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ABSTRACT

Civic engagement platforms such as SeeClickFix and FixMyS-
treet have revolutionized the way citizens interact with local
governments to report and resolve urban issues. However,
recognizing which urban issues are important to the com-
munity in an accurate and timely manner is essential for
authorities to prioritize important issues, allocate resources
and maintain citizens’ satisfaction with local governments.
To this end, a novel formulation based on optimal stopping
theory is devised to infer urban issues importance from am-
biguous textual, time and location information. The goal is
to optimize recognition accuracy, while minimizing the time
to reach a decision. The optimal classification and stopping
rules are derived. Furthermore, a near-real-time urban issue
reports processing method to infer the importance of incom-
ing issues is proposed. The effectiveness of the proposed
method is illustrated on a real-word dataset from SeeClick-
Fix, where significant reduction in time—to—decision without
sacrificing accuracy is observed.

Index Terms— participatory civil issues, issue urgency,
government 2.0, optimal stopping theory, quickest detection

1. INTRODUCTION

In recent years, “Government 2.0” applications [1,2] and civic
engagement platforms have not only enabled citizens to ac-
tively participate in collecting, analyzing and sharing knowl-
edge about their local environments (e.g., measure air qual-
ity [3], map fuel consumption on city streets [4], predict bus
arrival times [5]), but also interact with local governments to
resolve urban issues, such as potholes and noise complaints
(e.g., SeeClickFix [6] and FixMyStreet [7]). At the same
time, local governments can gain a better understanding of
the urban issues faced by their communities, as long as re-
ported issues are timely processed and addressed to maintain
citizens’ participation in urban issue monitoring [6, 8, 9].
Currently, reported issues are acknowledged and assessed
by a city official for routing to the appropriate agency. Need-
less to say, this approach does not scale. Methods for the
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automatic classification [10-12] and identification of dupli-
cate urban issues [13] have been recently proposed. Such ap-
proaches ignore citizens implicit endorsement of urban issues
that are “important” to them. However, recognizing the im-
portance of an issue early on can assist local governments in
prioritizing important issues to better serve their citizens. To
this end, the problem of automatically detecting signs of dan-
ger [14] and/or inferring the “urgency” of urban issues [15]
reported by concerned citizens has recently been explored.
Such supervised methods require large—scale annotation to
achieve good accuracy. Moreover, the scalability and timeli-
ness of such methods have largely been ignored. Finally, sim-
ple text— and emotion—based features are often considered,
ignoring important spatial and temporal factors that have the
potential to facilitate important urban issues recognition.

To address the challenges associated with identifying “im-
portant” issues early on, we formulate this problem as an op-
timal stopping problem, in which features extracted from an
issue report are sequentially evaluated to infer its importance
as fast as possible without sacrificing accuracy. We show that
the optimal solution has a very intuitive structure: (i) features
are sequentially evaluated starting from the most informative,
(i) at each step, the framework decides whether to stop the
process, and (iii) once stopped, a given issue is assigned an
importance value based on features examined thus far. Based
on this framework, we devise a method to infer the impor-
tance of reported issues from ambiguous information such as
textual description, reported time, and location in near—real—
time. The optimal number of features used by our method de-
pends on the cost representing the time and effort evaluating
each feature and the classification quality. Thus, our approach
provides a viable, realistic and timely solution to the recogni-
tion and prioritization of important urban issues by efficiently
utilizing computational resources rather than blindly relying
on the same fixed set of features for all issues, as done by
state—of—the—art classifiers.

2. PROBLEM FORMULATION

2.1. Description

We consider a set Z of issues, where each issue ¢ € Z, that has
been reported by a concerned citizen, consists of a title, de-
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scription, address, timestamp, photo(s), and comment(s) from
other citizens. A feature vector f; = [f1, fa, ..., fx]", where
K denotes the total number of features extracted from a given
report, is used to represent each issue ¢, which may belong to
one of two hypotheses Hy or H, the true hypothesis that ¢
is of high or low importance, respectively.

