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Abstract—We propose a game-theory based deep-learning
tracking control scheme to enable a holonomic flying system to
perform an autonomous trajectory tracking task, when consider-
ing saturating actuators, adversarial inputs, and non-quadratic
cost functionals. The problem is formulated as a two-player zero-
sum game, whose online solution is computed by learning the
saddle point strategies in real time. Three approximators, namely
a critic and two actors, are tuned online using data generated
in real-time along the system trajectories. The adaptive control
character of the algorithm requires a persistence of excitation
condition to be a priori validated, which is relaxed by using a
deep-learning approach, based on experience replay with multiple
layers. A robustifying control term is added to eliminate the
effect of residual errors, leading to asymptotic stability of the
equilibrium point of the closed-loop system. A simulation of a
target tracking application where the measurements available
to the aerial system are perturbed by persistent adversaries is
performed to validate the effectiveness of the proposed approach.

Index Terms—Deep-learning tracking, autonomy, zero-sum
game.

I. INTRODUCTION

Basic requirements for enabling unmanned aircraft systems
(UASs) to perform autonomous missions consist of an effi-
cient attitude stabilization and a reliable trajectory tracking
framework. By trajectory tracking we mean the problem of
stabilizing the state, or an output function of the state, to a
desired reference value, possibly time-varying. The trajectory
tracking problem incorporates several problems addressed in
the control literature, e.g., output feedback regulation, asymp-
totic stabilization of a fixed-point and, more generally, of
admissible non-stationary trajectories. For specific examples
of these problems, the interested reader is referred to [1]-
[2], and the references therein. The use of UASs in real-
time trajectory applications is challenging since most of the
times these agents are tasked to accomplish a mission in a
hostile environment where all sort of adversaries may exist
e.g., cyber-physical attacks, network attacks, wind-gusts, and
so on. Under such circumstances, the UAS must be able to
adapt its control strategy according to the effects induced
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by adversaries. This specific characteristic is of importance
because adversaries can easily drive the system to an unstable
behavior, i.e., undesired/unreliable operations, or even to a
mission fail. Establishing a well-defined state-action mapping
for the autonomous system is a very complex task, unless the
whole state space has been visited or searched exhaustively.
Therefore, a machine learning (ML) mechanism adapting to
dynamic environment is a more promising solution.

To attenuate adversaries corrupting the sensors and actua-
tors of an unmanned agent, and to guarantee robustness, it
is possible to formulate a two-player zero-sum (ZS) game,
which is similar to an H,, control problem. The major
drawback to the practical applications of the H., control is
the complications and difficulties involved in solving a highly
nonlinear partial differential equation (PDE), which is called a
Hamilton-Jacobi-Isaacs (HJI) equation. Indeed, if the system
has nonlinearities or the cost is non-quadratic, there is no ana-
lytical approach for solving such equation. This has motivated
alternative approaches for obtaining approximate solutions to
the HJI equation. Recently, PI has emerged as an efficient
method for approximating the HIJI solution [3], [4]. Under
this approach, the HIJI is solved successively by breaking it
into a sequence of linear PDEs, which are considerably easier
to handle. For example, the authors in [5] used approxima-
tors to approximate the HJI equation. Despite offering an
attractive solution for addressing the H, control problem, the
algorithm approached the problem from an offline viewpoint,
which is not appropriate for the kind of scenario facing real-
time autonomous systems operating in uncertain dynamic and
adversarial environments.

The research in [6]-[7] proposed an online adaptive algo-
rithm with guaranteed closed-loop stability of the equilibrium
point for solving the HIJI equation. However, the online
algorithm does not take into account the input or operator
constraints caused by actuators saturation. Considering input
constraints is important since real world applications of control
methods involve actuators with limitations in their amplitude.
Ignoring these limitations may lead to undesirable transient
response, could degrade closed-loop performance, and system
instability. The aforementioned work requires a persistence of
excitation (PE) condition that is equivalent to space explo-
ration in Reinforcement Learning (RL) [4]. This condition is
prohibitory and most of the times infeasible to implement in
practice. Recently, the research presented in [8] introduced a
method to adaptive control that relies on implementing current
and recorded data concurrently for adaptation.

0018-9251 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2019.2930017, IEEE

Transactions on Aerospace and Electronic Systems

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Related Work

Several techniques have been proposed to solve the tracking
control problem for UASs, e.g., [9]-[12], and the references
therein. These control frameworks allowed the system to track
three desired positions and one heading angle in real-time.
However, there has not been any work on optimal tracking
control capable of simultaneously attenuating the effects of
adversarial inputs. An algorithm for the generation of dynam-
ically feasible trajectories subjected to collision and obstacle
avoidance constraints has been developed in [9]. The trajectory
tracking task is simplified by neglecting important vehicle
dynamic constraints, and therefore making possible the real-
time planning in cluttered environments. Adaptive switching
supervisory control combined with a nonlinear Lyapunov-
based tracking control law was implemented in [10] for an
underactuated vehicle, allowing to solve the problem of global
boundedness and convergence of the position tracking error
to a neighborhood of the origin. A two-stages attitude and
translational control designed for a sub-actuated UAS allowing
trajectory tracking without linear-velocity measurements was
presented in [13]. The authors proposed a linear-velocity-
free control torque, designed for ensuring tracking of the
desired attitude derived at the first stage of the control design.
In [14], a nonlinear controller for an UAS is proposed using
output feedback and a novel virtual control input scheme,
which allows controlling the six degrees of freedom (DOF).
The controller performance is demonstrated under unknown
nonlinear dynamics and disturbances, and simulation results
are provided to validate their theory. Closely related, the work
in [15] presents an optimal controller design based on Neural
Networks (NN) for trajectory tracking of a UAS.

