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Abstract

We investigate the doubling inequality and nodal sets for the solutions of bi-
Laplace equations. A polynomial upper bound for the nodal sets of solutions and
their gradient is obtained based on the recent development of nodal sets for Laplace
eigenfunctions by Logunov. In addition, we derive an implicit upper bound for the
nodal sets of solutions.We show two types of doubling inequalities for the solutions
of bi-Laplace equations. As a consequence, the rate of vanishing is given for the
solutions.

1. Introduction

In this paper,we consider the doubling inequality and nodal sets for the solutions
of bi-Laplace equations

�2u = W (x)u inM, (1.1)

where M is a compact and smooth Riemannian manifold with dimensions n � 2.
Assume that ‖W‖L∞ � M for some large constant M . The nodal sets are the zero
level sets of solutions. For the eigenfunctions of Laplace

�φλ + λφλ = 0 (1.2)

on a compact smooth Riemannian manifold M, Yau [40] conjectured that the
Hausdorff measure of nodal sets satisfies

c
√

λ � Hn−1(x ∈ M|φλ = 0) � C
√

λ,

where c, C depend on the manifold M. The conjecture was solved in real ana-
lytic manifolds in the seminal paper by Donnelly and Fefferman [10]. Lin [31]
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provided a simpler proof for the upper bound for general second order elliptic equa-
tions on the analytic manifolds. For the smooth manifolds, some progresses were
made towards the upper bound of nodal sets. On smooth surfaces, Donnelly and

Fefferman [11] showed that H1({φλ = 0}) � Cλ
3
4 by using Carleman estimates

and Calderón and Zygmund type decomposition. A different proof based on fre-
quency functions was given by Dong [9]. Recently, Logunov andMalinnikova

[34] were able to refine the upper bound to beCλ
3
4−ε. For higher dimensions n � 3,

the exponential upper bound Hn−1({φλ = 0}) � CλC
√

λ was obtained by Hardt
and Simon [25]. Very recently, an important improvement was given by Logunov
(in [32]), who obtained a polynomial upper bound

Hn−1(x ∈ M|φλ = 0) � Cλα,

where α > 1
2 depends only on the dimension. In [32], Logunov further studied

the frequency function of harmonic functions and developed a new combinatorial
argument to investigate the nodal sets.

For the lower bound,Logunov [33] answeredYau’s conjecture andobtained the
sharp lower bound for smoothmanifolds. This breakthrough improved a polynomial
lower bound obtained early byColding andMinicozzi [8], Sogge and Zelditch
[39]; see also the same polynomial lower bound by different methods, e.g. [26,36,
38]. For n = 2, the sharp lower bound for Yau’s conjecture was obtained in [5].

The upper bound of nodal sets was studied for general second order elliptic
equations in [16,23,25,31], etc. TheHausdorff dimension of nodal sets and singular
sets for the solutions of higher order elliptic equations was studied by Han [17]. It
was shown in [17] that theHausdorff dimension of nodal sets {u = 0} and themixed
nodal sets {u = �u = 0} is not greater than n− 1, and the Hausdorff dimension of
the singular sets {Dνu = 0 for all |ν| < 4} is not greater than n−2. In particular, the
Hausdorffmeasure of singular setswas studied byHan et al. [20]. An implicit upper
bound for the measure of singular sets in term of the doubling index was given. The
optimal upper bound of nodal sets for higher order elliptic equations was obtained
by Kukavica [29] in real analytic domains. Complex analysis techniques were
used for the real analytic setting, which differ greatly from the tools in the paper.
For the bi-Laplace equations on smooth manifolds, we want to know how the upper
bound of the nodal sets depends on the potential functions appeared in the equations
(1.1). We are able to show the following result:

Theorem 1. Let u be the solutions of bi-Laplace equations (1.1) with n � 3. There
exists a positive constant C that depends only on the manifold M such that

Hn−1(x ∈ M|u = �u = 0) � CMα,

where α > 1
2 depends only on the dimension n.

In all the aforementioned literature for the study of the upper bound of nodal sets
of classical eigenfunctions, a crucial estimate is the following sharp quantitative
doubling inequality established by Donnelly and Fefferman [10]:

‖φλ‖B2r (x) � eC
√

λ‖φλ‖Br (x) (1.3)
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for any r > 0 and any x ∈ M, where ‖ · ‖Br (x0) denotes the L2 norm on the
ball Br (x0). Such optimal doubling inequalities provide the sharp upper bound for
the frequency function and vanishing order for classical eigenfunctions. Roughly
speaking, doubling inequalities retrieve global features from local data. Those esti-
mates are also widely used in inverse problems, control theorems, spectral theory,
etc..

For the estimates (1.3), in order to obtain upper bound estimates of nodal sets
by the norm of potential functions for the solutions of bi-Laplace equations (1.1),
we also need a quantitative doubling inequality, which provides the bounds for
frequency function and rate of vanishing.We show the following doubling estimates
for u and �u:

Theorem 2. Let u be the solutions of bi-Laplace equations (1.1). There exists a
positive constant C depending only on the manifold M such that

‖(u,�u)‖B2r (x) � eCM
2
3 ‖(u,�u)‖Br (x) (1.4)

for any r > 0 and any x ∈ M.

If we only consider bounded potential functions for bi-Laplace equations (1.1),

the power CM
2
3 in the exponential functions in (1.4) seems to be sharp so far.

Such power CM
2
3 appeared in the topic of quantitative unique continuation, see

e.g. [6,28], etc., especially, the counterexample for the sharpness of CM
2
3 that was

constructed for complex-valued potentials in [37]. For the real-valued bounded

potentials, it is still open if the sharp power is CM
1
2 for n � 3, which is related to

Landis’ conjecture [30].
In showingTheorem1,weuse the doubling inequality for (u,�u) inTheorem2.

Using different types of Carleman estimates for bi-Laplace, we are able to obtain
a refined doubling inequality for the solution u.

Theorem 3. Let u be the solutions of bi-Laplace equations (1.1). There exists a
positive constant C depending only on the manifold M such that

‖u‖B2r (x) � eCM
1
3 ‖u‖Br (x) (1.5)

for any r > 0 and any x ∈ M.

Such a doubling inequality (1.5) without explicit dependence on potential func-
tions was assumed by Han et al. [20] to obtain upper bounds of the measure of
singular sets. Theorem 3 not only verifies that the doubling inequality holds for
the solutions of bi-Laplace equations, but also provides the explicit estimates for
such an inequality. As a consequence of Theorem 3, we obtain an upper bound for
the vanishing order of solutions in (1.1). For smooth functions, the vanishing order
of solutions at some point is defined as the number of the highest order non-zero
derivative such that all lower derivatives vanish at the point.
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Corollary 1. Let u be the solutions of bi-Laplace equations (1.1). Then the vanish-
ing order of solution u is everywhere less than CM

1
3 , where C depends only the

manifold M.

Our initial goal is to study the upper bounds of the measure for the nodal sets
{u = 0} of solutions for bi-Laplace equations. The desirable doubling inequality
(1.5) is shown. However, the frequency function for bi-Laplace equations has to
have �u involved to get an almost monotonicity result and a comparison lemma
of doubling index; see Section 2 for those results. These cause our upper bound
estimates to be on nodal sets {u = �u = 0} inTheorem1. Inspired by the arguments
for showing the finite bound of singular sets for Laplace equations in [20,21], we
are able to derive the following bounds for the solutions of nodal sets of bi-Laplace
equations:

Theorem 4. Let u be the solutions of bi-Laplace equations (1.1). There exists a
positive constant C(M) depending only on M and the manifoldM such that

Hn−1(x ∈ M|u = 0) � C(M).

Let us comment on the organization of the article. In Section 2, we introduce
the corresponding frequency function for bi-Laplace equations and obtain almost
monotonicity results for the frequency function. In Section 3, the polynomial upper
bound of nodal sets for bi-Laplace equations are deduced inspired by the new
combinatorial arguments in [32]. Section 4 is devoted to obtaining the doubling
inequality for the solutions of bi-Laplace equations using Carleman estimates. A
quantitative three-ball theorem is shown. Section 5 is devoted to the study of a
refined doubling inequality of solutions of bi-Laplace equations. In Section 6, we
present the proof of Theorem 4 for the measure of nodal sets. Section 7 is used to
provide a detailed proof for a lemma on the propagation of smallness of the Cauchy
data. The “Appendix” provides the proof of some ingredients in the arguments of
Theorem 1. The letters c, C and Ci denote generic positive constants that do not
depend on u, and may vary from line to line. The letter M is assumed to be a
sufficiently large positive constant.

2. Frequency Function of Elliptic Systems and Its Applications

A frequency function was introduced by Almgren for harmonic functions.
Garofalo and Lin [14,15] developed the method of frequency function to study
strong unique continuation property. Lin [31] applied this tool to characterize the
measure of nodal sets. The frequency function describes the local growth rate of the
solution and is considered as a local measure of its “degree” for a polynomial like
function. Interested readers are recommended to refer to the nice book (in prepara-
tion) byHan and Lin [22]. Logunov andMalinnikova [32–34] further exploited
the frequency function of harmonic functions with new combinatorial arguments
to study nodal sets. In this section, we study the frequency function for bi-Laplace
equations (1.1), which lays the foundation for the combinatorial arguments in the
later section.
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Let us consider normal coordinates in a geodesic ball Br (0), where r is a
sufficiently small. We treat the Laplace operator on the manifold as an elliptic
operator in a domain in R

n . For the Euclidean distance d(x, y) and Riemannian
distance dg(x, y), there exists a small number ε > 0 such that

1 − ε � dg(x, y)

d(x, y)
� 1 + ε

for x, y ∈ Br0 with r0 depending on ε and the manifold.
To study the bi-Laplace equations (1.1), we reduce it to be a system of second

order elliptic equations. Let v = �u. The solutions of (1.1) satisfy{�u = v,

�v = W (x)u.
(2.1)

Note that ‖W‖L∞ � M for M > 1 sufficiently large. We do a scaling for the
bi-Laplace equations (1.1). Let

ū(x) = u
( x

M1/4

)
.

Set v̄(x) = �ū(x). Then ū(x) and v̄(x) satisfy{�ū = v̄,

�v̄ = W̄ (x)ū,
(2.2)

where W̄ (x) = W (x)
M . Thus, ‖W̄‖L∞ � 1. We will consider the elliptic systems

(2.2) in the following sections for the nodal sets. For ease of presentation, we still
use the notations u, v for ū, v̄ in (2.2). For the system of equations (2.2), we define
the frequency function as follows:

I (x0, r) =
r
(´

Br (x0)
|∇u|2 + |∇v|2 dx + ´

Br (x0)
(1 + W̄ (x))uv dx

)
´

∂Br (x0)
u2 dσ + ´

∂Br (x0)
v2 dσ

. (2.3)

Without loss of generality, we may write x0 = 0. We denote I (x0, r) = I (r). We
adopt the following notations:

D1(r) =
ˆ

Br

|∇u|2 dx, D2(r) =
ˆ

Br

|∇v|2 dx,

D3(r) =
ˆ

Br

(1 + W̄ (x))uv dx,

D(r) = D1(r) + D2(r) + D3(r),

H(r) =
ˆ

∂Br

u2 + v2 dσ,

where dσ is n−1 dimensional Hausdorff measure on ∂Br . Thus we can write I (r)
as

I (r) = r D(r)

H(r)
. (2.4)

Next we want to show that the frequency function I (r) is almost monotonic.



1548 Jiuyi Zhu

Proposition 1. For any ε > 0, there exists r0 = r0(ε,M) such that

I (r1) � C + (1 + ε)I (r2) (2.5)

for any 0 < r1 < r2 < r0.

Before presenting the proof of Proposition 1, we establish some elementary
estimates. We adapt some the arguments from the book by Han and Lin [22].

Lemma 1. There exist positive constants r0 and C such that

ˆ

Br

|∇u|2 + |∇v|2 dx � CD(r) + CrH(r) (2.6)

and

D(r) � C
ˆ

Br

|∇u|2 + |∇v|2 dx + CrH(r). (2.7)

Proof. For any w ∈ H1(B), the following estimate holds:

ˆ

Br

w2 dx � 2r

n

ˆ

∂Br

w2 dσ + 4r2

n2

ˆ

Br

|∇w|2 dx; (2.8)

see e.g. Lemma 3.2.2 in [22]. From the definition of D(r) and the assumption of
W̄ , using Cauchy–Schwartz inequality, we have

ˆ

Br

|∇u|2 + |∇v|2 dx � D(r) −
ˆ

Br

(1 + W̄ (x))uv dx

� D(r) + C
ˆ

Br

u2 + v2 dx .

Using the estimates (2.8) for u and v, we obtain that

ˆ

Br

|∇u|2 + |∇v|2 dx � D(r) + C

(
2r

n

ˆ

∂Br

u2 dσ + 4r2

n2

ˆ

Br

|∇u|2 dx

+ 2r

n

ˆ

∂Br

v2 dσ + 4r2

n2

ˆ

Br

|∇v|2 dx
)

.

