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Abstract

We investigate the doubling inequality and nodal sets for the solutions of bi-
Laplace equations. A polynomial upper bound for the nodal sets of solutions and
their gradient is obtained based on the recent development of nodal sets for Laplace
eigenfunctions by Logunov. In addition, we derive an implicit upper bound for the
nodal sets of solutions. We show two types of doubling inequalities for the solutions
of bi-Laplace equations. As a consequence, the rate of vanishing is given for the
solutions.

1. Introduction

In this paper, we consider the doubling inequality and nodal sets for the solutions
of bi-Laplace equations

A'u=Wu inM, (1.1)
where M is a compact and smooth Riemannian manifold with dimensions n = 2.

Assume that ||W|[Lc < M for some large constant M. The nodal sets are the zero
level sets of solutions. For the eigenfunctions of Laplace

Agy +rpy =0 (1.2)

on a compact smooth Riemannian manifold M, YAu [40] conjectured that the
Hausdorff measure of nodal sets satisfies
evVa S H'™ ' (x € Mgy = 0) < CV/A,

where ¢, C depend on the manifold M. The conjecture was solved in real ana-
lytic manifolds in the seminal paper by DONNELLY and FEFFERMAN [10]. LiN [31]
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provided a simpler proof for the upper bound for general second order elliptic equa-
tions on the analytic manifolds. For the smooth manifolds, some progresses were
made towards the upper bound of nodal sets. On smooth surfaces, DONNELLY and

FEFFERMAN [11] showed that H' (. =0} < Ck% by using Carleman estimates
and Calder6n and Zygmund type decomposition. A different proof based on fre-
quency functions was given by DONG [9]. Recently, LoGUNOV and MALINNIKOVA

[34] were able to refine the upper bound to be CA i For higher dimensions n = 3,

the exponential upper bound H" ! ({¢; = 0}) < CACY* was obtained by HARDT
and SIMON [25]. Very recently, an important improvement was given by Logunov
(in [32]), who obtained a polynomial upper bound

H" '(x € Mgy =0) < CA%,

where o > % depends only on the dimension. In [32], Logunov further studied
the frequency function of harmonic functions and developed a new combinatorial
argument to investigate the nodal sets.

For the lower bound, LoGguNov [33] answered Yau’s conjecture and obtained the
sharp lower bound for smooth manifolds. This breakthrough improved a polynomial
lower bound obtained early by COLDING and MIN1COZZI [8], SOGGE and ZELDITCH
[39]; see also the same polynomial lower bound by different methods, e.g. [26,36,
38]. For n = 2, the sharp lower bound for Yau’s conjecture was obtained in [5].

The upper bound of nodal sets was studied for general second order elliptic
equationsin [16,23,25,31], etc. The Hausdorff dimension of nodal sets and singular
sets for the solutions of higher order elliptic equations was studied by HaN [17]. It
was shown in [17] that the Hausdorff dimension of nodal sets {# = 0} and the mixed
nodal sets {# = Au = 0} is not greater than n — 1, and the Hausdorff dimension of
the singular sets { DVu = O for all |v| < 4} is not greater than n —2. In particular, the
Hausdorff measure of singular sets was studied by HAN et al. [20]. An implicit upper
bound for the measure of singular sets in term of the doubling index was given. The
optimal upper bound of nodal sets for higher order elliptic equations was obtained
by Kukavica [29] in real analytic domains. Complex analysis techniques were
used for the real analytic setting, which differ greatly from the tools in the paper.
For the bi-Laplace equations on smooth manifolds, we want to know how the upper
bound of the nodal sets depends on the potential functions appeared in the equations
(1.1). We are able to show the following result:

Theorem 1. Let u be the solutions of bi-Laplace equations (1.1) withn = 3. There
exists a positive constant C that depends only on the manifold M such that

H" '(x € Mu = Au=0) < CM*,
where o > % depends only on the dimension n.

In all the aforementioned literature for the study of the upper bound of nodal sets
of classical eigenfunctions, a crucial estimate is the following sharp quantitative
doubling inequality established by DONNELLY and FEFFERMAN [10]:

1 1By ) < €V 1118, (o) (1.3)
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for any r > 0 and any x € M, where || - ||, (y,) denotes the L? norm on the
ball B, (xp). Such optimal doubling inequalities provide the sharp upper bound for
the frequency function and vanishing order for classical eigenfunctions. Roughly
speaking, doubling inequalities retrieve global features from local data. Those esti-
mates are also widely used in inverse problems, control theorems, spectral theory,
etc..

For the estimates (1.3), in order to obtain upper bound estimates of nodal sets
by the norm of potential functions for the solutions of bi-Laplace equations (1.1),
we also need a quantitative doubling inequality, which provides the bounds for
frequency function and rate of vanishing. We show the following doubling estimates
for u and Au:

Theorem 2. Let u be the solutions of bi-Laplace equations (1.1). There exists a
positive constant C depending only on the manifold M such that

2
(e, Au)llBy, oy S €M7 N1, Aw)lB, (x) (1.4)
forany r > 0 and any x € M.

If we only consider bounded potential functions for bi-Laplace equations (1.1),
the power CM 3 in the exponential functions in (1.4) seems to be sharp so far.
Such power CM 3 appeared in the topic of quantitative unique continuation, see

e.g. [6,28], etc., especially, the counterexample for the sharpness of C M 3 that was
constructed for complex-valued potentials in [37]. For the real-valued bounded
potentials, it is still open if the sharp power is CM > forn = 3, which is related to
Landis’ conjecture [30].

In showing Theorem 1, we use the doubling inequality for (&, Au) in Theorem 2.
Using different types of Carleman estimates for bi-Laplace, we are able to obtain
a refined doubling inequality for the solution u.

Theorem 3. Let u be the solutions of bi-Laplace equations (1.1). There exists a
positive constant C depending only on the manifold M such that

1
s, ) < €M7 llulls, o) (1.5)
foranyr > 0 and any x € M.

Such a doubling inequality (1.5) without explicit dependence on potential func-
tions was assumed by HAN et al. [20] to obtain upper bounds of the measure of
singular sets. Theorem 3 not only verifies that the doubling inequality holds for
the solutions of bi-Laplace equations, but also provides the explicit estimates for
such an inequality. As a consequence of Theorem 3, we obtain an upper bound for
the vanishing order of solutions in (1.1). For smooth functions, the vanishing order
of solutions at some point is defined as the number of the highest order non-zero
derivative such that all lower derivatives vanish at the point.
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Corollary 1. Let u be the solutions of bi-Laplace equations (1.1). Then the vanish-

ing order of solution u is everywhere less than C M3, where C depends only the
manifold M.

Our initial goal is to study the upper bounds of the measure for the nodal sets
{u = 0} of solutions for bi-Laplace equations. The desirable doubling inequality
(1.5) is shown. However, the frequency function for bi-Laplace equations has to
have Au involved to get an almost monotonicity result and a comparison lemma
of doubling index; see Section 2 for those results. These cause our upper bound
estimates to be on nodal sets {u = Au = 0} in Theorem 1. Inspired by the arguments
for showing the finite bound of singular sets for Laplace equations in [20,21], we
are able to derive the following bounds for the solutions of nodal sets of bi-Laplace
equations:

Theorem 4. Let u be the solutions of bi-Laplace equations (1.1). There exists a
positive constant C (M) depending only on M and the manifold M such that

H" '(x e Mlu=0) < C(M).

Let us comment on the organization of the article. In Section 2, we introduce
the corresponding frequency function for bi-Laplace equations and obtain almost
monotonicity results for the frequency function. In Section 3, the polynomial upper
bound of nodal sets for bi-Laplace equations are deduced inspired by the new
combinatorial arguments in [32]. Section 4 is devoted to obtaining the doubling
inequality for the solutions of bi-Laplace equations using Carleman estimates. A
quantitative three-ball theorem is shown. Section 5 is devoted to the study of a
refined doubling inequality of solutions of bi-Laplace equations. In Section 6, we
present the proof of Theorem 4 for the measure of nodal sets. Section 7 is used to
provide a detailed proof for a lemma on the propagation of smallness of the Cauchy
data. The “Appendix” provides the proof of some ingredients in the arguments of
Theorem 1. The letters ¢, C and C; denote generic positive constants that do not
depend on u, and may vary from line to line. The letter M is assumed to be a
sufficiently large positive constant.

2. Frequency Function of Elliptic Systems and Its Applications

A frequency function was introduced by Almgren for harmonic functions.
GAROFALO and LiN [14,15] developed the method of frequency function to study
strong unique continuation property. LIN [31] applied this tool to characterize the
measure of nodal sets. The frequency function describes the local growth rate of the
solution and is considered as a local measure of its “degree” for a polynomial like
function. Interested readers are recommended to refer to the nice book (in prepara-
tion) by HAN and LiN [22]. LoGuNoOV and MALINNIKOVA [32-34] further exploited
the frequency function of harmonic functions with new combinatorial arguments
to study nodal sets. In this section, we study the frequency function for bi-Laplace
equations (1.1), which lays the foundation for the combinatorial arguments in the
later section.
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Let us consider normal coordinates in a geodesic ball B, (0), where r is a
sufficiently small. We treat the Laplace operator on the manifold as an elliptic
operator in a domain in R". For the Euclidean distance d(x, y) and Riemannian
distance d, (x, y), there exists a small number & > 0 such that

< dg(ry) l+e
T odx,y)
for x, y € B, with ry depending on & and the manifold.
To study the bi-Laplace equations (1.1), we reduce it to be a system of second
order elliptic equations. Let v = Au. The solutions of (1.1) satisfy

Au = v,
Av=WHX)u.

1—

@2.1)

Note that |W||z < M for M > 1 sufficiently large. We do a scaling for the
bi-Laplace equations (1.1). Let

_ X
ux)=u <W> .
Set v(x) = Au(x). Then u(x) and v(x) satisty

Al =1,
{M = W)i, 22)

where W(x) = % Thus, ||[W|z < 1. We will consider the elliptic systems
(2.2) in the following sections for the nodal sets. For ease of presentation, we still
use the notations u, v for iz, v in (2.2). For the system of equations (2.2), we define

the frequency function as follows:
r (f]B,(xo)|V”|2 + |Vu]2dx + S8, (1 + W (x))uv dx)

o, 60”49 + [ 45, ()07 dO

Without loss of generality, we may write xo = 0. We denote I (xg,r) = I(r). We
adopt the following notations:

I(xg,7) = (2.3)

Dl(r)z/ |Vu|? dx, Dg(r):/ |Vv|? dx,
B, B,

D3(r) = / (1 + W(x))uvdx,
B,
D(r) = Dy(r) + Da(r) + D3(r),
H(r) = / u® +v? do,
0B,

where do is n — 1 dimensional Hausdorff measure on 01B,.. Thus we can write I (r)
as

rD(r)
H(r)’

Next we want to show that the frequency function 7 (r) is almost monotonic.

I(r) = (2.4)
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Proposition 1. For any ¢ > 0, there exists ro = ro(e, M) such that

I(r)) = C+ (1+e)(r2) (2.5)
forany O <ry <ry <ro.

Before presenting the proof of Proposition 1, we establish some elementary
estimates. We adapt some the arguments from the book by HAN and Lin [22].

