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Abstract—The effective operation of time-critical Internet of
things (IoT) applications requires real-time reporting of fresh
status information of underlying physical processes. In this paper,
a real-time IoT monitoring system is considered, in which the IoT
devices sample a physical process with a sampling cost and send
the status packet to a given destination with an updating cost.
This joint status sampling and updating process is designed to
minimize the average age of information (AoI) at the destination
node under an average energy cost constraint at each device. This
stochastic problem is formulated as an infinite horizon average
cost constrained Markov decision process (CMDP) and trans-
formed into an unconstrained Markov decision process (MDP)
using a Lagrangian method. For the single IoT device case, the
optimal policy for the CMDP is shown to be a randomized
mixture of two deterministic policies for the unconstrained MDP,
which is of threshold type. This reveals a fundamental tradeoff
between the average AoI at the destination and the sampling
and updating costs. Then, a structure-aware optimal algorithm
to obtain the optimal policy of the CMDP is proposed and
the impact of the wireless channel dynamics is studied while
demonstrating that channels having a larger mean channel gain
and less scattering can achieve better AoI performance. For the
case of multiple IoT devices, a low-complexity semi-distributed
suboptimal policy is proposed with the updating control at the
destination and the sampling control at each IoT device. Then,
an online learning algorithm is developed to obtain this policy,
which can be implemented at each IoT device and requires only
the local knowledge and small signaling from the destination.
The proposed learning algorithm is shown to converge almost
surely to the suboptimal policy. Simulation results show the
structural properties of the optimal policy for the single IoT
device case; and show that the proposed policy for multiple IoT
devices outperforms a zero-wait baseline policy, with average AoI
reductions reaching up to 33%.

Index Terms—Internet of things, status update, age of informa-
tion, Markov decision processes, structural analysis, distributed
stochastic learning.

I. INTRODUCTION

With the rapid proliferation of the Internet of Thing (IoT)
devices, delivering timely status information of the underlying
physical processes has become increasingly critical for many
real-world IoT and cyber-physical system applications [2],
[3], such as environment monitoring in sensor networks and
vehicle tracking in smart transportation systems. Given the
criticality of IoT applications, it is imperative to maintain the
status information of the physical process at the destination
nodes as fresh as possible, for effective monitoring and control.
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To quantify the freshness of the status information of the
physical process, the concept of age of information (AoI) has
been proposed as a key performance metric [4] that quantifies
the time elapsed since the generation of the most recent
IoT device status packet received at a given destination. In
contrast to conventional delay metrics, which measure the
time interval between the generation and the delivery of each
individual packet, the AoI considers the packet delay and
the generation time of each packet, and, hence, characterizes
the freshness of the status information from the perspective
of the destination. Therefore, optimizing the AoI in an IoT
would lead to distinctively different system designs from those
used for conventional delay optimization. For example, it has
been shown that the last-come-first-served (LCFS) principle
achieves a lower AoI than the conventional first-come-first-
served (FCFS) principle [5].

The problem of minimizing the AoI has attracted signif-
icant recent attention [4]–[17]. Generally, these works can
be classified into two broad groups based on the model of
the generation process of the status packets. The first group
[4]–[10] models the generation process of the status packets
as a queueing system in which the status packets arrive at
the source node stochastically and are queued before being
forwarded to the destination. Queueing theory has also been
used to analyze and optimize the average AoI for FCFS
[4] and LCFS systems [5]. The works in [6]–[8] propose
scheduling schemes that seek to minimize the average AoI
in wireless broadcast networks. In [9] and [10], the authors
study the problem of AoI minimization in wireless multiaccess
networks and propose decentralized scheduling policies with
near-optimal performance. In the second group of works [11]–
[16], the status packets can be generated at any time by the
source node. The authors in [11] and [12] propose optimal
updating policies to minimize the average AoI for status
update systems, with a single source and multiple sources,
respectively. In [13]–[15], the authors propose optimal status
updating schemes for an energy harvesting source to minimize
the average AoI. The authors in [16] introduce an optimal
status updating scheme to minimize the average AoI under
resource constraints. Motivated by recent research on AoI, the
authors in [17] study the remote estimation problem for a
Wiener process and propose an optimal sampling policy to
minimize the estimation error.

