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Abstract—In this paper, a novel deep reinforcement learning
(deep-RL) framework is proposed to provide model-free ultra
reliable low latency communication (URLLC) in the downlink
of an orthogonal frequency division multiple access (OFDMA)
system. The proposed deep-RL framework can guarantee high
end-to-end reliability and low end-to-end latency, under data
rate constraints, for each user in the cellular system without any
models of or assumptions on the users’ traffic. Using the proposed
model-free approach, the users’ traffic is predicted by the deep-
RL framework and subsequently used in the resource allocation,
irrespective of the actual underlying model. The problem is posed
as a power minimization problem under reliability, latency, and
rate constraints. To solve this problem using deep-RL, first, the
rate of each user is determined. Then, these rates are mapped
to the resource block and power allocation vectors of the studied
OFDMA system. Finally, the end-to-end reliability and latency
of each user are used as a feedback to the deep-RL framework.
It is shown that at the fixed-point of the deep-RL algorithm, the
reliability and latency of the users are guaranteed. Simulation
results show how the proposed approach can achieve any feasible
point in the rate-reliability-latency region, depending on the
network and service requirements. For example, for a 7 Mbps
rate guarantee, the results show that the proposed algorithm can
provide ultra-reliable low latency communication with a delay of
8 milliseconds and a reliability of 98%.

I. INTRODUCTION

Ultra reliable low latency communication (URLLC) is ex-
pected to be one of the most important features in 5G cellular
networks since it will be used for mission critical applications
such as Internet of Things (IoT) sensing and control as well
as remote control of autonomous vehicles and drones [1].
Thus far, the URLLC research has been mostly focused on
the applications with short packet length and low data rates
such as uplink transmissions of IoT sensors [1]. However,
new wireless applications such as drone communications [2]–
[4], autonomous driving [5], [6], and virtual reality [7],
have emerged that require URLLC, not only in the uplink,
but also in the downlink for control and tracking purposes.
Moreover, in order to operate effectively, such applications
require both URLLC and reasonably high data rates. For
example, autonomous vehicles will need to receive reliable
control data from infrastructure nodes, along with high data
rate information such as HD maps.

Providing URLLC with rate guarantees for such appli-
cations poses many network challenges. First, considering
the limited radio resources in a communication system, low
latency, high reliability, and high rate become three incom-
patible design parameters. This incompatibility means that
improving one of them could potentially be detrimental to
the other two, thus requiring new designs that can balance
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the rate-reliability-latency tradeoff. Second, providing reason-
ably high data rates while maintaining reliability and latency
needs timely and efficient resource allocation. Hence, URLLC
resource allocation with rate considerations should allocate
the exact amount of resources required by the users. In
other words, to balance the rate-reliability-latency tradeoff,
the resource allocation scheme must know each user’s exact
performance needs so that it can satisfy these requirements
without wasting any resources or reducing the user’s reliability.

A. Related Works

Recently, there has been a surge in literature that studies
problems of URLLC and resource allocation, such as in [1],
[8]–[12]. In [8], an algorithm for joint scheduling of URLLC
and broadband traffic in 5G cellular systems is proposed. In
[9], the authors use extreme value theory to study URLLC in
a vehicular network and characterize the queue statistics. The
work in [10] considers a model-based and a data-driven ap-
proach for designing a burstiness-aware scheduling framework
which reserves bandwidth for the users with bursty traffic.
The authors in [11] propose a packet prediction mechanism to
predict the behavior of future incoming packets based on the
packets in the current queue. However, all of these existing
works assume that explicit traffic and queue models are
available to the resource allocation system [8]–[11]. Since the
assumed models are often simplified, they either underestimate
or overestimate the users’ traffic and queue lengths. This can
cause the resource allocation algorithm to either allocate more
resources or less resources than the actual requirement of
the users which, in turn, can render the system inefficient
or degrade the reliability of the users’ connections. Also,
the previous works on URLLC completely ignore any rate
requirements of the users. Moreover, some of these works
rely on completely historical data such as [10] and [11] which
might also lead to inefficient resource allocation. This due to
the fact that a user’s traffic often changes based on spatial
or temporal factors, and historical data is often not a good
predictor of the traffic of wireless users.

