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ABSTRACT

Empowering citizens to interact directly with their local gov-

ernments through civic engagement platforms has emerged

as an easy way to resolve urban issues. However, for au-

thorities to manually process reported issues is both imprac-

tical and inefficient; accurate, online and near–real–time pro-

cessing methods are necessary to maintain citizens’ satisfac-

tion with their local governments. Herein, an optimal stop-

ping framework is proposed to process urban issue requests

quickly and accurately. The optimal classification and stop-

ping rules are derived, and significant reduction in time–to–

decision without sacrificing accuracy is demonstrated on a

real–world dataset from SeeClickFix.

Index Terms— Civic engagement, classification, govern-

ment 2.0, optimal stopping theory, quickest detection

1. INTRODUCTION

“Government 2.0” applications have recently appeared as a

facet of smart cities [1, 2], with civic engagement platforms

such as SeeClickFix [3] becoming indispensable in making

them more effective and efficient. While such platforms

provide citizens with computer–mediated urban issue (e.g.

potholes or noise complaints) reporting capabilities [3–5],

citizens’ continuous engagement and participation cannot be

guaranteed unless the issues they report are timely acknowl-

edged and addressed by their local governments.

As the ability to “comprehend” urban issues reported

in participatory platforms is at the core of citizen services,

methods to bridge the intelligence gap between computer–

mediated reported issues and humans responsible for review-

ing them have recently been proposed. However, such meth-

ods are limited either to binary classification of reports into

categories [6–8] or importance [9, 10], or require large train-

ing datasets to achieve good accuracy [9, 11]. The scalability

and timeliness of such methods, although critical, have also

This material is based upon work supported by the National Science

Foundation under Grant No. ECCS–1737443.

largely been ignored. Beyond urban issue report classifica-

tion, multiclass classification is far more challenging than the

binary problem with two mutually–exclusive classes [12–14];

the main difficulties are the rapid degradation in classification

accuracy and explosion in computational complexity as the

number of classes increases. Simplistic one–versus–the–rest

and pairwise classification strategies [14–17] are therefore

typically used as alternatives.

Herein, we build upon the framework introduced in our

prior work [8, 10] to accelerate the response of local govern-

ments to urban issue requests without additional steps from a

city’s staff, by addressing the challenging problem of multi-

class classification. Specifically, we formulate the classifica-

tion of urban issue reports as a sequential hypothesis testing

problem, in which the goal is to classify each report as it be-

comes available by sequentially reviewing features, starting

from the most informative, and stopping once it is determined

that the inclusion of additional features cannot further im-

prove the accuracy of the classification decision. As a result,

our approach uses a varying number of features to classify in-

dividual reports. This is in stark contrast to popular feature se-

lection and dimensionality reduction methods [18–21] used to

identify a subset of discriminative features, common to all in-

stances for classification. Thus, it provides a viable, realistic

and timely solution for processing urban issue requests by ef-

ficiently utilizing computational resources rather than blindly

relying on the same fixed set of features for all issues, as done

by state–of–the–art classifiers.

2. PROBLEM DESCRIPTION

Consider a set S of instances, with each instance s ∈ S be-

ing associated with a vector f(s) = {y1, y2, . . . , yK} of K

features. Each instance s may belong to one of L possible hy-

potheses, with corresponding a priori probability pi for each

hypothesis Hi, i = 1, 2, . . . , L. We assume for simplicity that

features y1, y2, . . . , yn are independent under each hypothesis

Hi, and thus, the conditional joint probability of {y1, . . . , yn}
is given as P (y1, . . . , yn|Hi) =

∏n

l=1 p(yl|Hi). Even though
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validation of this assumption is beyond the scope of this pa-

per, we find our proposed method to work well in practice.

Moreover, each coefficient cn, n = 1, 2, . . . ,K, represents

the cost of evaluating feature yn, and misclassification cost

Mi,j denotes the cost of selecting hypothesis Hj when in-

stead some other hypothesis Hi, i 6= j, is true.