Since r ∈ (0, r0) for some small r0, we can show that

ˆ

Br

|∇u|2 + |∇v|2 dx � CD(r) + Cr
ˆ

∂Br

v2 + u2 dσ

� CD(r) + CrH(r) (2.9)
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for some positive constant C . Thus, the inequality (2.6) is arrived at. From the
definition of D(r), Cauchy–Schwartz inequality and (2.8), we can easily derive
that

D(r) �
ˆ

Br

|∇u|2 + |∇v|2 dx +
ˆ

Br

|1 + W̄ (x)||uv| dx

�
ˆ

Br

|∇u|2 + |∇v|2 dx + C
ˆ

Br

u2 + v2 dx

�
ˆ

Br

|∇u|2 + |∇v|2 dx + C

(
2r

n

ˆ

∂Br

u2 dσ + 4r2

n2

ˆ

Br

|∇u|2 dx

+ 2r

n

ˆ

∂Br

v2 dσ + 4r2

n2

ˆ

Br

|∇v|2 dx
)

� C
ˆ

Br

|∇u|2 + |∇v|2 dx + Cr
ˆ

∂Br

u2 + v2 dσ. (2.10)

This leads to the inequality (2.7). �	

We can check that H(r) 
= 0 for any r ∈ (0, r0). If H(r) = 0 for some
r ∈ (0, r0), the definition of H(r) implies that u = v = 0 on ∂Br . From the elliptic
systems (2.2) and integration by parts argument, we will derive that D(r) = 0.
From (2.6), (u, v) is some constant. Moreover, u = v = 0 in Br since u = v = 0
on ∂Br . By the strong unique continuation property, u ≡ v ≡ 0 inM, which leads
to a contradiction. Thus, I (r) is absolutely continuous on (0, r0). If we set

	 = {
r ∈ (0, r0) : I (r) > max{1, I (r0)}

}
,

then 	 is an open set. There holds a decomposition 	 = ⋃∞
j=1(a j , b j ) with

a j , b j 
∈ 	. For r ∈ 	, we have I (r) > 1, i.e.

H(r)

r
< D(r). (2.11)

With these preparations, we are ready to give the proof of the proposition.

Proof. We will consider the derivative of I (r). We first consider the derivative of
D1(r), D2(r), D3(r) and H(r) with respect to r in some interval (ai , bi ). It is
obvious that

D
′
1(r) =

ˆ

∂Br

|∇u|2 dσ. (2.12)

Since |x | = r on ∂Br , we write

D
′
1(r) =

ˆ

∂Br

|∇u|2 x
r

· x
r
dσ. (2.13)
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Note that the unit norm n on ∂Br is x
r . Performing integration by parts gives that

D
′
1(r) = 1

r

ˆ

Br

div(|∇u|2 · x) dx

= n

r

ˆ

Br

|∇u|2 dx + 2

r

ˆ

Br

∇u · ∇2u · x dx

= n − 2

r

ˆ

Br

|∇u|2 dx − 2

r

ˆ

Br

�u∇u · x dx + 2

r2

ˆ

∂Br

(∇u · x)2 dσ.

From the first equation of the elliptic systems (2.2),

D
′
1(r) = n − 2

r

ˆ

Br

|∇u|2 dx − 2

r

ˆ

Br

v∇u · x dx + 2
ˆ

∂Br

u2n dσ, (2.14)

where un = ∂u
∂n = ∇u · n. Performing similar calculations also shows that

D
′
2(r) = n − 2

r

ˆ

Br

|∇v|2 dx − 2

r

ˆ

Br

�v∇v · x dx + 2

r2

ˆ

∂Br

(∇v · x)2 dσ

= n − 2

r

ˆ

Br

|∇v|2 dx − 2

r

ˆ

Br

W̄ (x)u∇v · x dx + 2
ˆ

∂Br

v2n dσ. (2.15)

Direct calculations lead to the fact that

D′
3(r) =

ˆ

∂Br

(1 + W̄ (x))uv dσ. (2.16)

We write H(r) as

H(r) = rn−1
ˆ

∂B1

u2(rs) + v2(rs) dσ.

Computing H(r) with respect to r gives that

H ′(r) = n − 1

r
H(r) + 2

ˆ

∂Br

unu + vnv dσ. (2.17)

If multiplying the first equation in (2.2) by u and the second equation in (2.1) by
v, using integration by parts arguments, one has

D(r) =
ˆ

∂Br

unu + vnv dσ. (2.18)

Cauchy–Schwartz inequality yields that

D2(r) �
(ˆ

∂Br

u2 + v2 dσ

)(ˆ
∂Br

u2n + v2n dσ

)

� H(r)
ˆ

∂Br

u2n + v2n dσ. (2.19)
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If (2.11) holds, then

D(r) � r
ˆ

∂Br

u2n + v2n dσ.

The combination of the inequalities (2.14), (2.15) and (2.16) yields that

D′(r) = n − 2

r

(ˆ
Br

|∇u|2 + |∇v|2 dx
)

− 2

r

(ˆ
Br

v∇u · x dx + W̄ (x)u∇v · x dx
)

+ 2
ˆ

∂Br

(u2n + v2n) dσ +
ˆ

∂Br

(1 + W̄ (x))uv dσ

= n − 2

r
D(r) − n − 2

r

ˆ

Br

(1 + W̄ (x))uv dx

− 2

r

(ˆ
Br

v∇u · x dx + W̄ (x)u∇v · x dx
)

+ 2
ˆ

∂Br

(u2n + v2n) dσ

+
ˆ

∂Br

(1 + W̄ (x))uv dσ. (2.20)

We investigate the terms on the right hand side of (2.20). Using Cauchy–Schwartz
inequality, we can get the following:

2

r

ˆ

Br

v∇u · x dx � C

(ˆ
Br

v2 dx +
ˆ

Br

|∇u|2 dx
)

, (2.21)

2

r

ˆ

Br

W̄ (x)u∇v · x dx � C

(ˆ
Br

u2 dx +
ˆ

Br

|∇v|2 dx
)

. (2.22)

From Cauchy–Schwartz inequality and the inequality (2.8), we derive that

n − 2

r

ˆ

Br

(1 + W̄ (x))vu dx � C

r

ˆ

Br

u2 + v2 dx

� C
ˆ

∂Br

u2 + v2 dσ + Cr
ˆ

Br

|∇u|2 + |∇v|2 dx
� CH(r) + CrD(r). (2.23)

Together with the estimates (2.20)–(2.23), we arrive at

D′(r) � n − 2

r
D(r) − CH(r) − CD(r) + 2

ˆ

∂Br

(u2n + v2n) dσ.

Furthermore, since (6.17) holds, that we have

D′(r) � n − 2

r
D(r) − CD(r) + 2

ˆ

∂Br

(u2n + v2n) dσ. (2.24)

Recall that H ′(r) is given in (2.17). We consider the derivative of I (r)with respec-
tive to r . Taking the definition of D(r), H(r), I (r) and estimates (2.17), (2.24) into
account, we obtain that
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(ln I (r))′ = 1

r
+ D′(r)

D(r)
− H ′(r)

H(r)

� 1

r
+ n − 2

r
− C + 2

´
∂Br

(u2n + v2n) dσ

D(r)

− n − 1

r
− 2
´

∂Br
(unu + vnv) dσ

H(r)

�
2
´

∂Br
(u2n + v2n) dσ´

∂Br
(unu + vnv) dσ

− 2
´

∂Br
(unu + vnv) dσ

´
∂Br

(u2 + v2) dσ
− C. (2.25)

By Cauchy–Schwartz inequality, it follows that

I ′(r)
I (r)

� −C. (2.26)

Hence eCr I (r) is monotone increasing in the component (ai , bi ). Thus, in this
decomposition,

I (r1) � I (r2)e
C(r2−r1)

� eC(r0−r1) I (r2) (2.27)

for ai < r1 < r2 < bi < r0. If r1 
∈ (ai , bi ), from the definition of the set 	,

I (r1) � C. (2.28)

Together with (2.27) and (2.28), for any r1 ∈ (0, r0), we get that

I (r1) � C + eC(r2−r1) I (r2). (2.29)

If r0 is sufficiently small, we have that

I (r1) � C + (1 + ε)I (r2) (2.30)

for 0 < r1 < r2 < r0. Therefore, the proposition is arrived at. �	
Let’s derive some properties for H(r). Since

H ′(r) = n − 1

r
H(r) + 2D(r),

then

d

dr
ln

H(r)

rn−1 = 2I (r)

r
. (2.31)

Integrating from R to 2R gives that

H(2R) = 2n−1H(R) exp

{ˆ 2R

R

2I (r)

r
dr

}
(2.32)

for ai � 2R � bi . Thus, from (2.26),

H(2R) � 2n−1H(R)4C I (bi ). (2.33)



Doubling Inequality and Nodal Sets 1553

From (2.6), we learn that I (r)
r � −C for some positive constant C . From (2.31), it

is also true that the function

eCr H(r)

rn−1 is increasing for r ∈ (0, r0). (2.34)

Following from the arguments in [32] for harmonic functions, we show some
applications of the almost monotonicity results for second order elliptic systems
with potential functions.

Corollary 2. Let ε be a small constant. There exists R > 0 such that

(
r2
r1

)2(1+ε)−1 I (r1)−C1

� H(r2)

H(r1)
�
(
r2
r1

)2(1+ε)I (r2)+C1

(2.35)

for 0 < r1 < r2 < R.

Proof. For 0 < r1 < r2 < r0, the integration of (2.31) from r1 to r2 gives that

H(r2) = H(r1)

(
r2
r1

)n−1

exp

{
2
ˆ r2

r1

I (r)

r
dr

}
.

Using the almost monotonicity of the frequency function in Proposition 1, we have
(
r2
r1

)n−1

e
(2(1+ε)−1N (r1)−C) ln r2

r1 � H(r2)

H(r1)

�
(
r2
r1

)n−1

e
(2(1+ε)I (r2)+C) ln r2

r1 , (2.36)

which implies the corollary. �	
We define the doubling index as

N (Br ) = log2
sup2Br

|(u, v)|
supBr

|(u, v)| , (2.37)

where supBr
|(u, v)| = ‖u‖L∞(Br ) + ‖v‖L∞(Br ). For a positive number ρ, ρB is

denoted as the ball scaled by a factor ρ > 0 with the same center as B. N (x, r) is
the double index for (u, v) on the ball B(x, r).

Assume that 0 < ε < 1
108

. By standard elliptic estimates, the first equation of
(2.2) implies that

‖u‖L∞(Br ) � Cε− n
2 r− n

2

(
‖u‖L2(B

(1+ε)2r )
+ ‖v‖L2(B

(1+ε)2r )

)
, (2.38)

and the second equation of (2.2) gives that

‖v‖L∞(Br ) � Cε− n
2 r− n

2
(‖v‖L2(B

(1+ε)2r )
+ ‖u‖L2(B

(1+ε)2r )

)
. (2.39)

Thus,

‖(u, v)‖L∞(Br ) � Cε− n
2 r− n

2 ‖(u, v)‖L2(B(1+ε)r )
. (2.40)
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It is obvious that

‖(u, v)‖L2(Br )
� Cr

n
2 ‖(u, v)‖L∞(Br ). (2.41)

Next we obtain a lower bound for N (Br ). The fact that
eCr H(r)
rn−1 is increasing in

(2.34) and the inequality (2.40) leads to

‖(u, v)‖2L∞(Br )
� Cε−nr−n

ˆ (1+ε)2r

0

ˆ

∂Bs

|(u, v)|2 dσds

� Cε−nr−neC(1+ε)2r H((1 + ε)2r)

[(1 + ε)r ]n−1

ˆ (1+ε)2r

0

sn−1

eCs
ds

� C
ε−nH((1 + ε)2r)

rn−1 eC(1+ε)2r0

� C
ε−nH((1 + ε)2r)

rn−1 . (2.42)

From (2.41), it holds that

‖(u, v)‖2L∞(B2r )
� C

rn

ˆ 2r

2(1−ε)r
H(s) ds.

Thanks to the monotonicity of eCr H(r)
rn−1 again,

‖(u, v)‖2L∞(B2r )
� Cr−neC(1−ε)r H(2(1 − ε)r)

[2(1 − ε)r ]n−1

ˆ 2r

2(1−ε)r

sn−1

eCs
ds

� C
εH(2(1 − ε)r)

rn−1 e−2Cr0r0

� C
εH(2(1 − ε)r)

rn−1 . (2.43)

Therefore, from (2.42) and (2.43), we have

N (Br ) = log2
sup2Br

|(u, v)|
supBr

|(u, v)|

� 1

2
log2

εn+1H(2(1 − ε)r)

CH((1 + ε)2r)
. (2.44)

The lower estimates in (2.35) leads to

N (Br ) � 1

2
log2

(
εn+1

C

[2(1 − ε)

(1 + ε)2

]2(1+ε)−1 I ((1+ε)2r)−C
)

� I ((1 + ε1)r)(1 − 20ε1) + C log2 ε1, (2.45)
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where (1+ ε)2 = 1+ ε1 with ε sufficiently small. We can also find an upper bound
of the double index in term of the frequency function. Using (2.42) and (2.43), we
have

N (Br ) = log2
sup2Br

|(u, v)|
supBr

|(u, v)|

� 1

2
log2

Cε−nr
1−n
2 H

(
2(1 + ε)2r

)
εr

1−n
2 H

(
(1 − ε)r

) . (2.46)

It is true from (2.35) that

H(2(1 + ε)2r)

H((1 − ε)r)
�
(
2(1 + ε)2

1 − ε

)2(1+ε)I (2(1+ε)2r)+C2

. (2.47)

Thus, we further obtain that

N (Br ) � 1

2
log2

⎛
⎝Cε−n−1

(
2(1 + ε)2

1 − ε

)2(1+ε)2 I (2(1+ε)2r)+C2

⎞
⎠ . (2.48)

Let (1 + ε)2 = 1 + ε1 again, i.e. ε1 ≈ 2ε. We can check that

1

2
log2

⎛
⎝Cε−n−1

[
2(1 + ε)2

1 − ε

]2(1+ε)2 I (2(1+ε)2r)+C2

⎞
⎠

� I (2r(1 + ε1))(1 + 20ε1) − C log2 ε1

for ε sufficiently small.
In conclusion, from (2.45) and (2.48), we have shown that

I (r(1 + ε1))(1 − 50ε1) + C log2 ε1

� N (Br ) � I (2r(1 + ε1))(1 + 50ε1) − C log2 ε1. (2.49)

Lemma 2. Let ε be a small positive constant. There exists R such that

t N (x,ρ)(1−ε)+C log2 ε sup
Bρ(x)

|(u, v)| � sup
Btρ(x)

|(u, v)| (2.50)

� t N (x,tρ)(1+ε)−C log2 ε sup
Bρ(x)

|(u, v)|

for t > 2, tρ < R and any x ∈ BR with Btρ(x) ⊂ BR. Furthermore, there exists
N0 such that if N (x, ρ) � N0, then

t N (x,ρ)(1−ε) sup
Bρ(x)

|(u, v)| � sup
Btρ(x)

|(u, v)| � t N (x,tρ)(1+ε) sup
Bρ(x)

|(u, v)|.

