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ABSTRACT

Civic engagement platforms such as SeeClickFix and FixMyS-

treet have revolutionized the way citizens interact with local

governments to report and resolve urban issues. However,

recognizing which urban issues are important to the com-

munity in an accurate and timely manner is essential for

authorities to prioritize important issues, allocate resources

and maintain citizens’ satisfaction with local governments.

To this end, a novel formulation based on optimal stopping

theory is devised to infer urban issues importance from am-

biguous textual, time and location information. The goal is

to optimize recognition accuracy, while minimizing the time

to reach a decision. The optimal classification and stopping

rules are derived. Furthermore, a near–real–time urban issue

reports processing method to infer the importance of incom-

ing issues is proposed. The effectiveness of the proposed

method is illustrated on a real–word dataset from SeeClick-

Fix, where significant reduction in time–to–decision without

sacrificing accuracy is observed.

Index Terms— participatory civil issues, issue urgency,

government 2.0, optimal stopping theory, quickest detection

1. INTRODUCTION

In recent years, “Government 2.0” applications [1,2] and civic

engagement platforms have not only enabled citizens to ac-

tively participate in collecting, analyzing and sharing knowl-

edge about their local environments (e.g., measure air qual-

ity [3], map fuel consumption on city streets [4], predict bus

arrival times [5]), but also interact with local governments to

resolve urban issues, such as potholes and noise complaints

(e.g., SeeClickFix [6] and FixMyStreet [7]). At the same

time, local governments can gain a better understanding of

the urban issues faced by their communities, as long as re-

ported issues are timely processed and addressed to maintain

citizens’ participation in urban issue monitoring [6, 8, 9].

Currently, reported issues are acknowledged and assessed

by a city official for routing to the appropriate agency. Need-

less to say, this approach does not scale. Methods for the
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automatic classification [10–12] and identification of dupli-

cate urban issues [13] have been recently proposed. Such ap-

proaches ignore citizens implicit endorsement of urban issues

that are “important” to them. However, recognizing the im-

portance of an issue early on can assist local governments in

prioritizing important issues to better serve their citizens. To

this end, the problem of automatically detecting signs of dan-

ger [14] and/or inferring the “urgency” of urban issues [15]

reported by concerned citizens has recently been explored.

Such supervised methods require large–scale annotation to

achieve good accuracy. Moreover, the scalability and timeli-

ness of such methods have largely been ignored. Finally, sim-

ple text– and emotion–based features are often considered,

ignoring important spatial and temporal factors that have the

potential to facilitate important urban issues recognition.

To address the challenges associated with identifying “im-

portant” issues early on, we formulate this problem as an op-

timal stopping problem, in which features extracted from an

issue report are sequentially evaluated to infer its importance

as fast as possible without sacrificing accuracy. We show that

the optimal solution has a very intuitive structure: (i) features

are sequentially evaluated starting from the most informative,

(ii) at each step, the framework decides whether to stop the

process, and (iii) once stopped, a given issue is assigned an

importance value based on features examined thus far. Based

on this framework, we devise a method to infer the impor-

tance of reported issues from ambiguous information such as

textual description, reported time, and location in near–real–

time. The optimal number of features used by our method de-

pends on the cost representing the time and effort evaluating

each feature and the classification quality. Thus, our approach

provides a viable, realistic and timely solution to the recogni-

tion and prioritization of important urban issues by efficiently

utilizing computational resources rather than blindly relying

on the same fixed set of features for all issues, as done by

state–of–the–art classifiers.

2. PROBLEM FORMULATION

2.1. Description

We consider a set I of issues, where each issue i ∈ I , that has

been reported by a concerned citizen, consists of a title, de-
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scription, address, timestamp, photo(s), and comment(s) from

other citizens. A feature vector fi = [f1, f2, . . . , fK]T , where

K denotes the total number of features extracted from a given

report, is used to represent each issue i, which may belong to

one of two hypotheses HH or HL, the true hypothesis that i

is of high or low importance, respectively.

