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Abstract—Large intelligent surfaces (LISs) have been recently
proposed as an effective wireless communication solution that can
leverage antenna arrays deployed on the entirety of man-made
structures such as walls. An LIS can provide space-intensive and
reliable communication, enabling the desired wireless channel to
exhibit a perfect line-of-sight. However, the outage probability
of LIS, which is an important performance metric to evaluate
the system reliability, remains uncharacterized. In this paper, the
distribution of uplink sum-rate is asymptotically analyzed for an
LIS system. Given the derived asymptotic distribution, the outage
probability is derived for the considered LIS system. Simulation
results show that the results of the proposed asymptotic analyses
are in close agreement to the exact mutual information in the
presence of a large number of antennas and devices.

I. INTRODUCTION

HE demand for wireless connectivity has been growing

exponentially in recent years, mainly driven by the vari-
ety of upcoming Internet of Things (IoT) applications, such as
sensors, vehicles, and drones [1], [2]. To support this demand
for wireless connectivity for IoT services without additional
radio resources, the concept of large intelligent surfaces (LISs)
has been newly proposed to exploit the fact that man-made
structures, such as buildings and walls, can be made electro-
magnetically active and used for wireless transmission [3]—[7].
An LIS system enables the desired channels to become line-
of-sight (LOS) channels, resulting in more reliable and space-
intensive communications compared to conventional massive
multiple-input multiple-output (MIMO) systems.! Effectively
using LISs requires addressing many challenges such as ob-
taining their achievable rate, evaluating the system reliability,
and analyzing the channel hardening effect.

Prior art [3]-[7] has studied some of these challenges.
In particular, the work in [3] studied uplink data rate of
the matched filter (MF) and derived the performance of the
optimal receiver in an LIS system. In [4] and [5], the authors
analyzed the uplink data rates to evaluate LIS performance
while considering, respectively, hardware impairments and
channel estimation errors. Moreover, the work in [5] verified
the occurrence of the channel hardening effect theoretically.
Meanwhile, the authors in [6] and [7] proposed the use
of LIS as a reconfigurable scatterer that reflects transmitted

M. Jung, Y. Jang, G. Kong, and S. Choi (corresponding author) are with
School of Electrical Electronic Engineering, Yonsei University, Seoul 03722,
Korea (e-mail: csyong@yonsei.ac.kr).

W. Saad is with Wireless@VT, Department of Electrical and Com-
puter Engineering, Virginia Tech, Blacksburg, VA 24061 USA (e-mail:
walids@vt.edu).

This research was supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of
Education (NRF-2016R1A6A3A11936259) and by the U.S. National Science
Foundation under Grants CNS-1836802 and OAC-1638283.

IFor an overview on how LIS differs from massive MIMO, see [3]-[7].

signals and developed LIS phase shifter that maximize energy
efficiency and received signal strength, respectively. However,
these recent works [3]—-[7] have not investigated the distribu-
tion of the actual data rate which is necessary to analyze the
outage probability of an LIS. Since an accurate estimation of
the outage probability enables us to operate an LIS network
reliably, it is necessary to analyze this outage probability in
an LIS system serving a large number of devices.

The main contribution of this paper is to derive an exact
closed-form expression for the outage probability and verify
the reliability of an LIS system in terms of the outage
probability.” Given an LIS area serving multiple devices, we
analyze the asymptotic distribution of the sum-rate, relying on
the Lyapunov central limit theorem (CLT) in the presence of
a large number of antennas and devices. This approximation
allows for accurate estimations of the outage probability
without the need for a large number of simulations, and it
enables us to verify the reliability of an LIS system. Simulation
results show that an LIS can provide reliable communication
regardless of signal-to-noise-ratio (SNR) given that the outage
probability keeps constant for varying SNR when the LIS is
equipped with a large number of antennas and devices.