Lemma 1. There exist positive constants ro and C such that
/ IVu|?> + |Vo?dx < CD(r) + CrH(r) (2.6)
B,

and

D(r) < c/ [Vul|® + |Vo|?dx + CrH(r). 2.7
B,

Proof. For any w € H'(B), the following estimate holds:

2 452
/ w2dx < —r/ w?do + LZ/ IV dx; (2.8)
B, n B, n B,

see e.g. Lemma 3.2.2 in [22]. From the definition of D(r) and the assumption of
W, using Cauchy—Schwartz inequality, we have

/ |Vu|2+|w|2dx§p(r)—/ (14 W(x))uvdx
B, B,

< D(r)+C/ u® +v?dx.
B,

Using the estimates (2.8) for # and v, we obtain that

2 ) 2r 5 452 ’
|Vul® +|Vol"dx = D(r) + C | — utdo + —- |Vul|* dx
B, n.J B, n- J B,

2r 5 452 5
+ — vda—i——2 [Vu|“dx | .
n oB, n B,

Since r € (0, ro) for some small g, we can show that

/|Vu|2+|Vv|2dx§CD(r)+Cr/ v2 + udo
B, 3B,

< CD@Fr)+CrH(r) (2.9)
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for some positive constant C. Thus, the inequality (2.6) is arrived at. From the
definition of D(r), Cauchy—Schwartz inequality and (2.8), we can easily derive
that

D(r)§/ |Vu|2+|Vv|2dx+/ 1+ W) |uv|dx
B, B,

g/ |Vu|2+|Vv|2dx+C/ u? 4+ v?dx
B, B,

2 452
g/ |Vu|2+|Vv|2dx+C(—r/ u2da+L2/ IVul? dx
B n B, n B,

2r 5 452 5
+ — v-do + —5 [Vou|~dx
n.J B, n B,

gc/ |Vu|2+|Vv|2dx+Cr/ u® + v do. (2.10)
B, 9B,

This leads to the inequality (2.7). O

We can check that H(r) # O for any r € (0, rg). If H(r) = 0 for some
r € (0, rp), the definition of H (r) implies that u = v = 0 on aB,. From the elliptic
systems (2.2) and integration by parts argument, we will derive that D(r) = 0.
From (2.6), (u, v) is some constant. Moreover, u = v = 0 in B, sinceu = v =0
on dBB,. By the strong unique continuation property, # = v = 0 in M, which leads
to a contradiction. Thus, 7 (r) is absolutely continuous on (0, rg). If we set

I ={re, ro): 1(r) > max{l, I(ro)}},

then I' is an open set. There holds a decomposition I' = U?‘;l(a j» bj) with
aj,bj ¢ . Forr € I', we have I (r) > 1, 1i.e.

Hr(r) < D(). 2.11)

With these preparations, we are ready to give the proof of the proposition.
Proof. We will consider the derivative of I (r). We first consider the derivative of

Di(r), Da(r), D3(r) and H (r) with respect to r in some interval (a;, b;). It is
obvious that

D (r) = / |Vu|? do. (2.12)
0B,

Since |x| = r on 0B,, we write

’ 2.x X
D,(r) = wVulrt . L do 2.13)
B,

r r
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Note that the unit norm n on 9B, is 7. Performing integration by parts gives that

, 1
D,(r) = ;/B div(|Vul? - x)dx

2
:E/ |Vu|2dx+—/ Vi - Vu - xdx
r B, r B,

n—2 ) 2 2 )
= |Vul=dx — — AuVu-xdx—l——z (Vu - x)“do.
r B, rJ B, r<J) s,

From the first equation of the elliptic systems (2.2),

](r)_T IB|Vu| dx—; BvVu-xdx+2 u,do, (2.14)

r

where u, = g—z = Vu - n. Performing similar calculations also shows that

’ n—2 2 2 2 2
D,(r) = IB|Vv| dx — - IBgAvVvvcdx—l—r—z . (Vv -x)“do

r r

n—2

2 _
/ Vo> dx — -/ W(x)uVv - x dx + 2/ vido. (2.15)
B, rJ B, 0B,

r

Direct calculations lead to the fact that
Di(r) = /BB (1 + W(x))uv do. (2.16)
We write H (r) as
H@r)= r"*l/aIB u*(rs) + v (rs) do.
1

Computing H (r) with respect to r gives that
, n—1
H@r)=—Hr)+2 u,u + vyvdo. 2.17)
r B,
If multiplying the first equation in (2.2) by u# and the second equation in (2.1) by
v, using integration by parts arguments, one has

D(r) = / u,u + vyvdo. (2.18)
0B,

Cauchy—Schwartz inequality yields that

D2(r) < (/ u2+v2do> (/ uﬁ—i—v%da)
0B, 9B,

< H(r)/ u? + v2 do. (2.19)
B,
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If (2.11) holds, then
D) £ r/ uﬁ + v,% do.
B,
The combination of the inequalities (2.14), (2.15) and (2.16) yields that
/ n—2 2 2 2 7
D(r)y=—— [Vul+|Vo|“dx | — — / vVu - xdx + Wx)uVu - x dx
r B, r B,
+ 2/ W2 4+ v2)do +/ (1 + W(x)uvdo
B, B,
n—2

n—2 -
= D(r) — 7/ (1 4+ W(x))uvdx
r r B,

2 _
—7(/ vVu~xdx+W(x)qu~xdx>+2/ (u,%—i—v,%)da
B, IB,

r

+ / (1 4+ W(x)uv do. (2.20)
B,

We investigate the terms on the right hand side of (2.20). Using Cauchy—Schwartz
inequality, we can get the following:

2 2 2
- vwWu-xdx < C vodx + |Vu|~dx |, (2.21)
rJ) B, B, B,

2 ¥ . < 2 2
WxuVv-xdx = C u”dx + [Vu|©dx ). (2.22)
rJ B, B, B,

From Cauchy—Schwartz inequality and the inequality (2.8), we derive that

n—2

r

- c
/ (14 Wx)vudx < —/ u? +v>dx
B, r.J B,

[IA

c/ u2+v2da+Cr/ [Vu|?> + |Vv|? dx
0B, B,
< CH(r) + CrD(r). (2.23)

Together with the estimates (2.20)—(2.23), we arrive at
/ n—2 2, .2
D'(r)yz2 ——D(r)—CH@F)—CD(r) +2 (u;, +v;)) do.
r aB,
Furthermore, since (6.17) holds, that we have

D'(r) 2 uD(r) —CD(r) + 2/ (u? +v?) do. (2.24)
r

r

Recall that H'(r) is given in (2.17). We consider the derivative of I (r) with respec-
tive to r. Taking the definition of D(r), H(r), I (r) and estimates (2.17), (2.24) into
account, we obtain that



1552 Jiuyr ZHu

1 D H’
i@y =+ 20 HO
r D(r) H(r)
21_’_” 2—C+ fd]B%,(un_'_vn)O—
r r D(r)
n—1 2[4 (u+vyv)do
r H(r)
o 2fop, i+ do 2[4 (uau +vpv) do (2.25)
= Jop, (unu + vpv) do Jos, @ +v?) do '
By Cauchy—Schwartz inequality, it follows that
I/
> (2.26)
I(r)

Hence ¢€"I(r) is monotone increasing in the component (a;, b;). Thus, in this
decomposition,

I(ry) < 1(rp)e€ 7
< €U0 [ (1) (2.27)

fora; <ri <ry <bj <rg.Ifr; & (a;, b;), from the definition of the set I,
I(r)) = C. (2.28)
Together with (2.27) and (2.28), for any r; € (0, rg), we get that
I(r) £ C+ e (). (2.29)
If g is sufficiently small, we have that
Ir) S C+ A +e)() (2.30)
for 0 < r; < rp < rg. Therefore, the proposition is arrived at. O

Let’s derive some properties for H (r). Since
, n—1
H'(r) = ——H(r) +2D(r),
r

then
d I H(r)  21(r)

— = . 2.31
dr f ri=l r ( )
Integrating from R to 2R gives that
el 2R21(r)
HQ2R) =2"""H(R)exp dr (2.32)
R r

for a; £ 2R < b;. Thus, from (2.26),
HQ2R) < 2" TH(R)4C1®D, (2.33)
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From (2.6), we learn that @ > —C for some positive constant C. From (2.31), it
is also true that the function

eCTH(r)

— is increasing for r € (0, rp). (2.34)

r}’l
Following from the arguments in [32] for harmonic functions, we show some

applications of the almost monotonicity results for second order elliptic systems
with potential functions.

Corollary 2. Let ¢ be a small constant. There exists R > 0 such that

2(1+8) 1 (r)—Cy 2(1+8) 1 (r)+C)
2 < H) (2 (2.35)
T T H(r) T \n

forO <ry <rp <R

Proof. For 0 < r; < rp < ro, the integration of (2.31) from r{ to rp gives that

n—1 r
H(r2)=H(r1)<:—T) exp{Z/z@dr}.

Using the almost monotonicity of the frequency function in Proposition 1, we have

r n_le(2(1+£)_1N(r1)—C)ln% < H(n)
r H(ry)

[IA

n—1
r r
( 2) e(2(1+8)1(r2)+C)ln 1 (236)
ry

which implies the corollary. O
We define the doubling index as

supyp, |(u, v)|

N@B,) =1 )
B,) 08> supg, |(u, V)|

(2.37)

where supg |(u, v)| = [ullL=®,) + v]lLo@,). For a positive number p, pB is
denoted as the ball scaled by a factor p > 0 with the same center as B. N (x, r) is
the double index for (u#, v) on the ball B(x, r).

Assume that 0 < ¢ < 1—(1)3- By standard elliptic estimates, the first equation of
(2.2) implies that

e < Co™8r78 (o, , o + 2@, ,)) . (239)
and the second equation of (2.2) gives that

llize@,) < Ce i (vl o) + lull2,, o)) (239
Thus,

I, V)o@, = Ce™2r™ 2w, V20 (2.40)
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It is obvious that

1t )28,y S Cr2 @, v) Lo ,)- (2.41)

Next we obtain a lower bound for N (B, ). The fact that ¢ H (r )

(2.34) and the inequality (2.40) leads to

is 1ncreasmg in

(I+e)?
16t D2, < Cor " / / \u, )P dods
0B;

—np—n ,C(14+e)r H((1 +)2r) [OFe)rgn-l
[0+ o) <
7”H((1 +8) V) C(1+£)2ro

pn—1

e "H((1+ 8)2r)

pn—1

A

Ce ds

A

C

A

c (2.42)

From (2.41), it holds that

2r

(o
Dy 2 / H(s) ds.

2(1—e)r

Thanks to the monotonicity of e _H )

again,

—n ClI-er HQ —&)r) sl
21 —)r1" 1 ) 201—e) €°
eHQ( —¢&)r) o—2Cro,.
Fn— 1 o

ds

C

1\

eHQ2(1 — &)r)
=

1\

C (2.43)

Therefore, from (2.42) and (2.43), we have

supyp, |(u, v)|

2 supg, |(u, v)|

L HQA - ¢)r)
CH((1+¢)2r)

N@B,) =1

z

log, (2.44)

1
2

The lower estimates in (2.35) leads to

1 "t 2(1 — &) 2(14e) 1 (142)2r)—C
N@®B,) = =1
B) 23 °g2< ¢ Larop] )

I((14+¢e)r)(1 —20e;) + Clog, ¢, (2.45)

1\
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where (14 ¢)? = 1+ ¢; with ¢ sufficiently small. We can also find an upper bound
of the double index in term of the frequency function. Using (2.42) and (2.43), we
have

supp, |(u, v)]
supg, |(u, v)|

Ce™"r' 2" H(2(1 4 £)*r)
er TH((1—g)r)

N(B,) = log,

(2.46)

It is true from (2.35) that

HQ(1 +¢)%r) < <2(1 +¢)?