(2.51)
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Proof. Wefirst show the proof of the left hand side of (2.50) and (2.51).We assume
t > 21+ε. If not, then 2 < t � 21+ε. It follows that

sup
Btρ(x)

|(u, v)| � sup
B2ρ(x)

|(u, v)| � 2N (x,ρ) sup
Bρ(x)

|(u, v)|

� t N (x,ρ)(1−ε) sup
Bρ(x)

|(u, v)|,

since 2 > t1−ε in this case. Then the left hand side of (2.50) is shown.
Now we consider t > 21+ε. It is true that

H(x, tρ)

(tρ)n−1 � sup
Btρ(x)

|(u, v)|2. (2.52)

Choose ε1 = ε
500 . Applying (2.49) by considering the doubling index in Bρ(x), we

obtain that

I (2ρ(1 + ε1)) � N (x, ρ) + C log2 ε1

1 + 50ε1
. (2.53)

From the monotonicity of H(r) in Corollary 2 and last inequality, we get that

H(x, tρ) � H(x, 2ρ(1 + ε1))

(
t

2(1 + ε1)

) 2N (x,ρ)
(1+50ε1)(1+ε1)

+C log2 ε1

. (2.54)

Note that t > 21+ε implies that t > 2(1 + ε1). Furthermore, the estimates (2.42)
and the definition of the doubling index yield that

H(x, 2ρ(1 + ε1)) � Cεn1ρ
n−1 sup

B2ρ(x)
|(u, v)|2

= C22N (x,ρ)εn1ρ
n−1 sup

Bρ(x)
|(u, v)|2. (2.55)

In view of (2.52), (2.54) and (2.55), we arrive at

sup
Btρ(x)

|(u, v)| (2.56)

� C2N (x,ρ)εn1 t
− n−1

2

(
t

2(1 + ε1)

) N (x,ρ)
(1+100ε1)

+C log2 ε1

sup
Bρ(x)

|(u, v)|.

Note that

t
N (x,ρ)

(1+100ε1) � t N (x,ρ)(1− ε
2 ) � t N (x,ρ)(1−ε)2

N (x,ρ)
2 ε

� t N (x,ρ)(1−ε)(1 + ε1)
N (x,ρ)
1+100ε1 , (2.57)

since 2ε/2 � 1 + ε
50 .

Notice that εn1 > tC log2 ε1 . From (2.56) and (2.57), we deduce that

sup
Btρ(x)

|(u, v)| � t N (x,ρ)(1−ε)+C log2 ε sup
Bρ(x)

|(u, v)|. (2.58)
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We may choose a smaller ε so that

sup
Btρ(x)

|(u, v)| � t N (x,ρ)(1−2ε)+C log2(2ε) sup
Bρ(x)

|(u, v)|. (2.59)

Let N0 = C log2(2ε)
ε

. Furthermore, if N > N0, we get that

sup
Btρ(x)

|(u, v)| � t N (x,ρ)(1−ε) sup
Bρ(x)

|(u, v)|.

This completes the proof of left hand side of (2.50) and (2.51).
By the similar strategy, we can show that there exists R such that

sup
Btρ(x)

|(u, v)| � t N (x,tρ)(1+ε)−C log2 ε sup
Bρ(x)

|(u, v)| (2.60)

for tρ < R and any x ∈ BR with Btρ(x) ⊂ BR . Furthermore, there exists N0 such
that if N (x, ρ) � N0, then

sup
Btρ(x)

|(u, v)| � t N (x,tρ)(1+ε) sup
Bρ(x)

|(u, v)|. (2.61)

Thus, we arrive at the right hand side of (2.50) and (2.51). Therefore, the proof of
the lemma is completed. �	

Proceeding as the argument in [32] and using (2.51), we can compare doubling
index at nearby points.

Lemma 3. There exist R and N0 such that for any points x1, x2 ∈ Br and ρ such
that N (x1, ρ) > N0 and d(x1, x2) < ρ < R, there exists C such that

N (x2,Cρ) >
99

100
N (x1, ρ). (2.62)

3. Nodal Sets of Bi-Laplace Equations

Let n � 3 in this section. After these preparations, we follow the new combi-
natorial argument in the seminal work of [32] in this section. Let x1, x2, . . . , xn+1
be the vertices of a simplex S in R

n . Denote diam(S) as the diameter of the sim-
plex S. We use width(S) to denote the minimum distance between two parallel
hyperplanes that contain S. The symbol w(S) is defined as the relative width of S:

w(S) = width(S)

diam(S)
.

We assume w(S) > γ for some constant γ . In particular, x1, x2, . . . , xn+1 are
assumed not to be on the same hyperplane. We denote x0 as the barycenter of S,
i.e. x0 = 1

n+1

∑n+1
i=1 xi . Roughly speaking, next lemma shows that the doubling

index will accumulate at the barycenter of the simplex if the doubling index at the
vertices {x1, x2, . . . , xn+1} are large. Using the Lemma 2 on frequency function
and Logunov’s arugment, the following lemma holds:
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Lemma 4. LetBi be balls centered at xi with radius less than
Kdiam(S)

2 for some K
depending only onγ , i = 1, 2, . . . , n+1. There exist positive constants c = c(γ, n),
C = C(γ, n) � K, r = r(γ ) and N0 = N0(γ ) such that if S ⊂ Br and N (Bi ) > N
with N > N0 for each i , i = 1, 2, . . . , n + 1, then

N (x0,C diam(S)) > (1 + c)N .

We introduce the doubling index of the cube Q. For a given cube Q, we define
the doubling index N (Q) as

N (Q) = sup
x∈Q, r∈(0,diam(Q))

N (x, r).

Thedoubling indexof the cube N (Q) ismore convenient in applications.Obviously,
if a cubeq ⊂ Q, then N (q) � N (Q). If a cubeq ⊂ ∪i Qi with diam(Qi ) � diam q,
then N (Qi ) � N (q) for some Qi .

Based on the propagation of smallness of the Cauchy data in Lemma 14 and
the arguments in [32] or [16], for the completeness of presentation, we can show
the following lemma (roughly speaking, it asserts that if a set of sub-cubes with
intersection with a hyperplane all have a large doubling index, then the original
cube that contains those sub-cubes at least have double doubling index):

Lemma 5. Let Q be a cube [−R, R]n in R
n. Divide Q into (2A + 1)n equal

subcubes qi with side length
2R

2A+1 . Let {qi,0} be the subcubes with nonempty inter-
section with the hyperplane {xn = 0}. For each qi,0, there exist some point xi ∈ qi,0
and ri < 10 diam(qi,0) such that N (xi , ri ) > N, where N is a large fixed number.
The following property holds: if A > A0, R < R0 and N > N0 for some A0, R0
and N0, then

N (Q) � 2N .

Proof. By scaling, we may assume that R = 1
2 and R0 > 1

2 . Let B be the unit ball.
Let sup 1

4B
|(u, v)| = M0, we have

sup
B1/8(xi )

|(u, v)| � M0

if xi ∈ 1
8B, sinceB1/8(xi ) ⊂ 1

4B. From the assumption N (xi , ri ) � N and doubling
lemma, we get

sup
4qi,0

|(u, v)| � sup
B 8

√
n

2A+1
(xi )

|(u, v)| � C sup
B1/8(xi )

|(u, v)|
(

64
√
n

2A + 1

) N
2

� 2−CN log AM0, (3.1)

where the constants N and A are assumed to be large. The following interpolation
inequality is known, e.g. [7]:

‖∇ f ‖L2(Rn−1) � C(‖ f ‖W 2,2(Rn) + ‖ f ‖L2(Rn−1)) (3.2)
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for any f ∈ W 2,2(Rn). By replacing f by ψ(u, v), where ψ is a smooth cut-off
function with ψ = 1 in Br and ψ = 0 outside B2r , we obtain that

‖∇(u, v)‖L2(Rn−1∩Br )
� C

(‖(u, v)‖W 2,2(B2r )
+ ‖(u, v)‖L2(Rn−1∩B2r )

)
. (3.3)

Let 	̃ = 1
8B∩{xn = 0}. The last inequality, trace inequalities and elliptic estimates

yield that

‖∇(u, v)‖L2(	̃∩qi,0) � C(2A + 1)2(‖(u, v)‖W 2,2(2qi,0) + ‖(u, v)‖L2(	̃∩2qi,0))

� C(2A + 1)4‖(u, v)‖L2(4qi,0). (3.4)

Using the trace inequality and elliptic estimates again, we obtain that

‖(u, v)‖W 1,2(	̃∩qi,0) +
∥∥∥∥∂(u, v)

∂n

∥∥∥∥
L2(	̃∩qi,0)

� C(2A + 1)‖(u, v)‖W 2,2(	̃∩2qi,0) + ‖∇(u, v)‖L2(	̃∩qi,0)
� C(2A + 1)4‖(u, v)‖L2(3qi,0)

� C
(2A + 1)4

(2A + 1)
n
2
‖(u, v)‖L∞(4qi,0). (3.5)

Summing up all the cubes qi,0 with intersection with 	̃, the last inequality yields
that

‖(u, v)‖W 1,2(	̃) + ‖∂(u, v)

∂n
‖L2(	̃) � C(2A + 1)

n
2+3‖(u, v)‖L∞(4qi,0)

� e−CN log AM0, (3.6)

where we used (3.1) in the second inequality. Note that ‖(u, v)‖L2( 14B
+) � CM0.

By scaling and using the propagation of smallness Lemma 14 in Section 7, we have

‖(u, v)‖L2(2−10B+) � e−CN log AM0. (3.7)

We select a ball B2−11(p) ⊂ 2−10
B

+. Thus, by elliptic estimates,

‖(u, v)‖L∞(B2−12 (p)) � e−CN log AM0. (3.8)

By the fact that ‖(u, v)‖L∞(B 1
4
(p)) � M0, we derive that

‖(u, v)‖L∞(B 1
4
(p))

‖(u, v)‖L∞(B2−12 (p))
� eCN log A. (3.9)

The doubling lemma gives that

‖(u, v)‖L∞(B 1
4
(p))

‖(u, v)‖L∞(B2−12 (p))
� (210)Ñ , (3.10)

where Ñ is the doubling index in B 1
4
(p). Therefore,

Ñ � 2N (3.11)

if A is large enough. �	
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Following the arguments in [32], the following lemma holds:

Lemma 6. If Q is partitioned into An equal sub-cubes, where A depends on n,
then the number of sub-cubes with doubling index greater than max{ N (Q)

1+c , N0} is
less than 1

2 A
n−1 for some c depending n and some fixed constant N0.

Now we give the estimates of the nodal set {u = v = 0} for the elliptic system
(2.2) in a small cube. We show the details of the following proposition:

Proposition 2. Let N(u,v)(Q) be the doubling index of the cube Q for the solutions
(u, v) in (2.2). There exist positive constant r , C and α̂ such that for any solutions
(u, v) on M and Q ⊂ Br ,

Hn−1({u = v = 0} ∩ Q) � Cdiamn−1(Q)N α̂
(u,v)(Q), (3.12)

where α̂ depends only on n and N(u,v)(Q) is the doubling index on Q for the
function (u, v).

Proof. Let the cube Q ⊂ Br . For any solutions (u, v) in the elliptic systems (2.2),
we consider those solutions such that N(u,v)(Q) � N . Define the function

F(N ) = sup
N(u,v)(Q)�N

Hn−1({u = v = 0} ∩ Q)

diamn−1(Q)
. (3.13)

We are going to show that

F(N ) � CN α̂

for some α̂ depending only on n, which provides the proof of the proposition. As
shown in [17] for higher order elliptic equations, theHausdorff dimension of the sets
{Dνu = 0 for all |ν| � 2} is not greater than n−1. Since v = �u, the mixed nodal
sets {Q|u = v = 0} is not greater than n−1. TheHausdorff dimension of nodal sets
{u = 0} is nomore than n−1. Such stratification can also be observed in Lemma 12
in Section 6. Obviously, the mixed nodal sets {u = v = 0} is subset of the nodal
sets {u = 0}. Even if there exists co-dimension one nodal sets {u = 0} in Q, it does
not guarantee the existence of co-dimension one mixed nodal sets {u = v = 0}.
We assume that u and v has the same co-dimension one zero sets in Q. Otherwise,
Hn−1({u = v = 0} ∩ Q) = 0, then the proposition follows immediately. If there
exist x0 such that u(x0) = v(x0) = 0 in Q, then N(u,v)(Q) � 1. In Lemma 15 in
the “Appendix”, we have shown that F(N ) < ∞. We claim that if

F(N ) > 3AF

(
N

1 + c

)
, (3.14)

then the set N � N0, where the constant A, c are those in the last lemma and N0
depends on the manifold M. If F(N ) is almost attained in (3.13), then

Hn−1({u = v = 0} ∩ Q)

diamn−1(Q)
>

5

6
F(N ), (3.15)
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where N(u,v)(Q) � N . We divide Q into An equal subcubes qi , i = 1, 2, . . . , An ,
then split qi into two groups

G1 =
{
qi | N

1 + c
� N (qi ) � N

}

and

G2 =
{
qi |N (qi ) <

N

1 + c

}
.