To select between one of L possible hypotheses for each s,

the proposed approach evaluates features sequentially, where

at each step it has to decide between stopping and continuing

based on the accumulated information thus far and the cost of

evaluating the remaining features. Herein, we introduce a pair

of random variables (R,DR), where 0 ≤ R ≤ K (referred

to as stopping time [22] in decision theory) denotes the fea-

ture at which the framework makes a classification decision

at, and 1 ≤ DR ≤ L, which depends on R, denotes the possi-

bility to select among the L hypotheses. The event {R = n}
depends only on the feature set {y1, y2, . . . , yn}, whereas the

event {DR = m} represents choosing hypothesis m based

on the information accumulated up till feature R. The goal

is to select random variables R and DR without sacrificing

accuracy by solving the following optimization problem:

minimize
R,DR

J(R,DR), (1)

over cost function:

J(R,DR) = E

{ R∑

n=1

cn +

L∑

j=1

L∑

i=1

MijP (DR = j,Hi)

}
,

(2)

where the first term denotes the cost of evaluating features,

and the second term penalizes the misclassification cost.

3. OPTIMAL STRATEGIES

In order to solve the optimization problem defined in Eq. (1),

we use a sufficient statistic of the accumulated information,

the a posteriori probability vector πn , [π1
n, π

2
n, . . . , π

L
n ],

where the nth feature is evaluated to generate outcome yn,

and πi
n = P (Hi|y1, . . . , yn). Note that πn can be computed

recursively as in Lemma 1.

Lemma 1. The a posteriori probability vector πn is given by:

πn =
πn−1 diag(∆n(yn))

πn−1∆T
n (yn)

, (3)

where ∆n(yn) = [P (yn|H1), P (yn|H2), . . . , P (yn|HL)],
diag(A) denotes a diagonal matrix with diagonal elements

being the elements in vector A, and π0 = [p1, p2, . . . , pL].

Lemma 2. Based on the fact that xR =
∑K

n=0 xn✶{R=n}

for any sequence of random variables {xn}, where ✶A is the

indicator function for event A (i.e., ✶A = 1 when A occurs,

and ✶A = 0 otherwise), the probability P (DR = j,Hi) can

we written as follows:

P (DR = j,Hi) = E
{
πi
R✶{DR=j}

}
. (4)

Using Lemma 2, the average cost in Eq. (2) can be written
compactly as:

J(R,DR) = E

{

R
∑

n=1

cn +

L
∑

j=1

(

L
∑

i=1

Mijπ
i
R

)

✶{DR=j}

}

. (5)

Note that we can rewrite the average cost in Eq. (5) using the

a posteriori probability vector πn as follows:

J(R,DR) = E





R∑

n=1

cn +

L∑

j=1

πRM
T
j ✶{DR=j}



 , (6)

where Mj , [M1,j ,M2,j , . . . ,ML,j ].
To obtain the optimal stopping time R, we must first ob-

tain the optimal decision rule DR for any given R. In the pro-

cess of finding the optimal decision, we need to find a lower

bound (independent of DR) for the second term inside the ex-

pectation in Eq. (6), which is the part of the equation that

depends on DR. Theorem 3 provides such a bound.

Theorem 3. For any classification rule DR given stopping

time R,
∑L

j=1 πRM
T
j ✶{DR=j} > g(πR), where g(πR) ,

min16j6L

[
πRM

T
j

]
. The optimal rule is defined as follows:

D
optimal
R = argmin16j6L

[
πRM

T
j

]
. (7)

From Theorem 3, we conclude that:

J(R,DR) > J(R,D
optimal
R ), where

J(R,D
optimal
R ) = min

DR

J(R,DR). (8)

Thus, we can reduce the cost function in Eq. (6) to one which

depends only on the stopping time R as follows:

J̃(R) = E

{
R∑

n=1

cn + g(πR)

}
. (9)

To optimize the cost function in Eq. (9) with respect to R, we

need to solve the following optimization problem:

min
R>0

J̃(R) = min
R>0

E

{
R∑

n=1

cn + g(πR)

}
, (10)

which constitutes a classical problem in optimal stopping the-

ory for Markov processes [22]. Since R ∈ {0, 1, . . . ,K}, the

optimum strategy will consist of a maximum of K+1 stages,

where the optimum scheme must minimize the corresponding

average cost going from stages 0 to K. The solution can be

obtained by using dynamic programming principles [23].