Although the definition of importance is subjective, issues

that are likely to have a profound effect on many people are

intuitively expected to receive high attention (e.g., quantified

by the number of views and/or comments), be reported from

different sources, and/or persist for a large period of time.

In our modeling, we use the number of votes and comments

received to quantify urban issue importance (see Section 5).

We pose the challenge of automatically inferring the im-

portance of an issue as a quickest detection problem. Specifi-

cally, the proposed framework sequentially evaluates features

fn, n ∈ {1,2, . . . ,K}, one at a time, deciding at each step be-

tween stopping and continuing the evaluation process based

on accumulated information thus far and the cost of reviewing

additional features. Cost coefficient cn > 0, n ∈ {1, . . . ,K},
represents the value of time and effort spent evaluating the

nth feature. We also consider misclassification costs Mkj ⩾

0, k ∈ {H,L}, j ∈ {1, . . . , L}, where Mkj represents the cost

of assigning importance j to issue i when the true hypothe-

sis is Hk, and L represents the number of available decision

choices. For example, when L = 3, j = 1 may correspond to

“high importance issue”, j = 2 may denote “low importance

issue”, and j = 3 may indicate “human expert inspection re-

quired”. We factor misclassification costs into our approach

to quantify the relative importance of detection errors.

Our proposed sequential evaluation process comprises

a pair (R,DR) of random variables. Random variable R

(referred to as stopping time in decision theory) takes val-

ues in the set {0, . . . ,K}, and indicates the feature that the

framework stops at. Random variable DR takes values in the

set {1, . . . , L} and denotes the possibility to select among

L choices. For each feature fn, the probability p(fn∣HH)
(similarly p(fn∣HL)) of the evaluation of the nth feature to

observe value fn when the true hypothesis is HH (similarly

for true hypothesis HL) is empirically computed from train-

ing data. The a priori probability P (HH) = p of i being

a high importance issue is also estimated empirically. The

probability of i being a low importance issue can be computed

as P (HL) = 1 − p. Assuming for simplicity that features fn
are independent under each hypothesis Hk, k = {H,L},
the conditional joint probability of {f1, . . . , fn} is given as

P (f1, . . . , fn∣Hk) = ∏n
l=1 p(fl∣Hk). Even though validation

of this assumption is beyond the scope of this paper, we find

our proposed method to work well in practice. Both the de-

cision to stop at stage n (i.e., the event {R = n}), and the

selection of possibility j (i.e., DR = j) depend only on the

accumulated information {f1, . . . , fR}.

2.2. Optimization Problem

To minimize the number of features considered for inferring
the importance of an issue without sacrificing accuracy, the
stopping time R and the classification rule DR have to be
selected. To this end, we define the following cost function:

J(R,DR) = E{ R∑
n=1

cn + L∑
j=1

∑
k=H,L

MkjP (DR = j,Hk)}. (1)

The former expression regularizes the number of features,

whereas the latter penalizes the average cost of our classifi-

cation rule. Our goal can be interpreted as finding the min-

imum average cost with respect to both random variables R

and DR, i.e., min
R,DR

J(R,DR), to derive the optimal stopping

and classification rules. To prove that the optimal rule is to

stop at R, we will first show how to obtain the optimum clas-

sification rule DR for any given stopping time R. Once the

optimal classification rule has been established, the resulting

cost becomes only a function of R, and can thus be optimized

with respect to R. Since DR depends only on the accumu-

lated information {f1, . . . , fR}, the a posteriori probability

πn ≜ P (HH∣f1, . . . , fn) is a sufficient statistic of the accu-

mulated information, and must be updated as more features

are evaluated as shown in Lemma 1.