Thanks to the Lemma 6, we know that the number of subcubes in G1 less than
1
2 A

n−1 if N > N0. We have

Hn−1({u = v = 0} ∩ Q)

�
∑
qi∈G1

Hn−1({u = v = 0} ∩ qi ) +
∑
qi∈G2

Hn−1({u = v = 0} ∩ qi )

� |G1|F(N )
diamn−1(Q)

An−1 + |G2|F
(

N

1 + c

)
diamn−1(Q)

An−1

= I1 + I2, (3.16)

where |Gi | denotes the number of subcubes in Gi . Since |G1| � 1
2 A

n−1, then

I1 � 1

2
F(N ) diamn−1(Q). (3.17)

Since (3.14) holds, it follows that

I2 � |G2| F(N )

3A

diamn−1(Q)

An−1 . (3.18)

It is obvious that |G2| � An . Then

I2 � 1

3
F(N ) diamn−1(Q). (3.19)

The combination of (3.17) and (3.19) yields that

I1 + I2 � 5

6
F(N ) diamn−1(Q), (3.20)

which is a contradiction to (3.15). Therefore, we have shown the claim; that is, if
the set N � N0, then

F(N ) � 3AF

(
N

1 + c

)
. (3.21)
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Let N
(1+c)m = N0. We iterate the estimate (3.21) m times to get

F(N ) � (3A)mF

(
N

(1 + c)m

)

= (1 + c)
(log1+c 3A)

(
log1+c

N
N0

)
F(N0)

=
(

N

N0

)(log1+c 3A)

F(N0).

Thus, we show the conclusion (3.12) for N � N0. If N � N0, by the Lemma 15,
we obtain that

F(N ) � C(N0) (3.22)

for some C that depends on N0. Therefore, the proposition is completed. �	
With the aid of the upper bound of nodal sets in a small cube in the proposition,

we provide the proof of Theorem 1 for bi-Laplace equations (1.1).

Proof of Theorem 1. By the elliptic regularity estimates, from the doubling in-
equality in Theorem 2, we have the following L∞ type doubling inequality:

‖(u,�u)‖L∞(B2r (x)) � eCM
2
3 ‖(u,�u)‖L∞(Br (x)) (3.23)

for any x ∈ M and any 0 < r < r0, where r0 depends only on the manifold M.
From the definition of doubling index in (2.37), we know that

N (x, r) � CM
2
3

for M sufficiently large and for any x ∈ M and 0 < r < r0. Thus, the doubling

index N (Q) � CM
2
3 in the cube Q. We consider the reduced elliptic systems (2.2)

of bi-Laplace equations (1.1) in the cube Q ⊂ Br with 0 < r < r0
M1/4 . Note that

v = �u. From the last proposition, we get

Hn−1({u = �u = 0} ∩ Q) � CM
2α̂
3 − n−1

4 .

Since the manifold M is compact, we can cover the manifold with CM
n
4 number

of balls Br with 0 < r < r0
M1/4 . Therefore, we arrive at

Hn−1({u = �u = 0}) � CM
2α̂
3 + 1

4 .

This gives the proof of Theorem 1. �	
Remark 1. For the 2-dimensional compact smooth manifolds, a polynomial upper
bound with explicit power α for the mixed nodal sets {x ∈ M|u = �u = 0} of
solutions of bi-Laplace equations 1.1 might be obtained using the ideas in [11,34].
The author hopes to explore this in future work.
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4. Carleman Estimates

In this section, we show the doubling inequalities for the bi-Laplace equations
(1.1). We use Carleman estimates to obtain some quantitative type of Hadamard’s
three balls theorem, then employ the “propagation of smallness” argument to get
some lower bound of L2 norm of solutions in a small ball. Finally, using Carleman
estimates and the lower bound of L2 norm of solutions, we obtain the uniform
doubling inequality.

For any x0 ∈ M, let r = d(x, x0) = r(x) be the Riemannian distance from x0
to x . Br (x0) is denoted as the geodesic ball at x0 with radius r . The symbol ‖ · ‖
denotes the L2 norm. Specifically, ‖·‖Br (x0) or ‖·‖r for short denotes the L2 normon
the ball Br (x0). Our crucial tools to get the doubling inequality are the quantitative
Carleman estimates. Carleman estimates are weighted integral inequalities with a
weight function eτφ , where φ usually satisfies some convex condition.We construct
the weight function φ as follows: set

φ = −g(ln r(x)),

where g(t) = t − eεt for some small 0 < ε < 1 and −∞ < t < T0. The positive
constant ε is a fixed small number and T0 is negative with |T0| large enough. One
can check that

lim
t→−∞ −e−t g′′(t) = ∞ and lim

t→−∞ g′(t) = 1. (4.1)

Such a weight function φ was introduced by Hörmander [18]. The following
Carleman estimates are shown in [4]: there exist positive constants R0, C , which
depend only on the manifold M and ε, such that, for any x0 ∈ M, any f ∈
C∞
0 (BR0(x0)\Bδ(x0)) with 0 < δ < R0, and τ > C , we have

C‖r2eτφ� f ‖ � τ
3
2 ‖r ε

2 eτφ f ‖ + τδ‖r−1eτφ f ‖
+ τ

1
2 ‖r1+ ε

2 eτφ∇ f ‖. (4.2)

A similar type of Carleman estimate without the second term on the right hand side
of (4.2) is well-known in the literature, see e.g. [1,12,19,28], to just mention a few.
There has been a long and rich history for the development of Carleman estimates. It
is hard to provide an exhaustive list for the applications of such estimates. Interested
readers may refer to the literature or references therein for more history about such
L2 type Carleman estimates. The Carleman estimates (4.2) also hold for vector
functions. Let F = ( f1, f2). If F ∈ C∞

0 (BR0(x0)\Bδ(x0),R2), similar arguments
as to those in (4.2) show that

C‖r2eτφ�F‖ � τ
3
2 ‖r ε

2 eτφF‖ + τδ‖r−1eτφF‖
+ τ

1
2 ‖r1+ ε

2 eτφ∇F‖. (4.3)

Let V (x) =
(

0, 1
W (x), 0

)
. Following from (4.3), we can easily establish the

quantitative Carleman estimates for vector functions.
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Lemma 7. There exist positive constants R0, C, which depend only on the manifold
M and ε, such that, for any x0 ∈ M, F ∈ C∞

0 (BR0(x0)\Bδ(x0),R2) with 0 <

δ < R0, and τ > C(1 + ‖V ‖
2
3
L∞), one has

C‖r2eτφ(�F − V (x, y) · F)‖ � τ
3
2 ‖r ε

2 eτφF‖ + τδ‖r−1eτφF‖
+ τ

1
2 ‖r1+ ε

2 eτφ∇F‖. (4.4)

Proof. By triangle inequality and the inequality (4.3), we have

C‖r2eτφ(�F − V (x, y) · F)‖ � C‖r2eτφ�F‖ − C‖r2eτφV (x, y) · F‖
� τ

3
2 ‖r ε

2 eτφF‖ + τδ‖r−1eτφF‖
+ τ

1
2 ‖r1+ ε

2 eτφ∇F‖ − C‖V ‖L∞‖r2eτφF‖.
(4.5)

If τ is chosen to be so large that τ
3
2 � C(1 + ‖V ‖L∞), the estimates (4.4) can be

derived. �	
To show the refined doubling inequality in Theorem 3, we establish the follow-

ing Carleman estimates for the bi-Laplace operator involving the potential W (x):

Lemma 8. There exist positive constants R0, C, which depend only on the manifold
M and ε, such that, for any x0 ∈ M, any f ∈ C∞

0 (BR0(x0)\Bδ(x0)) with 0 <

δ < R0, and τ > C(1 + ‖W‖
1
3
L∞), one has

C‖r4eτφ(�2 f − W (x) f )‖ � τ 3‖rεeτφ f ‖ + τ 2δ2‖r−2eτφ f ‖. (4.6)

Proof. Recall the definition of the weight function φ = − ln r + rε, we see that

r4eτφ = r2e(τ−2)φe2r
ε

.

Since 0 < r < R0 < 1, then 1 < e2r
ε

< e2. It follows from (4.2) that

C2‖r4eτφ�2 f ‖ � C‖r2e(τ−2)φ�2 f ‖
� τ

3
2 ‖r ε

2 e(τ−2)φ� f ‖. (4.7)

Since

r
ε
2 e(τ−2)φ = r2eτφr

ε
2 e−2rε

= r2e(τ− ε
2 )φe

ε
2 r

ε

e−2rε

, (4.8)

it follows that

|r ε
2 e(τ−2)φ | � Cr2e(τ− ε

2 )φ.
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Thus, from (4.2), we obtain that

‖r ε
2 e(τ−2)φ� f ‖ � C‖r2e(τ− ε

2 )φ� f ‖
� Cτ

3
2 ‖r ε

2 e(τ− ε
2 )φ f ‖

� Cτ
3
2 ‖rεeτφ f ‖, (4.9)

where we have used the estimates

e− ε
2φ = r

ε
2 e−rε � r

ε
2 e−1.

Combining the inequalities (4.7) and (4.9), we get that

‖r4eτφ�2 f ‖ � Cτ 3‖rεeτφ f ‖. (4.10)

Carrying out an argument similar to the proof of (4.10), we can show that

‖r4eτφ�2 f ‖ � Cτ 2δ2‖r−2eτφ f ‖. (4.11)

In view of (4.10) and (4.11), we arrive at

C‖r4eτφ�2 f ‖ � τ 3‖rεeτφ f ‖ + τ 2δ2‖r−2eτφ f ‖. (4.12)

By triangle inequality and the last inequality, we deduce that

C‖r4eτφ�2 f − W (x) f ‖ � C‖r4eτφ�2 f ‖ − ‖r4eτφW (x) f ‖
� τ 3‖rεeτφ f ‖ + τ 2δ2‖r−2eτφ f ‖

− ‖W‖L∞‖r4eτφ f ‖. (4.13)

If τ is chosen to be so large that τ 3 � C(1 + ‖W‖L∞), the estimates (4.6) can be
derived. �	

Based on the quantitative Carleman estimates, we first deduce a quantitative
three balls theorem. Let U = (u, v)ᵀ, where (u, v) are the solutions of the sec-
ond order elliptic systems (2.1). We apply such estimates to ψU , where ψ is an
appropriate smooth cut-off function, and then select an appropriate choice of the
parameter τ . This kind of a standard way to obtain the three-ball results, see e.g.
[2,4,10,12,28]. The argument is also quite similar to the proof of Theorem 2 and
the proof of Lemma 11 in the Section 5. We skip the details. The quantitative three
balls theorem is stated as follows:

Lemma 9. There exist positive constants R̄, C and 0 < α1 < 1 which depend only
on M such that, for any R < R̄ and any x0 ∈ M, the solutions u of (1.1) satisfy

‖(u,�u)‖B2R(x0) � eCM
2
3 ‖(u,�u)‖α1

BR(x0)
‖(u,�u)‖1−α1

B3R(x0)
. (4.14)

We use the three balls theorem to obtain the uniform doubling inequality. Such
a type of argument has been performed in, e.g. [4,10]. We apply the arguments to
elliptic systems in (2.1). We establish a lower bound of L2 norm of U in a small
ball using the overlapping of the three balls argument.
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Lemma 10. Let u be the solution of bi-Laplace equations (1.1). For any R > 0,
there exists CR > 0 such that

‖(u,�u)‖BR(x0) � e−CRM
2
3 ‖(u,�u)‖L2(M) (4.15)

for any x0 ∈ M.

Proof. Assume that R < R0
10 . Without loss of generality, we assume that

‖U‖L2(M) = ‖(u,�u)ᵀ‖L2(M) = 1.

We denote y0 to be the point where

‖U‖B2R(y0) = sup
x∈M

‖U‖B2R(x).

Since finite numbers of B2R(x) will cover the compact manifold M, then
‖U‖B2R(y0) � DR , where DR depends on M and R. At any point x ∈ M, the
three balls theorem in the last lemma implies that

‖U‖BR(x) � e−CM
2
3 ‖U‖

1
α1
B2R(x). (4.16)

Let l be the geodesic that connects x0 and y0. We select a sequence of x0, x1, . . . ,
xm = y0 such that xi ∈ l and BR(xi+1) ⊂ B2R(xi ) for i = 0, . . . ,m − 1. The
number m depends on the manifold M and R. Applying the inequality (4.16) at
xi , it follows that

‖U‖BR(xi ) � e−CM
2
3 ‖U‖

1
α1
BR(xi+1)

(4.17)

for i = 0, . . . ,m − 1. Iterating the estimates (4.17) m times, things get to the point
y0. Then

‖U‖BR(x0) � e−CRM
2
3 ‖U‖

1
αm1
B2R(xm )

� e−CRM
2
3 D

1
αm1
R ,

which implies that

‖U‖BR(x0) � e−CRM
2
3 ‖U‖L2(M).

Thus, the lemma is shown. �	
Recall that AR,2R is an annulus. Since themanifoldM is complete and compact,

there exists some x1 ∈ AR,2R such that B R
2
(x1) ⊂ AR,2R . From the last lemma,

one has that

‖U‖R,2R � ‖U‖B R
2

(x1)

� e−CRM
2
3 ‖U‖L2(M). (4.18)

Next we proceed to show the doubling inequality.
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Proof of Theorem 2. Let R = R̄
8 , where R̄ is the fixed constant in the three balls

inequality (4.14). Let 0 < δ < R̄
24 , which can be chosen to be arbitrary small.

Define a smooth cut-off function 0 < ψ < 1 as follows:

• ψ(r) = 0 if r(x) < δ or r(x) > 2R,
• ψ(r) = 1 if 3δ

2 < r(x) < R,
• |∇αψ | � C

Rα if δ < r(x) < 3δ
2 ,• |∇αψ | � C if R < r(x) < 2R,

where α = (α1, . . . , αn) is a multi-index. Applying the Carleman estimates (4.4)
with F = ψU and using the elliptic systems (2.1), it follows that

‖r ε
2 eτφψU‖ + τδ‖r−1eτφψU‖ � C‖r2eτφ(�ψU + 2∇ψ · ∇U )‖.

The properties of ψ imply that

‖r ε
2 eτφU‖ R

2 , 2R3
+ ‖eτφU‖ 3δ

2 ,4δ � C(‖eτφU‖δ, 3δ2
+ ‖eτφU‖R,2R)

+ C(δ‖eτφ∇U‖δ, 3δ2
+ R‖eτφ∇U‖R,2R).