Recently, the research community has shown interest in
Deep NN (DNNs) that learn to represent data in multiple
layers of increasing abstraction. In many control systems, the
dimension of the input is high, therefore, feature engineering
algorithms used in conventional shallow NNs are not efficient
enough to extract the complex and nonlinear patterns observed
in high variety of sensory data. The problem of autonomous
navigation of a UAS by using a model-based RL approach
has been addressed in [16]. An important aspect in this
kind of solutions is that a poor feature representation in
conventional NNs used to approximate value function in RL
can lead to a poor learning task. Layer-by-layer, learning in
DNNs helps avoid local optima and alleviates the over-fitting
problem encountered in traditional NNs [17]. Moreover, DNNs
algorithms extract efficient complex features at high levels of
abstraction in a greedy layer-wise fashion [18]-[19].

Heuristic approaches have demonstrated that data represen-
tations obtained from stacking up nonlinear feature extractors
in DNNs yield better ML results, compared to conventional
shallow learning approaches [20]. This motivated researches
to combine DNNs with RL and introduce Deep RL (DRL)
algorithms to approximate value functions to cope with large
input dimensions. For example, [21]-[22] introduced DRL to
reduce the need for sustained exhaustive exploration during
learning. Deep Q-Network (DQN) uses DNN to approximate
the Q-network and train this Q-network to predict total reward

[23]. The Effects of Memory Replay in RL have been studied
in [24], where the authors show that the amount of memory
kept can affect the agents’ performance; too much or too
little memory both slow down learning. In [25] asynchronous
actor-critic algorithm merges a DQN with a deep policy
network for choosing actions. [26] proposed Double DQN (D-
DQN) to tackle the overestimate problem in Q-learning. DRL
has received attention for continuous control problems, e.g.,
robotic manipulation, locomotion, and games [27]-[34].

Contributions

This paper relies on the development of a DL algorithm
based on experience replay with multiple layers, where the two
players are represented by the autonomous operator (control)
and the adversarial input. In order to approximate the HIJI
equation, three approximators, namely a critic and two actors
(operator and adversary), are tuned online using data generated
in real-time along the system trajectories. The problem is
formulated as a two-player ZS game due to the fact that
operator and adversary have opposite objectives. For that
reason, it makes sense to look for saddle point policies. If a
game theoretic saddle point exists, then the two-player optimal
control tracking problem has a unique solution, equivalent to
the Nash equilibrium, which is valid for all policies u,, .

This paper extends our previous results in [35] were PI
algorithms and NN approximators are proposed for solving
a two-player ZS game in real-time. The main contribution
of the current study is in the updating strategy of the critic
approximator. Instead of using only current data, the pro-
posed approach makes use of recorded and instantaneous data
concurrently for adaptation. This adaptation strategy or DL
procedure mitigates requiring persistency of excitation in the
approximator activation functions. The necessary mathemat-
ical proofs are provided in order to demonstrate stability
of this solution. A second important contribution is in the
application itself. While the previous study focuses on control
of the dynamical system, the current study focuses on the error
dynamics to achieve trajectory tracking task. A third contribu-
tion of this research consists of the incorporation of operator
constraints in the performance function, which exemplify the
physical limitations of real-time robotic systems. Saturation
constrains introduce nonlinearities which are hard to address
with conventional methodologies. The fourth contribution con-
sists of considering the adversarial components, which may
affect the system during the execution of the target tracking
task. The proposed approach demonstrates its effectiveness and
applicability by stabilizing a complex system, despite these
theoretical and practical challenges.

Organization: The dynamics of a holonomic UAS is pro-
vided in Section II. In Section III we formulate the problem.
Section IV introduces the combination of the HJI Equation
and the ZS game. The proposed approximate solution, which
consists of a DL structure based on approximators, is presented
in Section V. The simulation of a trajectory tracking task in
the presence of adversary inputs is presented in Section VI.
Section VII provides conclusions and future directions of this
research. Lyapunov proofs ensuring asymptotic stability of the
system are provided in a the appendix Section VIIIL
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Fig. 1. The holonomic multirotorcraft UAS. This vehicle has four control
inputs, and six states. The sub-actuated nature of the mulirotorcraft UAS
makes it a very challenging system to control.

II. BACKGROUND ON UAS DYNAMICS

The nonlinear dynamic model of the holonomic multiro-
torcraft UAS is obtained in North-East-Down (NED) inertial
and body-fixed coordinates, see Figure 1. Let Z = {N, E, D}
denote the inertial reference frame and B = {828y 52}
a body-fixed frame. The position vector of the UAS center
of mass is & = [r,y,2]" € Z, representing the position
coordinates relative to the Z. The orientation of the UAS
with respect to (w.r.t.) the T is expressed by [, 0, ¢]T € Z,
where 1, 6, and ¢ are the yaw, pitch, and roll Euler angles,
respectively. Let v € 7 represent the linear velocity expressed
in Z and © € B denote the angular velocity of the UAS
expressed in 3. The mass of the UAS is denoted by m,
and I € R3*3 represents the constant inertia matrix around
the centre of mass expressed in B. Newton’s equations of
motion provide a dynamic model for the motion of the UAS
by following [36] as:

§=v (1)
mv = mges + RF 2)
R = Rsk(Q) (3)
[Q=—-QxIN+T. 4)

The vector F' € BB incorporates the non-conservative forces
applied to the UAS including the thrusts (produced by the
rotors) and drag terms associated with the rotors downwash on
the airframe. The torque I' € B is obtained from differential
thrust associated with pairs of rotors, together with aerody-
namic effects and gyroscopic effects, e; denotes a unit vector
in the D-axis direction, and g = 9.81 m/s. Also, R € SO(3)
is a rotation matrix relating a vector in B to Z [37]:

CoCyp  S$pSeCy — ChSyy  CpSHCy T SpSy
R = cosy S¢S0y +CoCyp  CpSaSy — S¢Cyp |, ()
—Sp S¢pCh CpCo

where R uses the notation ¢, = cos(x*) and s, = sin(x). Note
that |R||F = Rmax given a known constant Ryax, R~ =

3

RT, R = Rsk(Q), and RT = —sk(Q)RT, where sk(x) €
R3*3 is a skew symmetric matrix satisfying kTsk(d)k = 0,
for any & € R? and d € R? [38]. This holds because we
consider the UAS to operate only in regions where —(7/2) <
¢ < (m/2) and —(7/2) < 0 < (7/2), i.e., the trajectory does
not pass through any singularities [39].

