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Systems Under Adversarial Inputs
Luis Rodolfo Garcia Carrillo, Member, IEEE, and Kyriakos G. Vamvoudakis, Senior Member, IEEE

Abstract—We propose a game-theory based deep-learning
tracking control scheme to enable a holonomic flying system to
perform an autonomous trajectory tracking task, when consider-
ing saturating actuators, adversarial inputs, and non-quadratic
cost functionals. The problem is formulated as a two-player zero-
sum game, whose online solution is computed by learning the
saddle point strategies in real time. Three approximators, namely
a critic and two actors, are tuned online using data generated
in real-time along the system trajectories. The adaptive control
character of the algorithm requires a persistence of excitation
condition to be a priori validated, which is relaxed by using a
deep-learning approach, based on experience replay with multiple
layers. A robustifying control term is added to eliminate the
effect of residual errors, leading to asymptotic stability of the
equilibrium point of the closed-loop system. A simulation of a
target tracking application where the measurements available
to the aerial system are perturbed by persistent adversaries is
performed to validate the effectiveness of the proposed approach.

Index Terms—Deep-learning tracking, autonomy, zero-sum
game.

I. INTRODUCTION

Basic requirements for enabling unmanned aircraft systems

(UASs) to perform autonomous missions consist of an effi-

cient attitude stabilization and a reliable trajectory tracking

framework. By trajectory tracking we mean the problem of

stabilizing the state, or an output function of the state, to a

desired reference value, possibly time-varying. The trajectory

tracking problem incorporates several problems addressed in

the control literature, e.g., output feedback regulation, asymp-

totic stabilization of a fixed-point and, more generally, of

admissible non-stationary trajectories. For specific examples

of these problems, the interested reader is referred to [1]-

[2], and the references therein. The use of UASs in real-

time trajectory applications is challenging since most of the

times these agents are tasked to accomplish a mission in a

hostile environment where all sort of adversaries may exist

e.g., cyber-physical attacks, network attacks, wind-gusts, and

so on. Under such circumstances, the UAS must be able to

adapt its control strategy according to the effects induced
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by adversaries. This specific characteristic is of importance

because adversaries can easily drive the system to an unstable

behavior, i.e., undesired/unreliable operations, or even to a

mission fail. Establishing a well-defined state-action mapping

for the autonomous system is a very complex task, unless the

whole state space has been visited or searched exhaustively.

Therefore, a machine learning (ML) mechanism adapting to

dynamic environment is a more promising solution.

To attenuate adversaries corrupting the sensors and actua-

tors of an unmanned agent, and to guarantee robustness, it

is possible to formulate a two-player zero-sum (ZS) game,

which is similar to an H∞ control problem. The major

drawback to the practical applications of the H∞ control is

the complications and difficulties involved in solving a highly

nonlinear partial differential equation (PDE), which is called a

Hamilton-Jacobi-Isaacs (HJI) equation. Indeed, if the system

has nonlinearities or the cost is non-quadratic, there is no ana-

lytical approach for solving such equation. This has motivated

alternative approaches for obtaining approximate solutions to

the HJI equation. Recently, PI has emerged as an efficient

method for approximating the HJI solution [3], [4]. Under

this approach, the HJI is solved successively by breaking it

into a sequence of linear PDEs, which are considerably easier

to handle. For example, the authors in [5] used approxima-

tors to approximate the HJI equation. Despite offering an

attractive solution for addressing the H∞ control problem, the

algorithm approached the problem from an offline viewpoint,

which is not appropriate for the kind of scenario facing real-

time autonomous systems operating in uncertain dynamic and

adversarial environments.

The research in [6]-[7] proposed an online adaptive algo-

rithm with guaranteed closed-loop stability of the equilibrium

point for solving the HJI equation. However, the online

algorithm does not take into account the input or operator

constraints caused by actuators saturation. Considering input

constraints is important since real world applications of control

methods involve actuators with limitations in their amplitude.

Ignoring these limitations may lead to undesirable transient

response, could degrade closed-loop performance, and system

instability. The aforementioned work requires a persistence of

excitation (PE) condition that is equivalent to space explo-

ration in Reinforcement Learning (RL) [4]. This condition is

prohibitory and most of the times infeasible to implement in

practice. Recently, the research presented in [8] introduced a

method to adaptive control that relies on implementing current

and recorded data concurrently for adaptation.
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Related Work

Several techniques have been proposed to solve the tracking

control problem for UASs, e.g., [9]-[12], and the references

therein. These control frameworks allowed the system to track

three desired positions and one heading angle in real-time.

However, there has not been any work on optimal tracking

control capable of simultaneously attenuating the effects of

adversarial inputs. An algorithm for the generation of dynam-

ically feasible trajectories subjected to collision and obstacle

avoidance constraints has been developed in [9]. The trajectory

tracking task is simplified by neglecting important vehicle

dynamic constraints, and therefore making possible the real-

time planning in cluttered environments. Adaptive switching

supervisory control combined with a nonlinear Lyapunov-

based tracking control law was implemented in [10] for an

underactuated vehicle, allowing to solve the problem of global

boundedness and convergence of the position tracking error

to a neighborhood of the origin. A two-stages attitude and

translational control designed for a sub-actuated UAS allowing

trajectory tracking without linear-velocity measurements was

presented in [13]. The authors proposed a linear-velocity-

free control torque, designed for ensuring tracking of the

desired attitude derived at the first stage of the control design.

In [14], a nonlinear controller for an UAS is proposed using

output feedback and a novel virtual control input scheme,

which allows controlling the six degrees of freedom (DOF).

The controller performance is demonstrated under unknown

nonlinear dynamics and disturbances, and simulation results

are provided to validate their theory. Closely related, the work

in [15] presents an optimal controller design based on Neural

Networks (NN) for trajectory tracking of a UAS.

Recently, the research community has shown interest in

Deep NN (DNNs) that learn to represent data in multiple

layers of increasing abstraction. In many control systems, the

dimension of the input is high, therefore, feature engineering

algorithms used in conventional shallow NNs are not efficient

enough to extract the complex and nonlinear patterns observed

in high variety of sensory data. The problem of autonomous

navigation of a UAS by using a model-based RL approach

has been addressed in [16]. An important aspect in this

kind of solutions is that a poor feature representation in

conventional NNs used to approximate value function in RL

can lead to a poor learning task. Layer-by-layer, learning in

DNNs helps avoid local optima and alleviates the over-fitting

problem encountered in traditional NNs [17]. Moreover, DNNs

algorithms extract efficient complex features at high levels of

abstraction in a greedy layer-wise fashion [18]-[19].

Heuristic approaches have demonstrated that data represen-

tations obtained from stacking up nonlinear feature extractors

in DNNs yield better ML results, compared to conventional

shallow learning approaches [20]. This motivated researches

to combine DNNs with RL and introduce Deep RL (DRL)

algorithms to approximate value functions to cope with large

input dimensions. For example, [21]-[22] introduced DRL to

reduce the need for sustained exhaustive exploration during

learning. Deep Q-Network (DQN) uses DNN to approximate

the Q-network and train this Q-network to predict total reward

[23]. The Effects of Memory Replay in RL have been studied

in [24], where the authors show that the amount of memory

kept can affect the agents’ performance; too much or too

little memory both slow down learning. In [25] asynchronous

actor-critic algorithm merges a DQN with a deep policy

network for choosing actions. [26] proposed Double DQN (D-

DQN) to tackle the overestimate problem in Q-learning. DRL

has received attention for continuous control problems, e.g.,

robotic manipulation, locomotion, and games [27]-[34].