The radial and decreasing property of φ yields that

eτφ( 2R3 )‖U‖ R
2 , 2R3

+ eτφ(4δ)‖U‖ 3δ
2 ,4δ

� C(eτφ(δ)‖U‖δ, 3δ2
+ eτφ(R)‖eτφU‖R,2R)

+ C(δeτφ(δ)‖∇U‖δ, 3δ2
+ Reφ(R)‖eτφ∇U‖R,2R).

It is known that the Caccioppoli type inequality

‖∇U‖(1−a)r � CM1/2

r
‖U‖r (4.19)

holds for the solution of elliptic systems (2.1) with some 0 < a < 1. Using the
Caccioppoli type inequality (4.19), we have

eτφ( 2R3 )‖U‖ R
2 , 2R3

+ eτφ(4δ)‖U‖ 3δ
2 ,4δ � CM

1
2 (eτφ(δ)‖U‖2δ + eφ(R)‖eτφU‖3R).

(4.20)

Adding eτφ(4δ)‖U‖ 3δ
2
to both sides of last inequality and considering that φ(δ) >

φ(4δ), we obtain that

eτφ( 2R3 )‖U‖ R
2 , 2R3

+ eτφ(4δ)‖U‖4δ � CM
1
2 (eτφ(δ)‖U‖2δ + eφ(R)‖eτφU‖3R).

(4.21)

We choose τ such that

CM
1
2 eτφ(R)‖U‖3R � 1

2
eτφ( 2R3 )‖U‖ R

2 , 2R3
.
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That is,

τ � 1

φ( 2R3 ) − φ(R)
ln

2CM
1
2 ‖U‖3R

‖U‖ R
2 , 3R2

.

Then

eτφ( 2R3 )‖U‖ R
2 , 2R3

+ eτφ(4δ)‖U‖4δ � CM
1
2 eτφ(δ)‖U‖2δ. (4.22)

To apply the Carleman estimates (4.4), it is required that τ � CM
2
3 . We select

τ = CM
2
3 + 1

φ( 2R3 ) − φ(R)
ln

2CM
1
2 ‖U‖3R

‖U‖ R
2 , 3R2

.

Dropping the first term in (4.22), we get that

‖U‖4δ � CM
1
2

exp

⎧⎨
⎩
⎛
⎝CM

2
3 + 1

φ( 2R3 ) − φ(R)
ln

2CM
1
2 ‖U‖3R

‖U‖ R
2 , 3R2

⎞
⎠ (φ(δ) − φ(4δ))

⎫⎬
⎭ ‖U‖2δ

� eCM
2
3

⎛
⎝ ‖U‖3R

‖U‖ R
2 , 3R2

⎞
⎠
C

‖U‖2δ, (4.23)

where we have used the fact that

β−1
1 < φ

(
2R

3

)
− φ(R) < β1,

β−1
2 < φ(δ) − φ(4δ) < β2

for some positive constant β1 and β2 that do not depend on R or δ. With aid of
(4.18), it is known that

‖U‖3R
‖U‖ R

2 , 3R2

� eCM
2
3
.

Therefore, it follows from (4.23) that

‖U‖4δ � eCM
2
3 ‖U‖2δ.

Choosing δ = r
2 , we obtain the doubling estimates

‖U‖2r � eCM
2
3 ‖U‖r (4.24)

for r � R̄
12 . If r � R̄

12 , from (4.15),

‖U‖r � ‖U‖ R̄
12

� e−CR̄M
2
3 ‖U‖M

� e−CR̄M
2
3 ‖U‖2r .
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Hence, the doubling estimates

‖U‖2r � eCM
2
3 ‖U‖r (4.25)

are achieved for any r > 0, where C only depends on the manifold M. Since x0
is any arbitrary point inM, we have shown the uniform doubling inequality. Note
that U = (u,�u)ᵀ. The proof of Theorem 2 is arrived. �	

5. Refined Doubling Inequality for Bi-Laplace Equations

This section is devoted to obtaining a refined doubling inequality for the solu-
tions of bi-Laplace equations (1.1). We apply Carleman estimates in Lemma 8 to
show the three balls theorem for the solution u of the bi-Laplace equations (1.1).

Lemma 11. There exist positive constants R̄, C and 0 < α1 < 1 which depends
only on M such that, for any R < R̄ and any x0 ∈ M, the solutions u of (1.1)
satisfy

‖u‖B2R(x0) � eCM
1
3 ‖u‖α1

BR(x0)
‖u‖1−α1

B3R(x0)
. (5.1)

Proof. We introduce a cut-off function ψ(r) ∈ C∞
0 (B3R) with R < R0

3 . Let
0 < ψ(r) < 1 satisfy the following properties:

• ψ(r) = 0 if r(x) < R
4 or r(x) > 5R

2 ,
• ψ(r) = 1 if 3R

4 < r(x) < 9R
4 ,

• |∇αψ | � C
R|α|

for α = (α1, . . . , αn). Since the function ψu is support in the annulus A R
4 , 5R2

,
applying the Carelman estimates (4.6) with f = ψu, we obtain that

τ 2‖eτφu‖ � C‖r4eτφ(�2(ψu) − W (x)ψu)‖
= C‖r4eτφ[�2, ψ]u‖, (5.2)

wherewe have used the equation (1.1).Note that [�2, ψ] is a three order differential
operator on u involving the derivative of ψ . By the properties of ψ , we have

‖eτφu‖ 3R
4 , 9R4

� C
(
‖eτφu‖ R

4 , 3R4
+ ‖eτφu‖ 9R

4 , 5R2

)

+ C

⎛
⎝ 3∑

|α|=1

‖r |α|eτφ∇αu‖ R
4 , 3R4

+
3∑

|α|=1

‖r |α|eτφ∇αu‖ 9R
4 , 5R2

⎞
⎠ .
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Recall that the weight function φ is radial and decreasing. It follows that

‖eτφu‖ 3R
4 , 9R4

� C
(
eτφ( R

4 )‖u‖ R
4 , 3R4

+ eτφ( 9R4 )‖u‖ 9R
4 , 5R2

)

+ C

⎛
⎝e

τφ
(
R
4

) 3∑
|α|=1

‖r |α|∇αu‖ R
4 , 3R4

+ e
τφ
(
9R
4

) 3∑
|α|=1

‖r |α|∇αu‖ 9R
4 , 5R2

⎞
⎠ .

(5.3)

For the higher order elliptic equations

(−�)mu + W (x)u = 0, (5.4)

the Caccioppoli type inequality

2m−1∑
|α|=0

‖r |α|∇αu‖c3R,c2R � C(‖W‖L∞ + 1)2m−1‖u‖c4R,c1R (5.5)

has been shown in [42] for all positive constant 0 < c4 < c3 < c2 < c1 < 1. The
estimate (5.5) yields that

‖r |α|∇αu‖ R
4 , 3R4

� CM3‖u‖R

and

‖r |α|∇αu‖ 9R
4 , 5R2

� CM3‖u‖3R
for all 1 � |α| � 3. Therefore, from (5.3), we get that

‖u‖ 3R
4 ,2R � CM3

1

(
eτ(φ( R

4 )−φ(2R))‖u‖R + eτ(φ( 9R4 )−φ(2R))‖u‖3R
)

. (5.6)

We choose parameters

β1
R = φ

(
R

4

)
− φ(2R),

β2
R = φ(2R) − φ

(
9R

4

)
.

From the definition of φ, we know that

0 < β−1
1 < β1

R < β1 and 0 < β2 < β2
R < β−1

2 ,

where β1 and β2 do not depend on R. Adding ‖u‖ 3R
4
to both sides of the inequality

(5.6) gives that

‖u‖2R � CM3 (eτβ1‖u‖R + e−τβ2‖u‖3R
)
. (5.7)
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To incorporate the second term in the right hand side of the last inequality into the
left hand side, we choose τ such that

CM3e−τβ2‖u‖3R � 1

2
‖u‖2R,

which is true if

τ � 1

β2
ln

2CM3‖u‖3R
‖u‖2R .

Thus, we obtain that

‖u‖2R � CM3eτβ1‖u‖R . (5.8)

Since τ > CM3 is needed to apply the Carleman estimates (4.6), we choose

τ = CM
1
3 + 1

β2
ln

2CM3‖u‖3R
‖u‖2R .

Substituting such τ in (5.8) gives that

‖u‖
β2+β1

β2
2R � eCM

1
3 ‖u‖

β1
β2
3R‖u‖R . (5.9)

Raising exponent β2
β2+β1

to both sides of the last inequality yields that

‖u‖2R � eCM
1
3 ‖u‖

β1
β1+β2
3R ‖u‖

β2
β1+β2
R . (5.10)

Setting α1 = β2
β1+β2

, we arrive at the three balls inequality in the lemma. �	
Following the strategy in the proof of (4.15) and (4.18) by using the three balls

theorem (5.1), we can show the following results. For any R > 0, there exists CR

such that

‖u‖BR(x0) � e−CRM
1
3 ‖u‖L2(M) (5.11)

for any x0 ∈ M. Furthermore, it holds that

‖u‖R,2R � e−CRM
1
3 ‖u‖L2(M). (5.12)

Next we proceed to show the doubling inequality for the solutions of bi-Laplace
equations (1.1). The argument is somewhat parallel to the proof of the double
inequality for elliptic systems. We show the details of the argument as follows:

Proof of Theorem 3. Let us fix R = R̄
8 , where R̄ is the one in the three balls

inequality (5.1). Let 0 < δ < R
24 be arbitrary small. A smooth cut-off function

0 < ψ < 1 is introduced as follows:

• ψ(r) = 0 if r(x) < δ or r(x) > 2R,
• ψ(r) = 1 if 3δ

2 < r(x) < R,
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• |∇αψ | � C
Rα if δ < r(x) < 3δ

2 ,• |∇αψ | � C if R < r(x) < 2R.

We use the Carleman estimates (4.6) again. Replacing f by ψu and substituting it
into (4.6) gives that

‖rεeτφψu‖ + τ 2δ2‖r−2eτφψu‖ � C‖r4eτφ[�2, ψ]u‖,
where [�2, ψ] is a three order differential operator on u involving the derivative
of ψ and τ � 1. The properties of ψ imply that

‖rεeτφu‖ R
2 , 2R3

+ ‖eτφu‖ 3δ
2 ,4δ

� C
(
‖eτφu‖δ, 3δ2

+ ‖eτφu‖R,2R

)

+ C

⎛
⎝ 3∑

|α|=1

‖r |α|eτφ∇αu‖δ, 3δ2
+

3∑
|α|=1

‖r |α|eτφ∇αu‖R,2R

⎞
⎠ .

Taking the exponential function eτφ out by using the fact that φ is radial and
decreasing, we obtain that

e
τφ
(
2R
3

)
‖u‖ R

2 , 2R3
+ eτφ(4δ)‖u‖ 3δ

2 ,4δ

� C
(
eτφ(δ)‖u‖δ, 3δ2

+ eτφ(R)‖eτφu‖R,2R

)

+ C

⎛
⎝eτφ(δ)

3∑
|α|=1

‖r |α|eτφ∇αu‖δ, 3δ2
+ eφ(R)

3∑
|α|=1

‖r |α|eτφ∇αu‖R,2R

⎞
⎠ .

The use of a Caccioppoli type inequality (5.5) further implies that

e
τφ
(
2R
3

)
‖u‖ R

2 , 2R3
+ eτφ(4δ)‖u‖ 3δ

2 ,4δ � CM3(eτφ(δ)‖u‖2δ + eφ(R)‖eτφu‖3R).

(5.13)

Adding eτφ(4δ)‖u‖ 3δ
2
to both sides of the last inequality, it follows that

e
τφ
(
2R
3

)
‖u‖ R

2 , 2R3
+ eτφ(4δ)‖u‖4δ � CM3(eτφ(δ)‖u‖2δ + eφ(R)‖eτφu‖3R).

(5.14)

We want to get rid of the second term in the right hand side of the last inequality.
We choose τ such that

CM3eτφ(R)‖u‖3R � 1

2
e
τφ
(
2R
3

)
‖u‖ R

2 , 2R3
;

that is, we have at least that

τ � 1

φ
( 2R

3

)− φ(R)
ln

2CM3‖u‖3R
‖u‖ R

2 , 3R2

.
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Then we arrive at

e
τφ
(
2R
3

)
‖u‖ R

2 , 2R3
+ eτφ(4δ)‖u‖4δ � CM3eτφ(δ)‖U‖2δ. (5.15)

To apply the Carleman estimates (4.6), the assumption for τ is that τ � CM
1
3 .

Therefore, we select

τ = CM
1
3 + 1

φ
( 2R

3

)− φ(R)
ln

2CM3‖u‖3R
‖u‖ R

2 , 3R2

.

Furthermore, dropping the first term in (5.15), we get that

‖u‖4δ � CM3

exp

{(
CM

1
3 + 1

φ
( 2R

3

)− φ(R)
ln

2CM3‖u‖3R
‖u‖ R

2 , 3R2

)
(φ(δ) − φ(4δ))

}
‖u‖2δ

� eCM
1
3

(
‖u‖3R

‖u‖ R
2 , 3R2

)C

‖u‖2δ. (5.16)

It follows from (5.12) that

‖u‖3R
‖u‖ R

2 , 3R2

� eCM
1
3
.

Combining the last inequality with (5.16) yields that

‖u‖4δ � eCM
1
3 ‖u‖2δ.

Let δ = r
2 . The doubling inequality

‖u‖2r � eCM
1
3 ‖u‖r (5.17)

is deduced for r � R0
12 . If r � R0

12 , using (5.12) as the arguments analogous to the
elliptic systems, we can derive that

‖u‖2r � eCM
1
3 ‖u‖r (5.18)

for any r > 0 and x0 ∈ M, where C only depends on the manifoldM. Therefore,
the theorem is completed. �	

At last, we give the proof of the Corollary 1 based on the doubling inequality
in Theorem 3.