For this study, the following model is proposed:

1
0= ges — ETReg +Ni(v) + 61 (6)
I0 = —Q xIQ 4 7 + Gy + No () + 52 (7)
where T = [0,0,a]T, is the thrust along the Bz-direction

generated by the rotors, e.g., u = Zle T:, Ni(x) € R?,
¢ = 1,2 are nonlinear aerodynamic effects, G, are gyroscopic
torques applied to the frame, and 7 € R? is defined as

T4 -1 1 ! ~1 ?
wl=| -t 4 1 |7 ®
Te —CM CM —CM CM Tz

where 74, Tg, Ty are the rotational torques, C)s is a constant
depending on the rotor characteristics, and [ represents the
distance between the center of mass and the center of the
motor. 6; € R3, i = 1,2 represent unknown bounded
disturbances such that [|d;|| < dpr, for all ¢, with dpr > 0 as
a known constant. The system in equations (6)-(7) is affected
by two inputs: the control input, and the disturbance input.
A translational dynamics tracking error can be defined as

ee=8—& €1, )
with corresponding velocity error as

€y =V — Ug. (10)
Define the new augmented variables X := [¢T [¢p 6 ¢]T]T €
RO and V := [vT QT]T € R6*L. To ensure that the system
in equations (6)-(7) follows the desired trajectory expressed
by V; € R5*! with dynamics given by

Va=f(Va) + 9(Va)ug (11)

where f(V,;) € RS*! represents the internal dynamics, ex-
pressed in terms of Vg, g(Vy) € R®*! is given such that
gmin < [|9]l 7 < gmax, and ug represents the required control
input corresponding to the desired state behavior [14].

The state tracking error e € R6*! can be expressed as

e=V -V, (12)
with dynamics given by

é = F(e(t)) + gle(®))uo(t) + k(e(t) ua(b),
where e(0) = e, t > 0, k(e(t)) € RO<L, f(e) == f(V) —

f(Vy), and w, := uy — ug. Notice that the error system (13)
has two inputs, the operator u,, and the adversary u,.

13)
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III. PROBLEM FORMULATION

The goal is to design a strategy to track the desired trajectory
Va(t), maintaining a stable flight, and attenuating the effects
induced by the adversary, while simultaneously optimizing a
tracking cost function related to equations (6)-(7). Towards
this end, a cost function is defined as

T(e(0), 1y, 1) = /O " (e(r) uo(7), ua(T))dr,  (14)

where the utility is given by

r(e, toyua) = Q(€) + Ri(uo) =77 l[uall®s Vet uq

with Q(e) = 0, v > 4* > 0, and the dependence on ¢ has
been suppressed. The term ~* is commonly known as the
H, gain, and is associated to the smallest vy for which the
system is stabilized [40]. Hence, we are interested in finding
the following optimal cost function

Uo  Ug

C*(e(t)) = min max /OO r(e(T), up, ug)dr, t>0 (15)
¢

subjected to the dynamical constraints (13). Note that the game
is formulated in such a way the operator u, is a minimizing
player while the adversary u, is a maximizing player.

In order to force bounded inputs, (e.g. u, < u,) the term

Rs(u,) is given by
Rs(uo) = 2/ (sat™'(v))TRdv, ¥ u, (16)

0

where R = RT = 0, v € R™, and sat(-) is a continuous, one-
to-one real-analytic integrable function of class C*, u > 1
used to map the interval [—,, U, onto R, and must satisfy
sat(0) = 0 [41], [42]. Also, note that Rg(u,) is positive
definite because sat~!(v) is monotonic odd. O

IV. HJI EQUATION AND THE ZERO-SUM GAME

Operator and adversary have opposite objectives and for that
reason we look for saddle point policies. If a game theoretic
saddle point (u},u}) exists, the two-player optimal control
tracking problem has a unique solution. That is, the following
Nash condition must hold

min max J(e(0), uy, ug) = maxmin J(e(0), uy, ug) (17)
which is equivalent to the Nash equilibrium condition
J(e(0),ul, uq) < J(e(0),ul,ur) < J(e(0),up,uy) (18)

and is valid for all policies u,, uq.
The Hamiltonian of dynamics in equation (13) and cost
function in equation (14) is

H =r(e,up,uq)
+ (VO (f(e) + gle)uo + k(e)ua), Ve, o, uq,
(19)

where VC = 9C/de € R®*! is the transposed gradient.
Given a solution C*(e) > 0 : R” — R to the Hamiltonian
in equation (19), the associated operator and adversary for

4

the system in equation (13) can be found by employing the
stationarity conditions on equation (19) as

28 0= = st (GRTOVCO) O
8H * 1 T *

The optimal cost function in equation (15) and the associated
constrained operator and adversary satisfy the HJI equation Ve

H* = Q(e) + VC*"(e)f(e)
B iVC*T(e)g(e)RflgT(e)Vc*(6)

1
+ 472V(J*T(e)kkTvo*(e) =0
with C*(0) = 0.
Assumption 1: The solution C*(e) to equation (22) is
smooth and positive definite, that is, 0 < C*(e) € C*. O
Lemma 1: Select v > 0. Suppose that there exist a smooth
positive definite solution C'(e), to the HJI equation (22). As-
sume equation (13) is zero-state observable. Then, the system
in equation (13) has Ly — gain < ~. Moreover selecting the
control in equation (20) in terms of the HJI solution solves the
Lo — gain problem, and makes the equilibrium point locally
asymptotically stable (when w,(t) = 0).
Proof: The proof is provided in Subsection A of the Appendix.
Further details can be found in [43]-[44] [ |
Our algorithm to solve the HJI equation is based on the
structure of PI. The proof of convergence is provided in [45].
—Algorithm 1: PI Two-Player ZS Differential Games
1: procedure
2 Start with a stabilizing feedback control policy uf,o) .
3 forj=0,1,...given uy’ do
4: set Ug
5
6