II. SYSTEM MODEL

Consider an uplink LIS system in which a large number
of IoT devices are connected to the LIS’s large array and a
two-dimensional LIS is deployed on the horizontal plane. The
LIS consists of K LIS units, each of which occupies a subarea
of the entire LIS and has a square shape with limited area of
2L x 2L serving a single-antenna device. We assume that the
LIS has its own signal processing unit for estimating channel
and detecting any data signal, as in [3]-[5]. A large number
of antennas, M, are deployed on the surface of the LIS unit
in rectangular lattice form with AL spacing, centered on the
(z,y) coordinates of the corresponding device. Given that the
location of device k is (xk, Yk, 2x), antenna m of LIS unit k

is placed at (M5 LIS 0) where 225 € [z — L,z + L]
and y,%}s’ € [yr — L,yr + L]. The LIS units may overlap

depending on the location of their corresponding devices and
this results in severe performance degradation. To prevent this
problem, we assume that the devices with partially overlapping
LIS units are allocated on orthogonal resources, resulting in
an LIS composed of K non-overlapping LIS units. Moreover,
we assume that each device controls its uplink transmit power
toward the center of its LIS unit according to a target SNR.

A. Wireless Channel Model

Note that the entire LIS environment is active during
wireless communication and the signal from the NLOS path

2Note that those results cannot be obtained directly from [5].
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can be negligible compared to the LOS signal, as proved
in [5]. Hence, we consider the LIS channel hy, € CM
between device k£ and LIS unit k£ as a LOS path defined as
hr=[Br bk, -+ Baghinar] T where B =aiy, [k, and
higkm=€xp (—j27dgkm/N) denote a LOS channel gain and
state, respectively, between device k£ and antenna m of LIS
unit k. ok, =+/zk/dkkm and 15, =1/\/4wd2,  represent,
respectively, the antenna gain and path loss attenuation, where
drrm and A\ denote the distance from device k to antenna m
of LIS unit k& and the wavelength of a signal, respectively.
Given a Rician factor x;;, we consider the interference
channel hj, € CM between device j and LIS unit k as

hjk +

a Rician fading channel, given by hj

L _ L
o k+1h3k’ where hj = [Bj1hjk, -

hNE Rl/ 29] . denote the deterministic LOS and the
correlated NLOS component, respectively. Given P dominant
paths among all NLOS paths, we define R;;, € CM*F and
9k = lgjk1,- ,g9ikp|T ~ CN(0,Ip) as the deterministic
correlation matrix and an independent fading channel between
device j and LIS unit k, respectively. Since a two-dimensional
LIS is deployed on the xy-plane, we can model it as a uniform
planar array [8] Then the correlation matrix can be defined

Ky k+1

s ﬂijwhjkM]T and

as R;,éz = l Dy, where lk = diag(l% . ,lkaM)
is a diagonal matrlx that 1ncludes the path loss attenua-
tion INL = d._kBTZL/ ? with a path loss exponent [pr, and
Djr = [« ?klid(%kla%m) ?IkLPd((bjkP’Qﬁ]kP)]' The

term d(¢Y kp ?; kp) represents the NLOS path p at given angles

(¢Jk)p’¢_}k[)) defined as d(¢]kp?¢_;k:p) = \/Ld ( Jkp) ®
dn (] kp) where ® is the Kronecker product and

Au(}y) = 1,7 PR (AT

dh( ;lk'p) |:1 ej
= sin 62

v h h
Here, .gbjk =sinf},, and ¢} e €OS ijp when th.e
elevation and azimuth angles between device j and LIS unit

k at path p are 0%, and 6% . respectively. Further, ajy =

Jkp Jkp
kp ip denotes the antenna gain at path p with

ejkp € [ 27%] and ejkp € { ]kp’eilkp}

27rAL

#3
Jkp,... ’e

27\'AL

¢]kp 76

nAL(r 1) JkP}T'

cos 0¥, cos Qj

B. Uplink Data Rate

The received signal from all devices at LIS unit % is obtained
as Y = /Prhrrer + Zj;k VPihjkzj + ng, where ;. and
x; are uplink signals of device £ and j, respectively, p; and
p; are their transmit SNRs, and ny, e CM ~ CN(0,Iy) is
noise vector. Given a linear receiver f1 & at LIS unit k, we have

K
iy, = \/Pkfghkkxk+zj¢k

Given an MF receiver with imperfect channel estima-
tion results from a least square estimator, we have f, =
hiw + /72/ (1 —77)es, where ey, is the error vector un-
correlated with my [5]. From (1), the received signal-
to-interference-plus-noise ratio (SINR) at LIS unit k& will
be v = prSk (1*713)/1%, where S, = |hkk|4 and
I, = kang—FZ;;kpj){jk‘FZk. Here, X}, Yjj, and

Vo hkTi+ fime. (1)

o
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PDFs of R when (M, d,y, ) is (top) (100, 8L) and (bottom) (400, 2L).

