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1 Introduction

The growing popularity of Deep Neural Networks (DNN)
within the mainstream [8] has had a rapid transforma-
tive effect on clusters and data centers. DNN training
jobs are becoming one of the largest tenants within clus-
ters, and often take hours to weeks to complete; and
even a slight performance improvement can save sub-
stantial runtime costs. Despite this fact, the DNN specific
performance tuning tools are yet to keep up with the
needs of the new changes in production environments.

On one hand, the existing application-agnostic
resource-level tools such as top, Nvidia Nsight (for GPU
utilization), IPM (for MPI network monitoring) are too
limited to predict or explain the behavior and perfor-
mance of a job accurately. In DNN applications, there
exists a complex relationship among resources. Even
though measuring coarse metrics such as bandwidth,
latency, and GPU/CPU utilization can draw an overall
picture of cluster performance, these metrics are not
easily translatable to application-level metrics and do
not provide actionable insights on how to handle perfor-
mance bottlenecks.

On the other hand, the short list of application-aware
tools, such as MLModelScope [6], TensorBoard [1], and
tf.RunOptions [2], while able to provide actionable
insights, are mainly designed for the need of applica-
tion developers and are not intended for production use.
Such tools require substantial modification to applica-
tions, and early planning as to what, when and how data
should be collected.

In this article, we introduce tensorflow-tracing to
fill the gap between these two classes of performance tun-
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Figure 1: The architecture of tensorflow-tracing

ing tools. To achieve this goal, tensorflow-tracing ad-
dresses the following technical challenges:

e Collecting the application-level runtime metrics, such
as the timing of each operation or the iteration
time, needs explicitly expressed in the training job
source code. To makes it possible to trace ML
jobs without requiring any application modification,
tensorflow-tracing monkeypatches the tensorflow
library at the system level.

e Collecting some metrics is expensive and
have a significant overhead on the runtime.
tensorflow-tracing treats metrics differently; it
collects low-overhead metrics automatically, while
expensive ones are collected on demand through an
admin interface.

e There is no easy way to exchange runtime metrics
among users and admins — tensorflow-tracing fa-
cilities this through a portable file format and support-
ing tools to explore these metrics offline.

The tensorflow-tracing is publicly available under
Apache-2.0 license'. It supports native TensorFlow [3],
Horovod [7], and IBM PowerAl [5] applications.

1https://qithub.com/xldrx/tensorflowftracer
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Figure 2: The main web interface of
tensorflow-tracing. Each entry represents a
separate task in the DNN session.

2 Design and Implementation

Figure 1 shows the building blocks of

tensorflow-tracing:

MonkeyPatching In order to provide tracing without
code modification, tensorflow-tracing injects a proxy
function to the tensorflow library using a monkey-
patching scheme to intercepts the calls to certain func-
tions and redirects them to the Data Management mod-
ule. While monkeypatching the library at the system-
level automatically enables tracing for any DNN applica-
tion, tensorflow-tracing also supports per application
patching.

Data Management This module is responsible for
collecting profiling and tracing data as well as mak-
ing online decisions as to whether a task should be
traced”. This module is also responsible for serializ-
ing/deserializing tracing sessions from/to a file.

REST/Web  Interface This interface is the
main portal for interacting with the system.
tensorflow-tracing starts a web server when-
ever an application is executed which is accessible either
through a web browser or a REST API client (possibly
from terminal). The interface provides two logical
views:

1. Main Interface shows the list of tasks and their asso-
ciated profiling/tracing data. This interface allows
request tracing. (Figure 2)

2. Timeline Interface visualizes an instance of a task trace
as a series of timelines, one for every resources (e.g.
CPU, GPU, Network Interface) on each machine. Each
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Figure 3: The timeline interface provides details of
the execution of one iteration step. Each box repre-
sent an operation in the DataFlow DAG. There is a
timeline for every resources on each machine. The
trace is collected from next_frame_sv2p [4] model
in tensor2tensor library [10].

box represent an operation in the DataFlow DAG of
DNN application. (Figure 3)
CLI It loads a tracing sessions offline and enables ex-
ploring through a web interface.

3 tensorflow-tracing in action

Overhead We observe no performance hit on collect-
ing low-overhead metrics such as iteration times, ‘ses-
sion.run‘ call names and frequencies. We observe less
than 3% runtime overhead to iteration time when in-
dividual operations in a call are traced. CPU Mem-
ory requirements varies for different models. For exam-
ple: an Inception v3 [9] trace consumes 718KB while
next_frame_sv2p [4] consumes 2.4MB.

Case Study We have used tensorflow-tracing on dif-
ferent workloads to find the performance issues on appli-
cation, framework, and infrastructure level. For example,
our work TicTac ?? addresses the communication timing
issue we found in the tracing of a distributed TensorFlow
job with parameter server.

4 Limitation and Future Work

The correctness of the tensorflow-tracing’s distributed
traces relies on the precision of the clocks on the differ-
ent machines. Currently it relies on external sources to
synchronize the clocks.

tensorflow-tracing traces the network activities just
in the user space. This will miss the events such as packet
drops or queue latencies. We are planning to expand this
capability by adding network stack events from kernel
space.
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