(22)

for i =0,1,... do

Solve for C;l)(e) using ZS Bellman equation
0=Q(e) + VO (e)(f + guf’ + kuf’) + Rs(ug”)
2

= [ul? 23)
7: Update adversarial input u$ according to
wltD) = arg max | H (e, VC’;, ul, UQ)T
1 i
= WkT(e)VCj (24)
8: end for _
9: On convergence, set Cj11(e) = Cj(e)
10: Update control policy with
u§* = arg min {H(& VCijt1), o, ua)}
1__
= —sat ;R YgT(e)V T (25)

11: if HC]’ — C;_lﬂ < €0 then go to 14
12: end if

13: end for

14: end procedure

In Algorithm 1, ¢¢ € R* is a scalar that checks the
algorithm convergence. The PI algorithm consists of two
loops: an outer feedback operator update loop and an inner
adversary update loop. The following section introduces the
methodology for updating everything simultaneously, by using
data along the system trajectories.
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V. ONLINE SOLUTION

An online adaptive DL optimal control structure for solving
the two-player ZS game problem in real-time is introduced.

A. The Critic Approximator

To approximate the optimal cost function given by equa-
tion (15) within a compact set {2 C R"™ that contains the origin,
one can use an approximator in the form

C*(e) = WiTd.(e) +e.le), Ve

where the ideal weights W € RY satisfy |[W*|| < Wemaxo
®.(e) : @ — RV represents the approximator activation
function vector composed by N basis functions {¢(e) :
1,...,N}, and €.(e) is the online approximation error. The
approximator activation functions must be chosen so that they
provide a complete independent basis set, in such a way
that C(e) and its derivative are uniformly approximated [46].
Computing the derivative w.r.t. e yields

(26)

’]::

® T
Cr = (a °(6)> Wr+ Oe: _ VOIW} +Ve.. (27)

¢ Oe Oe
From the Weierstrass higher order approximation theorem,
as N — oo the approximation errors €, — 0, Ve, — 0
uniformly [41]. Additionally, for fixed N the approximation
errors are locally bounded by constants [46].

Assumption 2: The approximation error €. and its deriva-
tive are bounded by €imax; €cdmax € RT in a compact set
Q C R™ as, sup.cq |€c] < €emax and sup,cq [Vee| < €camax
respectively. Moreover, the activation functions ®. and their
derivatives V¢, are upper bounded as, |®.| < P, and
[VP.| < ®ramax respectively.

Using equation (27) and fixed control/adversarial policies
in equation (22), define an approximate Hamiltonian as

H(e, W V®,, 1, 1q) = Q(e) + Rs(us,)

+ WIVE(S + guo + kua)
(28)

= €H, Vea Up,y Uqg

with a residual error due to the function approximation as
eq = —Ver (f + guo + kug), Ve, uq, Uq. (29)

Assumption 3: The residual error ¢z is bounded by €pmax
on a compact set Q@ C R", i.e., sup.cq l€r| < €Hmax- O
The ideal weight vector W} of the critic approximator
which provides the best approximate solution for equation (28)
is unknown. Then, the current critic approximator estimate is

Cle) =W[d.(e), Ve (30)

where W, represents the estimated values of W,.. The goal is
to find an update law for W, to ensure that W, — W}, such
that the approximate Hamiltonian for fixed w,, u, is

H(e, WIV®,, 1y, uq) = WEo(t) + Q(e(t))
+ Ro(uo(t)) = 72 ua(t)|* = H*,

with o(t) = V®.(f(e(t))+g(e(t))uo(e(t)) +k(e(t) ua(e(t)))-
To mitigate the need for persistence of excitation of the vector

€2y

v 67U’O7ua

5

o(t), we follow the procedure in [47] for the model reference
adaptive control case. The methodology proposed here uses
a DL approach for storing past recorded data together with
current data. Define an error associated to the current data as

ew:=H—H*, Vet (32)
and an egw; € R on the previous stored data be defined as

enwi i= Hywi — H*, Y e, t,t; (33)

with H* = 0 from equation (22). To drive ey and epw; to
zero, we rely on adaptive control techniques [44]. An error
performance is defined from combining these terms as

1 egeH 1 b €T -CHWi
E=-—_#184 - Z HWi
2 (e(t)To(t) +1)* 2 (e(t:i) o(t:) + 1)
The size of the window of stored data is k € ZT. A gradient
descent rule is used for defining the tuning of the critic
approximator as

4 oF

(34)

W, = —a2r (35)
oW,
e olt; .
ety + 127" ; (o(t:)To(ts) +1)2
o o(t)

t>ti20

where o > 0 determines the speed of convergence.
The critic approximator weight estimation error is

W, =W — W, (36)
The dynamics of the critic weight estimation error are then
: t)o(t)"
W o _a< e’
(e(t)To(t) + 1)

k
Q(tz)Q(tz)T -
’ Z (o(ti)Two(t;) + 1)2 ) We(t)

k

o(t;) |
. ; (o(ti)To(t:) + 1) 6H(m>
=-No+ B, >t 20

(37

where the first term is the nominal system and the second term
is the perturbation due to the error €.

Theorem 1: Let the tuning of the critic approximator be
given by equation (35). Then, the nominal system from equa-
tion (37) is exponentially stable with its trajectories satisfying

HWc(t)H < HWc(tO)H kpe=F2(t=t0) /¢ > t; > t5 > 0 and for
some ki, ko € R provided that {o(t),...
N linearly independent vectors.

Proof: The proof is provided in Subsection B of the Appendix.