Zk denote |ef! hinl”s /1= m2hi ik + Tkelk{hjkf, and

/T—17 Zp ! ek T TRER |2, respectively. From the received SINR
at LIS unit %, the uplink sum-rate is obtained by R =
Zszl Ry, where Ry, = log (1 + ~4) is instantaneous rate for
device k. Given this sum-rate, we will analyze the asymptotic
distribution of mutual information and derive the closed-form
expression for the outage probability to characterize reliability.

Fig. 1.

III. ASYMPTOTIC ANALYSIS OF RELIABILITY VIA OUTAGE

In [5], the mean and variance of the individual rate in an
uplink LIS system is asymptotically derived. However, the
distribution of the sum-rate must be analyzed in order to obtain
the outage probability and evaluate the system reliability.
Deriving this distribution is not trivial and cannot be obtained
directly from [5], because a sequence of individual rates,
[R1, -, Rk], is not identically distributed. We begin with
a characteristic of LIS systems in which

Sk/]\42 —ﬁk/M2 F 0,
Ik/M —,LLI,C/JM'2 M—>0,

K—oo
where pj, = 1%{72]:4, pr = tan~ (L% /(2 /2L2 + 2%)), and
itr, 1s a deterministic value depending on the correlation
matrices and the locations of the devices [5, Lemma 4]. Then,
the asymptotic rate, Ry, is obtained by the following lemma.
Lemma 1. The asymptotic rate, Ry, can be obtained by
the function of a random variable I, as Ry = ai — bils,

where aj, = % + log(1 + M) and b, =

prPr(1—=72) /fir,,
prPk(1—72)+ir, * ) ) ) )
Proof: The detailed proof is presented in Appendix A. B

Given that pj and fij, are deterministic values, a; and by
are also deterministic values. Then, Lemma 1 shows that the
distribution of Rj, is exclusively determined by that of Iy,
and it allows us to readily obtain the distribution of R =
>, Rk by analyzing I, instead of Ry itself. From Lemma 1,
we have R = >k @k — brl and the second term ), byl
determines the distribution of R. By using the Lyapunov CLT
[9], we analyze the distribution of ), b, /), and finally obtain
the distribution of R, as follows.

Theorem 1. For large M and K, R approximately follows

R ~ N (i, %), where jig = 33, log(1 + 220kl

_ ! 2
_y 7, PP (1=77)
ki3 (R, +prpe(1-72))%

Proof The detailed proof is presented in Appendix B. W
Theorem 1 shows that the sum-rate of an LIS system
approximately follows a Gaussian distribution for large M and

and
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Fig. 2. Outage probabilities as a function of
the target SNR when dy,, = 4L (K = 25).

Fig. 3.
M when § = 0.98.

K, and its mean and variance can be obtained deterministi-
cally. This allows us to evaluate the performance of an LIS
system in terms of outage probability, ergodic rate, reliability,
and scheduling diversity, without extensive simulations. Then,
we can characterize the closed-form expression for the outage
probability, defined as the probability when the instantaneous
sum-rate falls below a certain threshold value.

Corollary 1. For large M and K, the outage probability of
event {R < Rp} is approximately obtained as follows:

Py =Pr[R < Rp] =1—Q(fin-tz),
where Rp is a desired rate when the probability of the outage
event is P,, and Q(+) is a Gaussian Q-function.

Assume that Rp = 6-fig for 0 < § < 1, then we have P, =
Q((l — 5)?—2) As M increases, jir increases and converges
to its bound, and o decreases, as proved in [5]. Therefore
P, decreases as M increases. On the basis of scaling law
for K, fir and 65 follow O(Klog(l + %)) = O(1) and