Theorem 4. For n = K − 1, . . . , 0, the function J̄n(πn) is

related to J̄n+1(πn+1) through the equation:

J̄n(πn) = min

[
g(πn), cn+1 +

∑

yn+1

πn∆
T
n+1(yn+1)×

J̄n+1

(
πn diag

(
∆n+1(yn+1)

)

πn∆T
n+1(yn+1)

)]
, (11)

where J̄K(πK) = g(πK).
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The optimal stopping strategy derived from Eq. (11) has

a very intuitive structure. The optimal stopping strategy stops

at the stage n, where the cost of stopping (the first expres-

sion in the minimization) is no greater than the expected

cost of continuing given all information accumulated at the

current stage n (the second expression in the minimization).

Specifically, at each stage n, our method faces two options

given πn: (i) stop evaluating features and selecting opti-

mally between the L hypotheses, or (ii) continue and evaluate

the next feature. The cost of stopping is g(πn), whereas

the cost of continuing is cn+1 +
∑

yn+1
πn∆

T
n+1(yn+1) ×

J̄n+1

(
πn diag

(
∆n+1(yn+1)

)

πn∆T
n+1

(yn+1)

)
.

4. ASSESS ALGORITHM

In this section, we present ASSESS, a novel algorithm to

Automatically optimally and timely claSSify rEported urban

iSSues based on Lemma 1, and Theorems 3 and 4. Initially,

the posterior probability vector π0 is set to [p1, p2, . . . , pL],
and the two terms in Eq. (11) are compared. If the first term

is not greater than the second, ASSESS classifies the instance

under examination to the appropriate class, based on the op-

timal rule of Eq. (7). Otherwise, the first feature is evaluated.

ASSESS repeats these steps until either it decides to classify

the instance using < K features, or the feature vector is ex-

hausted, in which case classification is performed using all K

features.

Next, we discuss some practical considerations. We

use a smoothed maximum likelihood estimator to estimate

p(yn|Hi), n = 1, . . . ,K, i = 1, . . . , L, from training data as

follows p̂(yn|Hi) =
Nn,i+1
Ni+V

, where Nn,i denotes the num-

ber of samples that give rise to outcome yn and belong to

hypothesis Hi, Ni denotes the total number of samples in

the training dataset that belong to hypothesis Hi and V is

the maximum outcome among all features. We estimate the

a priori probabilities as P (Hi) = Ni∑
L
i=1

Ni
, i = 1, . . . , L.

Quantizing the interval [0, 1] with a predefined accuracy (e.g.,

0.1) for L values such that
∑L

i=1 π
i
n = 1 to generate different

possible vectors πn, enables the efficient computation of a

(K + 1) × d matrix, where each row corresponds to K + 1
values J̄n(πn), n = 0, 1, . . . ,K, computed using Theorem

4 for all possible d vectors of πn. Since this computation

requires only a priori information, it can be conducted once

offline. Hence, the complexity of calculating J̄n(πn) is inde-

pendent from the actual number of instances, which can be

huge. Finally, different features can hinder or facilitate the

quick identification of the hypothesis of which an instance

may belong to. Consider an example of classifying urban

issue reports as either ‘Parking Enforcement’ or ‘Code Viola-

tion’ using two features y1 and y2, where y1 is the number of

appearances of keyword ‘code’ in the title, and y2 is the num-

ber of tags in an issue. In this case, intuitively, appearance

of the keyword ‘code’ can potentially simplify the process of

identifying the issue type compared to the number of tags in

an issue. As a result, if feature y2 was to be examined first,

it would be very probable for feature y1 to be examined as

well to improve the chances of accurate classification. Alter-

natively, if y1 was to be evaluated first, ASSESS could reach

a decision using one feature only. To avoid the computational

complexity of evaluating all K! possible feature orderings,

we sort features in increasing order of the sum of type I and II

errors (considering the true class as the positive class and all

the rest classes as a single negative class), scaled by the cost

coefficient of the nth feature to promote low cost features that

at the same time are expected to result in few errors.