Lemma 1. The posterior probability πn when the nth feature

is evaluated to generate outcome fn, and π0 = p, is:

πn =
p(fn∣HH)πn−1

πn−1p(fn∣HH) + (1 − πn−1)p(fn∣HL) . (2)

Lemma 1 and the fact that xR = ∑
K
n=0 xn✶{R=n} for any

sequence of random variables {xn}, where ✶A is the indicator
function for event A, allow us to rewrite the average cost in
Eq. (1) as:

J(R,DR) = E{ R∑
n=1

cn + L∑
j=1

(MHjπR +MLj(1 − πR))✶{DR=j}}.
(3)

3. OPTIMAL SOLUTION

An independent of DR lower bound for Eq. (3) can be derived

by observing that DR contributes only to a portion of the av-

erage cost. Theorem 2 provides such bound, which also gives

rise to the optimal classification rule.

Theorem 2. For any classification rule DR given stopping

time R, ∑
L
j=1 (MHjπR +MLj(1 − πR))✶{DR=j} ⩾ g(πR),

where g(πR) ≜ min1⩽j⩽L [MHjπR +MLj(1 − πR)]. The

optimal rule is defined as follows:

Doptimal
R = argmin

1⩽j⩽L[MHjπR +MLj(1 − πR)]. (4)

From Theorem 2, J(R,D
optimal
R ) ⩽ J(R,DR), since the

optimal classification rule results to the smallest average cost.
Based on the this fact, Eq. (3) can be written as follows:

J̃(R) ≜ J(R,D
optimal

R ) = E{ R∑
n=1

cn + g(πR)}, (5)
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which depends only on the stopping time R. To obtain the
optimal stopping rule R, we need to solve the following opti-
mization problem:

min
R⩾0

J̃(R) =min
R⩾0

E{ R∑
n=1

cn + g(πR)}, (6)

which constitutes a classical problem in optimal stopping the-

ory for Markov processes [16]. We derive our optimal stop-

ping rule as described in Theorem 3 based on the observa-

tion that (i) the optimum rule will consist of a maximum of

K + 1 stages since R ∈ {0,1, . . . ,K}, and (ii) the solution

we seek must also be optimum, if instead of the first stage

we start from any intermediate stage and continue toward the

final stage [17].

Theorem 3. For n = K − 1, . . . ,0, the function J̄n(πn) is
related to J̄n+1(πn+1) through the equation:

J̄n(πn) =min [g(πn), cn+1 + ∑
fn+1

An(fn+1)×

J̄n+1(p(fn+1∣HH)πn

An(fn+1) )], (7)

where An(fn+1) ≜ πnp(fn+1∣HH)+(1−πn)p(fn+1∣HL) and

J̄K(πK) = g(πK).
The optimal stopping rule stemming from Eq. (7) has

a very intuitive structure. Specifically, at each stage n,

there are two options given πn: (i) stop examining fea-

tures and select optimally between the L possibilities, or (ii)

continue and evaluate the next feature. The cost of stop-

ping is g(πn), whereas the cost of continuing is cn+1 +

∑fn+1
An(fn+1)J̄n+1(p(fn+1∣HH)πn

An(fn+1)
).

4. CIVIC ALGORITHM

In this section, we describe CIvIC, a novel algorithm to au-

tomatically Classify urban Issues into Importance Categories

based on Lemma 1 and Theorems 2 and 3. Initially, the poste-

rior probability π0 of an issue is set to the prior probability p

of a reported issue being important, and the two terms inside

the minimization of Eq. (7) are compared. If they are equal,

CIvIC assigns the appropriate importance value to the issue

under examination based on the optimal rule of Eq. (4). Oth-

erwise, the first feature is evaluated and the posterior proba-

bility π1 is updated according to Eq. (2). CIvIC repeats these

steps until either it decides to stop, at which case it uses < K

features, or all features are evaluated to assign the appropriate

importance to the issue under examination.