O(\/—%), respectively. Then, 2 increases with O(VK) and
finally P, also decreases, as K increases. Therefore, an LIS
can provide reliable communication in the presence of a large
number of antennas and devices. Moreover, since jip and or
are deterministic values obtained from the correlation matrices
and the locations of the devices, we can estimate the outage
probability of LIS without the need for extensive simulations.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, all simulations are statistically averaged over
a large number of independent runs. For our simulations, we
assume that target SNR is 3 dB, A = 0.1 m, L = 0.25 m,
72 = 0.5, and Bpr, = 3.7, and the probability of LOS path
and Rician factor are applied based on the 3GPP model [5].
We consider a scenario in which devices are located on a two-
dimensional xy-plane at z = 1 in parallel to the LIS within
the range of —2 < z < 2 and 0 < y < 4 (in meters) and
the distance between the adjacent devices is equally set to
d.,. Therefore, a total of 81, 25, and 9 devices are located in
a two-dimensional rectangular lattice form when d,, = 2L,
dm = 4L, and d,, = 8L, respectively. For a massive MIMO
system, we assume a single BS with M antennas serving K
users based on a uniform linear array, as in [5].

Fig. 1 shows the probability density function (PDF) of
the instantaneous rate according to the independent channel
realizations. As proved in Theorem 1, the PDF of the sum-
rate follows a Gaussian distribution and the accuracy of the
Gaussian approximation improves as M and K increase. As

200 N 300
Number of antennas (M)

Outage probabilities as a function of

40 0 20 40 60 80 100
Number of devices (K)

Fig. 4. Outage probabilities as a function of
K when § = 0.98 and A = 16.

can be seen, the two PDFs are almost aligned with each other,
and the approximation error is negligible when M = 400 and
dpy = 2L, corroborating the result of Theorem 1.

Fig. 2 and 3 compare the outage probabilities resulting
from the simulations to the estimations from Corollary 1 as a
function of the target SNR and M, respectively. We assume
that Rp = juirp when the target SNR is 0 dB in Fig. 2 and
6 = 0.98 in Fig. 3. In both figures, the asymptotic results from
Corollary 1 become close to the results of our simulations
as M increases, verifying the accuracy of our analyses. As
shown in Fig. 2, even when M = 100, the performance
gap between the results of the asymptotic estimation and
the simulation is less than 0.2 dB in terms of the target
SNR. Moreover, since the noise component of an LIS system
becomes negligible as M increases [5], we can observe that
the target SNR gradually lessens its effect on the outage
probability as M increases (e.g., when the target SNR is 2 dB,
the outage probabilities for M = 100 and 1600 are 3 - 103
and 107!, respectively). Furthermore, Fig. 3 shows that the
outage probability decreases and eventually reaches zero as M
and K increase. In addition, the outage probabilities resulting
from LIS are always lower than those resulting from massive
MIMO system over the entire range of M, which shows that
an LIS system can be more reliable than massive MIMO.

Fig. 4 shows the impact of the surface-area of each LIS unit
on the outage probability with a fixed total allocated area of
an LIS (e.g., A =16 [m2]). Given a fixed A, K increases as
L decreases and, hence, P, decreases, as shown in Fig. 4.

V. CONCLUSIONS

In this paper, we have analyzed the sum-rate of an uplink
LIS system asymptotically, under practical LIS environments.
In particular, we have derived the distribution of the sum-
rate by considering a practical LIS environment in which
the interference can be generated by device-specific Rician
fading with spatial correlation in presence of imperfect channel
estimation. Moreover, we have studied the outage probability
of the sum-rate from the derived asymptotic distribution. We
have shown that the asymptotic results can accurately and
analytically determine the performance of an LIS, including
the distribution of the sum-rate and outage probability, without
the need for a large number of simulations. Simulation results
have verified the results of the asymptotic analyses. These
numerical results have shown that the analytic results were
in close agreement with the results arising from extensive
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simulations, and an LIS can provide reliable communication
in terms of the outage probability.

APPENDIX A
PROOF OF LEMMA 1

We begin with the individual rate for device k as Ry =
log(1 + Mﬁ”)) Then, Ry, can be divided into two terms
as Ry = RY — RE, where RY = log(prSk(1 — 72) + I;) and
Rl,:” = log Iy. Since I/M? — [is, /M? converges to zero as
M, K — oo, we have the following series of equalities using

the exponential function definition e = lim (14 2/n)"
n—oo

L _ (I’cf’_“k)/M2
By =tog(1+ G )
AL I —pr,
Rk - Pkﬁk(l—‘rf)-ﬂilk +
where ¢, = log(prpr(1 — 72)+jir,) and R — RE iy 0.