To overcome some of these challenges, there has been
recent interest in using deep reinforcement learning (deep-
RL) for solving wireless networking problems with incomplete
information such as in [5], [13]–[16]. In [5], a decentralized
resource allocation framework for vehicle-to-vehicle com-
munication is proposed based on deep-RL. The authors in
[13] proposed a deep-RL resource management approach for
virtualized ad-hoc network. In [14] a deep-RL resource man-
agement system is proposed for cloud radio access networks.
A deep-RL based resource allocation scheme for mobile edge
computing is studied in [16] However, these works do not



investigate URLLC problems. Moreover, since these deep-
RL works [14], [16] limited their problem’s action space,
used discretization to limit the size of the action space [5],
or did not address the limitation of deep-RL when dealing
with large action spaces, they are not suitable to solve the
problem of URLLC resource allocation with rate constraints.
This is due to the fact that these works cannot handle the large
action space involved in URLLC and they are slower than the
requirements of URLLC.

B. Contributions

The main contribution of this paper is a novel, model-free
resource management framework that can balance the tradeoff
between reliability, latency, and data rate, without explicit prior
assumptions on the users’ traffic arrival model. We formulate
the problem as a power minimization problem under reliability
and latency constraints. To solve this problem, we propose
a deep-RL framework that dynamically predicts the traffic
model of the users and, then, uses those predictions to jointly
allocate resource blocks (RBs) and power to downlink users,
under URLLC and rate constraints. This framework is shown
to effectively find a feasible resource allocation solution such
that the low latency, high reliability, and high rate requirements
of the wireless users are satisfied. The proposed framework
dynamically measures the end-to-end reliability and the delay
of each user. Then, it uses this measurement as an online
feedback to modify its decisions. In particular, the deep neural
network (DNN) weights used in deep-RL are updated using
this feedback only. Therefore, our framework does not need
any collected dataset for training. Also, the proposed resource
allocation system is able to predict the consequences of its
actions in the future and use this information to make better
resource allocation decisions. This helps the algorithm provide
long term reliability and latency guarantees for the users.

Unlike the deep RL approaches that were previously used
for wireless networks [5], [13], [14], [16], our approach
addresses the large action space problem. In particular, we
propose the novel concept of an action space reducer which
reduces the size of the action space without limiting it. Using
this action space reducer, our deep-RL framework is able to
make decisions in real-time as opposed to discretization ap-
proach used in [5]. We show that when the proposed algorithm
converges, the reliability, latency, and rate of each user are
guaranteed. Simulation results show that, without any knowl-
edge or assumption for the traffic model, our algorithm is
able to reach any feasible combination of rate, reliability, and
latency, given the system’s bandwidth and power constraints.
For example, to enable URLLC downlink communication at
rate of 7 Mbps, latency of 8 milliseconds and reliability of
98% are achievable.

The rest of the paper is organized as follows. Section II
introduces the system model. Sections III present the proposed
deep-RL framework. Section IV presents the simulation results
and conclusions are drawn in Section V.

II. SYSTEM MODEL

Consider the downlink of an OFDMA cellular network with
a single base station (BS) serving a set N of N users and
having a set K of K available RBs. Each user has its own,
individual rate, reliability, and latency requirements. We do
not make any assumptions on the packet arrival or the packet
length of each user. The downlink transmission rate from the
BS to user i is:

ri(t) =
K∑
j=1

ρij(t)B log2

(
1 +

pij(t)hij(t)

σ2

)
, (1)

where B is the RB bandwidth and hij(t) is the time-varying
Rayleigh fading channel gain of the transmission from the
BS to user i on RB j at time slot t. pij(t) is the downlink
transmission power of the BS on RB j to user i at slot t. ρij(t)
is the RB allocation indicator with ρij(t) = 1 when RB j is
allocated to user i at time slot t, otherwise ρij(t) = 0.

We define reliability γi(t) as the probability of the end-
to-end packet delay exceeding a predefined target end-to-
end latency threshold Dmax

i for user i. This delay comprises
the queuing delay and the transmission delay. To satisfy the
reliability and latency condition, the system needs to maintain
its rate according to the packet arrival rate, i.e,

ri(t) > φ(λi(t), β(t), γi, D
max
i ) > λi(t)βi(t), (2)

where βi(t) is the average packet size and λi(t) is the
average packet arrival rate of user i at time-slot t. φ is an
unknown function that we will implicitly approximate using
our proposed method. The goal for the system is to allocate
resources so as to minimize the average downlink power while
maintaining reliability, latency, and rate for the users. We
formally pose this resource allocation problem as follows:

min
pij ,ρij

lim
t→∞

1

t

t∑
τ=1

N∑
i=1

K∑
j=1

pij(τ), (3a)

s.t Pr{Di > Dmax
i } < 1− γ∗i , ∀i ∈ N , (3b)

pij(t) ≥ 0, ρij(t) ∈ {0, 1},
∀i ∈ N , ∀j ∈ K, ∀t, (3c)∑
i

ρij(t) = 1, ∀j ∈ K, ∀t. (3d)

In (3b), Di is the packet delay for user i. Constraint (3b) takes
into account each user’s reliability and latency explicitly. We
do not consider the rate constraint explicitly in our problem
formulation, but it is considered implicitly using (2).