2(1+4e)1 (2(1+8)*r)+C2
H((1 —¢)r) l1—¢ >

(2.47)
Thus, we further obtain that

2(1 +¢)?

1—c¢

2(14€)212(146)2r)+C>
) (2.48)

1
N@®B,) < Elogz Ce ! (

Let (1 + €)% = 1 + ¢; again, i.e. &1 ~ 2¢. We can check that

2(1 4 ¢)?

2(14¢)21 2(1+8)2r)+C>
1—¢ i|

1

_1 C —n—1

5 log; | Ce [
< 1@2r(1+¢))(1 +20e;) — Clog,

for ¢ sufficiently small.
In conclusion, from (2.45) and (2.48), we have shown that

I(r(1+4¢1))(1 —50¢e1) + Clog, &1
SN@B,) ST1@r(1+¢e1))(1+50e1) — Clog, €. (2.49)

Lemma 2. Let € be a small positive constant. There exists R such that

NEPA=TCI0RE qup |, v)] < sup [(u, V)] (2.50)
By (x) B (x)
S tN(X,lp)(1+8)—C10g28 Sup |(u’ 'U)|
Bp(x)

fort > 2,tp < R and any x € Bg with B,,(x) C Bg. Furthermore, there exists
No such that if N(x, p) = Ny, then

NEPUZD sup [, v) £ sup (w, v) < VP sup [, v)].
Bp (x) ]Btp (x) Bp (x)

2.51)
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Proof. We first show the proof of the left hand side of (2.50) and (2.51). We assume
t > 2% TIf not, then 2 < ¢ < 21F¢_ 1t follows that

sup |(u, v)| = sup |(u, v)| = 2VCP) sup |(u, v)|
Byp(x) Bap(x) By(x)

> N@n1=8) qup |(u, v)],
B, (x)

since 2 > t17¢ in this case. Then the left hand side of (2.50) is shown.
Now we consider 1 > 2!%¢_ Tt is true that

HOCID) o oo 1w ) 2. (2.52)

(tp)n=t = By (x)

Choose &1 = =335 Applying (2.49) by considering the doubling index in B, (x), we
obtain that

N(x, p) + Clog; &1
1+ 50e ’

From the monotonicity of H (r) in Corollary 2 and last inequality, we get that

12p(1+e1) 2 (2.53)

2N (x,p)
¢ (1+50€1t)(‘17+s,>+c log, &1
(2.54)

H(x,tp) = H(x,2p(1 +¢1)) (m

Note that r > 2!*# implies that > 2(1 + &1). Furthermore, the estimates (2.42)
and the definition of the doubling index yield that

H(x,2p(1+¢1)) = Cefp"™" sup |(u,v)]?

]BZp(x)
= C22N™PIgn o=l sup |(u, v)|2. (2.55)
B, (x)
In view of (2.52), (2.54) and (2.55), we arrive at
sup |(u, v)| (2.56)
Byp(x)
N0y Cog, 6y
Nl t (T+100e ) 2
> oV gn 5 (T) : sup |(u, v)].
(I'+e&1) B, (x)
Note that
N(x,p) e N(x,p)
(T > (N@I=5) > Nexp)1=e) S5
> NP (] 4 g Tl (2.57)

since 2¢/2 > 1 + =5
Notice that £} > tCloga 1 From (2.56) and (2.57), we deduce that

sup |(u, v)| = (VEPU=FCl0E gy |y, v)). (2.58)
IBt,o()f) Bp(x)
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We may choose a smaller ¢ so that

sup |(u, v)| 2 (NPUTZITCRRED sup |(u, v)]. (2.59)
]Btp(x) ]B/J(x)

Let Ng = %. Furthermore, if N > Ny, we get that
sup |(u, v)] Z NP sup |(u, )]
By (x) B, (x)
This completes the proof of left hand side of (2.50) and (2.51).

By the similar strategy, we can show that there exists R such that

sup [(u, v)| £ NEIPUFO=Cloge gup |y, v)| (2.60)
Btp(x) Bﬂ(x)

for tp < R and any x € By with B;,(x) C Bg. Furthermore, there exists Ny such
that if N (x, p) = Ny, then

sup |(u, v)| < NPT sup | (u, ). (2.61)
Btp(x) Bp(x)

Thus, we arrive at the right hand side of (2.50) and (2.51). Therefore, the proof of
the lemma is completed. O

Proceeding as the argument in [32] and using (2.51), we can compare doubling
index at nearby points.

Lemma 3. There exist R and Ng such that for any points x1, xo € B, and p such
that N (x1, p) > No and d(x1, x2) < p < R, there exists C such that

99
N(x2, Cp) > mN(xl, 0). (2.62)

3. Nodal Sets of Bi-Laplace Equations

Let n 2 3 in this section. After these preparations, we follow the new combi-
natorial argument in the seminal work of [32] in this section. Let x1, x2, ..., Xp+1
be the vertices of a simplex S in R”. Denote diam(S) as the diameter of the sim-
plex S. We use width(S) to denote the minimum distance between two parallel
hyperplanes that contain S. The symbol w(S) is defined as the relative width of S:

width(S)
w(S) = ———.
diam(S)
We assume w(S) > y for some constant y. In particular, x1, x2, ..., X4 are
assumed not to be on the same hyperplane. We denote x( as the barycenter of S,

ie. xg = ﬁ Z;’:]l x;. Roughly speaking, next lemma shows that the doubling

index will accumulate at the barycenter of the simplex if the doubling index at the
vertices {x1, x2, ..., x,4+1} are large. Using the Lemma 2 on frequency function
and Logunov’s arugment, the following lemma holds:
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Lemma 4. Let B; be balls centered at x; with radius less than M for some K
depending onlyony,i = 1,2, ..., n+1. There exist positive constants c = c(y, n),
C=C(y,n) 2 K,r =r(y)and Ngo = No(y) suchthatif S C B, and N(B;) > N
with N > Ny foreachi,i =1,2,...,n+ 1, then

N (xg, C diam(S)) > (1 +c¢)N.

We introduce the doubling index of the cube Q. For a given cube Q, we define
the doubling index N (Q) as

N(Q) = sup N(x,r).
xeQ, re(0,diam(Q))

The doubling index of the cube N (Q) is more convenient in applications. Obviously,
ifacubeq C Q,thenN(g) £ N(Q).Ifacubeq C U; Q; withdiam(Q;) = diam g,
then N(Q;) = N(q) for some Q;.

Based on the propagation of smallness of the Cauchy data in Lemma 14 and
the arguments in [32] or [16], for the completeness of presentation, we can show
the following lemma (roughly speaking, it asserts that if a set of sub-cubes with
intersection with a hyperplane all have a large doubling index, then the original
cube that contains those sub-cubes at least have double doubling index):

Lemma 5. Let Q be a cube [—R, R]" in R". Divide Q into (2A + 1)" equal
subcubes q; with side length %. Let {g; o} be the subcubes with nonempty inter-
section with the hyperplane {x, = 0}. For each q; o, there exist some point x; € q; o
and r; < 10diam(q; o) such that N(x;,r;) > N, where N is a large fixed number.
The following property holds: if A > Ao, R < Ry and N > Ny for some Ay, Ry
and Ny, then

N(Q) Z2N.

Proof. By scaling, we may assume that R = % and Ry > % Let B be the unit ball.
Let sup%]B |(u, v)| = My, we have

sup |(u, v)| = Mo
By/s(xi)

ifx; € %IB%, since By/g(x;) C }‘B.From the assumption N (x;, r;) = N and doubling
lemma, we get

N
64./n \?%
sup [(u,v)| = sup [(u,v)| =C sup |(u,v)] ( Jn )
4qi0 Bgm (xi) By/s(x;) 2A+1
2A+1
é 2—CNlOgAM0, (31)

where the constants N and A are assumed to be large. The following interpolation
inequality is known, e.g. [7]:

IV fll2@e-1y = CULf w2y + 1 f 2 @e-1y) (3.2)
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for any f € W22(R"). By replacing f by ¥ (u, v), where ¥ is a smooth cut-off
function with ¥ = 1 in B, and ¢ = 0 outside B,,, we obtain that

IV (u, U)||L2(Rn71m]133,) = C(”(M, U)||W2»2(]B;2,) + [ (u, U)||L2(1Rnflrmz,))- (3.3)

Letl’ = %]B% N{x, = 0}. The last inequality, trace inequalities and elliptic estimates
yield that

IV, 0l 2fng o) S CRA+ DX, W)llw220g,0) + 106 V21 g, )
S CQRA+ DI, )l 1234g:.0)- (3.4)
Using the trace inequality and elliptic estimates again, we obtain that
do(u, v)
Con L2('Ngi.0)
S CQRA+ DI, v)ly22rog, ) + 1V, Wl L2(F g 0)
< CA+ DM@, vl 1264, )
QA+ 1)*

< m”(u V)| Lo (4g; ) - (3.5)

I (ue, U)“le?(l:ﬂq,;o) + ”

Summing up all the cubes g; o with intersection with I, the last inequality yields
that

( v)
1t )iy + 1 gy S CRA+DE 1w, v) 2 ag, )

é e_CNIOgAM(), (36)

where we used (3.1) in the second inequality. Note that || (u, v)| ;2 1B+ < CM,.
By scaling and using the propagation of smallness Lemma 14 in Section 7, we have

1, V)| 20105+ < e V184N, (3.7)
We select a ball B,-11(p) C 2108+ Thus, by elliptic estimates,
1t ) | oo (B, (py) < € N8 A My (3.8)

By the fact that ||(u, v) || Lo, (p)) = Mo, we derive that
7

[, V)l L
( ZI((p)) Z eCNlOgA‘ (39)

G, V)l LB, 12 (p))
The doubling lemma gives that

|G, V) LB (p))
1 (210)N (3.10)

G, V)L ®,- 12 (p))
where N is the doubling index in B 1 (p). Therefore,
N > 2N (3.11)

if A is large enough. O
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Following the arguments in [32], the following lemma holds:

Lemma 6. If Q is partitioned into A" equal sub-cubes, where A depends on n,

then the number of sub-cubes with doubling index greater than max{ 1\1/ Ech) , No}is

less than %A"‘l for some ¢ depending n and some fixed constant Ny.

Now we give the estimates of the nodal set {u = v = 0} for the elliptic system
(2.2) in a small cube. We show the details of the following proposition:

Proposition 2. Let N, ) (Q) be the doubling index of the cube Q for the solutions
(u, v) in (2.2). There exist positive constant r, C and & such that for any solutions
(u,v) on M and Q C B,,

H" '({u=v=0}n Q) < Cdiam" " (Q)NE, ,,(0). (3.12)

where & depends only on n and N, ,)(Q) is the doubling index on Q for the
function (u, v).