1574 Jiuyi Zhu

Proof of Corollary 1. The L∞ norm estimate for higher order elliptic equations
(5.5) was shown in [42],

‖u‖L∞(Br ) � C(‖W‖L∞ + 1)
n
2 r− n

2 ‖u‖L2(B2r )
. (5.19)

Thus, we can see that Theorem 3 implies the doubling inequality with L∞ norm

‖u‖L∞(B2r (x)) � eCM
1
3 ‖u‖L∞(Br (x)) (5.20)

for any x ∈ M and 0 < r < r0, where r0 depends only onM. We may assume that
‖u‖L∞(M) = 1, so there exists some point x0 such that ‖u‖L∞(M) = |u(y0)| = 1.
For any point x0 ∈ M, there exists a geodesic l connecting x0 and y0. We choose
a sequence of point x0, x1, . . . , xm = y0 such that xi ∈ l and Br (xi+1) ⊂ B2r (xi )
for i = 0, . . . ,m − 1. It is true that the number

m � C log2
diamM

r
.

Applying the L∞ norm of the doubling inequality with iteration and using the fact
that

‖u‖L∞(Br (xi+1)) � ‖u‖L∞(B2r (xi )),

we obtain that

‖u‖L∞(Br (x0)) � e−CM
1
3 log2

diamM
r ‖u‖L∞(Br (y0))

� CrCM
1
3
, (5.21)

where C depends on the manifold M. This implies that the vanishing order of

solution is less than CM
1
3 . Since x0 is an arbitrary point, we get such vanishing

rate of solutions for every point on the manifold M. Therefore, we complete the
proof of the corollary. �	

6. Implicit Upper Bound of Nodal Sets

In this section, we obtain an upper bound for the nodal sets of bi-Laplace
equation (1.1). Such a type of bound has been obtained for the measure of singular
sets for semi-linear elliptic equations and higher order elliptic equations by Han
et al. [20,21]. The method is based on a compactness argument and an iteration
procedure. The iteration argument was first developed by Hart and Simon [25].
We adapt such a compactness argument to obtain the measure of nodal sets for
(1.1). For higher order elliptic equations, it seems hard to get Hart and Simon’s
exponential upper bound result for nodal sets, even if the explicit vanishing order
is achieved, since the nodal sets comparison lemma in [25] is not known for higher
order derivatives.
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The method applies to higher order elliptic equations without variational struc-
ture. Hence we consider general fourth order homogeneous elliptic equations in
B1(0) ⊂ R

n given by

Lu =
4∑

|ν|=0

aν(x)D
νu = 0, (6.1)

where aν(x) is a smooth function for |ν| � 1, a0(x) ∈ L∞ and
∑
|ν|=4

aν(x)ξ
ν � � for any ξ ∈ Sn−1 and x ∈ B1(0) (6.2)

for some positive constant �. It is easy to observe that the equation (1.1) we are
considering is a particular case of the equations Lu = 0 in (6.1).We say the operator
L ∈ L(�, K ) if L is given by (6.1) satisfying (6.2) and

4∑
|ν|=1

‖aν‖C∞(B1) + ‖a0‖L∞(B1) � K (6.3)

for some positive constant K . By the standard elliptic estimates, we have

‖u‖C3,α(B1−r )
� C‖u‖L2(B1)

(6.4)

for some 0 < α < 1, where C depends on K , r and n.
We consider the geometric structure of nodal sets N (u) = {B1/2|u(x) = 0}.

LetO(p) denote the vanishing order of u at p. ThenN (u) = {p ∈ B1 : O(p) � 1}.
For each integer d � 1, define the dth level set as

Ld(u) = {p ∈ B1 : O(p) = d}. (6.5)

Thus, we can write

N (u) = ∪d�1Ld(u). (6.6)

The following lemma shows that the Hausdorff dimension of nodal sets and the
property of leading polynomials at the n − 1 dimensional nodal sets (the lemma
is directly from the Theorem 5.1 in [17]. We present most of the proof for the
complete of presentation):

Lemma 12. If the solution u satisfies (6.1) and does not vanish of infinite order,
thenN (u) is countably (n−1)-rectifiable. Furthermore, for Hn−1 almost all points
inN (u), the leading polynomials of the solutions are functions of one variable after
an appropriate rotation.

Proof. For each y ∈ B1/2(0) ∩ Ld(u), set

uy,r (x) = u(y + r x)

(
ffl
∂Br (y)

u2)1/2
, x ∈ B2(0)
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for r ∈ (0, 1−|y|
2 ). By Theorem 3.3 in [17],

uy,r → P in L2(B2(0)) as r → 0.

The homogeneous polynomial P = Py satisfies
∑
|ν|=4

aν(0)D
ν P = 0. (6.7)

P is called the leading polynomial of u at y. Since P is d degree non-zero homo-
geneous polynomial, we introduce

Ld(P) = {x |Dν P(x) = 0 for any |ν| � d − 1}. (6.8)

Clearly, Ld(P) is not an empty set, since 0 ∈ Ld(P). We claim that Ld(P) is a
linear subspace and

P(x) = P(x + z) (6.9)

for any x ∈ R
n and z ∈ Ld(P). Since z ∈ Ld(P), then

Dν P(z) = 0 for any |ν| � d − 1.

It is assumed that

P(x) =
∑

|α|=d

aαx
α.

Hence it is true that

P(x) =
∑

|α|=d

aα(x − z)α,

which implies the identity (6.9). Furthermore, it is easy to see thatLd(P) is a linear
space. From the formula (6.9), we also know that the polynomial P is a function
of dimension n−dimLd(P) variables. Observe that dimLd(P) � n − 1 and that
dimLd(P) � n−2 for d � 4. If dimLd(P) = n−1, then P is a d-degreemonomial
of one variable satisfying (6.7). Then d < 4.

We define

L j
d(u) = {y ∈ Ld(u); dimLd(Py) = j} (6.10)

for i = 0, 1, . . . , n − 1. Following the arguments in [17], we can show that L j
d

is on a countable union of j-dimensional C1 graphs. Next, we show that Ln−1
d (u)

is on a countable union of (n − 1) dimensional C1, α
d graphs for d = 1, 2, 3. Let

y = 0 ∈ Ln−1
d (u), by denoting R

n = R1 × Ld(P) and the argument discussed
before, P is a monomial of degree d in R1. After an appropriate rotation, there
holds that

u(x) = cxd1 + ψ(x) in B1/2. (6.11)
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The function ψ satisfies

|Diψ(x)| � C |x |d−i+α for i = 0, 1, . . . , d (6.12)

and

|Diψ(x)| � C for i = d + 1, . . . , 3. (6.13)

For x ∈ Ln−1
d (u) ∩ B1/2, since u(x) = 0, there holds that

|x1|d � C |x |d+α.

Hence, the local (n − 1) dimensional C1 graph containing Ln−1
d (u) is C1, α

d in a

neighborhood of 0. Let L j (u) = ∪d�1L j
d(u) for j = 0, 1, . . . , n − 1. Then

N (u) = ∪n−1
j=0L j (u). (6.14)

Each L j (u) is on a countable union of j-dimensional C1 manifolds for j =
0, . . . , n − 1. Set

N∗(u) = ∪n−2
j=0L j (u), (6.15)

N ∗(u) = Ln−1(u). (6.16)

Then we have the decomposition

N (u) = N ∗(u) ∪ N∗(u), (6.17)

where N∗(u) is countably (n − 2)-rectifiable and N ∗(u) is on a countable union
of (n − 1) dimensional C1,α manifold. Note that for y ∈ N ∗(u), the leading
polynomial P of u at y is a homogeneous with one variable. �	

The next proposition states that the nodal sets can be decomposed into a good
part and a bad part. The good part has a measurable upper estimate and the bad part
is covered by the small balls.

Proposition 3. There exist positive constants C(u) and ε(u) depending on the so-
lution u and a finite collection of balls Bri (xi ) with ri � 1

10 and xi ∈ N (u) such
that for any v ∈ C3 with

‖u − v‖C3(B1)
� ε(u), (6.18)

there holds

Hn−1
(
N (v) ∩ B1/2\

⋃
Bri (xi )

)
< C(u) (6.19)

and
∑

rn−1
i � 1

2n
,

where C(u) depends on u and coefficients of the operator L.
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Proof. It follows from the relation (6.17) that the set N∗(u) has dimension less
than n − 1. Thus,

Hn−1(N∗(u)) = 0. (6.20)

By the definition of Hausdorff measure, there exist at most countably many balls
Bri (xi ) with ri � 1

10 and xi ∈ N∗(u) such that

N∗(u) ⊂ ∪iBri (xi ) (6.21)

and
∑

rn−1
i � 1

2n
. (6.22)

We consider the setN ∗(u) ∩B3/4. We claim that, for any y ∈ N ∗(u) ∩B3/4, there
exist positive constants R(y, u) < 1

10 , r(y, u), δ = δ(y, u) and C = C(y, u) with
r < R such that

Hn−1 (N (v) ∩ Br (y)) � Crn−1, (6.23)

if the function v satisfies

‖u − v‖∗
C3(BR(y)) � δ. (6.24)

Here the norm ‖ · ‖∗
Cm (BR)

is defined as

‖ f ‖∗
Cm (BR) =

m∑
i=0

Ri sup
x∈BR

|Di f (x)|

for any f ∈ Cm(BR).
By the compactness of N (u), there exist xi ∈ N∗(u) and yi ∈ N ∗(u) for

i = 1, . . . ,m(u) and j = 1, . . . , k(u) such that

N (u) ∩ B3/4 ⊂
⎛
⎝m(u)⋃

i=1

Bri (xi )

⎞
⎠ ∩

⎛
⎝k(u)⋃

j=1

Bsi (yi )

⎞
⎠ (6.25)

with ri � 1
10 and si � 1

10 . By the compactness ofN (u) again, there exists a positive
constant ρ = ρ(u) such that

{x ∈ B3/4; dist(x,N (u)) < ρ} ⊂
⎛
⎝m(u)⋃

i=1

Bri (xi )

⎞
⎠ ∩

⎛
⎝k(u)⋃

j=1

Bsi (yi )

⎞
⎠ . (6.26)

For such a ρ, we can find a positive constant η = η(u) such that

N (v) ∩ B1/2 ⊂ {x ∈ B3/4; dist(x,N (u)) < ρ} (6.27)

if ‖u − v‖C1(B3/4)
< η. For the convenience of the presentation, let

B1
u = ∪m

i=1Bri (xi ), B2
u = ∪k

i=1Bsi (yi ).
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We take ε(u) < η(u) small enough. For any v ∈ C3 in B1, if

‖u − v‖C3 < ε(u), (6.28)

then

‖u − v‖∗
C3(BR(yi ))

< δ(yi , u) (6.29)

for i = 1, . . . , k = k(u). Thus, from the previous arguments and (6.23), we obtain
that

N (v) ∩ B1/2 ⊂ (N (v) ∩ B1
u)
⋃

(N (v) ∩ B2
u) (6.30)

and

Hn−1(N (v) ∩ B2
u) � C

k(u)∑
j=1

sn−1
j = C(u). (6.31)

Recall that

B1
u = ∪m

i=1Bri (xi ) with
k∑

i=1

rn−1
i � 1

2n
. (6.32)

Hence the proof of the theorem follows from (6.31) and (6.32). We are left to prove
the claim (6.23). Thanks to the arguments in Lemma 12, for any y ∈ N ∗(u)∩B3/4,
there holds

u(x + y) = P(x) + ψ(x), (6.33)

where P is a non-zero d-degree monomial with 1 � d � 3 and ψ satisfies (6.12)
and (6.13). Thus, we can take a positive constant R = R(y, u) < 1

10 such that

‖ 1

Rd
ψ‖∗

C3(BR)
<

ε∗
2

. (6.34)

Choosing δ so small that (6.24) implies that
∥∥∥∥ 1

Rd
(u − v)

∥∥∥∥
∗

C3(BR(y))
<

ε∗
2

, (6.35)

then there holds that ∥∥∥∥ 1

Rd
(v − P(· − y))

∥∥∥∥
∗

C3(BR(y))
< ε∗. (6.36)

By considering the transformation x → y + Rx , we obtain that
∥∥∥∥ 1

Rd
v(y + R·) − P

∥∥∥∥
C3(B1)

< ε∗. (6.37)
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Since P = Cxd1 for 1 � d � 3, we can find an orthonormal basis {e1, . . . , en} in
B1 such that

Dd
ei (P) is a nonzero constant for any i = 1, . . . , n. (6.38)

Therefore, there exist positive constants r = r(y, P) and ε∗ = ε∗(y, P) such that
if the function v ∈ Cd satisfies∥∥∥∥P − 1

Rd
v(y + R·)

∥∥∥∥
C3(Br )

� ε∗, (6.39)

then Dd
ei v(y + R·) is never zero in Br (y) for any i = 1, . . . , n. By using one

dimensional mean value theorem d times, we conclude that there can not be more
than d + 1 zeros for 1

Rd v(y + R·) in any line parallel to ei for any i = 1, . . . , n.
Let zi be the variable in the ei direction. We set πi as the projection

πi (z1, z2, . . . , zn) = (z1, . . . , zi−1, zi+1, . . . , zn) ∈ R
n−1.

Denote 1
Rd v(y + R·) as ṽ. Thus, for any q ∈ B

n−1
r ⊂ R

n−1 and 1 � i � n, we
have

card(ṽ−1(0) ∩ π−1
i (q) ∩ Br ) � (d + 1).

From the integral geometric formula 3.2.22 in [13], we derive that

Hn−1(ṽ−1(0) ∩ Br ) �
∑

1�i�n

ˆ

B
n−1
r

card
(
ṽ−1(0) ∩ π−1

i (q) ∩ Br

)
dHn−1

� C(n)(d + 1)rn−1. (6.40)

See the similar arguments in [41]. After transforming back to 1
Rd v(y+R·) inBR(y),

we have for r � Rr∗,

Hn−1(v−1(0) ∩ Br (y)) � Crn−1. (6.41)

Thus, the claim (6.23) follows. Therefore, the proposition is shown. �	
We consider the translation and rescaling property of the operator L . Let Lx0,ρ

be defined by

Lx0,ρ =
4∑

|ν|=0

ρ4−|ν|aν(x0 + ρx)Dν .