Contributions

This paper relies on the development of a DL algorithm

based on experience replay with multiple layers, where the two

players are represented by the autonomous operator (control)

and the adversarial input. In order to approximate the HJI

equation, three approximators, namely a critic and two actors

(operator and adversary), are tuned online using data generated

in real-time along the system trajectories. The problem is

formulated as a two-player ZS game due to the fact that

operator and adversary have opposite objectives. For that

reason, it makes sense to look for saddle point policies. If a

game theoretic saddle point exists, then the two-player optimal

control tracking problem has a unique solution, equivalent to

the Nash equilibrium, which is valid for all policies uo, ua.

This paper extends our previous results in [35] were PI

algorithms and NN approximators are proposed for solving

a two-player ZS game in real-time. The main contribution

of the current study is in the updating strategy of the critic

approximator. Instead of using only current data, the pro-

posed approach makes use of recorded and instantaneous data

concurrently for adaptation. This adaptation strategy or DL

procedure mitigates requiring persistency of excitation in the

approximator activation functions. The necessary mathemat-

ical proofs are provided in order to demonstrate stability

of this solution. A second important contribution is in the

application itself. While the previous study focuses on control

of the dynamical system, the current study focuses on the error

dynamics to achieve trajectory tracking task. A third contribu-

tion of this research consists of the incorporation of operator

constraints in the performance function, which exemplify the

physical limitations of real-time robotic systems. Saturation

constrains introduce nonlinearities which are hard to address

with conventional methodologies. The fourth contribution con-

sists of considering the adversarial components, which may

affect the system during the execution of the target tracking

task. The proposed approach demonstrates its effectiveness and

applicability by stabilizing a complex system, despite these

theoretical and practical challenges.
Organization: The dynamics of a holonomic UAS is pro-

vided in Section II. In Section III we formulate the problem.

Section IV introduces the combination of the HJI Equation

and the ZS game. The proposed approximate solution, which

consists of a DL structure based on approximators, is presented

in Section V. The simulation of a trajectory tracking task in

the presence of adversary inputs is presented in Section VI.

Section VII provides conclusions and future directions of this

research. Lyapunov proofs ensuring asymptotic stability of the

system are provided in a the appendix Section VIII.
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Fig. 1. The holonomic multirotorcraft UAS. This vehicle has four control
inputs, and six states. The sub-actuated nature of the mulirotorcraft UAS
makes it a very challenging system to control.

II. BACKGROUND ON UAS DYNAMICS

The nonlinear dynamic model of the holonomic multiro-

torcraft UAS is obtained in North-East-Down (NED) inertial

and body-fixed coordinates, see Figure 1. Let I = {N,E,D}
denote the inertial reference frame and B = {Bx,B y,B z}
a body-fixed frame. The position vector of the UAS center

of mass is ξ = [x, y, z]T ∈ I, representing the position

coordinates relative to the I. The orientation of the UAS

with respect to (w.r.t.) the I is expressed by [ψ, θ, φ]T ∈ I,

where ψ, θ, and φ are the yaw, pitch, and roll Euler angles,

respectively. Let v ∈ I represent the linear velocity expressed

in I and Ω ∈ B denote the angular velocity of the UAS

expressed in B. The mass of the UAS is denoted by m,

and I ∈ R
3×3 represents the constant inertia matrix around

the centre of mass expressed in B. Newton’s equations of

motion provide a dynamic model for the motion of the UAS

by following [36] as:

ξ̇ = v (1)

mv̇ = mḡe3 +RF (2)

Ṙ = Rsk(Ω) (3)

IΩ̇ = −Ω× IΩ+ Γ. (4)

The vector F ∈ B incorporates the non-conservative forces

applied to the UAS including the thrusts (produced by the

rotors) and drag terms associated with the rotors downwash on

the airframe. The torque Γ ∈ B is obtained from differential

thrust associated with pairs of rotors, together with aerody-

namic effects and gyroscopic effects, e3 denotes a unit vector

in the D-axis direction, and ḡ = 9.81 m/s2. Also, R ∈ SO(3)
is a rotation matrix relating a vector in B to I [37]:

R =





cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ



 , (5)

where R uses the notation c∗ = cos(∗) and s∗ = sin(∗). Note

that ‖R‖F = Rmax given a known constant Rmax, R−1 =

RT, Ṙ = Rsk(Ω), and ṘT = −sk(Ω)RT, where sk(∗) ∈
R

3×3 is a skew symmetric matrix satisfying kTsk(d)k = 0,

for any k ∈ R
3 and d ∈ R

3 [38]. This holds because we

consider the UAS to operate only in regions where −(π/2) <
φ < (π/2) and −(π/2) < θ < (π/2), i.e., the trajectory does

not pass through any singularities [39].

For this study, the following model is proposed:

v̇ = ḡe3 −
1

m
TRe3 +N1(v) + δ1 (6)

IΩ̇ = −Ω× IΩ+ τ +Ga +N2(Ω) + δ2 (7)

where T = [0, 0, ū]T, is the thrust along the Bz-direction

generated by the rotors, e.g., ū =
∑4
i=1 Ti, Ni(∗) ∈ R

3,

i = 1, 2 are nonlinear aerodynamic effects, Ga are gyroscopic

torques applied to the frame, and τ ∈ R
3 is defined as





τφ
τθ
τψ



 =





−l l l −l
−l −l l l

−CM CM −CM CM













T1
T2
T3
T4









(8)

where τφ, τθ, τψ are the rotational torques, CM is a constant

depending on the rotor characteristics, and l represents the

distance between the center of mass and the center of the

motor. δi ∈ R
3, i = 1, 2 represent unknown bounded

disturbances such that ‖δi‖ < δM , for all t, with δM > 0 as

a known constant. The system in equations (6)-(7) is affected

by two inputs: the control input, and the disturbance input.

A translational dynamics tracking error can be defined as

eξ = ξ − ξd ∈ I, (9)

with corresponding velocity error as

ev = v − vd. (10)

Define the new augmented variables X := [ξT [ψ θ φ]T]T ∈
R

6×1 and V := [vT ΩT]T ∈ R
6×1. To ensure that the system

in equations (6)-(7) follows the desired trajectory expressed

by Vd ∈ R
6×1 with dynamics given by

V̇d = f(Vd) + g(Vd)ud (11)

where f(Vd) ∈ R
6×1 represents the internal dynamics, ex-

pressed in terms of Vd, g(Vd) ∈ R
6×1 is given such that

gmin ≤ ‖g‖F ≤ gmax, and ud represents the required control

input corresponding to the desired state behavior [14].