,0(tr)} contains
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B. Operator Approximator

It is possible to approximate the operator input in equa-
tion (20) by an actor approximator as follows

=W:Tdy(e) + ewole), Ve (38)

with W € RN2*4 representing the optimal weights, @, (e)
the approximator activation functions, Ny is the number of
basis functions, and an actor approximation error defined by
€wo- The approximator activation functions has to define a
complete independent basis set such that v (e) is uniformly
approximated. The Weierstrass higher order approximation
theorem [46] ensures that, as the number of basis sets Ny —
00, the approximation error €,, — 0.

Due to the fact that the optimal weights W are not known,
the operator actor approximator with current weights W is

Gio(€) = WEDy(e), Ve (39)

The error ey, € R, between equations (39) and (20) is then
” 1 ~
uo = WDy, + sat (2R_1gT(e)V<I>TWC)

The goal is to select weights Wiy in such a way that the
expression below is minimized

1 A
Fy = —el vV We, e, u,t>0.

B uo€uos

(40)

The tuning for the weights of the operator are obtained from
a gradient descent procedure in equation (40), yielding

A aE‘uo
Wuo = —Qyo—z. —

OIWuo
. 1 N\ *
_au0¢uo (Wiq)uo + sat <2R_1QT(€>V¢TWC>)

V t > 0, and the constant oy, > 0 determines the speed
of convergence. The weight estimation error for the operator
approximator is given by

W := W

(41)

*Oéuoq)uo €uo

- Wu0~ (42)

Following a similar approach with the one for the critic
tuning law in (37), the operator error dynamics are given by

T
Wuo - - CVuo(I)uoq)uoI/Vuo

T
1 ~
— o Puosat (2R19T(6)V(I)TWC) — Qo Puo€uo

1 T
— Qo Pyosat (QR_lgT(e)Vec> , t>0. (43)

C. Adversary Approximator
In a similar way, the worst case adversary (21) can be
approximated by an adversary approximator as
ul(e) = WiTdu(e) + ewle), Ve

with W, € RN2X4 representing the optimal weights, ®,,(e)
as the approximator activation functions, Ny is the number
of basis functions, and an actor approximation error €,,. The
approximator activation functions has to define a complete

(44)

independent basis set such that u},(e) is uniformly approx-
imated. The Weierstrass higher order approximation theo-
rem [46] ensures that, as the number of basis sets No — oo,
the approximation error €,, — 0.

Since the W/} are unknown then the current adversarial
approximator with weights Wi is written as

Giq(e) = WEdy(e), V e.

An expression for the error e;,, € R between equations (45)
and (21) is then given by

(45)

. 1 .

Cua = WD, — 2—721<;T(e)vq>TWc.

Our objective is to find the weights Wia such that the expres-
sion below is minimized

1 ~
By = §efaeua, v We, e, uq. (46)

The tuning for the weights of the adversary is obtained from
a gradient descent procedure in equation (46), yielding

B JF,
Wia = _auaWZ = —aPuatua
. 1 _
= —yaua (W Dy — WkT(e)VtI)TWC)T (47)

Vit >0, and o, > 0 is a constant value determining the
speed of convergence. For the adversarial input, the weight
estimation error is given by

Wa 1= W — Wi (48)

The adversarial error dynamics are given by

: ) \T
Wua - _auaq)uaq)g‘;wua + <2r1ka'T(e)V<I>TWC>

T
1
— paPuaua + (WkT(e)Vbeeua) . t>0. (49

The adaptive-optimal control algorithm is presented below as
pseudo-code. Comments are shown after the symbol .

Algorithm 2: DL Optimal Tracking
1: Start with initial state e(0), random initial weights W.(0),

Wio(0), Wia(0), and ¢ = 1

2: procedure .

3: Propagate t,e(t) using (13), uo(t) := W ®yo(e), and
Ua(t) := Wes Pua(e) >
{e(t) comes from integrating the system (13) using any ordinary
differential equation (ode) solver (e.g., Runge Kutta). Time ¢ is
given by the Runge Kutta integration, i.e. [t;, t;11], i € N where
tiv1 :=1t; +h with h € RY the step size}

4: Propagate We(t), Wug(zf), Waa(t) > {integrate ﬁ/c as in
(35), Wi as in (41), and W as in (47) using ode solver}

5: Compute C(e) = WL d.(e) > output of the Critic

6: Compute i, (€) = Wuo Dyo(e) > output of the Operator

7: Compute @4 (e) = Wik By (e) > output of the Adversary

8: if ¢ # k then >
{{o(t1), 0(tz2),...,0(t:)} has N linearly independent elements
and t, is the instant of time that this happens}

9: Chose arbitrary data point, include it in the history stack.

10: 1:=1+1

11: end if > when history stack is full

12: end procedure
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Remark 1: Algorithm 2 is executed in real-time in a
plug-n-play scheme, without any iterations. Every procedure
happens simultaneously as soon as new measurements of the
sate along the trajectories are received. One measures the
state e(t) and integrates the tuning laws (35), (41), (47) by
using any ode solver, and then compute C(e) = WId,(e),
Go(e) = WEB(e), and dg(e) = WIDu(e). Numerical
methods implemented in state of the art software are most
of the time adaptive algorithms where the step size h is fine-
tuned at each step, according to an estimate of the error at
that particular step. Generally, the calculation time increases
as h is decreased, but, it is also more precise. Unfortunately,
if h is considerably decreased, the slight rounding occurring
in the computer (since it is not able to exactly represent
real numbers) starts to accumulate in such a way it will
cause significant errors. For numerous higher order systems,
it is extremely complicated to render the Euler approximation
effective. Runge Kutta methods for non-stiff problems furnish
calculations which are linear to the size of the problem. For
stiff problems, more exact procedures were designed. (]