Proof. Let the cube Q C B,. For any solutions (i, v) in the elliptic systems (2.2),
we consider those solutions such that N, ,y(Q) < N. Define the function

n—1 — oy —
Py~ s HTu=v=01n0)

jam"~! (3.13)
N, (@SN diam"~1(Q)

We are going to show that
F(N) < CN¢

for some & depending only on n, which provides the proof of the proposition. As
shown in [17] for higher order elliptic equations, the Hausdorff dimension of the sets
{D"u = O for all |[v| < 2} is not greater than n — 1. Since v = Au, the mixed nodal
sets {Q|u = v = 0} is not greater than n — 1. The Hausdorff dimension of nodal sets
{u = 0} is no more than n — 1. Such stratification can also be observed in Lemma 12
in Section 6. Obviously, the mixed nodal sets {u = v = 0} is subset of the nodal
sets {u = 0}. Even if there exists co-dimension one nodal sets {# = 0} in Q, it does
not guarantee the existence of co-dimension one mixed nodal sets {# = v = 0}.
We assume that # and v has the same co-dimension one zero sets in Q. Otherwise,
H" '{u =v=0}N Q) =0, then the proposition follows immediately. If there
exist xo such that u(xp) = v(xp) = 0in Q, then N, ,7(Q) = 1. In Lemma 15 in
the “Appendix”, we have shown that F(N) < co. We claim that if

N
F(N) > 3AF<1+C), (3.14)

then the set N < Ny, where the constant A, ¢ are those in the last lemma and Ny
depends on the manifold M. If F(N) is almost attained in (3.13), then

H '(u=v=0NnQ) 5
G 1(0) > gF(N), (3.15)
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where N, ,)(Q) £ N. We divide Q into A" equal subcubes g;,i = 1,2, ..., A",
then split ¢; into two groups

N
G| = {Qi|1—+c S N(g) = N}
and
N
Gy = {q,-|N(q,~) < I_—I-c}

Thanks to the Lemma 6, we know that the number of subcubes in G less than
%A"‘l if N > Ny. We have

H '(u=v=0}n0Q)

<> H" Mu=v=0lng)+ Y H'"'(u=v=0{Ng)
q,'EG| q,'er
diam"~1(Q) N \ diam"~'(Q)
< |G{|F(N)—————— 4+ |G,|F
S |Gi|F(N) e +1G2| (1+C) o=
=1+ D, (3.16)

where |G;| denotes the number of subcubes in G;. Since |G| < %A"‘l, then

1 . n—1
I < EF(N) diam" ™ (Q). (3.17)

Since (3.14) holds, it follows that

F(N) diam"~1(Q)

L < |G 3.18
2 S 1Gal 5 (3.18)
It is obvious that |G,| < A”. Then
1 s n—1
L < §F(N) diam”" ™" (Q). 3.19)
The combination of (3.17) and (3.19) yields that
5 . n—1
L+ < EF(N) diam”" ™" (Q), (3.20)

which is a contradiction to (3.15). Therefore, we have shown the claim; that is, if
the set N = Ny, then

N
<
F(N) < 3AF (1 — C) . (3.21)
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Let ﬁ = Np. We iterate the estimate (3.21) m times to get

< m [
F(N) < BA)"F ((1 — C)'")

N
— (1 4 C)(IOgH»c 3A)(10gl+c NO)F(NO)
N (logy 4. 34)

Thus, we show the conclusion (3.12) for N = Ny. If N < Ny, by the Lemma 15,
we obtain that

F(N) < C(No) (3.22)
for some C that depends on Ny. Therefore, the proposition is completed. O

With the aid of the upper bound of nodal sets in a small cube in the proposition,
we provide the proof of Theorem 1 for bi-Laplace equations (1.1).

Proof of Theorem 1. By the elliptic regularity estimates, from the doubling in-
equality in Theorem 2, we have the following L™ type doubling inequality:

2
G, D) || oo By vy S €M7 N1y Aw) | 220 B, (1) (3.23)

for any x € M and any 0 < r < rg, where ry depends only on the manifold M.
From the definition of doubling index in (2.37), we know that

N(x,r) < cM3

for M sufficiently large and for any x € M and 0 < r < rg. Thus, the doubling

index N(Q) S CM 5 in the cube Q. We consider the reduced elliptic systems (2.2)
of bi-Laplace equations (1.1) in the cube Q C B, with 0 < r < # Note that
v = Au. From the last proposition, we get

H'™ '(u=2AMu=01n0) < CMT—"7.

Since the manifold M is compact, we can cover the manifold with CM i number
of balls B, with 0 < r < ﬁ Therefore, we arrive at

H' (= Au=0)) <CM3+1.
This gives the proof of Theorem 1. O

Remark 1. For the 2-dimensional compact smooth manifolds, a polynomial upper
bound with explicit power « for the mixed nodal sets {x € M|u = Au = 0} of
solutions of bi-Laplace equations 1.1 might be obtained using the ideas in [11,34].
The author hopes to explore this in future work.
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4. Carleman Estimates

In this section, we show the doubling inequalities for the bi-Laplace equations
(1.1). We use Carleman estimates to obtain some quantitative type of Hadamard’s
three balls theorem, then employ the “propagation of smallness” argument to get
some lower bound of L2 norm of solutions in a small ball. Finally, using Carleman
estimates and the lower bound of L2 norm of solutions, we obtain the uniform
doubling inequality.

For any xg € M, letr = d(x, xg) = r(x) be the Riemannian distance from xq
to x. B, (xo) is denoted as the geodesic ball at xo with radius r. The symbol || - ||
denotes the L2 norm. Specifically, || - IB, (xo) Or || - [|- for short denotes the L? normon
the ball B, (x¢). Our crucial tools to get the doubling inequality are the quantitative
Carleman estimates. Carleman estimates are weighted integral inequalities with a
weight function e*®, where ¢ usually satisfies some convex condition. We construct
the weight function ¢ as follows: set

¢ = —g(Inr(x)),

where g(¢) =t — e® for some small 0 < ¢ < 1 and —oo < t < Tj. The positive
constant ¢ is a fixed small number and 7y is negative with |7p| large enough. One
can check that

lim —e "¢g"(t) =00 and lim g'(t) =1. 4.1)
t——00 f——00

Such a weight function ¢ was introduced by HORMANDER [18]. The following
Carleman estimates are shown in [4]: there exist positive constants Ry, C, which
depend only on the manifold M and ¢, such that, for any xo € M, any f €
C3°(BRy (x0)\Bs(xo)) with0 < § < Ro,and t > C, we have

Cllr2e™ AL Z T2 [Ir2e™ £l + 78] 'e™ £ |
FozrtEetv . 4.2)

A similar type of Carleman estimate without the second term on the right hand side
of (4.2) is well-known in the literature, see e.g. [1,12,19,28], to just mention a few.
There has been a long and rich history for the development of Carleman estimates. It
is hard to provide an exhaustive list for the applications of such estimates. Interested
readers may refer to the literature or references therein for more history about such
L? type Carleman estimates. The Carleman estimates (4.2) also hold for vector
functions. Let F = (f1, f2). If F € C5°(Bg, (x0)\Bs(xo), Rz), similar arguments
as to those in (4.2) show that

3 £
Cllr?e®®AF| = 12 ||r2e™F| + t8|r ™ F||
I N laas Patava 4.3)

Let V(x) = (W(();c) é) Following from (4.3), we can easily establish the

quantitative Carleman estimates for vector functions.
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Lemma 7. There exist positive constants Ry, C, which depend only on the manifold
M and &, such that, for any xo € M, F € Ci°(Bg,(x0)\Bs(xo), R2) with 0 <

2
8§ < Ry, and t > C(1 4 ||V||] ), one has
CllP2e™ (AF = V(x,y) - F)| 2 12 [[r2e™ F|| + t8]r ' e™ F||
LTV R (4.4)
Proof. By triangle inequality and the inequality (4.3), we have

Cllr?e™ (AF — V(x,y) - F)|| 2 Cr2e" AF|| — C|r?e™®V (x, y) - F|
3 ||r3e™ F|| + 8|lr— e F|

v

FT2|P OV E| = OVl P2 F .
4.5)

If 7 is chosen to be so large that r% > C(1 + || VL), the estimates (4.4) can be
derived. O

To show the refined doubling inequality in Theorem 3, we establish the follow-
ing Carleman estimates for the bi-Laplace operator involving the potential W (x):

Lemma 8. There exist positive constants Ry, C, which depend only on the manifold
M and &, such that, for any xo € M, any f € C5°(Bgr,(x0)\Bs(x)) with 0 <
1

8§ < Ryg,andt > C(1 + ||W||zoo), one has
Clirte™ (A2 f =W Il = Pllret fl + 282 r2e f. (4.6)
Proof. Recall the definition of the weight function ¢ = —Inr 4 r®, we see that
FAetd — 2,09 2r¢
Since 0 < r < Ry < 1, then 1 < %" < 2. It follows from (4.2) that
Cllirte™ a2 [ = Cllr*e ™2 a2 f|

> 13 r2eTDeA £ 4.7

V

Since
r2eT D0 — 2,70y 2"
= r2e(T2)93 e (4.8)
it follows that

r2eT29| > Cr2em29,
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Thus, from (4.2), we obtain that
Ir2eT 2P af] 2 Clre T 20A g
> Crifrie D)
> Crifrie™ f], (4.9)

where we have used the estimates

£ £ £ £
e 2 =r2e7" > 27N,

v

Combining the inequalities (4.7) and (4.9), we get that
Irte A2 fI| 2 €T |ret f 1. (4.10)
Carrying out an argument similar to the proof of (4.10), we can show that
Irte™ A2 fIl = Co?82|r2e™ £ @.11)
In view of (4.10) and (4.11), we arrive at
Clirte 82 £l 2 T rfe™ fll + 8% r 2™ £ 4.12)
By triangle inequality and the last inequality, we deduce that

Cllr*e™ A2 f — W) fIl 2 Clir*e™ a2 £ — [re™ W (x) £
2 Clrte fl + 28 2e T f|
— Wl llr*e™ £1I. (4.13)

If 7 is chosen to be so large that 3 > C(1 + ||W| 1), the estimates (4.6) can be
derived. O

Based on the quantitative Carleman estimates, we first deduce a quantitative
three balls theorem. Let U = (u, v)T, where (u, v) are the solutions of the sec-
ond order elliptic systems (2.1). We apply such estimates to ¥ U, where ¥ is an
appropriate smooth cut-off function, and then select an appropriate choice of the
parameter t. This kind of a standard way to obtain the three-ball results, see e.g.
[2,4,10,12,28]. The argument is also quite similar to the proof of Theorem 2 and
the proof of Lemma 11 in the Section 5. We skip the details. The quantitative three
balls theorem is stated as follows:

Lemma 9. There exist positive constants R, C and 0 < ay < 1 which depend only
on M such that, for any R < R and any xo € M, the solutions u of (1.1) satisfy

2
1—
G, D) By < €M7 11w, DG, (o) 10, Aol (4.14)

We use the three balls theorem to obtain the uniform doubling inequality. Such
a type of argument has been performed in, e.g. [4,10]. We apply the arguments to
elliptic systems in (2.1). We establish a lower bound of L? norm of U in a small
ball using the overlapping of the three balls argument.
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Lemma 10. Let u be the solution of bi-Laplace equations (1.1). For any R > 0,
there exists Cr > 0 such that