The state tracking error e ∈ R
6×1 can be expressed as

e = V − Vd, (12)

with dynamics given by

ė = f(e(t)) + g(e(t))uo(t) + k(e(t))ua(t), (13)

where e(0) ≡ e0, t ≥ 0, k(e(t)) ∈ R
6×1, f(e) := f(V ) −

f(Vd), and uo := uV − ud. Notice that the error system (13)

has two inputs, the operator uo, and the adversary ua.
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III. PROBLEM FORMULATION

The goal is to design a strategy to track the desired trajectory

Vd(t), maintaining a stable flight, and attenuating the effects

induced by the adversary, while simultaneously optimizing a

tracking cost function related to equations (6)-(7). Towards

this end, a cost function is defined as

J(e(0), uo, ua) =

∫ ∞

0

r(e(τ), uo(τ), ua(τ))dτ, (14)

where the utility is given by

r(e, uo, ua) = Q(e) +Rs(uo)− γ2 ‖ua‖
2
, ∀ e, uo, ua

with Q(e) � 0, γ ≥ γ∗ ≥ 0, and the dependence on t has

been suppressed. The term γ∗ is commonly known as the

H∞ gain, and is associated to the smallest γ for which the

system is stabilized [40]. Hence, we are interested in finding

the following optimal cost function

C∗(e(t)) ≡ min
uo

max
ua

∫ ∞

t

r(e(τ), uo, ua)dτ, t ≥ 0 (15)

subjected to the dynamical constraints (13). Note that the game

is formulated in such a way the operator uo is a minimizing

player while the adversary ua is a maximizing player.

In order to force bounded inputs, (e.g. uo ≤ ūo) the term

Rs(uo) is given by

Rs(uo) = 2

∫ uo

0

(sat−1(v))TRdv, ∀ uo (16)

where R = RT ≻ 0, v ∈ R
m, and sat(·) is a continuous, one-

to-one real-analytic integrable function of class Cµ, µ ≥ 1
used to map the interval [−ūo, ūo] onto R, and must satisfy

sat(0) = 0 [41], [42]. Also, note that Rs(uo) is positive

definite because sat−1(v) is monotonic odd. �

IV. HJI EQUATION AND THE ZERO-SUM GAME

Operator and adversary have opposite objectives and for that

reason we look for saddle point policies. If a game theoretic

saddle point (u∗o, u
∗
a) exists, the two-player optimal control

tracking problem has a unique solution. That is, the following

Nash condition must hold

min
uo

max
ua

J(e(0), uo, ua) = max
ua

min
uo

J(e(0), uo, ua) (17)

which is equivalent to the Nash equilibrium condition

J(e(0), u∗o, ua) ≤ J(e(0), u∗o, u
∗
a) ≤ J(e(0), uo, u

∗
a) (18)

and is valid for all policies uo, ua.

The Hamiltonian of dynamics in equation (13) and cost

function in equation (14) is

H = r(e, uo, ua)

+ (∇C)T(f(e) + g(e)uo + k(e)ua), ∀e, uo, ua,
(19)

where ∇C ≡ ∂C/∂e ∈ R
6×1 is the transposed gradient.

Given a solution C∗(e) ≥ 0 : Rn → R to the Hamiltonian

in equation (19), the associated operator and adversary for

the system in equation (13) can be found by employing the

stationarity conditions on equation (19) as

∂H

uo
= 0 ⇒ u∗o = −sat

(

1

2
R−1gT(e)∇C∗(e)

)

(20)

∂H

ua
= 0 ⇒ u∗a =

1

2γ2
kT(e)∇C∗(e). (21)

The optimal cost function in equation (15) and the associated

constrained operator and adversary satisfy the HJI equation ∀e

H∗ = Q(e) +∇C∗T(e)f(e)

−
1

4
∇C∗T(e)g(e)R−1gT(e)∇C∗(e)

+
1

4γ2
∇C∗T(e)kkT∇C∗(e) = 0 (22)

with C∗(0) = 0.

Assumption 1: The solution C∗(e) to equation (22) is

smooth and positive definite, that is, 0 < C∗(e) ∈ C1. �

Lemma 1: Select γ > 0. Suppose that there exist a smooth

positive definite solution C(e), to the HJI equation (22). As-

sume equation (13) is zero-state observable. Then, the system

in equation (13) has L2 − gain ≤ γ. Moreover selecting the

control in equation (20) in terms of the HJI solution solves the

L2 − gain problem, and makes the equilibrium point locally

asymptotically stable (when ua(t) = 0).

Proof: The proof is provided in Subsection A of the Appendix.

Further details can be found in [43]-[44]

Our algorithm to solve the HJI equation is based on the

structure of PI. The proof of convergence is provided in [45].

Algorithm 1: PI Two-Player ZS Differential Games
1: procedure

2: Start with a stabilizing feedback control policy u
(0)
o .

3: for j = 0, 1, . . . given u
(j)
o do

4: set u
(0)
a

5: for i = 0, 1, . . . do

6: Solve for C
(i)
j (e) using ZS Bellman equation

0 = Q(e) +∇C
iT
j (e)(f + gu

(j)
o + ku

(i)
a ) +Rs(u

(j)
o )

− γ
2
∥

∥

∥
u
(i)
a

∥

∥

∥

2

(23)

7: Update adversarial input u
(i+1)
a according to

u
(i+1)
a = argmax

ua

[

H(e,∇C
i
j , u

(j)
o , ua)

]

=
1

2γ2
k
T(e)∇C

i
j (24)

8: end for
9: On convergence, set Cj+1(e) = Ci

j(e)
10: Update control policy with

u
(j+1)
o = argmin

uo

[

H(e,∇Cj+1), uo, ua)

]

= −sat

(

1

2
R

−1
g
T(e)∇Cj+1

)

(25)

11: if
∥

∥Ci
j − Ci−1

j

∥

∥ ≤ ǫ0 then go to 14
12: end if
13: end for
14: end procedure

In Algorithm 1, ǫ0 ∈ R
+ is a scalar that checks the

algorithm convergence. The PI algorithm consists of two

loops: an outer feedback operator update loop and an inner

adversary update loop. The following section introduces the

methodology for updating everything simultaneously, by using

data along the system trajectories.
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V. ONLINE SOLUTION

An online adaptive DL optimal control structure for solving

the two-player ZS game problem in real-time is introduced.

A. The Critic Approximator

To approximate the optimal cost function given by equa-

tion (15) within a compact set Ω ⊆ R
n that contains the origin,

one can use an approximator in the form

C∗(e) =W ∗T
c Φc(e) + ǫc(e), ∀ e (26)

where the ideal weights W ∗
c ∈ R

N satisfy ‖W ∗
c ‖ ≤ Wcmax,

Φc(e) : Ω → R
N represents the approximator activation

function vector composed by N basis functions {ϕ(e) : i =
1, . . . , N}, and ǫc(e) is the online approximation error. The

approximator activation functions must be chosen so that they

provide a complete independent basis set, in such a way

that C(e) and its derivative are uniformly approximated [46].

Computing the derivative w.r.t. e yields

C∗
e =

(

∂Φc(e)

∂e

)T

W ∗
c +

∂ǫc
∂e

= ∇ΦT
cW

∗
c +∇ǫc. (27)

From the Weierstrass higher order approximation theorem,

as N → ∞ the approximation errors ǫc → 0, ∇ǫc → 0
uniformly [41]. Additionally, for fixed N the approximation

errors are locally bounded by constants [46].