D. Stability Analysis

Assumption 4: The function g(-) is uniformly bounded on
Q, ie., sup.cq [|9(e)|| < gmax. Similarly, the function k(-) is
uniformly bounded on €2, i.e., sup.cq ||k(€)]] < kmax- O

Fact 1: There exists a constant g, such that the following
normalized signal satisfies [44]

]
To dispose of the effects of the approximation errors e,
€uo» €ua (and corresponding partial derivatives) and secure
an asymptotically stable closed-loop system, we include a
robustifying control term to equations (39) and (45), leading
to the following control law and adversarial input equations

(50)

0 1
|| < Omax =35, Vo.
(9T9+1)H = 2 ¢

e T@
uo(t) = ﬁo(e(t)) - 14-’—(te)(t)’j([‘t2(t)31m7 Vi (51)
(& Te

where 1, is given by equation (39), 4, is given by equa-
tion (45), and A, B,D € R™ with

A+eTe

4o

1
B> T { (QQmaermax)2

e e(Vchax@chnax + €cdmax) Ymax

_ 2
((I)uomaxuo + (I)uomaxeuomax)

2
[} ax 2
+ gnmm% ((Wcmax‘bcdmax + Ecdmax))

1 1
+§(Wcmax(1)cdmax + 6cdma.x)2 + 2€zomax}

(53)

A+ eTe
D> a
€ e(VchaLx‘I)cdmax + 6cdmax) kmax

1 2
(2,\{2 (puamakaaxecdmax + (I)uamaxeuamax)

2

7

kmaxéuamax
+ f ((Wcmaxq)cdmax + ecdmax))Q

1
+ (Wcmaxq)cdmax + 6cdmax)2 + 56121,amax} (54)

N |

where u, is the saturation limit.
Now we write the system dynamics in equation (13) as

é=f(e)+gle) ((WJ‘O — Wao) " ®uo(€) — B(eTelm>

A+ eTe)
* I T @Te].m >
+ k(e) (Wua - Wua) (bua(e) - Dm t>0.

(55)
The following theorem presents our main results.

Theorem 2: Consider the dynamics given by equa-
tion (13), the operator given by equation (51), the ad-
versary given by equation (52), and also that epug; =
[ o(t1) o(ta) o(ty) ], YV j € Z* has N linearly
independent elements. The tuning laws for the critic, the
operator, and adversarial approximators are stated by equa-
tions (35), (41), and (47), respectively. Then, the solu-
tion (e(t), We(t), Wao(t), Wia(t)) converges asymptotically to
zero for all (e(0), We(0), Wio (0), Wua(O)), provided that the
inequalities below are satisfied

(M“i“ ( > <g<tf§ti;fs>i - 1)2)

=1
1 1
- B - r,ygq)uamakaax(bcmax >0 (56)
1 me X(Duom‘ X
((I)iomax - q)uomax'ao - 5 - gd2&> >0 (57)
P2 _ 1 Fmax®Puamax
uamax 2 9

1
- 7¢uamakaaxq>cmax > 0. 58

Proof: The proof is provided in Subsection C of the Appendix.

VI. NUMERICAL SIMULATIONS

For validating the theoretical developments, a quad-
rotorcraft UAS is tasked to perform a trajectory tracking
mission, subjected to adversary inputs, e.g., cyber-attacks, jam-
ming signals, or wind gusts. The goal is to follow the desired
trajectory while keeping the deviations close to zero, despite
the presence of adversary inputs affecting the performance.
The desired trajectory corresponds to a circular shape of a
radius equal to 5m, located at an altitude of 24m above the
ground plane of Z. The desired trajectory is

xq = Hcos(t/10) [m]; ya = 5sin(t/10) [m]
zg = 24 [m]; g = /8 [rad]

The saturation of the controller comes from attitude dynamics
limitations, and is chosen as 0 < 0.« and ¢ < @pax for
Omax = 40° and ¢ = 40°. This selection is done according
to real bounds encountered in commercial UAS platforms,
e.g., the Parrot ARDrone or Bebop [49], in such a way that
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Fig. 2. A 3D plot showing the trajectory performed by the UAS. The desired
trajectory is the red circle located at 24m above the (x,y) plane. The figure
also shows the projection of the desired trajectory in the (x,z) plane, (y,z)
plane, and (x,y) plane. The UAS starts at the origin, and then moves to the
desired trajectory in a circular motion.

the system maintains a stable flight, and the desired trajectory
avoids mathematical singularities.

The operator u, generates the overall (vertical) thrust as
well as the three control torques 7, 74, 79 required to produce
translational and heading displacements. The combination of
thrust and attitude motions enable the UAS to follow the
desired trajectory. The initial weights of the NN are initialized
randomly in [0,1], while « = 10, ay, = 2, ay, = 2 were
chosen as tuning gains. The H, gain is 7 = 4, the activation
functions for the critic ®.(e) are picked quadratic and the
activation functions for the operator, and for the adversary are
picked as the Jacobians of the critic activation functions, i.e.
= Oyo(e) = Du(e) = VO,(e), and Q = 112712, R = 44,

At the beginning of the tracking mission, the UAS is at the
origin of the (x,y) plane in Z. Next, the UAS starts regulating
its altitude, while approaching the circular trajectory. These
maneuvers are executed while the UAS is subjected to adver-
sarial inputs. To exemplify the tracking mission, a 3D plot of
the UAS’s position is given in Figure 2, which includes also
the desired trajectory. The plot also shows the projections of
the desired trajectory in the (x,z) and (y,z) inertial planes.

Figure 3 and 4 show the position and velocity tracking
errors, respectively. Figure 5 shows the attitude dynamics gen-
erated by the trajectory tracking controller. Operator signals
are shown in Figure 6. The adversaries affecting the system
dynamics are shown in Figure 7. Note that the DL procedure
of the approximator takes place during the first 10 seconds.
This mild exploration guarantees the persistence of excitation.
This is the classical exploration/exploitation dilemma in every
learning mechanism during transient. These results verify
that the proposed DL controller converges to a near-optimal
solution, as pointed out by the theoretical results.