2
G, D) By Z €M @, A 2 pn) (4.15)
for any xog € M.

Proof. Assume that R < %. Without loss of generality, we assume that

102 = I, ATl 20y = 1

We denote yy to be the point where

NUNIBr(vo) = sup U IByg(x)-
xeM

Since finite numbers of Byg(x) will cover the compact manifold M, then
U 1Byx (v0) > Dg, where Dy depends on M and R. At any point x € M, the
three balls theorem in the last lemma implies that

2 1
1B Z e M NU 5L () (4.16)

Let [ be the geodesic that connects xo and yy. We select a sequence of xg, x1, ...,
Xm = Yo such that x; € [ and Bgr(xj+1) C Bog(x;) fori = 0,...,m — 1. The
number m depends on the manifold M and R. Applying the inequality (4.16) at
x;, it follows that

2 €1
U lBr Z €M U NEL (4.17)
fori =0, ...,m — 1. Iterating the estimates (4.17) m times, things get to the point
vo- Then
2 v
1U By Z €M U NG
> ¢~Cen? D,‘?,

which implies that

2
U 1By Z € KM U N L2000 -
Thus, the lemma is shown. 0O

Recall that A g 2 is an annulus. Since the manifold M is complete and compact,
there exists some x; € Ag g such that Br (x;) C Ag2r. From the last lemma,
2

one has that

1UNIR2r Z IUB g 1)
2

2
2 e RMU 2000 (4.18)

Next we proceed to show the doubling inequality.
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Proof of Theorem 2. Let R = g, where R is the fixed constant in the three balls

inequality (4.14). Let 0 < § < %, which can be chosen to be arbitrary small.
Define a smooth cut-off function 0 < i < 1 as follows:

e Y(r)=0 if r(x) <8 or r(x) > 2R,

o Y(r)=1 if%<r(x)<R,

° IV“¢|§% if8<r(x)<%,

o VY| SC if R<r(x)<2R,

where @ = (a1, ..., @,) is a multi-index. Applying the Carleman estimates (4.4)

with F = YU and using the elliptic systems (2.1), it follows that
Ir2e™®yU | + wsllr L™y U| < ClIr2e™ (AyU +2Vy - VU)).
The properties of ¥ imply that
Ir3e™ Ul g 2x + 1€ Ull3 45 < Ce™ Ul 53 + 17Ul r,2)
2°3 2 *2
+COe* VU5 3 + Rlle™ VU R 2r)-
The radial and decreasing property of ¢ yields that
PNk 20 + PN 3,
23 27

S CE DU 3 + e e Ullrar)
+ C((Se””(‘”HVUIIS% + Re?®1e™VU IR 2R).

It is known that the Caccioppoli type inequality

12

IVUll(—ayr = 1U1l- (4.19)

r

holds for the solution of elliptic systems (2.1) with some 0 < a < 1. Using the
Caccioppoli type inequality (4.19), we have

2R !
PN g 2x + NV 3 45 S CMEE DU + U I3p).
(4.20)

Adding e™?@ U || ¥ to both sides of last inequality and considering that ¢ (§) >
¢(45), we obtain that

2R 1
e NN g 2x + e PNUNlas £ CM2 (DU 125 + PN U13).
(4.21)

We choose T such that

1
CM2e P U lI3p £ Se DU g 25
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That is,
1
1 2CMz2||U
S | 2CM3 U s
d(5) —P(R) IUIle 3
Then
em(%)HUﬂg % +et¢(45)”U”46 § CM%ET(’)(B)HUH%. (422)

To apply the Carleman estimates (4.4), it is required that Tt = CM 3. We select

1
1 2CM2 U
c=cMiy - In 1UlI3r
P(F) —d(R) Ul & 3r
202
Dropping the first term in (4.22), we get that
IUllas < CM3
1
2 1 2CM2||U
expd [cm? + n ZEM2IYIR ) 5y — a8y § 107125
p(3) —o(R) Uz 3x
5 C
< oms [ MUIsR 1y, (4.23)
1Ulx 3

where we have used the fact that

" 2R
By <¢ (T) —¢(R) < fu,

By < p(8) — ¢ 48) < Ba

for some positive constant 81 and B, that do not depend on R or §. With aid of
(4.18), it is known that

Wl
Ul & 3r
202

A

Q
Q
<

Therefore, it follows from (4.23) that

2
3
U llas < M ||U |l2s.

Choosing § = 5, we obtain the doubling estimates

U2 < (C’ Il (4.24)

forr < %.Ifr > % from (4.15),

Iol- = U1l &

—C*M?
Z e “RUIUIm

2
—CiM3
Ze R Ull2r



Doubling Inequality and Nodal Sets 1569

Hence, the doubling estimates

2
U2 < MU (4.25)
are achieved for any r > 0, where C only depends on the manifold M. Since xg
is any arbitrary point in M, we have shown the uniform doubling inequality. Note
that U = (u, Au)T. The proof of Theorem 2 is arrived. O

5. Refined Doubling Inequality for Bi-Laplace Equations

This section is devoted to obtaining a refined doubling inequality for the solu-
tions of bi-Laplace equations (1.1). We apply Carleman estimates in Lemma 8 to
show the three balls theorem for the solution u of the bi-Laplace equations (1.1).

Lemma 11. There exist positive constants R, C and 0 < ay < 1 which depends
only on M such that, for any R < R and any xo € M, the solutions u of (1.1)

satisfy

1
CM3 o 1—«
Nl Ba ey < €M S o el - (5.1)

Proof. We introduce a cut-off function ¥ (r) € C{°(Bsg) with R < %. Let
0 < ¥ (r) < 1 satisfy the following properties:

o Y(r)=0 if r(x) < % or r(x) > STR,
o Y =1 if 3 <rx) <2k,
o |VIYI= %

for ¢ = (o, ...,®,). Since the function {u is support in the annulus Ar sk,
172
applying the Carelman estimates (4.6) with f = u, we obtain that
e ull £ Cllrte™ (A% (Yu) — W (x)yru)||
= Clr*e™ (A%, ylul. (5.2)

where we have used the equation (1.1). Note that (A2, Yr]is athree order differential
operator on u involving the derivative of {. By the properties of ¥/, we have

lle™®

ull3r or
104
< C (Ne™ullz 3p + le™ullon )
) 7072
3 3
+C | D0 It Veulg sx + Y et Ve o s

R 3R
107

oe|=1 lee|=1
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Recall that the weight function ¢ is radial and decreasing. It follows that
le™ullsr o
17

R 9R
< C (B ull 3 +e D ullon )
4174 42

3 3
we (B 3 preveuy o+ ) Y vy

la|=1 la|=1
(5.3)
For the higher order elliptic equations
(=2)"u +Wx)u =0, (5.4)
the Caccioppoli type inequality
2m—1
>V ullesriesr £ CUAW Lo + D itlleyr.co v (5.5)
loe|=0

has been shown in [42] for all positive constant 0 < ¢4 < ¢3 < ¢2 < ¢ < 1. The
estimate (5.5) yields that

1PV ull g sx < CMPullk
and
171V ullgn s < CMP i3

forall 1 < |a| < 3. Therefore, from (5.3), we get that
Ry_ 9Ry_
lullsg 5 < CM3 (e ODPCRI 4 F@CEGCRY ) (56)

We choose parameters

1 R
Br=¢ <Z) —¢(2R),

9R
Br=d(Q2R) — ¢ <T) .

From the definition of ¢, we know that
0<ﬂ1_1<,311e<,81 and 0<,32<,812Q</32_1,

where 81 and B, do not depend on R. Adding ||u|| 3 to both sides of the inequality
(5.6) gives that

lullag < CM? (et |ullg + e ™ uli3g) - (5.7)
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To incorporate the second term in the right hand side of the last inequality into the
left hand side, we choose t such that

CMPe ™2 u|3p < —||u||2R,
which is true if
3
¢ > Ly 20M 2 ulg
B2 lull2r
Thus, we obtain that
lullg £ CM>e™ |lu]|g. (5.8)

Since T > CM? is needed to apply the Carleman estimates (4.6), we choose

1 2cMm?
= CMb 4 -1 2 s
B2 leell2r

Substituting such 7 in (5.8) gives that

ﬁz;—ﬁl 1 ﬁl
lullyg? < €M ull53 ul & (5.9)
Raising exponent Bt ’3 - to both sides of the last inequality yields that
fullar < e fu ||"'+"2 lu ||’*'+’*2. (5.10)

Setting o] = % we arrive at the three balls inequality in the lemma. 0O

Following the strategy in the proof of (4.15) and (4.18) by using the three balls
theorem (5.1), we can show the following results. For any R > 0, there exists Cg
such that

1
lulBrco) = e~ *M 3 ull 2 ag (5.11)

for any xo € M. Furthermore, it holds that

1
“ERM | 2 gy (5.12)
Next we proceed to show the doubling inequality for the solutions of bi-Laplace
equations (1.1). The argument is somewhat parallel to the proof of the double
inequality for elliptic systems. We show the details of the argument as follows:

lullr2r = e

Proof of Theorem 3. Let us fix R = g, where R is the one in the three balls

inequality (5.1). Let 0 < § < % be arbitrary small. A smooth cut-off function
0 < ¥ < 1lisintroduced as follows:

o Y(r)=0 if r(x) <§ or r(x) > 2R,
o Y =1 if ¥ <rix) <R,
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o VYIS S i8S <r(x) <3,
o VY| SC if R<r(x) < ZR

We use the Carleman estimates (4.6) again. Replacing f by yu and substituting it
into (4.6) gives that

7€ e™ yrull + 282 r e Pyull < Cllre (A%, Ylull,

where [A2, V] is a three order differential operator on u involving the derivative
of ¢ and t = 1. The properties of ¥ imply that

Irfe™ullx ar + lle™ull 3 4
2°°3 27
< C (e ully 3 + lleullr.2r)
3 3
+C Z ||r|“|er¢V“u||5% + Z 71"V u | g 21
la|=1 la|=1

Taking the exponential function ™ out by using the fact that ¢ is radial and
decreasing, we obtain that

2R
o >||u||R 2+ e ul 4

<c (ef“’( ully 35 + ef¢’<R>||e’¢u||R,2R)

3 3
T¢(5) LA v #(R) ] Ty
+C|e Z lr'*le™®V ulla%a +e Z lr'“'e™V¥ullg 2r

lor|=1 larl=1
The use of a Caccioppoli type inequality (5.5) further implies that
2R
B )nung,@ + el 45 < CMP O ullas + P e ul3r).
(5.13)

Adding 0@ ||y 3 to both sides of the last inequality, it follows that

2R
o )llullg’zTR + e lullas £ CM D ullzs + Pl Pull3p).
" (5.14)

We want to get rid of the second term in the right hand side of the last inequality.
We choose t such that

1 o2
M ulsp < ) u g e
2 2°3
that is, we have at least that
3
> 1 1 2CM IIMII3R_

o(E) —p®)  Nullg
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Then we arrive at

2R
) ul g 5 20+ e ullsy £ CMPeT DU s, (5.15)
To apply the Carleman estimates (4.6), the assumption for 7 is that t =2 CM 3,