Although the definition of importance is subjective, issues
that are likely to have a profound effect on many people are
intuitively expected to receive high attention (e.g., quantified
by the number of views and/or comments), be reported from
different sources, and/or persist for a large period of time.
In our modeling, we use the number of votes and comments
received to quantify urban issue importance (see Section 5).

We pose the challenge of automatically inferring the im-
portance of an issue as a quickest detection problem. Specifi-
cally, the proposed framework sequentially evaluates features
fr,me{1,2,..., K}, one at a time, deciding at each step be-
tween stopping and continuing the evaluation process based
on accumulated information thus far and the cost of reviewing
additional features. Cost coefficient ¢, > 0, n € {1,..., K},
represents the value of time and effort spent evaluating the
nth feature. We also consider misclassification costs Mj; >
0,k e{H,L},je{l,...,L}, where M;; represents the cost
of assigning importance j to issue ¢ when the true hypothe-
sis is Hy, and L represents the number of available decision
choices. For example, when L = 3, j = 1 may correspond to
“high importance issue”, 7 = 2 may denote “low importance
issue”, and j = 3 may indicate “human expert inspection re-
quired”. We factor misclassification costs into our approach
to quantify the relative importance of detection errors.

Our proposed sequential evaluation process comprises
a pair (R, Dpg) of random variables. Random variable R
(referred to as stopping time in decision theory) takes val-
ues in the set {0,..., K}, and indicates the feature that the
framework stops at. Random variable Dy, takes values in the
set {1,..., L} and denotes the possibility to select among
L choices. For each feature f,,, the probability p(f,|H3)
(similarly p(f,|H.)) of the evaluation of the nth feature to
observe value f, when the true hypothesis is Hy; (similarly
for true hypothesis H.) is empirically computed from train-
ing data. The a priori probability P(Hy) = p of i being
a high importance issue is also estimated empirically. The
probability of ¢ being a low importance issue can be computed
as P(H;) = 1 - p. Assuming for simplicity that features f,,
are independent under each hypothesis Hy, k = {H,L},
the conditional joint probability of {f1,..., f,} is given as
P(f1,..., falHg) = [Tjt1 p(fi|Hy). Even though validation
of this assumption is beyond the scope of this paper, we find
our proposed method to work well in practice. Both the de-
cision to stop at stage n (i.e., the event {R = n}), and the
selection of possibility j (i.e., Dr = 7) depend only on the
accumulated information { f1,..., fr}.
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2.2. Optimization Problem

To minimize the number of features considered for inferring
the importance of an issue without sacrificing accuracy, the
stopping time R and the classification rule Dy have to be
selected. To this end, we define the following cost function:

}. 1)

The former expression regularizes the number of features,

whereas the latter penalizes the average cost of our classifi-

cation rule. Our goal can be interpreted as finding the min-

imum average cost with respect to both random variables R

and Dg, i.e., Pr{nli)n J(R, D), to derive the optimal stopping
R

L
> > My;P(Dg=j,Hy)
=1 k=H,L

R
J(R,Dg) = E{ > en+
n=1

and classification rules. To prove that the optimal rule is to
stop at R, we will first show how to obtain the optimum clas-
sification rule Dy for any given stopping time R. Once the
optimal classification rule has been established, the resulting
cost becomes only a function of R, and can thus be optimized
with respect to R. Since Dp depends only on the accumu-
lated information {f1,..., fr}, the a posteriori probability
T 2 P(Hy|f1,-.., fn) is a sufficient statistic of the accu-
mulated information, and must be updated as more features
are evaluated as shown in Lemma 1.

Lemma 1. The posterior probability , when the nth feature
is evaluated to generate outcome f,, and 7y = p, is:

) P(fnlHy)Tn-1
" 7Tn—lp(fn|}I'H)+(1_71—71—1)p(fnu{ﬁ).