The objective function (3a) is the average power spent by
the BS. Constraint (3b) is a reliability condition that captures
the fact that the end-to-end delay should be less than Dmax

i

with a reliability of at least 1− γ∗i . Constraints (3c) and (3d)
are feasibility conditions. At each time slot t, the resource
allocation system has two functions: Phase 1: Determining the
rate that each user i should obtain in order to ensure target
reliability γ∗i for this user, and Phase 2: Allocating power
and RBs to each user so that the power is minimized. We



Figure 1: Block diagram for the proposed framework.

should note that the minimum power in Phase 2 is a function

of the data rates determined in Phase 1. To determine the

reliability of the system in (3b), it is customary to use a specific

queuing model, as done in all of the prior art [1], [8], and

[10]. In contrast, here, we propose to obtain the reliability in

(3b) using an empirical measurement of the number of packets

transmitted to user i whose delay exceeds Dmax
i over the total

number of packets transmitted (to user i) in time slot t, i.e.,

γi(t) = 1− Pr {Di > Dmax
i } ≈ 1− μ′

i(t)

μi(t)
, (4)

where μ′
i(t) is the number of packets transmitted to user i in

time slot t, whose end-to-end delay exceeds Dmax
i . μi(t) is the

total number of packets transmitted to user i in time slot t. By

doing so, we do not need to make any a priori assumptions on

the delay model of the users. Moreover, counting the number

of packets is an easy and practical feedback, because each user

can convey this number to the BS via a control channel. As

μi(t) grows, the approximation converges to the reliability in

(3b). As will be evident from Section IV, despite having no

model for the traffic, the proposed approach will still be able

to ensure target reliability and delay for each user.

Since the OFDMA resource allocation problem involves a

large state space and we have no prior knowledge of the traffic

models, we propose a deep-RL framework [17] to allocate

resources to the users so that their rate requirement and their

stringent reliability constraints are satisfied. Beyond being able

to operate without any model, the key advantage of deep-RL

over classical reinforcement learning (RL) is that it can solve

control problems with a large state space [17]. Deep-RL uses

a deep neural network (DNN also known as deep Q-network)

for approximating the action-value function (also known as

Q-function) in RL.

The proposed deep-RL framework will use two feedback

inputs to evaluate its performance and update its DNN in

each time slot: the BS downlink power in each time slot

P (t) =
∑N

i=1

∑K
j=1 pij(t), and the measured reliability of

each user at each time using (4). Using these two feedbacks,

the deep-RL framework can determine ρij(t) and pij(t) for

all i and j. After iteratively assigning ρij(t) and pij(t) and

receiving feedbacks in a few time slots, the system is able to

maintain reliability, latency, and rate for each user. We will

discuss Phase 1 and Phase 2 in Subsection III-C and III-B,

respectively.

III. DEEP-RL FOR MODEL FREE URLLC

The block diagram for the proposed deep-RL framework

is shown in Fig.1. As we can see from Fig 1, at each time

slot, the deep-RL algorithm determines a desired rate rdi (t)

for each user i. Next, the action space reducer maps rdi (t)
to the OFDMA resources ρij and pij for all i and j while

minimizing the power (Section III-B). Then, each user attains

the rate ri(t) (which is now close to rdi (t)) and finds a reward

function (defined later) and sends it as a feedback to the deep-

RL framework. Finally, the deep-RL system uses this feedback

and updates the rdi (t) for each user accordingly (Section III-C).

A. Deep-RL scheduling

In this section, we define our deep-RL framework for

resource allocation. In general, any deep-RL framework is

defined by its action-space A, state-space S , and reward R.