Assumption 2: The approximation error ǫc and its deriva-

tive are bounded by ǫcmax, ǫcdmax ∈ R
+ in a compact set

Ω ⊆ R
n as, supe∈Ω |ǫc| ≤ ǫcmax and supe∈Ω |∇ǫc| ≤ ǫcdmax

respectively. Moreover, the activation functions Φc and their

derivatives ∇φc are upper bounded as, |Φc| ≤ Φcmax and

|∇Φc| ≤ Φcdmax respectively. �

Using equation (27) and fixed control/adversarial policies

in equation (22), define an approximate Hamiltonian as

H(e,W ∗
c

T∇Φc, uo, ua) ≡ Q(e) +Rs(uo)

+W ∗
c

T∇Φ(f + guo + kua)

= ǫH, ∀e, uo, ua (28)

with a residual error due to the function approximation as

ǫH = −∇εTc (f + guo + kua), ∀e, uo, ua. (29)

Assumption 3: The residual error ǫH is bounded by ǫHmax

on a compact set Ω ⊆ R
n, i.e., supe∈Ω |ǫH | ≤ ǫHmax. �

The ideal weight vector W ∗
c of the critic approximator

which provides the best approximate solution for equation (28)

is unknown. Then, the current critic approximator estimate is

Ĉ(e) = ŴT
c Φc(e), ∀e (30)

where Ŵc represents the estimated values of Wc. The goal is

to find an update law for Ŵc to ensure that Ŵc →W ∗
c , such

that the approximate Hamiltonian for fixed uo, ua is

Ĥ(e, Ŵ T
c ∇Φc, uo, ua) ≡ ŴT

c ̺(t) +Q(e(t)) (31)

+Rs(uo(t))− γ2 ‖ua(t)‖
2 t→∞

→ H∗, ∀ e, uo, ua

with ̺(t) = ∇Φc(f(e(t))+g(e(t))uo(e(t))+k(e(t))ua(e(t))).
To mitigate the need for persistence of excitation of the vector

̺(t), we follow the procedure in [47] for the model reference

adaptive control case. The methodology proposed here uses

a DL approach for storing past recorded data together with

current data. Define an error associated to the current data as

eH := Ĥ −H∗, ∀ e, t (32)

and an eHWi ∈ R on the previous stored data be defined as

eHWi := ĤWi −H∗, ∀ e, t, ti (33)

with H∗ = 0 from equation (22). To drive eH and eHWi to

zero, we rely on adaptive control techniques [44]. An error

performance is defined from combining these terms as

E =
1

2

eTHeH

(̺(t)T̺(t) + 1)2
+

1

2

k
∑

i=1

eTHWieHWi

(̺(ti)T̺(ti) + 1)2
(34)

The size of the window of stored data is k ∈ Z
+. A gradient

descent rule is used for defining the tuning of the critic

approximator as

˙̂
Wc = −α

∂E

∂Ŵc

(35)

= −α
̺(t)

(̺(t)T̺(t) + 1)2
eH − α

k
∑

i=1

̺(ti)

(̺(ti)T̺(ti) + 1)2
eHWi

= −α
̺(t)

(̺(t)T̺(t) + 1)2
(

̺(t)TŴ (t) +Rs(uo(t)) +Q(e(t))− γ2 ‖ua(t)‖
2 )

− α
k

∑

i=1

̺(ti)

(̺(ti)T̺(ti) + 1)2
(

̺(ti)
TŴ (t)

+Q(e(ti)) +Rs(uo(ti))− γ2 ‖ua(ti)‖
2 )
, t > ti ≥ 0

where α > 0 determines the speed of convergence.

The critic approximator weight estimation error is

W̃c :=W ∗
c − Ŵc (36)

The dynamics of the critic weight estimation error are then

˙̃Wc = −α

(

̺(t)̺(t)T

(̺(t)T̺(t) + 1)2

+
k

∑

i=1

̺(ti)̺(ti)
T

(̺(ti)Tω̺(ti) + 1)2

)

W̃c(t)

+ α

(

̺(t)

(̺(t)T̺(t) + 1)2
ǫH(t)

+
k

∑

i=1

̺(ti)

(̺(ti)T̺(ti) + 1)2
ǫH(ti)

)

≡ −Ns + Ps, t > ti ≥ 0 (37)

where the first term is the nominal system and the second term

is the perturbation due to the error ǫH.

Theorem 1: Let the tuning of the critic approximator be

given by equation (35). Then, the nominal system from equa-

tion (37) is exponentially stable with its trajectories satisfying
∥

∥

∥
W̃c(t)

∥

∥

∥
≤

∥

∥

∥
W̃c(t0)

∥

∥

∥
k1e

−k2(t−t0), ∀ t > ti ≥ t0 ≥ 0 and for

some k1, k2 ∈ R
+ provided that {̺(t1), . . . , ̺(tk)} contains

N linearly independent vectors.

Proof: The proof is provided in Subsection B of the Appendix.



0018-9251 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2019.2930017, IEEE

Transactions on Aerospace and Electronic Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

B. Operator Approximator

It is possible to approximate the operator input in equa-

tion (20) by an actor approximator as follows

u∗o =W ∗T
o Φuo(e) + ǫuo(e), ∀ e (38)

with W ∗
uo ∈ R

N2×4 representing the optimal weights, Φuo(e)
the approximator activation functions, N2 is the number of

basis functions, and an actor approximation error defined by

ǫuo. The approximator activation functions has to define a

complete independent basis set such that u∗uo(e) is uniformly

approximated. The Weierstrass higher order approximation

theorem [46] ensures that, as the number of basis sets N2 →
∞, the approximation error ǫuo → 0.

Due to the fact that the optimal weights W ∗
o are not known,

the operator actor approximator with current weights Ŵuo is

ûo(e) = ŴT
uoΦuo(e), ∀ e. (39)

The error euo ∈ R, between equations (39) and (20) is then

euo = ŴT
uoΦuo + sat

(

1

2
R−1gT(e)∇ΦTŴc

)

The goal is to select weights Ŵuo in such a way that the

expression below is minimized

Euo =
1

2
eTuoeuo, ∀ Ŵc, e, uo, t ≥ 0. (40)

The tuning for the weights of the operator are obtained from

a gradient descent procedure in equation (40), yielding

˙̂
Wuo = −αuo

∂Euo

∂Ŵuo

= −αuoΦuoeuo (41)

= −αuoφuo

(

ŴT
uoΦuo + sat

(

1

2
R−1gT(e)∇ΦTŴc

))T

∀ t ≥ 0, and the constant αuo > 0 determines the speed

of convergence. The weight estimation error for the operator

approximator is given by

W̃uo :=W ∗
uo − Ŵuo. (42)

Following a similar approach with the one for the critic

tuning law in (37), the operator error dynamics are given by

˙̃Wuo =− αuoΦuoΦ
T
uoW̃uo

− αuoΦuosat

(

1

2
R−1gT(e)∇ΦTW̃c

)T

− αuoΦuoǫuo

− αuoΦuosat

(

1

2
R−1gT(e)∇ǫc

)T

, t ≥ 0. (43)

C. Adversary Approximator

In a similar way, the worst case adversary (21) can be

approximated by an adversary approximator as

u∗a(e) =W ∗T
a Φua(e) + ǫua(e), ∀ e (44)

with W ∗
ua ∈ R

N2×4 representing the optimal weights, Φua(e)
as the approximator activation functions, N2 is the number

of basis functions, and an actor approximation error ǫua. The

approximator activation functions has to define a complete

independent basis set such that u∗ua(e) is uniformly approx-

imated. The Weierstrass higher order approximation theo-

rem [46] ensures that, as the number of basis sets N2 → ∞,

the approximation error ǫua → 0.