Lemma 1 and the fact that x5 = Zf:o Tp 1 p=p) for any
sequence of random variables {x,, }, where 1 4 is the indicator
function for event A, allow us to rewrite the average cost in
Eq. (1) as:

2)

R L
J(R,Dgr) = ]E{ Y en+ > (Magmr + Mgy (1 - FR))]]‘{DR:j}}'
n=1 j=1

3)
3. OPTIMAL SOLUTION

An independent of D g lower bound for Eq. (3) can be derived
by observing that D contributes only to a portion of the av-
erage cost. Theorem 2 provides such bound, which also gives
rise to the optimal classification rule.

Theorem 2. For any classification rule Dy given stopping
time R, Zf:l (Mq.[j’/TR + M[;j(l - WR))I]-{DR:]'} > g(wR),
where g(mr) £ minigj<r, [M'Hj’iTR + Mgi(1 - ’/TR)]. The
optimal rule is defined as follows:

D?{’timal = arg minlgng[MrijR +Mgi(1- WR)]. 4)

From Theorem 2, .J(R, D"y < J(R, Dg), since the
optimal classification rule results to the smallest average cost.
Based on the this fact, Eq. (3) can be written as follows:

R
> en+g(mR) ®)

n=1

j’(R) s J(R7 D;pti'rrLal) _ ]E{



which depends only on the stopping time R. To obtain the
optimal stopping rule R, we need to solve the following opti-
mization problem:

_ R
min J(R) :rg;g]E{;cn +9(7FR)}, (©)

which constitutes a classical problem in optimal stopping the-
ory for Markov processes [16]. We derive our optimal stop-
ping rule as described in Theorem 3 based on the observa-
tion that (i) the optimum rule will consist of a maximum of
K + 1 stages since R € {0,1,..., K}, and (ii) the solution
we seek must also be optimum, if instead of the first stage
we start from any intermediate stage and continue toward the
final stage [17].

Theorem 3. Forn = K - 1,...,0, the function J,,(m,) is
related t0 Jp+1(Tne1) through the equation:

jn(ﬂ'n) = min [g(wn),cnﬂ + Z An(fre1)x

()

where Ap(frs1) = Tnp(frs1|Hy) +(1=m0)p(frs1|He) and
Jr (1K) = 9(7K).

T p(fn+1|HH)7Tn
n+l\ =™ +« - N

An(fn+1) (7)

The optimal stopping rule stemming from Eq. (7) has
a very intuitive structure. Specifically, at each stage n,
there are two options given m,: (i) stop examining fea-
tures and select optimally between the L possibilities, or (ii)
continue and evaluate the next feature. The cost of stop-
ping is ¢(7,), whereas the cost of continuing is ¢,+1 +

an,+1 An(fn+1)Jn+1(ll(.f77A»1|H7-t)mz)

A’ﬂ (.fn+1 )
4. CIVIC ALGORITHM

In this section, we describe CIVIC, a novel algorithm to au-
tomatically Classify urban Issues into Importance Categories
based on Lemma 1 and Theorems 2 and 3. Initially, the poste-
rior probability 7y of an issue is set to the prior probability p
of a reported issue being important, and the two terms inside
the minimization of Eq. (7) are compared. If they are equal,
CIVIC assigns the appropriate importance value to the issue
under examination based on the optimal rule of Eq. (4). Oth-
erwise, the first feature is evaluated and the posterior proba-
bility 7y is updated according to Eq. (2). CIVIC repeats these
steps until either it decides to stop, at which case it uses < K
features, or all features are evaluated to assign the appropriate
importance to the issue under examination.