At each state s(t) ∈ S, a deep-RL algorithm takes action

a(t) ∈ A and receives the reward R(a(t), s(t)). For our

wireless resource allocation problem, we consider the channel

gains, the number of packets μi(t) transmitted to each user,

and the average packet length βi(t) for each user i as the state
for the proposed deep-RL framework.Then, we determine the

reward for deep-RL so as to guarantee URLLC without the

delay model. Deep-RL will use this reward for training the

DNN and approximating the action-value function. We define

the reward for the proposed deep-RL framework as a function

of power and reliability. However, it is implicitly a function

of state and action of the deep-RL algorithm. The reward is

defined as follows:

R(a(t), s(t)) = −
∑
i∈N

wi(t)(1− γi(t))− αP (t), (5)

where α is a weighting factor for power and wi(t) is given

by:

wi(t+ 1) = max{wi(t) + γ∗
i − γi(t), 0}. (6)

We can see that wi(t) is a time-varying weight that increases

if γi(t) < γ∗
i . Hence, it ensures that the system meets the

target reliability of the users. Next, we show that, when the

deep RL algorithm maximizes the reward defined in (5), the

reliability and delay in (3b) are guaranteed for each user.

Theorem 1. If the BS maximizes the reward in (5), then after

the convergence of the deep-RL algorithm, the reliability of

each user is guaranteed such that γi(t) ≥ γ∗ ∀i ∈ N .

Proof: First, assume that the value that wi(t) converges

to is w∗
i . Then, we have to show that

‖wi(t+ 1)− w∗
i ‖2 = ‖max{wi(t) + γ∗

i − γi(t), 0} − w∗
i ‖2 =

‖wi(t) + γ∗
i − γi(t)‖2 + ‖w∗

i ‖2 − 2w∗T
i (wi(t) + γ∗

i − γi(t)) =

‖wi(t)− w∗
i ‖2 + ‖γ∗

i − γi(t)‖2 − 2(w∗
i − wi(t))

T (γ∗
i − γi(t)),

Hence,

‖w(t+ 1)− w∗‖2 − ‖w(t)− w∗‖2 =

‖γ∗
i − γi(t)‖2 − 2(w∗ − w(t))T (γ∗

i − γi(t)). (7)

Also, from (6) we know that γ∗
i − γi(t) ≤

w(t + 1) − w(t). We can see that, in the case of

one dimensional w(t), the stability condition reduces to

(γ∗
i − γi(t)) (γ

∗
i − γi(t)− 2(w∗ − w(t))) ≤ 0.



At the fixed point of the algorithm, we know that w(t+1) =
w(t), therefore

w(t) + γ∗i − γi(t) ≤ max{w(t) + γ∗i − γi(t), 0} = w(t), (8)

Thus, we can see that w(t) + γ∗i − γi(t) ≤ w(t) and hence,
γi(t) ≥ γ∗i .

Theorem 1 ensures that the reliability of each user is
guaranteed at the fixed point of the algorithm, i.e., when
w(t) = w(t+ 1). Also, the latency for each user is implicitly
guaranteed by Theorem 1. The original action space for the
deep-RL resource allocation problem is the possible set for ρij
and pij for all i and j which has the size of O(KN ) ×RK .
Therefore, in our URLLC problem, we have a large state
space and a large action space. Using deep Q-networks helps
us to address the large state space problem. However, we
have to address the large action space problem as well. Next,
we propose a mechanism, called action space reducer, using
which we reduce the size of the action space.

B. Reducing Action Space by Optimal Power Allocation

The action space for the studied wireless resource allocation
problem consists of the N×K RB allocation matrix and N×K
power allocation matrix as:

ρ =

ρ11 . . . ρ1K
...

. . .
...

ρN1 . . . ρNK

 , P =

 p11 . . . p1K
...

. . .
...

pN1 . . . pNK

 .
Our mixed integer action space size is O(KN )×RK and it

is infeasible to use this action space in a deep-RL algorithm.
To address this problem, we first use deep deterministic policy
gradient (DDPG) [18] algorithm to take actions in a small
action space. Then, we map the actions taken by the DDPG
algorithm to the original action space using an optimization
framework. This approach is appropriate for our problem
because our reduced action space is continous in RN and
DDPG can control such problems. Moreover, the choice of the
DDPG is motivated by the fact that it has been successfully
deployed in continuous action spaces in robotic problems [18].
DDPG uses a DNN for mapping the state space to an action
space and hence is fast in decision making.