Since the W ∗
a are unknown then the current adversarial

approximator with weights Ŵua is written as

ûa(e) = ŴT
uaΦua(e), ∀ e. (45)

An expression for the error eua ∈ R between equations (45)

and (21) is then given by

eua = ŴT
uaΦua −

1

2γ2
kT(e)∇ΦTŴc.

Our objective is to find the weights Ŵua such that the expres-

sion below is minimized

Eua =
1

2
eTuaeua, ∀ Ŵc, e, ua. (46)

The tuning for the weights of the adversary is obtained from

a gradient descent procedure in equation (46), yielding

˙̂
Wua = −αua

∂Eua

∂Ŵua

= −αuaΦuaeua

= −αuaφua

(

ŴT
uaΦua −

1

2γ2
kT(e)∇ΦTW̃c

)T
(47)

∀ t ≥ 0, and αua > 0 is a constant value determining the

speed of convergence. For the adversarial input, the weight

estimation error is given by

W̃ua :=W ∗
ua − Ŵua. (48)

The adversarial error dynamics are given by

˙̃Wua = −αuaΦuaΦ
T
uaW̃ua +

(

1

2γ2
kT(e)∇ΦTW̃c

)T

− αuaΦuaǫua +

(

1

2γ2
kT(e)∇ΦTǫua

)T

, t ≥ 0. (49)

The adaptive-optimal control algorithm is presented below as

pseudo-code. Comments are shown after the symbol ⊲.

Algorithm 2: DL Optimal Tracking

1: Start with initial state e(0), random initial weights Ŵc(0),
Ŵuo(0), Ŵua(0), and i = 1

2: procedure

3: Propagate t, e(t) using (13), uo(t) := ŴT
uoΦuo(e), and

ua(t) := ŴT
uaΦua(e) ⊲

{

e(t) comes from integrating the system (13) using any ordinary
differential equation (ode) solver (e.g., Runge Kutta). Time t is
given by the Runge Kutta integration, i.e. [ti, ti+1], i ∈ N where
ti+1 := ti + h with h ∈ R

+ the step size
}

4: Propagate Ŵc(t), Ŵuo(t), Ŵua(t) ⊲
{

integrate
˙̂
Wc as in

(35),
˙̂
Wuo as in (41), and

˙̂
Wua as in (47) using ode solver

}

5: Compute Ĉ(e) = ŴT
c Φc(e) ⊲ output of the Critic

6: Compute ûo(e) = ŴT
uoΦuo(e) ⊲ output of the Operator

7: Compute ûa(e) = ŴT
uaΦua(e) ⊲ output of the Adversary

8: if i 6= k then ⊲
{

{̺(t1), ̺(t2), . . . , ̺(ti)} has N linearly independent elements

and tk is the instant of time that this happens
}

9: Chose arbitrary data point, include it in the history stack.
10: i := i+ 1
11: end if ⊲ when history stack is full
12: end procedure
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Remark 1: Algorithm 2 is executed in real-time in a

plug-n-play scheme, without any iterations. Every procedure

happens simultaneously as soon as new measurements of the

sate along the trajectories are received. One measures the

state e(t) and integrates the tuning laws (35), (41), (47) by

using any ode solver, and then compute Ĉ(e) = ŴT
c Φc(e),

ûo(e) = ŴT
uoΦuo(e), and ûa(e) = ŴT

uaΦua(e). Numerical

methods implemented in state of the art software are most

of the time adaptive algorithms where the step size h is fine-

tuned at each step, according to an estimate of the error at

that particular step. Generally, the calculation time increases

as h is decreased, but, it is also more precise. Unfortunately,

if h is considerably decreased, the slight rounding occurring

in the computer (since it is not able to exactly represent

real numbers) starts to accumulate in such a way it will

cause significant errors. For numerous higher order systems,

it is extremely complicated to render the Euler approximation

effective. Runge Kutta methods for non-stiff problems furnish

calculations which are linear to the size of the problem. For

stiff problems, more exact procedures were designed. �

D. Stability Analysis

Assumption 4: The function g(·) is uniformly bounded on

Ω, i.e., supe∈Ω ‖g(e)‖ < gmax. Similarly, the function k(·) is

uniformly bounded on Ω, i.e., supe∈Ω ‖k(e)‖ < kmax. �

Fact 1: There exists a constant ̺max such that the following

normalized signal satisfies [44]
∥

∥

∥

∥

̺

(̺T̺+ 1)

∥

∥

∥

∥

≤ ̺max :=
1

2
, ∀̺. (50)

�

To dispose of the effects of the approximation errors ǫc,
ǫuo, ǫua (and corresponding partial derivatives) and secure

an asymptotically stable closed-loop system, we include a

robustifying control term to equations (39) and (45), leading

to the following control law and adversarial input equations

uo(t) = ûo(e(t))−
e(t)Te(t)

A+ e(t)Te(t)
B1m, ∀t (51)

ua(t) = ûa(e(t))−
e(t)Te(t)

A+ e(t)Te(t)
D1m, ∀t (52)

where ûo is given by equation (39), ûa is given by equa-

tion (45), and A,B,D ∈ R
+ with

B ≥
A+ eTe

eTe(WcmaxΦcdmax + ǫcdmax)gmax

{

1

4α
(2̺maxǫHmax)

2

+

(

Φuomaxūo +Φuomaxǫuomax

)2

2

+
gmaxΦuomax

2

(

(WcmaxΦcdmax + ǫcdmax)
)2

+
1

2
(WcmaxΦcdmax + ǫcdmax)

2 +
1

2
ǫ2uomax

}

(53)

D ≥
A+ eTe

eTe(WcmaxΦcdmax + ǫcdmax)kmax

{

(

1
2γ2Φuamaxkmaxǫcdmax +Φuamaxǫuamax

)2

2

+
kmaxΦuamax

2

(

(WcmaxΦcdmax + ǫcdmax)
)2

+
1

2
(WcmaxΦcdmax + ǫcdmax)

2 +
1

2
ǫ2uamax

}

(54)

where ūo is the saturation limit.

Now we write the system dynamics in equation (13) as

ė =f(e) + g(e)

(

(W ∗
uo − W̃uo)

TΦuo(e)−B
eTe1m

(

A+ eTe
)

)

+ k(e)

(

(W ∗
ua − W̃ua)

TΦua(e)−D
eTe1m

(

A+ eTe
)

)

t ≥ 0.

(55)

The following theorem presents our main results.