Similarly, we have RE = (I, — fir,)/fir, +log jir, and finally,
we can obtain R, = RL RE, which completes the proof.

APPENDIX B
PROOF OF THEOREM 1

Given the definition of Iy, = pp77 X + ZJI;,C piYik + Z,
we make use of the following asymptotic convergence from [5]
pertaining to the distribution of Ij: I} — Z ik PiYik —
0. Then, Z itk p;Yji approximately determines the d1s€qﬁ-
bution of Ik for large M. Therefore, we have the fol-
lowing numerically accurate approximation for large M:
Doebl = Y, bi Z#k p;Yjk. Given a random variable
>k bk Zﬁék p;Yjk, we can observe that by Z#k p; Y is
a random variable independent across k since g;;, and eg
are independent random vectors for different k. Therefore,
the following Lyapunov’s condition should be satisfied for
some 0 > 0 and large M to prove that ), by Z][;k p;Yik
is Gaussian distributed [9]:

K.—>oo 52+5 ZE “bkz kP

246
lim = vy ]=0, @)
where s K:Zk b7o7, and fiy,, is asymptotic mean of Yjj
Given that Y} is a random variable correlated across J, we
have ij = s]k|x]| + |u]k|2 + 2Re(\/Sjk ,ujkx *), where
Sjk = ]k + s 'y 3N2 and z; is a standard complex
Gaussmn random varlable correlated across j. The terms

55 3k Sy and |15 L |* are provided in [S, Lemma 2], and

sjk and |p; k| are respectively increase with O(M) and
O(M?) as M increases. We then calculate Yj; — fiy,, in
(2) as sjk(|xj|2 — 1) + 2Re(, /sjk/ri-‘kx;f). Given that s;;, and
\ /sjkp;‘k respectively increase with O(M) and O(M+vV M),
we have Yj;, — /jyﬂf :.2Re(, /.sjku?km;) for large M. Then,
we have the following inequality when § = 2 in (2):

4
1650, k"B [[S 0 piRe (S| ]
(Zkb201k)
o 165l EHZ#MIIJI\\/?%MH o
(Xi 302"

K—o0
The expectation term in the numerator of (3) is bounded as

lim
K—oo

" Lt K 5 92
_ 32 K 2 2 K 9 9 2
= dk (Var {Zj;ék ,Dj|93j| ]+E {Zj;ék pj|xj| ] )
K K K 9
< 2( 4 2 2 ( 2) )
= Z#k pj—’_zi,j;ék:i;éj Pipi+ Z#k i) ), 4

(b)
where d, = ) ; sjk|/,z?k|2, (a) results from Cauchy—-Schwarz
inequality, and (b) results from the covariance inequality [10]:

K
sz;ék,q;é] prJCOV[|.fL'Z| 7‘xj| ]
K
> pind

_Z pp\/Var|z| Var ||z,
g7k Pl ! ] [ J ] i ARt

The covariance inequality (c) always holds because the co-
variance matrix of a random vector x is a real symmetric
matrix [5], and it is therefore positive-definite when we define
T =[T1, Th1,Tht1," ,xK]T. We then determine the
scaling laws of (4) according to M and K. Since sjk| u?k‘Q
increases with O(M?), di increases with O(K2*M°) and
then (4) increases with O(K*M°®) as M, K — oo. Further,
given that fi;, and 67 respectively increase with O(KM?)
and O(K?M?3) as proved in [5], by in (3) decreases with
O(4z577) as M, K — oco. Then, the numerator and denom-
inator of the upper bound of (3) decrease with O(zst70)
and O(W) respectively, as M, K — oo. Therefore,
the upper bound of (3) decreases with O(+) and eventually
reaches zero as K — oo. In conclusion, (2) is satisfied and
> & biIi, approximately follows a Gaussian distribution. Given
that by [;; is a random variable independent across k, we can
ultimately obtain the distribution of ), by I} for large A
and K, as follows: >, bpli ~ N (X, brfir,, > bi&%@).
For large M and K, we have the following numerically
accurate approximation: R = Zk ar—byI. Therefore, R ~
N (X, ax—brfir, >, bza7, ) , which completes the proof.
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