Therefore, we select

1 n2CM3||14||3R
¢ () - lullg s

‘L’=CM%—I—

Furthermore, dropping the first term in (5.15), we get that

lullas £ CM?
CM5 + ! tn 2CM el (B (8) — p(48) } ull
exXp b n — ull2s
¢ (3F) - ¢R) lull & sx
lulsx \©
< oomt [ Mullsr ) o (5.16)
llull & 3r
202
It follows from (5.12) that
llellzr SeCM%
llullr 3 —
202

Combining the last inequality with (5.16) yields that

<e CM3

llullas = lleell2s-
Let § = 5. The doubling inequality
1
lullzr < €™ ful, (5.17)

Ry > Ro
is deduced for r = 75. If r 2 73,

elliptic systems, we can derive that

using (5.12) as the arguments analogous to the

1
lullay € ™7 ul|, (5.18)

for any r > 0 and xo € M, where C only depends on the manifold M. Therefore,
the theorem is completed. O

At last, we give the proof of the Corollary 1 based on the doubling inequality
in Theorem 3.
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Proof of Corollary 1. The L° norm estimate for higher order elliptic equations
(5.5) was shown in [42],

lullzoe@,) < CUAWlLe +D2r~ 2 lull 2, - (5.19)

Thus, we can see that Theorem 3 implies the doubling inequality with L°° norm

1
lull Lo By ) S €M7 Nl oo @, 1) (5.20)

forany x € M and0 < r < rg, where ry depends only on M. We may assume that
lull Lo (A1) = 1, so there exists some point xg such that [|u| Lo Ay = [u(yo)| = 1.
For any point xg € M, there exists a geodesic / connecting xo and yg. We choose

a sequence of point xg, X1, ..., X, = yo such that x; € [ and B, (x;+1) C Bo,(x;)
fori =0,...,m — 1. Itis true that the number
diam M
m < Clog, aam

Applying the L°° norm of the doubling inequality with iteration and using the fact
that

el oo B, (i) = Nl Loy, ()

we obtain that

1 .
—CM31 diam M
lull oo, (x)) = € 82 lull oo B, (vo))

1
> CreM3, (5.21)

where C depends on the manifold M. This implies that the vanishing order of
solution is less than CM3. Since Xo is an arbitrary point, we get such vanishing
rate of solutions for every point on the manifold M. Therefore, we complete the
proof of the corollary. O

6. Implicit Upper Bound of Nodal Sets

In this section, we obtain an upper bound for the nodal sets of bi-Laplace
equation (1.1). Such a type of bound has been obtained for the measure of singular
sets for semi-linear elliptic equations and higher order elliptic equations by HAN
et al. [20,21]. The method is based on a compactness argument and an iteration
procedure. The iteration argument was first developed by HART and SimoN [25].
We adapt such a compactness argument to obtain the measure of nodal sets for
(1.1). For higher order elliptic equations, it seems hard to get Hart and Simon’s
exponential upper bound result for nodal sets, even if the explicit vanishing order
is achieved, since the nodal sets comparison lemma in [25] is not known for higher
order derivatives.
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The method applies to higher order elliptic equations without variational struc-
ture. Hence we consider general fourth order homogeneous elliptic equations in
B (0) C R” given by

4

Lu= ) a,(x)D"u=0, (6.1)
lv|=0

where a, (x) is a smooth function for |v| = 1, ag(x) € L* and

Z a,(x)&" = A forany £ € $" ! and x € B;(0) (6.2)
[v]=4

for some positive constant A. It is easy to observe that the equation (1.1) we are
considering is a particular case of the equations Lu = 0in (6.1). We say the operator
L € L(A, K) if L is given by (6.1) satisfying (6.2) and

4
> llavlles,) + laollLem,) < K (6.3)

[v|=1

for some positive constant K. By the standard elliptic estimates, we have

||u||c3,a(131,,) < C||u||L2(B1) (6.4)

for some 0 < o < 1, where C depends on K, r and n.

We consider the geometric structure of nodal sets N () = {B; 2lu(x) = 0}.
Let O(p) denote the vanishing order of u at p. Then N'(u) = {p € By : O(p) = 1}.
For each integer d = 1, define the dth level set as

Ly(w) ={p By :0(p) =d}. (6.5)
Thus, we can write
N (W) = Ug> Law). (6.6)

The following lemma shows that the Hausdorff dimension of nodal sets and the
property of leading polynomials at the n — 1 dimensional nodal sets (the lemma
is directly from the Theorem 5.1 in [17]. We present most of the proof for the
complete of presentation):

Lemma 12. If the solution u satisfies (6.1) and does not vanish of infinite order,
then N () is countably (n — 1)-rectifiable. Furthermore, for H" ! almost all points
in N'(u), the leading polynomials of the solutions are functions of one variable after
an appropriate rotation.

Proof. Foreach y € B1,2(0) N Ly(u), set

u(y +rx)

uyr(x) = (f—uz)l/T x € By(0)
0B, (y)
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forr € (0, #). By Theorem 3.3 in [17],
uy, — Pin LZ(IB%Q(O)) asr — 0.
The homogeneous polynomial P = P satisfies
> a,(0)D"P =0. 6.7)
v|=4

P is called the leading polynomial of u at y. Since P is d degree non-zero homo-
geneous polynomial, we introduce

L4(P) = {x|D"P(x) =0forany |v| <d —1}. (6.8)

Clearly, L;(P) is not an empty set, since 0 € L;z(P). We claim that L;(P) is a
linear subspace and

P(x)=P(x+2) (6.9)
for any x € R" and z € L4(P). Since z € L4(P), then
D"P(z) =0forany |v| <d — 1.
It is assumed that

P(x) = Z agx®.

la|=d

Hence it is true that

P(x)= ) aulx —2)%,

la|=d

which implies the identity (6.9). Furthermore, it is easy to see that £, (P) is a linear
space. From the formula (6.9), we also know that the polynomial P is a function
of dimension n—dimZ£,(P) variables. Observe that dim£;(P) < n — 1 and that
dimLy(P) £ n—2ford =z 4.1fdimL;(P) = n—1, then P is a d-degree monomial
of one variable satisfying (6.7). Then d < 4.

We define

L) = {y € La(u); dimLy(Py) = j) (6.10)

fori = 0,1,...,n — 1. Following the arguments in [17], we can show that Eé
is on a countable union of j-dimensional C! graphs. Next, we show that E:‘fl (u)
is on a countable union of (n — 1) dimensional cli graphs ford = 1, 2, 3. Let
y=0¢ EZ_I(M), by denoting R” = R! x £4(P) and the argument discussed
before, P is a monomial of degree d in R'. After an appropriate rotation, there
holds that

u(x) = cx{ + ¥ (x) inB . (6.11)
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The function i satisfies
|ID'y(x)| < Clx|*" " fori =0,1,....d (6.12)
and
ID'y(x)| < Cfori=d+1,...,3. (6.13)
For x € Lg_l (u) N By 2, since u(x) = 0, there holds that
a4 < Claf e
Hence, the local (n — 1) dimensional C 1 graph containing /.ZZ_I (u)is C7 ina
neighborhood of 0. Let £/ (1) = Udglﬁljz(“) for j =0,1,...,n — 1. Then
N@w) =UiZ oLl ). (6.14)

Each £/(u) is on a countable union of j-dimensional C! manifolds for j =
0,...,n—1.Set

Ni(w) = UjZ 5L (), (6.15)
N*w) = L w). (6.16)

Then we have the decomposition
N () = N*(u) U Ny (u), (6.17)

where N, (u) is countably (n — 2)-rectifiable and N/*(u) is on a countable union
of (n — 1) dimensional C'% manifold. Note that for y € N*(u), the leading
polynomial P of u at y is a homogeneous with one variable. O

The next proposition states that the nodal sets can be decomposed into a good
part and a bad part. The good part has a measurable upper estimate and the bad part
is covered by the small balls.

Proposition 3. There exist positive constants C(u) and ¢(u) depending on the so-
lution u and a finite collection of balls By, (x;) with r; < % and x; € N (u) such
that for any v € C3 with

lu —vlicam,) = &), (6.18)
there holds
H" ! (N(v) N B2\ U By, (xi)) < C(u) (6.19)
and
1
doits ﬁ

where C(u) depends on u and coefficients of the operator L.
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Proof. It follows from the relation (6.17) that the set NV, («) has dimension less
than n — 1. Thus,

H" Y (N, () = 0. (6.20)

By the definition of Hausdorff measure, there exist at most countably many balls
By, (x;) with r; < 15 and x; € Ny (u) such that

Ni(u) C UiB,, (x;) (6.21)
and
Zr;’—l < 2% (6.22)

We consider the set N*(u) N B3,4. We claim that, for any y € N*(u) N B34, there
exist positive constants R(y, u) < 11—0, r(y,u),6 =8(y,u) and C = C(y, u) with
r < R such that

H" ' W) NB,.(y) < Ccr !, (6.23)
if the function v satisfies

lu =Vl g, ) = O (6.24)

" .
Here the norm || - || Bg) 1S defined as

m
1 em g = > R sup | D' f(x)]
i=0

XEBR

forany f € C"(Bg).
By the compactness of A (), there exist x; € N, (u) and y; € N*(u) for
i=1,...,mm)and j =1, ..., k(u) such that

m(u) k(u)

N NBya [ (B0 | 0| B O0) (6.25)
i=l1 j=1

withr; < 11—0 ands; < 11—0. By the compactness of A/ (1) again, there exists a positive
constant p = p(u) such that

m(u) k(u)
{r € By diste, N @) < p) € | [ Bra) | 0| [UBs i) |- (626
j=1

i=1
For such a p, we can find a positive constant n = 1 (u) such that
Nw)n Bi2 C {x € Bsyq; dist(x, N@u)) < p} (6.27)

if lu —vlcr g, ) <1 For the convenience of the presentation, let

B;l = U?:]Bri (x:), B:% =Uj By, (yi)-

i=1
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We take &(u) < n(u) small enough. For any v € C? in By, if

lu —vlc3 < e(u), (6.28)
then
= 1 g ey < S0 ) (6.29)
fori =1,...,k = k(u). Thus, from the previous arguments and (6.23), we obtain
that
N®) NBjp c W) nBY | N nBY) (6.30)
and
k(u)
H" '\ W@)nB) < czs;?*‘ = C(u). 6.31)
j=l1

Recall that

k
B,l = UL B, (x;) with er_l <
i=1

1
—. 6.32
T (6.32)

Hence the proof of the theorem follows from (6.31) and (6.32). We are left to prove
the claim (6.23). Thanks to the arguments in Lemma 12, for any y € N*(u) N B34,
there holds

u(x +y)=Px)+ y(x), (6.33)

where P is a non-zero d-degree monomial with 1 < d < 3 and ¥ satisfies (6.12)
and (6.13). Thus, we can take a positive constant R = R(y, u) < % such that

* b 6.34
”Fl/fncﬁ(ER) < 3 ( . )
Choosing § so small that (6.24) implies that
£
H — (- v) <=, (6.35)
C3Br()
then there holds that
1 k
‘ ﬁ(v —P(—Yy) < &4. (6.36)
C3Br()
By considering the transformation x — y + Rx, we obtain that
1
—dv(y +R)—P < 4. (6.37)
R 3B
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Since P = Cxil for 1 £ d < 3, we can find an orthonormal basis {eq, ..., e,} in
B such that

Dfi (P) is anonzero constant forany i = 1, ..., n. (6.38)

Therefore, there exist positive constants » = r(y, P) and ¢, = &.(y, P) such that
if the function v € C¥ satisfies

< e, (6.39)

1
P— —v(y+R)
H R4 C3(B,)

then Df{v(y + R-) is never zero in B,(y) for any i = 1,...,n. By using one
dimensional mean value theorem d times, we conclude that there can not be more
than d + 1 zeros for #v(y + R-) in any line parallel to ¢; forany i = 1, ..., n.
Let z; be the variable in the ¢; direction. We set r; as the projection

—1
(210225« o3 2n) = (Zhs ooy Ziels Zitls -+ 2n) E R

Denote %v(y + R-) as 0. Thus, forany ¢ € B! c R"'and 1 < i < n, we
have

card @' (0) N7 N g) NB,) < (d+1).