Theorem 2: Consider the dynamics given by equa-

tion (13), the operator given by equation (51), the ad-

versary given by equation (52), and also that ebuff j =
[ ̺(t1) ̺(t2) . . . ̺(tk) ], ∀ j ∈ Z

+ has N linearly

independent elements. The tuning laws for the critic, the

operator, and adversarial approximators are stated by equa-

tions (35), (41), and (47), respectively. Then, the solu-

tion
(

e(t), W̃c(t), W̃uo(t), W̃ua(t)
)

converges asymptotically to

zero for all
(

e(0), W̃c(0), W̃uo(0), W̃ua(0)
)

, provided that the

inequalities below are satisfied

(

2αλmin

( k
∑

i=1

̺(ti)̺(ti)
T

(̺(ti)T̺(ti) + 1)2

)

−
1

4α
−

1

4γ2
ΦuamaxkmaxΦcmax

)

> 0 (56)

(

Φ2
uomax − Φuomaxūo −

1

2
−
gmaxΦuomax

2

)

> 0 (57)

(

Φ2
uamax −

1

2
−
kmaxΦuamax

2

−
1

4γ2
ΦuamaxkmaxΦcmax

)

> 0. (58)

Proof: The proof is provided in Subsection C of the Appendix.

VI. NUMERICAL SIMULATIONS

For validating the theoretical developments, a quad-

rotorcraft UAS is tasked to perform a trajectory tracking

mission, subjected to adversary inputs, e.g., cyber-attacks, jam-

ming signals, or wind gusts. The goal is to follow the desired

trajectory while keeping the deviations close to zero, despite

the presence of adversary inputs affecting the performance.

The desired trajectory corresponds to a circular shape of a

radius equal to 5m, located at an altitude of 24m above the

ground plane of I. The desired trajectory is

xd = 5 cos(t/10) [m]; yd = 5 sin(t/10) [m]
zd = 24 [m]; ψd = π/8 [rad]

The saturation of the controller comes from attitude dynamics

limitations, and is chosen as θ < θmax and φ < φmax for

θmax = 40◦ and φmax = 40◦. This selection is done according

to real bounds encountered in commercial UAS platforms,

e.g., the Parrot ARDrone or Bebop [49], in such a way that
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Fig. 2. A 3D plot showing the trajectory performed by the UAS. The desired
trajectory is the red circle located at 24m above the (x,y) plane. The figure
also shows the projection of the desired trajectory in the (x,z) plane, (y,z)
plane, and (x,y) plane. The UAS starts at the origin, and then moves to the
desired trajectory in a circular motion.

the system maintains a stable flight, and the desired trajectory

avoids mathematical singularities.

The operator uo generates the overall (vertical) thrust as

well as the three control torques τψ , τφ, τθ required to produce

translational and heading displacements. The combination of

thrust and attitude motions enable the UAS to follow the

desired trajectory. The initial weights of the NN are initialized

randomly in [0, 1], while α = 10, αuo = 2, αua = 2 were

chosen as tuning gains. The H∞ gain is γ = 4, the activation

functions for the critic Φc(e) are picked quadratic and the

activation functions for the operator, and for the adversary are

picked as the Jacobians of the critic activation functions, i.e.

≡ Φuo(e) = Φua(e) ≡ ∇Φc(e), and Q = I
12×12, R = I

4×4.

At the beginning of the tracking mission, the UAS is at the

origin of the (x,y) plane in I. Next, the UAS starts regulating

its altitude, while approaching the circular trajectory. These

maneuvers are executed while the UAS is subjected to adver-

sarial inputs. To exemplify the tracking mission, a 3D plot of

the UAS’s position is given in Figure 2, which includes also

the desired trajectory. The plot also shows the projections of

the desired trajectory in the (x,z) and (y,z) inertial planes.

Figure 3 and 4 show the position and velocity tracking

errors, respectively. Figure 5 shows the attitude dynamics gen-

erated by the trajectory tracking controller. Operator signals

are shown in Figure 6. The adversaries affecting the system

dynamics are shown in Figure 7. Note that the DL procedure

of the approximator takes place during the first 10 seconds.

This mild exploration guarantees the persistence of excitation.

This is the classical exploration/exploitation dilemma in every

learning mechanism during transient. These results verify

that the proposed DL controller converges to a near-optimal

solution, as pointed out by the theoretical results.

To evaluate the robustness of the proposed approach against

noise of different levels and characteristics, five additional

simulations were performed, and the results are shown in

Figures 8, 9, and 10. In these plots, the solid lines represent

the original trajectory tracking presented in Figure 2, while the

Fig. 3. Tracking errors associated with the 3-dimensional position. Notice
that the errors approach zero as the mission is executed.

Fig. 4. Tracking errors associated with the translational velocities. Notice
that the errors approach zero as the mission is executed.

faded lines correspond to the five additional tests. From these

tests, we observed that when the level of noise is low, (two of

the simulations) the algorithm is able to execute the trajectory

tracking in an appropriate way. On the other hand, we observed

that that high levels of noise degrade the performance and

convergence (three of the simulations).

From the results in Figures 8, 9, and 10, we concluded

that high levels of noise interfere with the DL procedure. For

this reason, an additional test was performed to evaluate the

significance of the experience replay method. For the results

shown in Figures 11, 12, 13, the buffer containing the data

was modified in order to contain (i) no data at all, (ii) small

amount of data, (iii) high amount of data, and (iv) the same

amount of data used for the original tracking presented in

Figure 2. From these results, we observed that the amount

of data implemented directly affects the performance of the

trajectory tracking. Indeed, too much or too little data are

both an issue. While more data provides appropriate results,
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Fig. 5. Attitude dynamics generated by the deep-learning trajectory tracking
controller. These angles, in combination with the overall thrust, generate the
motion required for performing the trajectory tracking.

Fig. 6. Operator signals. Note that the DL procedure takes place during
the first 10 seconds. This exploration guarantees persistence of excitation.
The behavior observed is the classical exploration/exploitation dilemma in a
learning mechanism during transient.

the algorithm required more time for generating the control

signals.

Finally, Figure 14 shows the disturbance attenuation level

achieved by the proposed methodology, for the tracking sce-

nario presented in Figure 2. Notice that after the learning is

done, the signal is always kept below a level of 4, which is in

accordance with the H∞ gain.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

This research presented a novel approximate dynamic pro-

gramming DL algorithm for enabling a UAS to perform

a trajectory tracking in the presence of adversarial inputs.

The novel algorithm, which considers bounded control inputs,

relaxes the restrictive PE condition by using a DL approach,

storing data concurrently with current data in the update of

the critic approximator. In order to subdue the effects of the

Fig. 7. Adversarial inputs affecting the dynamics while performing the
autonomous mission. Notice that these signals are persistently affecting the
UAS while executing the trajectory tracking mission.

Fig. 8. Tracking errors associated with the 3D position. The faded lines
correspond to the five additional tests. For low levels of noise, the convergence
is not affected, while high levels of noise degrade the performance.

critic and actors approximation errors, a new additional term

has been incorporated to the controller, and, by taking into

account a suitable Lyapunov function, asymptotic stability of

the overall closed loop system is proved. Numerical results

of the UAS performing a trajectory tracking mission under

adversarial inputs demonstrate the effective and efficient per-

formance of the proposed deep-learning approach.

Future research will extend the results to handle completely

unknown systems, as well as multiple entry points for an

potential adversary, including sensors and communication.