5. URBAN ISSUE CLASSIFICATION

We illustrate the performance of ASSESS on a real–world

dataset of 2, 195 issues, spanning a time period between Jan

5, 2010 and Feb 10, 2018, for the capital of the state of New

York, collected from SeeClickFix1. Without loss of gener-

ality, we consider a set of four hypotheses, i.e., {Parking

Enforcement, Code Violation, Traffic Signal Repair, Signs

(missing, needed, or damaged)}. The goal is to assign each

issue to one of the four hypotheses, using a total of 1, 606
features, directly extracted from issues’ title and description

by tokenizing sentences into unigrams, removing punctu-

ation (e.g., periods, commas, and apostrophes), stopwords

(e.g., “a”, “the”, “there”), and digits (e.g., “8th”, “31st”),

and stemming each word to its root (e.g., replace “parked”

with “park”). A feature value corresponds to the number of

appearances of a specific word in the issue report, with words

being present in ≥ 95% and ≤ 2% of all issues excluded.

We compare ASSESS’s performance to (i) a standard

Bayesian detection method [24] that uses the top 1, 5, 10, 50,

100, 200, 500 features ordered using the proposed ordering

technique, as well as all available features, (ii) ACTION [8],

extended to multiclass classification using one–vs–the–rest

(i.e., 4 classifiers are constructed such that 1 out of 4 classes is

the positive class and the rest negative, and the predicted class

corresponds to the maximum posterior) and one–vs–one (i.e.,

6 classifiers are constructed for all pairwise combinations of

the 4 classes, and the maximum posterior is used for classi-

fication) schemes [16], (iii) prior work, i.e., Support Vector

Machine with feature selection (SVM–FS) [11] with linear

(SVM–L) and Gaussian (SVM–G) kernels, and PCA (SVM–

PCA) for dimensionality reduction, and (iv) inherently multi-

class classifiers, namely Random Forest (RF) with maximum

tree depths d = 5, 10, and XG Boosting (XG–B), which have

been shown to achieve good performance while being rela-

tively fast compared to other classification models [25,26]. In

our experiments, L = 4 (i.e., 4 issue types), misclassification

costs are set to Mi,j = 1, ∀i 6= j and Mi,j = 0, ∀i = j,

1https://seeclickfix.com/albany-county
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Fig. 1. Probability of error versus average number of features

used. Inset shows the distribution of number of features used

by ASSESS to classify each issue for an average of 5 features.

and feature costs cn ∈ {0, 0.01, 0.10, 0.15, 0.17, 0.20} are

considered. Five–fold cross validation results are reported.

Fig. 1 shows the error probability achieved by both AS-

SESS and the standard Bayesian method as the average num-

ber of features used increases. Intuitively, with a small num-

ber of features, both ASSESS and the standard Bayesian

method exhibit large error probabilities, whereas when the

number of features increases, the performance improves dra-

matically. Observe that the performance of the standard

Bayesian method is stable when the number of features used

is between 10 and 200, and degrades when more than 200
features are used. This behavior can be explained as a result

of the proposed feature ordering technique. Specifically, as

noisy features are ranked towards the end of the list, features

beyond the top 200 may introduce noise, significantly im-

pairing classification performance. Nevertheless, ASSESS

reaches the performance of the standard Bayesian method

(top 10 features) using only ∼5 features on average; this

corresponds to ∼50% reduction in the number of features

used by the standard Bayesian method. The inset in Fig. 1

illustrates the variability in the number of features used by

ASSESS to classify issues for a combined average number

of ∼5 features. Nevertheless, the number of features used is,

with few exceptions, ≤ 7.

Table 1 summarizes the ability of ASSESS to identify

specific report types as compared to all baselines. Over-

all classification performance was examined using macro–

averaged precision and recall, which is widely accepted and

commonly used for multiclass classification evaluation [27].

For reference, macro–averaged precision and recall are com-

puted independently for each class and the results are av-

eraged over all classes with equal weight assigned to each

class. We also used micro–averaged accuracy (Acc.), which

uses the cumulative number of true positives, true negatives,

false positives and false negatives per type [27]. Among all

baselines, Bayesian detection with top 50 features achieves

Table 1. Performance comparison of ASSESS with baselines.

Parameters Acc.

Precision

(Avg±Std)

Recall

(Avg±Std)

Avg. #

feat.