From the integral geometric formula 3.2.22 in [13], we derive that

H '@ OnB) S Y / card (a*l(omnl.—l(q)ma%,) dH"™!
B~
1Si<n "

[IA

C(n)(d + Dr* L. (6.40)

See the similar arguments in [41]. After transforming back to % v(y+R)inBr(y),
we have for r < Rry,

H' 'w ' 0)NB,(y) < cr' . (6.41)
Thus, the claim (6.23) follows. Therefore, the proposition is shown. 0O

We consider the translation and rescaling property of the operator L. Let Ly, ,
be defined by

4

Lyo.p = Z p4_|v|av(x0 + px)D".
lv|=0

Observe that Ly, , € L(A, K).
To control the vanishing order quantitatively, we introduce the quantitative
doubling inequality. A function is said to be in Dy if

et 225, ey S 2™ et 228, e (6.42)
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for xo € By/3 and 0 < 2r < dist(xg, dB;). We define D;‘V as the collection of all
functions u in Dy satisfying Lu = 0in B for some L € L(A, K). By the standard
elliptic estimates, the collection

ue DX,;/ wrdx =1
B>

is compact under the local L°° metric. See the lemma 4.1 in [21]. Next we show the
upper bound estimates of nodal sets by removing a finite collection of small balls.

Lemma 13. There exists C depending on K, N and ) such that for any u € Dy,

there exists a finite collection of balls {B,, (x;)}, with r; < % and x; € N (u) such
that there hold

H'™! (V@) N B\ B, () < € (6.43)

and

7
3

L
A
| =

Proof. Define D,lv to be the set

ueD;ﬁ,;/ wrdx =114,
Bi2

Let uq be an arbitrary solution in D}V. For any u € D}, if |u — uoll oo B ) < &,
by standard elliptic estimates,

llu — M0||c3-a(]B3/4) < C(eo),

where C(gg) — 0 as g9 — 0. We can take g¢ small so that C(gg) < e(ug), where
e(ug) is the constant in (6.28). With the aid of Proposition 3, there exist a positive
constant C(ug) and finitely many balls {B,, (x;)} with x; € N(ug) and r; < %,
such that for any u € D}\, and [[u — uoll Lo (B;g) < g9, there holds

1 (N B\ (B, () £ Cuo) (6.44)

and
1

Zr;’_l g 5

If N(u) N By, (x;) # @, we may take some point X; in A'(u) N B, (x;). Clearly, it
holds that B, (x;) C By, (x;). We may rearrange the center and radius. Thus, we
can still find a finite collection of balls {B,, (x;)} with x; € N'(u) and r; < % such
that

H'! (W) 0B\ By () £ Cluo) (6.45)
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and
_ 1
Yo E s
Since Dzlv is compact under the local L> norm, there exists u1, uz, ..., u, € Dzlv
ande; = e1(u), ..., &p = gp(u) suchthatforanyu € D}V,thereexistsal <k<p

satisfying the property
lu — ukllLooBy)5) = €k = 0.
Denote
C =max{C(uy), ..., C(up)}.
This C depends on the class of DY,. Thus, we complete the proof. O

Now we are ready to prove Theorem 4 in the section. We apply the standard
iteration arguments in [25].

Proof of Theorem 4. First, we define

¢ = {B1,2(0)}.

We claim that we can find ¢, ¢, ..., each of which is a collection of balls such
that
1 /1)
rad(B) < 513 for any B € ¢y, (6.46)
1/
> lrad®)]" < (5) : (6.47)
Begy
and
| 1!
H"™ < — .
Nwyn ) BB _c<2> (6.48)
Begr—1 Begy

for I = 1, where C is the positive constant in Lemma 13. We prove the claim
by constructing {¢;} using induction. Note that ¢9 = {B;,2(0)}. Suppose that the
assumptions (6.46)—(6.48) hold for [ — 1. We construct ¢;. Taking any B = B, (y) €
@11, by the transformation x — y 4 2rx, via Lu = 0 in By, (y), we have Li=0
in By with

4
L=>" @)*a,(y+2r0)D}
[v]=0

and it (x) = u(y + 2rx). We observe that ii € DY,. Applying Lemma 13, we obtain
a collection of balls {By;, (z;)} with s; < 4—1L and z; € MV (i1) such that

H" N (N @) NByp\By, (z1)) < C
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and

A
| —

n—1
Zsi

Rescaling By /2(0) back to B, (y) by x — =2 gives that, for B = B, (y) € ¢_1,
there exist finitely many balls {B,, (x;)} in By, (y) with r; < 5, such that

H 1 (N(u) NB-(y)\ UIB%,’. (xi)) < cr!

and

For such B, (y), we set

¢ = JB, x)

and construct ¢; as

o= o

Beg—1
Applying Lemma 13 gives that
H ' (Nwn | B\UB|=C >, (6.49)
Beg—1  Begy By, (xi)€di—1

By induction, we obtain that, for B,, € ¢,

LI D DR ) (6.50)
By, (xi)ed
and
1
anl < - 171. )
Nayn | B\(JB]| = cG;) 6.51)
Begi—1 Begy
Thus, we have shown the claim (6.46)—(6.48).
Since
o o0
Nw)nBip©0) cJWNwn | BB uWNVwnlJ B,
=1 Begi—1 Beg, =0 Jj=lBeg;

it follows from (6.50) and (6.51) that

3

—

1 _ .
H"™ (Nw) N B, 2(0)) < C{Z(g)l 1Jrligf1 )isc ©52)
>1 = j=l

~
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Therefore, we conclude that
H"_l(x € Biplu =0) < C(N). (6.53)

From Theorem 3, we learn that the doubling inequality (6.42) holds for any xg € M
with N < CM 3. Thus, it follows from (6.53) that

H" '(x € B,ylu = 0) < C(ro, M). (6.54)

for any B,, € M. Since the manifold M is compact, by covering the manifold by
finitely many balls, we can derive the conclusion in Theorem 4. O

7. Quantitative Cauchy Uniqueness

We prove a propagation of smallness results for bi-Laplace equations (1.1) in
this section. Similar results for second order elliptic equations have been shown
by LiN [31], where the proof is a little sketchy. We provide the detailed proof
with a somewhat different argument using the Carleman estimates inspired by
[27,35]. Similar results in terms of the L°° norm can be obtained by using three
spheres inequality repetitively from frequency function, see [3]. Such results play
an important role not only in characterizing the doubling index in a cube in [32],
but also in inverse problems. Using the Carleman estimates, we are able to show a
two half-ball and one lower dimensional ball type result.

Lemma 14. Let (u, v) be a solution of (2.2) in the half-ball ]B%T. Denote
I ! ny../ n—1 / 1
r=3x", 0)eR"|x" eR ,|x|<§ .

Assume that

1t oDl g1y + 100t D)l oy S & << 1 (7.1)

and || (u, U)”LZ(IBT) < 1. There exist positive constants C and B such that
2

< CceP
Il Cut, v)”Lz(ﬁBT) S CeP. (7.2)
More precisely, we can show that there exists 0 < vy < 1 such that

1—
”(us U)”LZ(ﬁBT) é ||(M, U)”ZZ(BT)(”(M’ U)”Hl(f‘) + ”an(u» U)”LZ(]:*)) V-
2

(7.3)
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Proof. Our tools are some Carleman estimates in the half ball IB%;“ ={xeR"x e
By and x,, = 0}. For simplicity, we first establish such Carleman estimates for
scalar functions. We select a weight function

' X
¢(x) = — n +7—Xn,
where x’ = {x1, x2, ..., x,_1}. We consider ¢ (x) for |x| in IB%T.
7

Define
Acg=e"PA(e ™ g)
for g € Cg° (]B%T). Direct computations show that
Arg = Ag —2tV¢ - Vg — TAPg + T2 |Vo|’g.
We split A, g into symmetric parts and anti-symmetric parts:
S48 = Lg + 17|Vl
Apg = =2tV - Vg — TAPg.

Then
1acgl? = 11Sp8l” + 1Ag gl + 2(Spg. Apg). (7.4)
We study the inner product term (Syg, Asg). Note that
x’ —n+3
V¢:<—E,xn—l>, Ap = 7

‘We can check that
(Spg, Agg) = (Ag + T%|Vol*g, 2tV - Vg — TA¢g)

2 X2 2 2
=\fg T gt (1 —=xn)g,
d n—3
2t(1 = xy) -2 4 1x' - V'g + tg), (1.5)
0xy, 2
where Vg = (;’—fl, ey 3)2;-“:1 ). We estimate each term in the inner product using

integration by parts argument. Integrating by parts twice shows that

3 3z \? 3
(Mg, 27(1 — x,)—2) zzr/ 8 dx—r/ (1 = x,)——|Vg|? dx
0xp B 9xp

B dxp

g\ .
+ 27 dx
B: 0xy

g\ .,
+ 27 o dx’, (7.6)
B, n
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where By is the ball centered at origin with radius » in R”~!. It follows from
integration by parts that

n—1
g g
Ag, tx' -V =—‘L’/ A 2dx—r/ X —d
(Ag 8) WI 8l Bﬁj;_l ISy o, x

n—1
%g 9 B]
—r/ E Xi S —gdx+r/ gx’~V’gdx’.
B, P 0x;0x, 0X;, B, 0%,

(71.7)

We consider the second term on the right hand side of last identity using integration
by parts,
n—1

g 9 T
—r/ ij § —gdx:——/ x' V|V g*dx
B:rij—l 8)6,'3)61‘ ox; 2 B

(n—1Dr
- T/B+|V/g|2dx. (7.8)

Applying a similar strategy to the integral gives that
n—1 | 3g

1? dx. (7.9)
B 0xp

%g 9 -1
_,/ S8 08 gy U/
Bf i 0x;0x, 0X;, 2

Combining (7.7)—(7.9) leads to

-1
(Ag, tx' - V'g) = —r/ [V/g|?dx + u/ |Vg|? dx
B} 2 B}

9
—i—r/B af X V'gdy'. (7.10)
r 0Xn

Taking (7.6) and (7.10) into consideration yields that

(Ag, —2tVe - Vg)

_3 9
:u/ |Vg|2dx—r/ |V’g|2dx+2t/ 12812 4x
2 B B B 0Xn
9 9
+r/ gx’-v’gdx’—r/ |v’g|2dx’+z/ 128 2ax. (7.11)
B, 0Xn B, B, 0Xn

We proceed to consider other terms in (7.5). Integration by parts argument
shows that