VIII. APPENDIX

A. Proof of Lemma 1

For any C1 function C(e) : R12 → R one has the orbital

derivative along the trajectories,

Ċ =
∂C

∂e

(

f(e) + g(e)uo(t) + k(e)ua(t)
)

.
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Fig. 9. Operator signals. The faded lines correspond to the five additional
tests. For low levels of noise, the operator signals are smoother.

Fig. 10. Adversarial inputs affecting the dynamics. The faded lines correspond
to the five additional tests. These signals are more aggressive than the ones
used for the original trajectory tracking experiment.

If C(e) ≥ 0 satisfies the HJI equation (22), then, complete the

squares in the Hamiltonian (19) to obtain

H = H∗ − γ2 ‖ua − u∗a‖
2
+ (uo − u∗o)

TR(uo − u∗o) (59)

with u∗o and u∗a given by (20) and (21), respectively.
Selecting now uo = u∗o given by equation (20) with C(e) ≥

0 and integrating yields

C(e(T ))− C(e(0)) +

∫ T

0

r(e(τ), uo(τ), ua(τ))dτ ≤ 0 (60)

for all ua(t). Since C(0) = 0, C(e) ≥ 0, one has
∫ T

0

r(e(τ), u∗o(τ), ua(τ))dτ ≤ 0, ∀T > 0.

Setting u∗o(t) = uo(t), ua(t) = 0 in equation (59) yields

Ċ ≤ −Q(e)−Rs(uo), (61)

so that C(e) serves as a Lyapunov equation and the system

without an adversarial input is locally stable. Assuming now

Fig. 11. Tracking errors associated with the 3D position. The faded lines
correspond to the four additional tests. As more data is implemented, the
errors become smaller.

Fig. 12. Operator signals. The faded lines correspond to the four additional
tests. Smoother signals are obtained as more data is implemented.

equation (13) is zero-state observable, then equation (61) is

negative definite and equation (13) is locally asymptotically

stable. Then, uo(t) = u∗o(t) ∈ L2[0,∞), ua(t) ∈ L2[0,∞),
and as T → ∞, equation (60) becomes

∫ ∞

0

(Q(e) +Rs(uo))dτ ≤ γ2
∫ ∞

0

‖ua‖
2

dτ. (62)

B. Proof of Theorem 1

Consider a Lyapunov function

Y =
1

2α
W̃c(t)

TW̃c(t), ∀ t ≥ 0 (63)

Differentiating equation (63) along the error dynamics of the

nominal system trajectories yields

Ẏ = −W̃c(t)
T

(

̺(t)̺(t)T

(̺(t)T̺(t) + 1)2
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Fig. 13. Adversarial inputs affecting the dynamics. The faded lines correspond
to the four additional tests. The adversary signals are more aggressive if the
amount of data is too much or too little.

Fig. 14. Instantaneous disturbance attenuation, see equation (62) in Appendix
part A. Notice that after the learning is done, the signal is always kept below
a level of 4, which is in accordance with the H∞ gain.

+

k
∑

i=1

̺(ti)̺(ti)
T

(̺(ti)T̺(ti) + 1)2

)

W̃c(t). (64)

But
̺(t)̺(t)T

(̺(t)T̺(t)+1)2
> 0, ∀̺(t), and therefore

Ẏ ≤ −W̃c(t)
T

k
∑

i=1

̺(ti)̺(ti)
T

(̺(ti)T̺(ti) + 1)2
W̃c(t). (65)

Letting A :=
∑k
i=1

̺(ti)̺(ti)
T

(̺(ti)T̺(ti)+1)2
, equation (65) yields

Ẏ ≤ −λmin

(

A
)

∥

∥

∥
W̃c

∥

∥

∥

2

, t ≥ 0, (66)

from which the result follows.

C. Proof of Theorem 2

A Lyapunov equation is proposed, for all t ≥ 0, as

V =C∗ + Vc(W̃ ) + Vuo + Vua (67)

≡C∗ + Vc(W̃ )

+
1

2αuo

tr
{

W̃T
uoW̃uo

}

+
1

2αua

tr
{

W̃T
uaW̃ua

}

where the optimal value function is given by C∗, and Vc(W̃ )
is a Lyapunov function for the nominal of the critic error

dynamics (see equation (37)). From Theorem 1 and class-K
functions γ1(·) and γ2(·), it follows that

γ1

(
∥

∥

∥
Z̃
∥

∥

∥

)

≤ V ≤ γ2

(
∥

∥

∥
Z̃
∥

∥

∥

)

,

for all Z̃ ≡ [ e(t)T W̃c(t)
T W̃uo(t)

T W̃ua(t)
T ]T ∈ Bρ,

where Bρ ⊂ Ω is a ball of radius ρ ∈ R
+. Using the update

for the operator in equation (41) and adversarial input in equa-

tion (47), and grouping terms, the derivative of equation (67)

(first term w.r.t. the state trajectories with ûonew and ûanew
(equation (55)), and the second term w.r.t. to the perturbed

critic estimation error dynamics in equation (37)) becomes

V̇ = C∗T
e

(

f(e)

− g(e)W̃T
uoΦuo + g(e)(u∗o − ǫuo)− g(e)B

eTe1m
(

A+ eTe
)

− k(e)W̃T
uaΦua + k(e)(u∗a − ǫua)− k(e)D

eTe1m
(

A+ eTe
)

)

−
∂Vc

∂W̃c

T( ̺(t)̺(t)T

(̺(t)T̺(t) + 1)2
+

k
∑

i=1

̺(ti)̺(ti)
T

(̺(ti)T̺(ti) + 1)2

)

W̃c

+
∂Vc

∂W̃c

T( ̺(t)

(̺(t)T̺(t) + 1)2
ǫH(t)

+

k
∑

i=1

̺(ti)

(̺(ti)T̺(ti) + 1)2
ǫH(ti)

)

+ W̃T
uo

(

− ΦuoΦ
T
uoW̃uo − Φuosat

(

1

2
R−1gT(e)∇ΦTW̃c

)

− Φuosat

(

1

2
R−1gT(e)∇ǫc

)

− Φuoǫuo

)

+ W̃T
ua

(

− ΦuaΦ
T
uaW̃ua +

1

2γ2
Φua

(

kT(e)∇ΦTW̃c

)

−
1

2γ2
Φua

(

kT(e)∇ǫc
)

− Φuaǫua

)

, t ≥ 0. (68)

For clarity, we will separate the following terms of equa-

tion (68)

T1 = −
∂Vc

∂W̃c

T( ̺(t)̺(t)T

(̺(t)T̺(t) + 1)2

+
k

∑

i=1

̺(ti)̺(ti)
T

(̺(ti)T̺(ti) + 1)2

)

W̃c

+
∂Vc

∂W̃c

T( ̺(t)

(̺(t)T̺(t) + 1)2
ǫH(t)

+

k
∑

i=1

̺(ti)

(̺(ti)T̺(ti) + 1)2
ǫH(ti)

)

≤ −2αλmin

(

k
∑

i=1

̺(ti)̺(ti)
T

(̺(ti)T̺(ti) + 1)2

)

