ACTION to classify issues in each scenario in the case of the smaller error probability.

costs (i.e., MC11 = MC22 = 0 and MC12 = MC21 = 1)

and for varying values of cn when all features have the same

cost (i.e., cn = c). The insets in Fig. 2 show the number

of features used by ACTION to classify issues in the testing

dataset for an average number of (a) ∼ 3.91, (b) ∼ 2.40,

and (c) ∼ 2.29 features, accordingly. For comparison, the

error probability achieved by a standard Bayesian method that

uses all available features is also included in the figure. Both

the SVM and the Bayesian method achieve 98% accuracy

on average, using however ∼ 400 times as many features

as compared to ACTION. We note that in two out of the

three scenarios (i.e., “Code Violations” and “Signs”, “Park-

ing Enforcement” and “Code Violations”), ACTION attains

similar or better accuracy than the Bayesian method using at

least 99.7% less features. This is because the performance

of the Bayesian method is inversely impacted by the highly

noisy features (e.g., similar keywords describing parking and

violations) in our dataset. As expected, when the average

number of features used is small, ACTION exhibits large error

probability. However, as this number increases, performance

improves dramatically. In all cases, ACTION achieves ∼ 98%
accuracy when cn ∈ {0.001, 0.01}; ACTION achieves best

accuracy using ∼ 2.86 features in each case. This corresponds

to at least 99.8% reduction on average in the number of

features used while at the same time significantly improving

the overall classification accuracy. Different values of costs cn
and misclassification costs MC12 and MC21 result in different

error probability values, while trading–off false alarm and

misdetection probabilities.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a sequential hypothesis testing formulation

was proposed to address the problem of automatic classifica-

tion of civil issue requests on an online community advocacy

platform. An optimization function was defined in terms of

the cost of features and the average cost of the classification

strategy, and the optimal solution was determined. The pro-

posed algorithm that implements the optimal solution achieves

at least 50% reduction on the average number of features used

to reach a classification decision. In future work, we plan

to extend our framework so as to exploit the multitude of

available features.
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