Some practical considerations follow. We use a smoothed
maximum likelihood estimator to estimate p(f,|Hy),k =
H,L,n=1,..., K, from training data as follows p( f,,|Hy) =
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N, +1 . .
]\;IkiV , where N, ;, denotes the number of issues that give

rise to outcome f,, and belong to hypothesis Hy, Nj denotes
the total number of issues in the training dataset that belong
to hypothesis Hy and V' is the maximum value of the nth
feature. We estimate the a priori probabilities as P(Hj) =
N;ﬁ N k = H, L. Quantizing the interval [0, 1] enables the
efficient computation of a K x d matrix, where each row cor-
responds to K values .J,,(7,),n =0,1,..., K — 1, computed
using Eq. (7) for different d values of 7, € [0,1]. Since
this computation requires only a priori information, it can be
conducted once offline. Hence, the complexity of calculating
Jn(m,) is independent from the actual number of issues,
which can be huge. Finally, different features can hinder or
facilitate the quick recognition of the importance of an issue.
Consider for example the case of two features f; and fo,
where f; indicates that the issue refers to ‘noise complaints’,
and f5 is the number of tags in a report. The type of an issue
can potentially simplify the process of evaluating importance
compared to the number of tags. As a result, if feature f, was
to be examined first, it would be very probable for feature f;
to be examined as well to improve the chances of accurate
classification. Alternatively, if f; was to be evaluated first,
CIVIC could reach a decision using one feature only. To avoid
the computational complexity of evaluating all K! possible
feature orderings, we sort features in increasing order of the
sum of type I and II errors scaled by the cost coefficient of the
n feature to promote low cost features that at the same time
are expected to result in few errors.

5. CASE STUDY: THE SEECLICKFIX PLATFORM

In this section, we illustrate the performance of CIVIC on
a real-world dataset of 2,195 issues collected from the
SeeClickFix platform' for the metropolitan area surrounding
Albany, the capital of the U.S. state of New York, spanning
a time period between Jan 5, 2010 and Feb 10, 2018. We
consider 2,594 features directly extracted from issues’ title,
description, address, and reported time. Specifically, we to-
kenized sentences into unigrams, removed punctuation (e.g.,
periods, commas, and apostrophes), stopwords (e.g., “a”,
“the”, “there”), and digits (e.g., “8th”, “31st”), and stemmed
each word to its root (e.g., replace “parked” with “park™).
Feature values correspond to the number of times a specific
word appears in the issue report. We excluded words present
in > 95% and < 2% of all issues, respectively. We also
considered the logarithm of the number of: 1) words plus
one (both for the title and the description), 2) exclamation
marks plus one, and 3) uppercase letters plus one. We divided
addresses into three geographical dimensions based on the
radial distance between issues (namely, 0.5, 1, and 2 miles).
We also divided reported time into three dimensions (i.e., 1,
7, and 15 days) based on the time gap in days between issues.

mttps://seeclickfix.com/albany-county
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Fig. 1: Probability of error versus average number of features
used. Inset shows the distribution of number of features used
by CIVIC to classify each issue’s importance for an average
of ~ 104 features.

For each issue, feature values correspond to the number of
issues falling into the 3 x 3 grid of geographical and time di-
mensions. Finally, we considered a neighborhood categorical
variable encoded by the unit vector e;,7 € {1,...,28} with 1
in the ith position and zero elsewhere, and a binary variable
indicating if the reported day is on weekend (i.e., 1 if the day
is on weekend and 0 otherwise).