Observe that Lx0,ρ ∈ L(�, K ).
To control the vanishing order quantitatively, we introduce the quantitative

doubling inequality. A function is said to be in DN if

‖u‖L2(B2r (x0)) � 2N‖u‖L2(Br (x0)) (6.42)
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for x0 ∈ B2/3 and 0 < 2r < dist(x0, ∂B1). We define D∗
N as the collection of all

functions u in DN satisfying Lu = 0 inB1 for some L ∈ L(�, K ). By the standard
elliptic estimates, the collection

{
u ∈ D∗

N ;
ˆ

B1/2

u2 dx = 1

}

is compact under the local L∞ metric. See the lemma 4.1 in [21]. Next we show the
upper bound estimates of nodal sets by removing a finite collection of small balls.

Lemma 13. There exists C depending on K , N and λ such that for any u ∈ D∗
N ,

there exists a finite collection of balls {Bri (xi )}, with ri � 1
4 and xi ∈ N (u) such

that there hold

Hn−1
(
N (u) ∩ B1/2\

⋃
Bri (xi )

)
� C (6.43)

and
∑

rn−1
i � 1

2
.

Proof. Define D1
N to be the set

{
u ∈ D∗

N ;
ˆ

B1/2

u2 dx = 1

}
.

Let u0 be an arbitrary solution in D1
N . For any u ∈ D1

N , if ‖u − u0‖L∞(B7/8) � ε0,
by standard elliptic estimates,

‖u − u0‖C3,α(B3/4)
� C(ε0),

where C(ε0) → 0 as ε0 → 0. We can take ε0 small so that C(ε0) < ε(u0), where
ε(u0) is the constant in (6.28). With the aid of Proposition 3, there exist a positive
constant C(u0) and finitely many balls {Bri (xi )} with xi ∈ N (u0) and ri � 1

10 ,
such that for any u ∈ D1

N and ‖u − u0‖L∞(B7/8) � ε0, there holds

Hn−1
(
N (u) ∩ B1/2\

⋃
Bri (xi )

)
� C(u0) (6.44)

and
∑

rn−1
i � 1

2
.

If N (u) ∩ Bri (xi ) 
= ∅, we may take some point x̃i in N (u) ∩ Bri (xi ). Clearly, it
holds that Bri (xi ) ⊂ B2ri (x̃i ). We may rearrange the center and radius. Thus, we
can still find a finite collection of balls {Bri (xi )} with xi ∈ N (u) and ri � 1

4 such
that

Hn−1
(
N (u) ∩ B1/2\

⋃
Bri (xi )

)
� C(u0) (6.45)
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and
∑

rn−1
i � 1

2
.

Since D1
N is compact under the local L∞ norm, there exists u1, u2, . . . , u p ∈ D1

N
and ε1 = ε1(u), . . . , εp = εp(u) such that for anyu ∈ D1

N , there exists a 1 � k � p
satisfying the property

‖u − uk‖L∞(B7/8) � εk � ε0.

Denote

C = max{C(u1), . . . ,C(u p)}.
This C depends on the class of D∗

N . Thus, we complete the proof. �	
Now we are ready to prove Theorem 4 in the section. We apply the standard

iteration arguments in [25].

Proof of Theorem 4. First, we define

φ0 = {B1/2(0)}.
We claim that we can find φ1, φ2, . . . , each of which is a collection of balls such
that

rad(B) � 1

2

(
1

2

)l

for any B ∈ φl , (6.46)

∑
B∈φl

[rad(B)]n−1 �
(
1

2

)l

, (6.47)

and

Hn−1

⎛
⎝N (u) ∩

⋃
B∈φl−1

B\
⋃
B∈φl

B

⎞
⎠ � C

(
1

2

)l−1

(6.48)

for l � 1, where C is the positive constant in Lemma 13. We prove the claim
by constructing {φl} using induction. Note that φ0 = {B1/2(0)}. Suppose that the
assumptions (6.46)–(6.48) hold for l−1.We construct φl . Taking anyB = Br (y) ∈
φl−1, by the transformation x → y + 2r x , via Lu = 0 in B2r (y), we have L̂û = 0
in B1 with

L̂ =
4∑

|ν|=0

(2r)4−|ν|aν(y + 2r x)Dν
x

and û(x) = u(y + 2r x). We observe that û ∈ D∗
N . Applying Lemma 13, we obtain

a collection of balls {Bsi (zi )} with si � 1
4 and zi ∈ N (û) such that

Hn−1 (N (û) ∩ B1/2\Bsi (zi )
)

� C
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and
∑

sn−1
i � 1

2
.

Rescaling B1/2(0) back to Br (y) by x �→ x−y
2r gives that, for B = Br (y) ∈ φl−1,

there exist finitely many balls {Bri (xi )} in B2r (y) with ri � r
2 , such that

Hn−1
(
N (u) ∩ Br (y)\

⋃
Bri (xi )

)
� Crn−1

and
∑

rn−1
i � 1

2
rn−1.

For such Br (y), we set

φB
l =

⋃
{Bri (xi )}

and construct φl as

φl =
⋃

B∈φl−1

φB
l .

Applying Lemma 13 gives that

Hn−1

⎛
⎝N (u) ∩

⋃
B∈φl−1

B\
⋃
B∈φl

B

⎞
⎠ � C

⎛
⎝ ∑

Bri (xi )∈φl−1

rn−1
i

⎞
⎠ . (6.49)

By induction, we obtain that, for Bri ∈ φl ,

ri � 1

2
(
1

2
)l ,

∑
Bri (xi )∈φl

r n−1
i � (

1

2
)l , (6.50)

and

Hn−1

⎛
⎝N (u) ∩

⋃
B∈φl−1

B\
⋃
B∈φl

B

⎞
⎠ � C(

1

2
)l−1. (6.51)

Thus, we have shown the claim (6.46)–(6.48).
Since

N (u) ∩ B1/2(0) ⊂
∞⋃
l=1

(N (u) ∩
⋃

B∈φl−1

B\
⋃
B∈φl

B
) ∪

⋂
l=0

(N (u) ∩
∞⋃
j=l

⋃
B∈φ j

B
)
,

it follows from (6.50) and (6.51) that

Hn−1(N (u) ∩ B1/2(0)
)

� C
{∑
l�1

(1
2

)l−1 + inf
l�1

∞∑
j=l

(1
2

) j} � C. (6.52)
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Therefore, we conclude that

Hn−1(x ∈ B1/2|u = 0) � C(N ). (6.53)

FromTheorem 3, we learn that the doubling inequality (6.42) holds for any x0 ∈ M
with N � CM

1
3 . Thus, it follows from (6.53) that

Hn−1(x ∈ Br0 |u = 0) � C(r0, M). (6.54)

for any Br0 ∈ M. Since the manifold M is compact, by covering the manifold by
finitely many balls, we can derive the conclusion in Theorem 4. �	

7. Quantitative Cauchy Uniqueness

We prove a propagation of smallness results for bi-Laplace equations (1.1) in
this section. Similar results for second order elliptic equations have been shown
by Lin [31], where the proof is a little sketchy. We provide the detailed proof
with a somewhat different argument using the Carleman estimates inspired by
[27,35]. Similar results in terms of the L∞ norm can be obtained by using three
spheres inequality repetitively from frequency function, see [3]. Such results play
an important role not only in characterizing the doubling index in a cube in [32],
but also in inverse problems. Using the Carleman estimates, we are able to show a
two half-ball and one lower dimensional ball type result.

Lemma 14. Let (u, v) be a solution of (2.2) in the half-ball B+
1 . Denote

	̃ =
{
(x ′, 0) ∈ R

n|x ′ ∈ R
n−1, |x ′| <

1

3

}
.

Assume that

‖(u, v))‖H1(	̃) + ‖∂n(u, v)‖L2(	̃) � ε << 1 (7.1)

and ‖(u, v)‖L2(B+
1
2
) � 1. There exist positive constants C and β such that

‖(u, v)‖L2( 1
256B

+
1 ) � Cεβ. (7.2)

More precisely, we can show that there exists 0 < γ < 1 such that

‖(u, v)‖L2( 1
256B

+
1 ) � ‖(u, v)‖γ

L2(B+
1
2
)

(‖(u, v)‖H1(	̃) + ‖∂n(u, v)‖L2(	̃)

)1−γ
.

(7.3)
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Proof. Our tools are some Carleman estimates in the half ball B+
1 = {x ∈ R

n|x ∈
B1 and xn � 0}. For simplicity, we first establish such Carleman estimates for
scalar functions. We select a weight function

φ(x) = −|x ′|2
4

+ x2n
2

− xn,

where x ′ = {x1, x2, . . . , xn−1}. We consider φ(x) for |x | in B+
1
4
.

Define

�τ g = eτφ�(e−τφg)

for g ∈ C∞
0 (B+

1 ). Direct computations show that

�τ g = �g − 2τ∇φ · ∇g − τ�φg + τ 2|∇φ|2g.
We split �τ g into symmetric parts and anti-symmetric parts:

Sφg = �g + τ 2|∇φ|2g,
Aφg = −2τ∇φ · ∇g − τ�φg.

Then

‖�τ g‖2 = ‖Sφg‖2 + ‖Aφg‖2 + 2〈Sφg, Aφg〉. (7.4)

We study the inner product term 〈Sφg, Aφg〉. Note that

∇φ =
〈
− x ′

2
, xn − 1

〉
, �φ = −n + 3

2
.

We can check that

〈Sφg, Aφg〉 = 〈�g + τ 2|∇φ|2g, −2τ∇φ · ∇g − τ�φg〉

=
〈
�g + τ 2

|x ′|2
4

g + τ 2(1 − xn)
2g,

2τ(1 − xn)
∂g

∂xn
+ τ x ′ · ∇′g + n − 3

2
τg

〉
, (7.5)

where ∇′g = 〈 ∂g
∂x1

, . . . ,
∂g

∂xn−1
〉. We estimate each term in the inner product using

integration by parts argument. Integrating by parts twice shows that

〈�g, 2τ(1 − xn)
∂g

∂xn
〉 = 2τ

ˆ

B
+
r

(
∂g

∂xn

)2

dx − τ

ˆ

B
+
r

(1 − xn)
∂

∂xn
|∇g|2 dx

+ 2τ
ˆ

Br

(
∂g

∂xn

)2

dx ′

= 2τ
ˆ

B
+
r

(
∂g

∂xn

)2

dx − τ

ˆ

B
+
r

|∇g|2 dx

− τ

ˆ

Br

|∇g|2 dx ′

+ 2τ
ˆ

Br

(
∂g

∂xn

)2

dx ′, (7.6)
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where Br is the ball centered at origin with radius r in R
n−1. It follows from

integration by parts that

〈�g, τ x ′ · ∇′g〉 = −τ

ˆ

B
+
r

|∇′g|2 dx − τ

ˆ

B
+
r

n−1∑
i, j=1

x j
∂2g

∂xi∂x j

∂g

∂xi
dx

− τ

ˆ

B
+
r

n−1∑
i=1

xi
∂2g

∂xi∂xn

∂g

∂xn
dx + τ

ˆ

Br

∂g

∂xn
x ′ · ∇′g dx ′.

(7.7)

We consider the second term on the right hand side of last identity using integration
by parts,

−τ

ˆ

B
+
r

n−1∑
i, j=1

x j
∂2g

∂xi∂x j

∂g

∂xi
dx = −τ

2

ˆ

B
+
r

x ′ · ∇′|∇′g|2 dx

= (n − 1)τ

2

ˆ

B
+
r

|∇′g|2 dx . (7.8)

Applying a similar strategy to the integral gives that

−τ

ˆ

B
+
r

n−1∑
i=1

xi
∂2g

∂xi∂xn

∂g

∂xn
dx = (n − 1)τ

2

ˆ

B
+
r

| ∂g

∂xn
|2 dx . (7.9)

Combining (7.7)–(7.9) leads to

〈�g, τ x ′ · ∇′g〉 = −τ

ˆ

B
+
r

|∇′g|2 dx + (n − 1)τ

2

ˆ

B
+
r

|∇g|2 dx

+ τ

ˆ

Br

∂g

∂xn
x ′ · ∇′g dx ′. (7.10)

Taking (7.6) and (7.10) into consideration yields that

〈�g,−2τ∇φ · ∇g〉
= (n − 3)τ

2

ˆ

B
+
r

|∇g|2 dx − τ

ˆ

B
+
r

|∇′g|2 dx + 2τ
ˆ

B
+
r

| ∂g

∂xn
|2 dx

+ τ

ˆ

Br

∂g

∂xn
x ′ · ∇′g dx ′ − τ

ˆ

Br

|∇′g|2 dx ′ + τ

ˆ

Br

| ∂g

∂xn
|2 dx ′. (7.11)

We proceed to consider other terms in (7.5). Integration by parts argument
shows that

〈
τ 2

|x ′|2
4

g, 2τ(1 − xn)
∂g

∂xn

〉
= τ 3

4

ˆ

B
+
r

|x ′|2g2 dx + τ 3

4

ˆ

Br

|x ′|2g2 dx ′.

(7.12)
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Furthermore, we get

〈
τ 2

|x ′|2
4

g, τ x ′ · ∇′g
〉

= −n + 1

8
τ 3
ˆ

B
+
r

|x ′|2g2 dx . (7.13)

〈τ 2(xn − 1)2g, τ x ′ · ∇′g〉 = −(n − 1)

2
τ 3
ˆ

B
+
r

(xn − 1)2g2 dx . (7.14)

〈
τ 2(xn − 1)2g, 2τ(1 − xn)

∂g

∂xn

〉
= 3τ 3

ˆ

B
+
r

(xn − 1)2g2 dx + τ 3
ˆ

Br

g2 dx ′.