Since we are able to control the reliability and latency with
the rate, we choose the reduced action space to be the rate
of each user. However, given the set of rates for each user,
there are many feasible power and RB allocation solutions.
We choose the allocation solution with minimum power usage.
Hence, we pose a new optimization problem, called action
space reducer, whose goal is to map the reduced action space
which is the rate for each user to the original action space, i.e.,
RB and power allocation matrices as output so that the power
is minimized. This optimization problem maps the action space
of our deep-RL algorithm to the optimization variables in (3).
To find this RB and power allocation solution, we formally
define the action space reducer problem:

min
P ,ρ

∑
i,j

pij(t) (9a)

s.t. ri(t) = rdi (t), ∀i ∈ N (9b)
pij(t) ≥ 0, ρij(t) ∈ {0, 1},
∀i ∈ N , j ∈ K, ∀t, (9c)∑
i

ρij = 1, ∀j ∈ K, (9d)

where constraint (9b) guarantees that the rate of each user ri(t)
is set to the desired rate for each user rdi (t) while minimizing
the total BS power. We can solve (9) with constraint (9b) in the
form of an inequality, i.e., ri(t) ≥ rdi (t) using an iterative dual
decomposition algorithm. As the number of RBs increases,
the primal solution converges to the dual solution and the
inequality constraint ri(t) ≥ rdi (t) will be satisfied in the form
of equality [19]. As we will show in Section IV, as the number
of RBs increases, the error for action space reducer decreases.

The Lagrangian for problem (9) with inequality constraint
ri(t) ≥ rdi (t) can be written as:

L(P ,ρ,λ) =
∑
i,j

pij(t)−
∑
i

λi(ri(t)− rdi (t)), (10)

where λ =
[
λ1 λ2 · · · λN

]T
, and:

ri(t) = B
K∑
j=1

log2

(
1 +

pij(t)hij(t)

σ2

)
. (11)

The dual problem for (9) is:

min
P ,ρ

L(P ,ρ,λ). (12)

We can see that the dual problem is decomposable for each
RB, i.e., we can write (12) as:

min
pij(t)

∑
i

pij(t)−B
∑
i

λi log2

(
1 +

pij(t)hij(t)

σ2

)
, ∀j ∈ K.

(13)
Each subproblem (13) is convex and has a closed-form solu-
tion. By taking the derivative with respect to pij(t), we have:

1− λiB
hij(t)

(σ2 + p∗ijhij(t)) log 2
= 0, ∀i ∈ N (14)

Hence, for each j we have:

p∗ij =

[
λiB

log 2
− σ2

hij(t)

]+
, ∀i ∈ N , (15)

where [.]+ is equivalent to max{., 0}. Since each RB can be
allocated only to one user, we choose to allocate RB j to user
ij where:

ij = argmin
i

p∗ij −Bλi log2
(
1 +

p∗ijhij(t)

σ2

)
, ∀j ∈ K.

(16)
Therefore, we find the RB allocated to each user using (16)
and the per-RB power using (15). The only parameter that
remains to be determined is λ, which can be derived using
the ellipsoid method [20].



After reducing the size of action space, the action space
becomes a =

[
rd1 · · · rdN

]
∈ RN , which in the case of

discretization to m levels, has the size θ(mN ), and is still not
a very scalable solution. However, since the reduced action
space is in RN , we can find a solution to our deep-RL problem
using DDPG, as shown next.

C. Optimal Rate Allocation with Policy Gradient

A policy gradient algorithm such as DDPG can determine
rdi (t). This is due to the fact that the reduced action space
is continuous and using that, we can estimate the gradient
of the expected reward of the deterministic policy [18]. A
deterministic policy is a function that maps each state s of
the system to a specific action a, i.e., a = µθ(s), where θ
is a parameter vector in the policy function µ. The expected
reward of the deterministic policy is:

J(θ) = Es

{
T∑
t=0

γ(t)R(µθ(s(t)), s(t))

}
. (17)

We use the gradient of J(θ) to update our deterministic policy
µθ(s). The goal of deterministic policy gradient algorithms is
to find a policy that maximizes the expected return of the
algorithm in (17), i.e., find a θ that maximizes J(θ). We use
a DNN (with weights θ) to model the deterministic policy
function µθ(s). Then, we find θ using the DDPG algorithm
[18]. Ultimately, we obtain a deterministic policy µθ(s) which
at any given state s gives us the optimal action a, i.e., rdi (t)
for each user i ∈ N . This action a is mapped to the RB and
power allocation matrices using the action space reducer, and
hence, this solves our problem.