Some practical considerations follow. We use a smoothed

maximum likelihood estimator to estimate p(fn∣Hk), k =H,L, n = 1, . . . ,K, from training data as follows p̂(fn∣Hk) =

Nn,k+1

Nk+V
, where Nn,k denotes the number of issues that give

rise to outcome fn and belong to hypothesis Hk, Nk denotes

the total number of issues in the training dataset that belong

to hypothesis Hk and V is the maximum value of the nth

feature. We estimate the a priori probabilities as P (Hk) =
Nk

NH+NL
, k = H,L. Quantizing the interval [0,1] enables the

efficient computation of a K × d matrix, where each row cor-

responds to K values J̄n(πn), n = 0,1, . . . ,K − 1, computed

using Eq. (7) for different d values of πn ∈ [0,1]. Since

this computation requires only a priori information, it can be

conducted once offline. Hence, the complexity of calculating

J̄n(πn) is independent from the actual number of issues,

which can be huge. Finally, different features can hinder or

facilitate the quick recognition of the importance of an issue.

Consider for example the case of two features f1 and f2,

where f1 indicates that the issue refers to ‘noise complaints’,

and f2 is the number of tags in a report. The type of an issue

can potentially simplify the process of evaluating importance

compared to the number of tags. As a result, if feature f2 was

to be examined first, it would be very probable for feature f1
to be examined as well to improve the chances of accurate

classification. Alternatively, if f1 was to be evaluated first,

CIvIC could reach a decision using one feature only. To avoid

the computational complexity of evaluating all K! possible

feature orderings, we sort features in increasing order of the

sum of type I and II errors scaled by the cost coefficient of the

n feature to promote low cost features that at the same time

are expected to result in few errors.

5. CASE STUDY: THE SEECLICKFIX PLATFORM

In this section, we illustrate the performance of CIvIC on

a real–world dataset of 2,195 issues collected from the

SeeClickFix platform1 for the metropolitan area surrounding

Albany, the capital of the U.S. state of New York, spanning

a time period between Jan 5, 2010 and Feb 10, 2018. We

consider 2,594 features directly extracted from issues’ title,

description, address, and reported time. Specifically, we to-

kenized sentences into unigrams, removed punctuation (e.g.,

periods, commas, and apostrophes), stopwords (e.g., “a”,

“the”, “there”), and digits (e.g., “8th”, “31st”), and stemmed

each word to its root (e.g., replace “parked” with “park”).

Feature values correspond to the number of times a specific

word appears in the issue report. We excluded words present

in ≥ 95% and ≤ 2% of all issues, respectively. We also

considered the logarithm of the number of: 1) words plus

one (both for the title and the description), 2) exclamation

marks plus one, and 3) uppercase letters plus one. We divided

addresses into three geographical dimensions based on the

radial distance between issues (namely, 0.5, 1, and 2 miles).

We also divided reported time into three dimensions (i.e., 1,

7, and 15 days) based on the time gap in days between issues.

1https://seeclickfix.com/albany-county
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Fig. 1: Probability of error versus average number of features

used. Inset shows the distribution of number of features used

by CIvIC to classify each issue’s importance for an average

of ∼ 104 features.

For each issue, feature values correspond to the number of

issues falling into the 3 × 3 grid of geographical and time di-

mensions. Finally, we considered a neighborhood categorical

variable encoded by the unit vector ei, i ∈ {1, . . . ,28} with 1

in the ith position and zero elsewhere, and a binary variable

indicating if the reported day is on weekend (i.e., 1 if the day

is on weekend and 0 otherwise).

We compare CIvIC’s performance to (i) a standard

Bayesian detection method [18] that uses all available fea-

tures, (ii) prior work (i.e., Support Vector Machine with

feature selection (SVM–FS) [14]) with variations, i.e., lin-

ear (SVM–linear) and Gaussian (SVM–Gaussian) kernels,

and dimensionality reduction with PCA (SVM–PCA), and

(iii) tree–based classifiers, namely Random Forest (RF) with

maximum tree depth 5 and 10, and XG Boosting, which have

been shown to achieve good performance in classification

tasks, while being relatively fast compared to other classifi-

cation models [19, 20]. In our experiments, L = 2 (i.e., issues

are of high, HH, or low, HL, importance) and varying feature

costs cn ∈ {0,10−6,10−5,10−4,10−3,10−2,10−1,0.25} and

misclassification costs MH1 =ML2 = 0, MH2 =ML1 = 1 are

considered. Five–fold cross validation results are reported.