To evaluate the robustness of the proposed approach against
noise of different levels and characteristics, five additional
simulations were performed, and the results are shown in
Figures 8, 9, and 10. In these plots, the solid lines represent
the original trajectory tracking presented in Figure 2, while the

error [m]

error [m]

time [s]

10 ( _
(&
-20 1

errar [m]

time [s]

Fig. 3. Tracking errors associated with the 3-dimensional position. Notice
that the errors approach zero as the mission is executed.
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Fig. 4. Tracking errors associated with the translational velocities. Notice
that the errors approach zero as the mission is executed.

faded lines correspond to the five additional tests. From these
tests, we observed that when the level of noise is low, (two of
the simulations) the algorithm is able to execute the trajectory
tracking in an appropriate way. On the other hand, we observed
that that high levels of noise degrade the performance and
convergence (three of the simulations).

From the results in Figures 8, 9, and 10, we concluded
that high levels of noise interfere with the DL procedure. For
this reason, an additional test was performed to evaluate the
significance of the experience replay method. For the results
shown in Figures 11, 12, 13, the buffer containing the data
was modified in order to contain (i) no data at all, (ii) small
amount of data, (iii) high amount of data, and (iv) the same
amount of data used for the original tracking presented in
Figure 2. From these results, we observed that the amount
of data implemented directly affects the performance of the
trajectory tracking. Indeed, too much or too little data are
both an issue. While more data provides appropriate results,
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Fig. 5. Attitude dynamics generated by the deep-learning trajectory tracking
controller. These angles, in combination with the overall thrust, generate the
motion required for performing the trajectory tracking.

control inputs

0 20 40 60 80 100
time [s]

Fig. 6. Operator signals. Note that the DL procedure takes place during
the first 10 seconds. This exploration guarantees persistence of excitation.
The behavior observed is the classical exploration/exploitation dilemma in a
learning mechanism during transient.

the algorithm required more time for generating the control
signals.

Finally, Figure 14 shows the disturbance attenuation level
achieved by the proposed methodology, for the tracking sce-
nario presented in Figure 2. Notice that after the learning is
done, the signal is always kept below a level of 4, which is in
accordance with the H., gain.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

This research presented a novel approximate dynamic pro-
gramming DL algorithm for enabling a UAS to perform
a trajectory tracking in the presence of adversarial inputs.
The novel algorithm, which considers bounded control inputs,
relaxes the restrictive PE condition by using a DL approach,
storing data concurrently with current data in the update of
the critic approximator. In order to subdue the effects of the

1.5 T T T

e (]

e

.15 L8 . . . .
0 20 40 60 80 100

time [s]

Fig. 7. Adversarial inputs affecting the dynamics while performing the
autonomous mission. Notice that these signals are persistently affecting the
UAS while executing the trajectory tracking mission.
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Fig. 8. Tracking errors associated with the 3D position. The faded lines
correspond to the five additional tests. For low levels of noise, the convergence
is not affected, while high levels of noise degrade the performance.

critic and actors approximation errors, a new additional term
has been incorporated to the controller, and, by taking into
account a suitable Lyapunov function, asymptotic stability of
the overall closed loop system is proved. Numerical results
of the UAS performing a trajectory tracking mission under
adversarial inputs demonstrate the effective and efficient per-
formance of the proposed deep-learning approach.

Future research will extend the results to handle completely
unknown systems, as well as multiple entry points for an
potential adversary, including sensors and communication.

VIII. APPENDIX
A. Proof of Lemma 1

For any C! function C(e) : R'?2 — R one has the orbital
derivative along the trajectories,

¢ = 22(1(0) + glepuolt) + K(euald).
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Fig. 9. Operator signals. The faded lines correspond to the five additional
tests. For low levels of noise, the operator signals are smoother.
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Fig. 10. Adversarial inputs affecting the dynamics. The faded lines correspond
to the five additional tests. These signals are more aggressive than the ones
used for the original trajectory tracking experiment.

If C(e) > 0 satisfies the HIT equation (22), then, complete the
squares in the Hamiltonian (19) to obtain

H=H"—7*lua — ul||* + (uo — u}) " R(uo — uj)  (59)

with v} and v given by (20) and (21), respectively.
Selecting now u, = u; given by equation (20) with C(e) >
0 and integrating yields

C(e(T)) — C(e(0)) + /0 r(e(r), 1o (7), wa(T))dr <0 (60)

for all u,(t). Since C(0) =0, C(e) > 0, one has
T

; r(e(r), uy (1), uq(r))dr < 0,¥T > 0.

Setting u}(t) = uo(t), uq(t) = 0 in equation (59) yields
C < -Q(e) = Ru(uo), 1)

so that C'(e) serves as a Lyapunov equation and the system
without an adversarial input is locally stable. Assuming now

10
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Fig. 11. Tracking errors associated with the 3D position. The faded lines
correspond to the four additional tests. As more data is implemented, the
errors become smaller.
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Fig. 12. Operator signals. The faded lines correspond to the four additional
tests. Smoother signals are obtained as more data is implemented.

equation (13) is zero-state observable, then equation (61) is
negative definite and equation (13) is locally asymptotically
stable. Then, u,(t) = u}(t) € L2[0,00), ue(t) € L]0, 00),
and as T' — oo, equation (60) becomes

/(Q(e)+Rs(uo))dTg~y?/ lua|2dr.  (62)
0 0

|
B. Proof of Theorem 1
Consider a Lyapunov function
1 .-~ -
V= TWc(t)TWC(tL Vit>0 (63)
«

Differentiating equation (63) along the error dynamics of the
nominal system trajectories yields

o(t)o(t)"

= 0" (it e
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Fig. 13. Adversarial inputs affecting the dynamics. The faded lines correspond
to the four additional tests. The adversary signals are more aggressive if the
amount of data is too much or too little.
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Fig. 14. Instantaneous disturbance attenuation, see equation (62) in Appendix
part A. Notice that after the learning is done, the signal is always kept below
a level of 4, which is in accordance with the Hoo gain.