(7.15)

Together with the estimates (7.12)–(7.15), we obtain that

〈τ 2|∇φ|2g, −2τ∇φ · ∇g〉 = 1 − n

8
τ 3
ˆ

B
+
r

|x ′|2g2 dx

+ 7 − n

2
τ 3
ˆ

B
+
r

(xn − 1)2g2 dx

+ τ 3
ˆ

Br

(
1 + |x ′|2

4

)
g2 dx ′. (7.16)

It is trivial to see that

〈
τ 2(1 − xn)

2g,
n − 3

2
τg

〉
= n − 3

2
τ 3
ˆ

B
+
r

(1 − xn)
2g2 dx (7.17)

and

〈
τ 2

|x ′|2
4

g,
n − 3

2
τg

〉
= n − 3

8
τ 3
ˆ

B
+
r

|x ′|2g2 dx . (7.18)

The combination of (7.17) and (7.18) yields that

〈τ 2|∇φ|2g, −τ�φg〉 = τ 3
ˆ

B
+
r

(
n − 3

8
|x ′|2 + n − 3

2
(xn − 1)2

)
g2 dx . (7.19)

We are left to deal with the last inner product. Performing the integration by
parts argument shows that

〈�g,−τ�φg〉 =
〈
�g,

n − 3

2
τg

〉

= −n − 3

2
τ

ˆ

B
+
r

|∇g|2 dx + n − 3

2
τ

ˆ

Br

∂g

∂xn
g dx ′. (7.20)
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Combining the identities (7.5), (7.11), (7.16), (7.19) and (7.20), we arrive at

〈Sφg, Aφg〉 = −τ

ˆ

B
+
r

|∇′g|2 dx + 2τ
ˆ

B
+
r

| ∂g

∂xn
|2 dx − 1

4
τ 3
ˆ

B
+
r

|x ′|2g2 dx

+ 2τ 3
ˆ

B
+
r

(xn − 1)2g2 dx + τ 3
ˆ

Br

(
1 + |x ′|2

4

)
g2 dx ′

+ n − 3

2
τ

ˆ

Br

∂g

∂xn
g dx ′

+ τ

ˆ

Br

∂g

∂xn
x ′ · ∇′g dx ′ − τ

ˆ

Br

|∇′g|2 dx ′ + τ

ˆ

Br

| ∂g

∂xn
|2 dx ′.

(7.21)

Since it is assumed that r < 1
4 , simple calculations indicate that

1

8
(xn − 1)2 − |x ′|2 > 0.

By Cauchy–Schwartz inequality, we have

〈Sφg, Aφg〉 + Cτ

ˆ

Br

|∇′g|2 dx ′ + Cτ

ˆ

Br

|g|2 dx ′ + Cτ

ˆ

Br

| ∂g

∂xn
|2 dx ′

� −τ

ˆ

B
+
r

|∇′g|2 dx + 2τ
ˆ

B
+
r

| ∂g

∂xn
|2 dx

+ 63

32
τ 3
ˆ

B
+
r

(xn − 1)2g2 dx + τ 3
ˆ

Br

g2 dx ′. (7.22)

We also want to include the gradient term in the Carleman estimates. To this
end, we compute the following inner product with some small constant ε > 0 to
be determined:

〈
Sφg, −16(1 + ε)2

9
τ(1 − xn)

2g
〉

= 〈�g + |x ′|2
4

τ 2g + τ 2(1 − xn)
2g, −16(1 + ε)2

9
τ(1 − xn)

2g
〉

= 16(1 + ε)2

9

(
τ

ˆ

B
+
r

(1 − xn)
2|∇g|2 dx − 2τ

ˆ

B
+
r

(1 − xn)
∂g

∂xn
g dx

− τ

ˆ

Br

∂g

∂xn
g dx ′ − τ 3

4

ˆ

B
+
r

|x ′|2(1 − xn)
2g2

− τ 3
ˆ

B
+
r

(1 − xn)
4g2 dx

)
. (7.23)
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Thus, for r < 1
4 ,

‖Sφg‖2 + ‖8(1 + ε)2

9
τ(1 − xn)

2g‖2

� 〈Sφg, −16(1 + ε)2

9
τ(1 − xn)

2g〉

� (1 + ε)2τ

ˆ

B
+
r

|∇g|2 dx − 32(1 + ε)2

9
τ

ˆ

B
+
r

(1 − xn)
∂g

∂xn
g dx

− 16(1 + ε)2

9
τ

ˆ

Br

∂g

∂xn
g dx ′ − τ 3(1 + ε)2

9

ˆ

B
+
r

(1 − xn)
2g2 dx

− 16(1 + ε)2τ 3

9

ˆ

B
+
r

(1 − xn)
2g2 dx . (7.24)

We choose ε so small that

63

32
− (1 + ε)2

9
− 16(1 + ε)2

9
> 0. (7.25)

Combining the estimates (7.4), (7.22), (7.24), and using Cauchy–Schwartz inequal-
ity and the fact that r < 1

4 , we get that

‖�τ g‖2 + Cτ

ˆ

Br

|∇′g|2 dx ′ + Cτ

ˆ

Br

|g|2 dx ′ + Cτ

ˆ

Br

| ∂g

∂xn
|2 dx ′

+ ‖8(1 + ε)2

9
τ(1 − xn)

2g‖2

� Cτ

ˆ

B
+
r

(1 − xn)
2|∇g|2 dx + Cτ 3

ˆ

B
+
r

(1 − xn)
2g2 dx + Cτ 3

ˆ

Br

g2 dx ′

(7.26)

for τ > C̄ , where C̄ depends only on n. Since τ is a large constant, we can absorb the
fifth term on the left hand side of last inequality into the left hand side. Therefore,
we get

‖�τ g‖2 + Cτ

ˆ

Br

|∇′g|2 dx ′ + Cτ

ˆ

Br

(
∂g

∂xn

)2

dx ′ + Cτ

ˆ

Br

g2 dx ′

� Cτ

ˆ

B
+
r

(1 − xn)
2|∇g|2 dx + Cτ 3

ˆ

B
+
r

(1 − xn)
2g2 dx . + Cτ 3

ˆ

Br

g2 dx ′.

(7.27)

Let f = e−τφg. The inequality (7.27) implies the desirable estimates

‖eτφ� f ‖L2(B+
r ) + τ

1
2 ‖eτφ f ‖L2(Br)

+ τ
1
2 ‖eτφ ∂ f

∂xn
‖L2(Br)

+ τ
1
2 ‖eτφ∇′ f ‖L2(Br)

� Cτ
3
2 ‖eτφ(1 − xn) f ‖L2(B+

r ) + Cτ
1
2 ‖eτφ(1 − xn)∇ f ‖L2(B+

r ). (7.28)
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By a similar argument, this also holds for a vector function F = ( f1, f2). That is,

‖eτφ�F‖L2(B+
r ) + τ

1
2 ‖eτφF‖L2(Br)

+ τ
1
2 ‖eτφ ∂F

∂xn
‖L2(Br)

+ τ
1
2 ‖eτφ∇′F‖L2(Br)

� Cτ
3
2 ‖eτφ(1 − xn)F‖L2(B+

r ) + Cτ
1
2 ‖eτφ(1 − xn)∇F‖L2(B+

r ). (7.29)

The following Caccioppolli inequality holds for the solutions of (2.2) in B+
1 :

‖∇U‖L2(B+
r ) � C

r

(
‖U‖L2(B+

2r )
+
∥∥∥∥ ∂U

∂xn

∥∥∥∥
L2(B2r )

+ ‖U‖L2(B2r )

)
. (7.30)

Let V̄ (x) =
(

0, 1
W̄ (x), 0

)
. We select a smooth cut-off function η such that

η(x) = 1 in B+
1
8
and η(x) = 0 outside B+

1
4
. LetU = (u, v)ᵀ. Substituting F by ηU

in the Carleman estimates (7.29) and then the system (2.2) yields that

‖eτφ(�ηU + 2∇η · ∇U )‖
L2

(
B

+
1
2

) + τ
1
2 ‖eτφηU‖

L2

(
B 1

2

)

+ τ
1
2 ‖eτφ ∂(ηU )

∂xn
‖
L2

(
B 1

2

)

+ τ
1
2 ‖eτφ∇′(ηU )‖

L2

(
B 1

2

)

� Cτ
3
2 ‖eτφ(1 − xn)ηU‖

L2

(
B

+
1
2

). (7.31)

We want to find the maximum of φ in the first term on the left hand side of
(7.31). Since φ is negative and decreasing with respect to x ′ and xn for r < 1

4 , then

max{
1
8�r� 1

4

}
∩{xn�0}

φ = max{
1
8�r� 1

4

}−|x ′|2
4

= − 1

256
.

We also need to find a lower bound of φ for the term on the right hand side of (7.31)
such that −φ(x) < 1

256 . Let

φ̂(a) = −a2

4
+ a2

2
− a = a2

4
− a.

Since φ decreases with respect to x ′ and xn , then the minimum of φ(x) is φ̂(a) for
r < a. Solving the inequality −φ̂(a) < 1

256 , we have one solution a = 1
256 . Set

φ0 = 1

256
+ φ̂

(
1

256

)
> 0,

φ1 = φ̂

(
1

256

)
< 0.
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Applying the Caccioppolli inequality (7.30), we arrive at

e− τ
256 ‖U‖

L2

(
B

+
1
2

) + ‖U‖
L2

(
B 1

3

) + ‖∇′U‖
L2

(
B 1

3

) + ‖ ∂U

∂xn
‖
L2

(
B 1

3

)

� Cτ‖eτφ(1 − xn)ηU‖
L2

(
B

+
1
4

)

� Cτe
τ φ̂
(

1
256

)
‖U‖

L2

(
B

+
1
256

). (7.32)

Let

B1 = ‖U‖
L2

(
B

+
1
2

),

B2 = ‖U‖L2(B 1
3
) + ‖∇′U‖

L2

(
B 1

3

) + ‖ ∂U

∂xn
‖
L2

(
B 1

3

),

B3 = ‖U‖
L2

(
B

+
1
256

).

Multiplying both sides of the last inequality by e−τ φ̂( 1
256 ) leads to

e−τφ0B1 + e−τφ1B2 � CB3. (7.33)

We introduce a parameter

τ0 = ln B2
B1

φ1 − φ0
.

If τ0 > C̄ , where C̄ is given for the validity of the estimates (7.26), then we choose
τ = τ0 in (7.33). Thus,

B
φ1

φ1−φ0
1 B

−φ0
φ1−φ0
2 � CB3. (7.34)

Let γ = φ1
φ1−φ0

. Then the following three balls type inequality follows

‖(u, v)‖
L2
(

1
256B

+
1

) � ‖(u, v)‖γ

L2(B+
1
2
)

(‖(u, v)‖H1(	̃) + ‖∂n(u, v)‖L2(	̃)

)1−γ
.

(7.35)

If τ0 � C̄ , since φ1 − φ0 is negative, then B2 � CB1. It is clear that B3 � B1.
Again, we arrive at

B3 � CBγ
1 B

1−γ
2 .

Therefore, we show the estimates (7.35) again. The estimate (7.2) is a consequence
of (7.35). The lemma is finished. �	
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8. Appendix

The lemma to follow serves as the starting step for the iteration argument in
the proof of Proposition 2. For the scalar equations, the finite bound of F(N ) is
established in [25]; see also a different proof using compactness arguments in [23].
Instead of pursuing the nodal sets comparison lemma in [25], we adapt the proof
of Theorem 4 and the measure of rank zero sets of harmonic maps in [24] where
elliptic systems are considered. We give the main ideas in the proof of the lemma.

Lemma 15. Let (u, v) be the solution in (2.2) and F(N ) be defined in (3.13). Then
F(N ) < C(N ).

Proof. Following the arguments in [17], the set {B1/2|u = v = 0} is countably
(n − 1)-rectifiable. Let y be in the n − 1 dimensional nodal set {B1/2|u = v = 0}.
There exist leading monomials P1

y and P2
y such that

�P1
y = 0, �P2

y = 0. (8.1)

By an appropriate rotation, we can have either

u(x) = C1x1 + ψ1(x) (8.2)

or

v(x) = C2x1 + ψ2(x), (8.3)

where

|ψi (x)| � C |x |1+αi for some 0 < αi < 1, i = 1, 2.

Following the proof of Proposition 3, we can show that, there exist positive
constants C(u, v) and ε(u, v) and a finite collection of balls {Bri (xi )} with ri � 1

8
and xi ∈ {B1/2|u = v = 0} such that, for (u1, v1) ∈ C1 with

‖(u, v) − (u1, v1)‖C1(B1)
� ε(u, v), (8.4)

there hold

Hn−1({u1 = v1 = 0} ∩ B1/2\
⋃

Bri (xi )
)

< C(u, v) (8.5)

and

∑
rn−1
i � 1

2n
.

The key to prove (8.5) is to show that

Hn−1({u1 = v1 = 0} ∩ Br (y)
)

< C(u, v)rn−1 (8.6)
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under the condition (8.4). It follow from (8.4) and the arguments in the proof of
proposition 3 that there holds

Hn−1(u−1
1 (0) ∩ Br

)
< C1(u, v)rn−1 or Hn−1(v−1

1 (0) ∩ Br
)

< C2(u, v)rn−1.

(8.7)

Since

{u1 = v1 = 0} ∩ Br (y) ⊂ u−1
1 (0) ∩ Br (y) or

{u1 = v1 = 0} ∩ Br (y) ⊂ v−1
1 (0) ∩ Br (y), (8.8)

the estimate (8.6) follows. Because of N(u,v)(Q) � N , the doubling inequality
holds

ˆ

B2r (x0)
u2 + v2 dx � eCN

ˆ

Br (x0)
u2 + v2 dx . (8.9)

Following the arguments of the proof of Theorem 4, we can show that there exists
C(N ) depending on N such that

Hn−1(B1/2|u = v = 0) � C(N ). (8.10)

This completes the proof of the lemma. �	
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