Importance of an issue is based on the number of votes and

comments received; we discretized importance based on pre-

defined thresholds, i.e., an issue belongs to HH if number of

votes V > V and number of comments C > C, otherwise it

belongs to HL. To test the robustness of our algorithm, we

considered 4 scenarios of varying thresholds V and C. An ap-

proximately balanced training and testing dataset was created

in each case by randomly undersampling the majority class.

We observed that both CIvIC and all baselines exhibited sim-

ilar performance in all cases. Due to space limitations, we

report results only for V = C = 15.

Fig. 1 shows the error probability achieved by CIvIC as

Table 1: Performance comparison of CIvIC with baselines.

Method Accuracy Precision Recall Avg. # feat.

CIvIC (c = 0.25) 0.794 0.785 0.818 1.05

CIvIC (c = 10−1) 0.811 0.789 0.854 1.29

CIvIC (c = 10−2) 0.814 0.783 0.873 4.19

CIvIC (c = 10−3) 0.833 0.801 0.889 104.10

CIvIC (c = 10−4) 0.830 0.807 0.870 189.78

CIvIC (c = 10−5) 0.832 0.811 0.867 244.99

CIvIC (c = 10−6) 0.835 0.819 0.864 289.59

CIvIC (c = 0) 0.835 0.819 0.864 350.34

Bayes [18] 0.833 0.819 0.860 2,594

SVM-FS [14] 0.746 0.701 0.810 20

SVM-linear 0.806 0.801 0.815 2,594

SVM-Gaussian 0.796 0.739 0.916 2,594

SVM-PCA 0.825 0.791 0.886 208

RF (depth=5) 0.815 0.779 0.883 2,594

RF (depth=10) 0.820 0.784 0.886 2,594

XG Boosting 0.827 0.801 0.873 2,594

the average number of features used increases. The error

probability achieved by the standard Bayesian method that

uses all available features is also included for comparison. As

expected, when the average number of features used is small,

CIvIC exhibits large error probability. However, as this num-

ber increases, performance improves dramatically. The inset

in Fig. 1 illustrates the number of features used by CIvIC

to recognize an issue’s importance for an average number of

∼ 104 features achieving the same performance as the stan-

dard Bayesian method. Table 1 summarizes the performance

of CIvIC compared to baselines. Among all baselines, the

Bayesian detection approach that uses all features achieves

the highest accuracy (83.3%) and precision (81.9%), while

CIvIC can achieve same accuracy and precision using on av-

erage ∼ 104 and ∼ 289 features (i.e., 96% and 88.8% reduc-

tion in number of features), respectively. Last but not least,

SVM–Gauss achieves the highest recall (91.6%), but requires

∼25 times as many features for a mere 3% improvement in re-

call while sustaining 7.7% and 4.4% degradation in precision

and accuracy, respectively, compared to CIvIC.

6. CONCLUSION

In this work, the problem of automatic recognition of the im-

portance of urban issues in civic engagement platforms is ad-

dressed. Specifically, a novel formulation based on optimal

stopping theory is proposed, where the optimization func-

tion is defined in terms of the cost of evaluating features and

the Bayes risk associated with the classification rule. The

optimal classification and stopping rules are derived and a

near–real–time algorithm, CIvIC, is devised that implements

the optimal rules. Evaluation on a real–world dataset from

the SeeClickFix civic engagement platform confirms CIvIC’s

reduced time–to–detection and accurate recognition perfor-

mance. In future work, we plan to extend our framework to

enable multi–valued importance recognition and devise ap-

propriate learning–to–rank approaches to dynamically order

incoming urban issues requests.
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