We compare CIVIC’s performance to (i) a standard
Bayesian detection method [18] that uses all available fea-
tures, (ii) prior work (i.e., Support Vector Machine with
feature selection (SVM-FS) [14]) with variations, i.e., lin-
ear (SVM-linear) and Gaussian (SVM-Gaussian) kernels,
and dimensionality reduction with PCA (SVM-PCA), and
(iii) tree—based classifiers, namely Random Forest (RF) with
maximum tree depth 5 and 10, and XG Boosting, which have
been shown to achieve good performance in classification
tasks, while being relatively fast compared to other classifi-
cation models [19,20]. In our experiments, L = 2 (i.e., issues
are of high, Hy, or low, H -, importance) and varying feature
costs ¢, € {0,1076,1075,107*,1073,1072,107,0.25} and
misclassification costs My1 = Mo =0, Myo = Mgy =1 are
considered. Five—fold cross validation results are reported.
Importance of an issue is based on the number of votes and
comments received; we discretized importance based on pre-
defined thresholds, i.e., an issue belongs to Hy; if number of
votes V > V and number of comments C' > C, otherwise it
belongs to H . To test the robustness of our algorithm, we
considered 4 scenarios of varying thresholds V and C. An ap-
proximately balanced training and testing dataset was created
in each case by randomly undersampling the majority class.
We observed that both CIVIC and all baselines exhibited sim-
ilar performance in all cases. Due to space limitations, we
report results only for V = C = 15.

Fig. 1 shows the error probability achieved by CIVIC as
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Table 1: Performance comparison of CIVIC with baselines.

Method Accuracy | Precision | Recall | Avg. # feat.
CIVIC (c = 0.25) 0.794 0.785 0.818 1.05
CIVIC (c = 107T) 0.811 0.789 0.854 1.29
CIVIC (c = 1072) 0.814 0.783 0.873 4.19
CIVIC (c = 1079) 0.833 0.801 | 0.889 104.10
CIVIC (c = 107%) 0.830 0.807 0.870 189.78
CIVIC (c = 107°) 0.832 0.811 0.867 244.99
CIVIC (c = 1079) 0.835 0.819 0.864 289.59
CIVIC (¢ = 0) 0.835 0.819 0.864 350.34
Bayes [18] 0.833 0.819 0.860 2,594
SVM-FS [14] 0.746 0.701 0.810 20
SVM-linear 0.806 0.801 0.815 2,594
SVM-Gaussian 0.796 0.739 0.916 2,594
SVM-PCA 0.825 0.791 0.886 208
RF (depth=>5) 0.815 0.779 0.883 2,594
RF (depth=10) 0.820 0.784 0.886 2,594
XG Boosting 0.827 0.801 0.873 2,594
the average number of features used increases. The error

probability achieved by the standard Bayesian method that
uses all available features is also included for comparison. As
expected, when the average number of features used is small,
CIVIC exhibits large error probability. However, as this num-
ber increases, performance improves dramatically. The inset
in Fig. 1 illustrates the number of features used by CIVIC
to recognize an issue’s importance for an average number of
~ 104 features achieving the same performance as the stan-
dard Bayesian method. Table 1 summarizes the performance
of CIVIC compared to baselines. Among all baselines, the
Bayesian detection approach that uses all features achieves
the highest accuracy (83.3%) and precision (81.9%), while
CIVIC can achieve same accuracy and precision using on av-
erage ~ 104 and ~ 289 features (i.e., 96% and 88.8% reduc-
tion in number of features), respectively. Last but not least,
SVM-Gauss achieves the highest recall (91.6%), but requires
~25 times as many features for a mere 3% improvement in re-
call while sustaining 7.7% and 4.4% degradation in precision
and accuracy, respectively, compared to CIVIC.

6. CONCLUSION

In this work, the problem of automatic recognition of the im-
portance of urban issues in civic engagement platforms is ad-
dressed. Specifically, a novel formulation based on optimal
stopping theory is proposed, where the optimization func-
tion is defined in terms of the cost of evaluating features and
the Bayes risk associated with the classification rule. The
optimal classification and stopping rules are derived and a
near—real-time algorithm, CIVIC, is devised that implements
the optimal rules. Evaluation on a real-world dataset from
the SeeClickFix civic engagement platform confirms CIVIC’s
reduced time—to—detection and accurate recognition perfor-
mance. In future work, we plan to extend our framework to
enable multi-valued importance recognition and devise ap-
propriate learning—to—rank approaches to dynamically order
incoming urban issues requests.
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