k
o(ti)o(t:)T ) .
" ; (o(t:)To(t;) +1)2 We(t). (64)
But % > 0, Yo(t), and therefore
k
' V. ()" olt)o(t:)T =
V< —Wea(t) ; OO

Letting A := Zle (ﬁ)(w#t)T

)T o) F1)2° equation (65) yields

. -2
V< Anin(A) ||| £ 20, (66)
from which the result follows. [ ]
C. Proof of Theorem 2
A Lyapunov equation is proposed, for all ¢ > 0, as
Y =C" 4 Ve(W) + Vio + Vaa (67)

11

=C* + V(W)
tr {WE,WUO} +

+ tr { WIE Wua}

Qyo Qlya

where the optimal value function is given by C*, and V (W)
is a Lyapunov function for the nominal of the critic error
dynamics (see equation (37)). From Theorem 1 and class-/C
functions 1 (-) and 72(+), it follows that

n ([12]) v < (2]

for all Z = [ e(t)T W.()T Wu®)T Wu®)T |" € B,
where B, C Q is a ball of radius p € R*. Using the update
for the operator in equation (41) and adversarial input in equa-
tion (47), and grouping terms, the derivative of equation (67)
(first term w.r.t. the state trajectories with tUgpew and Ugnew
(equation (55)), and the second term w.r.t. to the perturbed
critic estimation error dynamics in equation (37)) becomes

b=t (se)

. . elel,,
- g(e)Wuo(I)uo + g(e)(uo - 6uO) - g(e) (A + ETG)
T, 1 k(e) (" — ) — k() D )
k( )Wua ua 1 a ua (A+€T6)
VT o(t)e(t)" L olt)et)T \
oW, (@(tm(t)ﬂ)? t2 <g<tz>Tg<ti>+1>2> ‘
ov, T o(t)
o, (@(t)%(t) IR
k
o(t;)
2 Golt) 1 cutt)

1
— Pyosat (2R_19T(6)V€c> - (I)uoeuo)
3 5 1 3
T T T T
FIE(= Pu@Lia + 55 (k (e) VD WC)
1

— 2—72% (kT (e)Vee) — Pua€ua), t > 0. (68)
For clarity, we will separate the following terms of equa-

tion (68)

7o OV ee®)T
Y=o, \e®Te(t) + 12
k
o(ti)o(t:)" .
+; (ot To(td) T 12) °
ov. " o(t) .
ow. \(e(®Ta(t)+ 12"
k
o(t;) |
’ ; (o(ti)To(ts) + 1)26H(tz)>
k
Q(tz>Q(t2)T 2
S (2_:1 (o(ti) olts) + 1>2> e
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7 ) I

o(t:)o(t:) 2
ti)To(t:) +

1
+ — (QQmaermax)Q y

k
< _QQ)\min (Z (Q(

i=1

69
1o (69)
b =tr {WT ( — Dy ®T Wy,
1 B T
—dyosat (2R_1gT(e)V<I>TWC>
1 T
—Pyosat (2ngT(€)V€C) - ‘I)uoeuo> }
~ 2 ~
< ¢12Lomax Wuo - (I)uomaxﬂo Wuo ‘
- ((I)uomaxao + (I)uomaxeuomax) Ij/uo
~ 2 ~ 2
< ¢121,011’134)( WUO + ¢uOrﬂanTLO WUO ‘
2
q)uomaxﬂo + (I)uomaxeuomax 1 = 2
i . ) +5 [ 0

- - 1 - \T
Ty =tr {W3;< — O, O, + ?% (kT(e)V@EWC)

1 T
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+5

T, =27 (f<e> (WD + g(e) (1 — cuo)

B W T + k() (o]
—g(e) (A+dTe) ()W ®uq + k(e) (1 — €ua)
e el

In equation (69), we used the results from Theorem 1 and

gr?v < 2 HW H Using the HJI equation

Clf(e)

=— O g(e)uy — Ry(uz) — Qle)
= Ck(eyuy + 7 upl*. Ve
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in equation (72) yields
Q(e)
- € (B + 90w + (0B

Ty = — Ry(ul) —
elel )

(A + eTe)

+ 9% |ug]®

-t (k(e)Wu?;@ua + k(e)ew + k(e)D

Q(e)
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e el
(A+€Te) >
< _RS(UZ) -

Wao
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T
e el
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2
+2 [l

WH a
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- (Wcmaxq)cdmax + 6cdma»x)euamax

elel,,
A+ eTe
since A+ eTe > 0. Now, T, can be upper bounded as

Ty < ~Ru(u}) - Q(e)
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2
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(74)

After considering the bounds of B and D from inequalities
in equations (53) and (54), respectively, an upper bound for
equation (68) can be obtained as
1
) do

V<- (20<Amin<zk; (olt 153’;((5)

1
7(I)uamakaaxq)cma$ H
4y? )

1 gmax® ~ 2

P2 Byl — = — JmaxPuomax HW‘“’

( uomax u 2 2 )
— Ry(ug) — Qe)
(I)Q _ 1 _ krna,x(I)uarnax
uamax 2 2

1 ~ 2
- W q)uamakaaxq)cmaw) H Wua
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+2 Jugl?, ¢ >o. (75)

Considering the inequalities in equations (56), (57), (58), and
the HJI inequality in equation (62), we have

V<o, t>0.

It follows from Barbalat’s lemma [48] that as ¢ — oo, then

llell — O, HWC — 0, HWHO — 0, and HWMH — 0. Finally

since |le]| — 0, it is straightforward that, as ¢ — oo then

m — 0 and hence ||t,] — u, [|tq| — u. ]

Remark 2: Note that the actual controller uy in equa-

tion (13) is finally given as uy = u, + uq. U
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