IV. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider a square area of size
2 km × 2 km in which 20 users are served by an OFDMA
cellular system. We set the total bandwidth to B = 45MHz
and the bandwidth of each RB to 180 kHz. We also set
the noise variance to σ2 = −173.9 dBm

Hz , unless otherwise
mentioned. We set the path loss exponent to 3 (urban area),
and the carrier frequency to 2GHz. We set the packet length
for our system to 10 kbits, and the maximum BS power
to 4W, and each user’s latency Dmax

i to 10 ms, unless
otherwise mentioned. For evaluation purposes, we assume that
the packets arrive according to a Poisson arrival process with
the same rate and with the same average packet size for all
the users. However, the proposed deep-RL framework does
not have any information about this traffic model.

Fig. 2 shows the relation between the rate, delay, and
reliability in our system. As we mentioned, the rate, reliability,
and latency are incompatible design parameters. However,
since our system can attain any feasible combination of the
rate, reliability, and latency, we can enable URLLC with
reliability of 99% and latency of 4.2 ms with the rate of
1 Mbps, and a reliable high-rate communication with 99%
reliability and rate of 10 Mbps with latency of 24.5 ms at
the same time. Also, the system can balance between rate,
reliability, and latency. As an example, we can see from Fig.

0

1

10

10

D
m
a
x

i
(m

s) 20

Reliability

0.8

Rate (Mbps)

30

5

0.6 0

Figure 2: 3D plot of the achievable rate, delay, and reliability
for the system.
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Figure 3: Effect of bandwidth on delay-reliability tradeoff for
the designed system.

2 that, our system is able to provide ultra-reliable low latency
communication with a delay of 8 milliseconds and a reliability
of 98% with a rate of 7 Mbps. However, if we need higher
rate for this system, without decreasing reliability or increasing
latency, then we have to allocate a higher bandwidth to the
system. We can increase the rate of each one of the 20 user to
46 Mbps if we increase the system bandwidth from 45 MHz
to 200 MHz and the power from 5 W to 20 W. These results
provide insightful guidelines for controlling the rate-reliability-
delay tradeoff. For example, we see that with a reliability
of 98%, delay of 8 ms, and rate of 7 Mbps, a gain of 1%
reliability can be done with 47% less delay but at the expense
of a seven-fold decrease in the rate.

Fig. 3 shows the effect of the maximum bandwidth on the
delay-reliability tradeoffs. We can see that, as we allocate
more bandwidth to the system, we are able to achieve higher
reliability and lower latency with the same rate. For instance,
by increasing the bandwidth from 45 MHz to 50 MHz, we are
able to decrease the latency of each user by 16%. Also we can
see that increasing the reliability increases the latency in the
system and this is because of the reliability latency tradeoff.

The effect of packet size on the reliability of the system
with Dmax

i = 10 ms is shown in Fig. 4. We can see that, for
higher rates, the effect of packet size becomes more dominant.
The system can only provide more reliability to the traffic with
shorter packet sizes. This is due to the fact that applications
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Figure 4: Effect of packet size on rate-reliability tradeoff for
the designed system.

with shorter packets naturally have a smaller end-to-end delay.
Hence, it is less challenging for our system to provide ultra
high reliability to such applications. Fig. 4 shows that our
system is able to reach URLLC reliability and latency as well
as higher data rates with moderate latency and reliability for
high data rate and large packet size applications. We can see
that at higher data rates the reliability decreases, and this is
because the limited bandwidth and power in the system can
guarantee reliability up to a certain rate. We can increase
this reliable rate by either decreasing packet size, increasing
bandwidth, increasing power, and/or increasing target end-to-
end latency.

Fig. 5 shows the per user error of the action reducer defined
as E = ‖r−rd‖

N‖r‖ , where r is the vector of wireless downling
downlink rate and rd is the vector of desired rate. This error
measures the distance between the input and output rate of
action space reducer. We can see that, as the bandwidth of each
RB decreases, the number of RBs increases in the system, and
hence, the error of our action space reducer will decrease. We
can see that, for an RB bandwidth of 180 kHz (typical for
LTE), the error is less than 1% for each user.

V. CONCLUSION
In this paper, we have proposed a a novel deep-RL frame-

work for model-free URLLC in the downlink of an OFDMA
system. In particular, we have designed a framework that
allocates power and RB to downlink wireless users while guar-
anteeing their end-to-end reliability and end-to-end latency
without any modeling assumptions on traffic or packet sizes.
We have used this reliability and latency as a feedback to
our deep-RL framework. Then, we have designed an action
space reducer to adapt our deep-RL framework to the policy
gradient methods and use DDPG algorithm to find the optimal
policy. Our results have shown that our system can achieve
high reliability, low latency, and high rate without any prior
knowledge of users’ traffic model.
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