X 2 9 T3 1.3
<12' 4' g. 2t(1 — xn>8—g> = —/ '[%g? dx + —/ ' |%g% dx'.
Xn B, 4 B,

4
(7.12)
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Furthermore, we get

72 1
<12|x4| g, tx'- V’g> = _n—é— 1:3/B+|)c’|2g2 dx. (7.13)
2 2 - —(n—1 5 2.2
(t7(xp — D7g, Tx" - V'g) = Tr IB+(xn — D gdx. (7.14)
a
<12(x,, — )2, 2t(1 — x5 >= 31’3/ (xn — 1)2g%dx +r3/ g dx'.
8-xl’l ]B:r Br

(7.15)

Together with the estimates (7.12)—(7.15), we obtain that

2 2 l—n ;4 2.2
(t7IVp|"g, -2tV - Vg) = T IB+IXI g dx
7—n
+ 5 t3/B+(x,, — 1)2g2 dx
3 2 2
+1 / <1+T>g dx’. (7.16)
Br
It is trivial to see that
n—3 n—3
<r2(1 —xn)%g, > tg> == 13/B+(1 —xp)2g% dx (7.17)
and

JIXE n=3 n—3 ; 122

T 7 g, 5 Tg) = g T B+|x |“g~dx. (7.18)

The combination of (7.17) and (7.18) yields that

n—3 n—3
(T?|Vg’g. —tAgg) =7 / ., (TW + o - 1>2) g*dx. (7.19)

We are left to deal with the last inner product. Performing the integration by
parts argument shows that

2

_3 _3 9
S z/ Vel dx + ° 1/ Eody'.  (720)
2 Ef 2 B, axn

n—3
(Ag, —TAQg) = <Ag, fg>




1588 Jiuyr ZHu

Combining the identities (7.5), (7.11), (7.16), (7.19) and (7.20), we arrive at

d 1
(Sog Age) =t [ IVgPava2e [ 1 ZEPar -8 [ wifa
B;f 4 B}

B 0xp

712
+ 2r3/ (xn — D2g%dx + r3/ (1 + ﬂ) g dx’
By B, 4

n—3 g
d/
" T/Braxng g

9 9
+r/ gx/-V/gdx/—r/ |V/g|2dx/+r/ |8 24y,
B, 0Xn B, B, 0Xn

(7.21)

Since it is assumed that r < }1, simple calculations indicate that

1
—(xp = D> = x> > 0.
8

By Cauchy-Schwartz inequality, we have

9
(Spg, A¢g)+C‘L’/ |v/g|2dx’+0r/ |g|2dx/+Ct/ 128 12 gy’
B:

B B, 9Xn
)
3—1/ |V’g|2dx+21/ |28 12 d4x
B B 0xp
63
+ —r3/ (n — 1)2g% dx + r3/ g2 dy’. (1.22)
32 J B B,

We also want to include the gradient term in the Carleman estimates. To this
end, we compute the following inner product with some small constant ¢ > 0 to
be determined:

16(1 4 ¢)?
(Spg, ———5 (1 — xn)7g)
x'|? 16(1 + £)2
= (pg+ gt 20—, e %)
_16(1+¢)? dg

(r/ (1—xn)2|Vg|2dx—2r/ (1 —xp)—>gdx
9 B} B} 9xy

g / 73/ "2 2,2
-7 dx’ — — 1 -
/Braxng X - m'ﬂ (I =x0)"g

- 13/m(1 —xn)*g? dx). (7.23)




Doubling Inequality and Nodal Sets 1589

Thus, for r < %,

8(1 4 ¢)?
ISpgll + |l=——5 - xn) gl
16(1 + ¢)?
2 (Spg, —————(l — x2)’g)
32(1 2 9
3(1+5)2r/ |Vg|2dx—ﬂr/ (1= x) 28 g dx
B 9 B 0xy,

16(1 2 9 31 2
_ —( +e) r/ _ggdx/ _raTer (d+e) / (1 —x,,)zgzdx
9 B, 9, 9 +

16(1 23
— %/W(l — x)%g% dx. (7.24)

‘We choose ¢ so small that

63 (14+¢e)? 16(1+¢)?
— — — >
32 9 9

0. (7.25)

Combining the estimates (7.4), (7.22), (7.24), and using Cauchy—Schwartz inequal-
ity and the fact that r < %, we get that

9
||A,g||2+0z/ |v/g|2dx’+cf/ |g|2dx/+Cr/ 128 12y
B,

B: B, 9Xn
8(1 +¢)?
=gt = 2%
> C'L’/ (1 —x)%| Vgl dx + cr3/ (1 —x,)%g%dx + c#/ g dx’
B i B:

(7.26)

fort > C, where C depends only on n. Since T is a large constant, we can absorb the
fifth term on the left hand side of last inequality into the left hand side. Therefore,
we get

9 2
| A-g]? +Ct/ |v’g|2dx’+Cr/ <ag ) dx’—i—Cr/ g% dx’
B, B Xn B

> Cr/ (1 —xn)2|Vg|2dx+Ct3/ (1 — xp)?g? dx. +Cr3/ g% dx'.
B B;" B
(7.27)

Let f = e~ "?g. The inequality (7.27) implies the desirable estimates

1 1 of 1
1™ A fl2qasy + T2 1™ flliam, + 22 1e™ = lam,) + 72 1€V fll 2,
n

3 1
> Ct2|e™ (1 = x) fll 2ty + CT2 €™ (1= x)V | 2 - (7.28)
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By a similar argument, this also holds for a vector function F' = (f}, f2). Thatis,
TP L 120] L TP oF L Th/
||€ AF”LZ(B:r) +'C2”€ F||L2(Br) +T2||€ BT”LZ(BI_) +T2||€ Vv F”LZ(Br)
n
3 1
> Ct2 e (1 = x) Fll 2ty + CT2 e (1 = x)VF | 25 (7.29)

The following Caccioppolli inequality holds for the solutions of (2.2) in ]B]L:

0xy,

+ ||U||L2(BZr)> . (730
L2(By)

< C aU
”VU”LZ([B'%) = 7 ”U”Lz(B;) + | —

- 1 .
Let V(x) = (W(z;c) 0). We select a smooth cut-off function n such that

n(x) = 1in B} and n(x) = 0 outside B . Let U = (u, v)T. Substituting F by nU
in the Carlemasn estimates (7.29) and thén the system (2.2) yields that

1™ (AU + 2V - VU)| Rl
L2<IBST) L2<Bl)
2
a(nU) i

axy L2<Bl)
2

1
+r2e™?

1
+ 12"V (Ul ( )
L?(B;
2

> Cr2e™ (1 — x)nU| . (7.31)
1(x)

2

We want to find the maximum of ¢ in the first term on the left hand side of
(7.31). Since ¢ is negative and decreasing with respect to x” and x,, for r < ‘—1“ then

|x/|2 1
max ¢ = max — T 256
fizrstlomzo sy 4 PO

We also need to find a lower bound of ¢ for the term on the right hand side of (7.31)
such that —¢ (x) < 2;—6. Let

Since ¢ decreases with respect to x’ and x;,, then the minimum of ¢ (x) is ¢3(a) for
r < a. Solving the inequality —¢(a) < 2;—6, we have one solution a = ﬁ. Set

1 ~f 1
¢°=ﬁ+¢(ﬁ>>0’

o 1
¢1=¢<ﬁ><0
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Applying the Caccioppolli inequality (7.30), we arrive at

z 10
6| U +||lU +IV'U +||l—
e I ”L2<m> I ||L2<Bl> I ”LZ(BL> ||3xn||L2(Bl>
bl 3 3 3
> Ctle™ (1 — x,)nU]|
s

o, ) -

Let

B, = ||U s
1= ”L2<BT)

2

By = ||U|| +IV'U| +”3U”
2= LZ(B%) LZ(BI) dxp LZ(B

B3 = ||U .
3=l ||L2<]B+l)

256

)

]
W=

Multiplying both sides of the last inequality by e_“;’(ﬁ) leads to
e B, + ¢ T B, > CB;. (7.33)
We introduce a parameter

By
In B,

- ¢ —¢o

70
If 19 > C, where C is given for the validity of the estimates (7.26), then we choose
T = 19 in (7.33). Thus,

[ —¢0

B/ B'™" > CBs. (7.34)

Lety = ¢1¢+¢0 Then the following three balls type inequality follows

< Y 5 _\-r
Il (e, U)”Lz(ﬁBT) < I (u, U)”LQ(IB-%%—)(”(I'{? U)“Hl(l") + 110, (u, U)”Lz(p)) .

(7.35)

If 79 < C, since ¢1 — ¢ is negative, then B, > CBj. It is clear that B3 < Bj.

Again, we arrive at
Y pl—v
B3 < CB{B, ".

Therefore, we show the estimates (7.35) again. The estimate (7.2) is a consequence
of (7.35). The lemma is finished. 0O
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8. Appendix

The lemma to follow serves as the starting step for the iteration argument in
the proof of Proposition 2. For the scalar equations, the finite bound of F(N) is
established in [25]; see also a different proof using compactness arguments in [23].
Instead of pursuing the nodal sets comparison lemma in [25], we adapt the proof
of Theorem 4 and the measure of rank zero sets of harmonic maps in [24] where
elliptic systems are considered. We give the main ideas in the proof of the lemma.

Lemma 15. Let (1, v) be the solution in (2.2) and F (N) be defined in (3.13). Then
F(N) < C(N).

Proof. Following the arguments in [17], the set {By,2lu = v = 0} is countably

(n — 1)-rectifiable. Let y be in the n — 1 dimensional nodal set {B2|u = v = 0}.
There exist leading monomials P;, and Py2 such that

AP} =0, AP} =0. (8.1)
By an appropriate rotation, we can have either
u(x) = Cixir + yi(x) (8.2)
or
v(x) = Coxp + Y2(x), (8.3)
where
Wi (x)] < Clx|'T% forsome0 <o <1, i=1,2.

Following the proof of Proposition 3, we can show that, there exist positive
constants C(u, v) and &(u, v) and a finite collection of balls {B, (x;)} with r; < %
and x; € {By/2|lu = v = 0} such that, for (uy, v{) € C! with

G, v) = @1, v) sy S e, ), (8:4)
there hold
H" ! (fur = vi =0} N B\ | B, (x) < C(u, v) 8.5)

and

1
Zr;l_l é 2_”

The key to prove (8.5) is to show that

H" ' ({uy = v1 =0} N B, (y)) < Cu, v)r"™! (8.6)
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under the condition (8.4). It follow from (8.4) and the arguments in the proof of
proposition 3 that there holds

H (a7 0 NB,) < Ci(u, v)r"™" or H" '(v;1(0) NB,) < Ca(u, v)r"~ 1.
(8.7)

Since

fur = v =0}NB,(y) Cu;' ) NB,(y) or
{ur =v1 =0} NB,(y) C vy '(0) NB.(y), (8.8)

the estimate (8.6) follows. Because of N, ,,)(Q) < N, the doubling inequality
holds

/ u? +02dx < eCN/ u® +v2dx. (8.9)
By, (x0) B (x0)

Following the arguments of the proof of Theorem 4, we can show that there exists
C(N) depending on N such that

H""'(Byalu = v =0) < C(N). (8.10)

This completes the proof of the lemma. O
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