A
S

S
E

S
S

c = 0.20 0.44 0.32 ± 0.12 0.42 ± 0.21 0.82
c = 0.17 0.58 0.50 ± 0.12 0.56 ± 0.17 1.63
c = 0.15 0.79 0.77 ± 0.05 0.80 ± 0.06 3.10

c = 0.10 0.92 0.91 ± 0.01 0.92 ± 3 × 10−3 4.02

c = 0.01 0.95 0.94 ± 0.01 0.95 ± 3 × 10
−3

4.87

c = 0 0.95 0.94 ± 0.01 0.95 ± 3 × 10−3 5.33

B
a
y
es

ia
n

D
et

ec
ti

o
n All 0.69 0.82 ± 0.07 0.74 ± 0.06 1606

Top 500 0.90 0.91 ± 0.03 0.92 ± 0.01 500

Top 200 0.96 0.95 ± 0.01 0.96 ± 2 × 10−3 200

Top 100 0.96 0.95 ± 0.01 0.96 ± 2 × 10−3 100

Top 50 0.97 0.96 ± 3 × 10
−3

0.97 ± 1 × 10
−3

50

Top 10 0.95 0.94 ± 0.01 0.94 ± 2 × 10−3 10
Top 5 0.85 0.86 ± 0.04 0.85 ± 0.04 5
Top 1 0.52 0.33 ± 0.13 0.45 ± 0.21 1

A
C

T
IO

N
[8

]

One–vs–rest 0.50 0.40 ± 0.15 0.49 ± 0.21 138

One–vs–one 0.59 0.62 ± 0.11 0.60 ± 0.15 672

S
V

M

SVM–L (All) 0.97 0.96 ± 2 × 10
−3

0.97 ± 1 × 10
−3

1606

SVM–L (Top 5) 0.85 0.86 ± 0.03 0.85 ± 0.03 5

SVM–G (All) 0.97 0.96 ± 1 × 10
−3

0.97 ± 1 × 10
−3

1606

SVM–G (Top 5) 0.85 0.86 ± 0.03 0.85 ± 0.03 5
SVM–FS [11] 0.92 0.92 ± 0.02 0.93 ± 0.01 6

SVM–PCA 0.96 0.95 ± 4 × 10−3 0.96 ± 2 × 10−3 190

R
F

d=5 (All) 0.95 0.94 ± 3 × 10−3 0.95 ± 0.01 1606
d=5 (Top 5) 0.85 0.86 ± 0.03 0.85 ± 0.03 5

d=10 (All) 0.96 0.96 ± 2 × 10−3 0.96 ± 1 × 10−3 1606
d=10 (Top 5) 0.85 0.85 ± 0.03 0.85 ± 0.03 5

X
G

–
B All 0.96 0.96 ± 3 × 10−3 0.96 ± 2 × 10−3 1606

Top 5 0.85 0.86 ± 0.03 0.85 ± 0.03 5

the highest accuracy, precision, and recall, but requires ∼10

times as many features as ASSESS for a mere 2.1% improve-

ment. Solving several binary classifications (i.e., extending

ACTION [8] to multi–class classification using simplistic

one–versus–the–rest and one–versus–one strategies) instead

of directly considering one optimization formulation as in

ASSESS results in inferior classification performance, while

at the same time increasing the total number of classifiers

to be trained and evaluated. Last but not least, SVM–L and

SVM–G that use all features achieve the same highest ac-

curacy, highest precision and highest recall as the Bayesian

detection method that uses top 50 features, but require ∼ 330
times more features than ASSESS for a mere 2.1% improve-

ment in accuracy, precision and recall.

6. CONCLUSION

In this work, the problem of automatic processing of partici-

patory urban issue reports in civic engagement platforms was

addressed. An optimization problem was defined in terms

of the cost of evaluating features and the Bayes risk associ-

ated with the classification rule. A near–real–time algorithm,

ASSESS, was devised that implements the optimal solution.

Evaluation on a real–world dataset from the SeeClickFix civic

engagement platform showed that accurate muliclass classifi-

cation can be performed while reducing the number of fea-

tures used by up to 99.7% compared to the state–of–the–art.

In future work, we plan to devise appropriate learning–to–

rank approaches to dynamically order urban issues requests.
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