∥

∥

∥
W̃c

∥

∥

∥

2
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+
1

2α

∥

∥

∥
W̃c

∥

∥

∥
2̺maxǫHmax

≤ −2αλmin

(

k
∑

i=1

̺(ti)̺(ti)
T

(̺(ti)T̺(ti) + 1)2

)

∥

∥

∥
W̃c

∥

∥

∥

2

+
1

4α
(2̺maxǫHmax)

2
, (69)

T2 =tr

{

W̃T
uo

(

− ΦuoΦ
T
uoW̃uo

−Φuosat

(

1

2
R−1gT(e)∇ΦTW̃c

)T

−Φuosat

(

1

2
R−1gT(e)∇ǫc

)T

− Φuoǫuo

)

}

≤ −Φ2
uomax

∥

∥

∥
W̃uo

∥

∥

∥

2

− Φuomaxūo

∥

∥

∥
W̃uo

∥

∥

∥

− (Φuomaxūo +Φuomaxǫuomax)
∥

∥

∥
W̃uo

∥

∥

∥

≤ −Φ2
uomax

∥

∥

∥
W̃uo

∥

∥

∥

2

+Φuomaxūo

∥

∥

∥
W̃uo

∥

∥

∥

2

+

(

Φuomaxūo +Φuomaxǫuomax

)2

2
+

1

2

∥

∥

∥
W̃uo

∥

∥

∥

2

(70)

T3 =tr

{

W̃T
ua

(

− ΦuaΦ
T
uaW̃ua +

1

2γ2
Φua

(

kT(e)∇ΦT
c W̃c

)T

−
1

2γ2
Φua

(

kT(e)∇ǫc
)T

− Φuaǫua

)}

≤− Φ2
uamax

∥

∥

∥
W̃ua

∥

∥

∥

2

+
1

2γ2
ΦuamaxkmaxΦcmax

∥

∥

∥
W̃c

∥

∥

∥

∥

∥

∥
W̃ua

∥

∥

∥

−

(

1

2γ2
Φuamaxkmaxǫcdmax +Φuamaxǫuamax

)

∥

∥

∥
W̃ua

∥

∥

∥

≤− Φ2
uamax

∥

∥

∥
W̃ua

∥

∥

∥

2

+
1

4γ2
ΦuamaxkmaxΦcmax

(

∥

∥

∥
W̃c

∥

∥

∥

2

+
∥

∥

∥
W̃ua

∥

∥

∥

2
)

+

(

1
2γ2Φuamaxkmaxǫcdmax +Φuamaxǫuamax

)2

2

+
1

2

∥

∥

∥
W̃ua

∥

∥

∥

2

. (71)

T4 =C∗T
e

(

f(e)− g(e)W̃T
uoΦuo + g(e)(u∗o − ǫuo)

− g(e)B
eTe1m

(A+ eTe)
− k(e)W̃T

uaΦua + k(e)(u∗a − ǫua)

− k(e)D
eTe1m

(A+ eTe)

)

. (72)

In equation (69), we used the results from Theorem 1 and
∂Cc

∂Wc

≤ 1
2α

∥

∥

∥
W̃c

∥

∥

∥
. Using the HJI equation

C∗T
e f(e) =− C∗T

e g(e)u∗o −Rs(u
∗
o)−Q(e)

− C∗T
e k(e)u∗a + γ2 ‖u∗a‖

2
, ∀ e

in equation (72) yields

T4 =−Rs(u
∗
o)−Q(e)

− C∗T
e

(

g(e)W̃T
uoΦuo + g(e)ǫuo + g(e)B

eTe1m
(

A+ eTe
)

)

+ γ2 ‖u∗a‖
2

− C∗T
e

(

k(e)W̃T
uaΦua + k(e)ǫua + k(e)D

eTe1m
(

A+ eTe
)

)

≤ −Rs(u
∗
o)−Q(e)

− (WcmaxΦcdmax + ǫcdmax)gmaxΦuomax

∥

∥

∥
W̃uo

∥

∥

∥

− (WcmaxΦcdmax + ǫcdmax)ǫuomax

− (WcmaxΦcdmax + ǫcdmax)gmaxB
eTe1m
A+ eTe

+ γ2 ‖u∗a‖
2

− (WcmaxΦcdmax + ǫcdmax)kmaxΦuamax

∥

∥

∥
W̃ua

∥

∥

∥

− (WcmaxΦcdmax + ǫcdmax)ǫuamax

− (WcmaxΦcdmax + ǫcdmax)kmaxD
eTe1m
A+ eTe

(73)

since A+ eTe > 0. Now, T4 can be upper bounded as

T4 ≤ −Rs(u
∗
o)−Q(e)

+
gmaxΦuomax

2

(

(WcmaxΦcdmax + ǫcdmax)
)2

+
gmaxΦuomax

2

∥

∥

∥
W̃uo

∥

∥

∥

2

+
1

2
(WcmaxΦcdmax + ǫcdmax)

2 +
1

2
ǫ2uomax

− (WcmaxΦcdmax + ǫcdmax)gmaxB
eTe1m
A+ eTe

+ γ2 ‖u∗a‖
2

+
kmaxΦuamax

2

(

(WcmaxΦcdmax + ǫcdmax)
)2

+
kmaxΦuamax

2

∥

∥

∥
W̃ua

∥

∥

∥

2

+
1

2
(WcmaxΦcdmax + ǫcdmax)

2 +
1

2
ǫ2uamax

− (WcmaxΦcdmax + ǫcdmax)kmaxD
eTe1m
A+ eTe

. (74)

After considering the bounds of B and D from inequalities

in equations (53) and (54), respectively, an upper bound for

equation (68) can be obtained as

V̇ ≤ −

(

2αλmin

( k
∑

i=1

̺(ti)̺(ti)
T

(̺(ti)T̺(ti) + 1)2

)

−
1

4α

−
1

4γ2
ΦuamaxkmaxΦcmax

)

∥

∥

∥
W̃c

∥

∥

∥

2

−

(

Φ2
uomax − Φuomaxūo −

1

2
−
gmaxΦuomax

2

)

∥

∥

∥
W̃uo

∥

∥

∥

2

−Rs(u
∗
o)−Q(e)

−

(

Φ2
uamax −

1

2
−
kmaxΦuamax

2

−
1

4γ2
ΦuamaxkmaxΦcmax

)

∥

∥

∥
W̃ua

∥

∥

∥

2
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+ γ2 ‖u∗a‖
2
, t ≥ 0. (75)

Considering the inequalities in equations (56), (57), (58), and

the HJI inequality in equation (62), we have

V̇ ≤ 0, t ≥ 0.

It follows from Barbalat’s lemma [48] that as t → ∞, then

‖e‖ → 0,

∥

∥

∥
W̃c

∥

∥

∥
→ 0,

∥

∥

∥
W̃uo

∥

∥

∥
→ 0, and

∥

∥

∥
W̃ua

∥

∥

∥
→ 0. Finally

since ‖e‖ → 0, it is straightforward that, as t → ∞ then
eTe

(

A+eTe
) → 0 and hence ‖ûo‖ → u∗o, ‖ûa‖ → u∗a.

Remark 2: Note that the actual controller uV in equa-

tion (13) is finally given as uV = uo + ud. �
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