In the existing literature, e.g., [4]–[17], the source node is
usually required to perform simple monitoring tasks, such as
reading a temperature sensor, and, hence, the cost for gen-
erating status packets is assumed to be negligible. However,
next-generation IoT devices can now perform more complex
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tasks1, such as initial feature extraction and classification for
computer vision applications, by using neural networks and
on-device artificial intelligence [19], [20]. For such applica-
tions, generating the status update packets incurs energy cost
for the IoT devices. Moreover, compared to the status packets
generated for simple monitoring tasks (e.g., a temperature
reading), a generated status packet for sophisticated artificial
intelligence tasks carries richer information on the underlying
physical systems (e.g., objects detected in an image or video
sequence). Therefore, there will also incur some energy cost
and time delay for transmitting those status packets with
relatively large size to the destination node. In presence of the
energy cost pertaining to the sampling and updating processes,
a key open problem is to study how to intelligently sample
the underlying physical systems and send status packets to
the destination, in order to minimize the AoI.

The main contribution of this paper is, thus, to jointly design
the status sampling and updating processes that can minimize
the average AoI at the destination under an average energy
cost constraint for each IoT device, by taking into account
the energy cost for generating and updating status packets. In
particular, our key contributions include:

≤ For the single IoT device case, we formulate this stochas-
tic control problem as an infinite horizon average cost
constrained Markov decision process (CMDP) and trans-
form the CMDP into a parameterized unconstrained
Markov decision process (MDP) using a Lagrangian
method. We show that the optimal policy for the CMDP
is a randomized mixture of two deterministic policies for
the unconstrained MDP. By using the special properties
of the AoI dynamics, we derive key properties of the
value function for the unconstrained MDP. Based on
these properties, we show that the optimal sampling and
updating process for the unconstrained MDP is threshold-
based with the AoI state at the device and the AoI state
at the destination. This reveals a fundamental tradeoff
between the average AoI at the destination and the sam-
pling and updating costs. Then, we propose a structure-
aware optimal algorithm to obtain the optimal policy for
the CMDP. We also study the influence of the wireless
channel fading distribution on the optimal average AoI
at the destination. By using the concept of stochastic
dominance, we show that channels having a larger mean
channel gain and less scattering can achieve better AoI
performance.

≤ For the case of multiple IoT devices, to obtain the optimal
sampling and updating policy, we also formulate a CMDP
and convert it to an unconstrained MDP. We show that
the optimal sampling and updating policy, which adapts
to the AoI and channels states of all IoT devices, is a
function of the Q-factors of the unconstrained MDP. To
overcome the curse of dimensionality and to distribute
the system’s controls, we propose a low-complexity semi-
distributed suboptimal policy by approximating the opti-

1One practical example is the Nest Cam IQ indoor security camera, which
uses on-device vision processing to watch for motion, distinguish family
members, and send alerts if someone is not recognized [18].

Fig. 1: Illustration of a real-time monitoring system with a
single IoT device.

mal Q-factors into the sum of per-device Q-factors, based
on approximate dynamic programming. Then, we propose
an online learning algorithm that allows each device to
learn its per-device Q-factor, which requires only the
knowledge of the local AoI and channel states, as well as
small signaling from the destination. The proposed semi-
distributed online learning algorithm is shown to converge
almost surely to the proposed suboptimal policy.

≤ We provide extensive simulations to illustrate additional
structural properties of the optimal policy for the sin-
gle device case. We show that the optimal thresholds
for sampling and updating are non-decreasing with the
sampling cost and the updating cost, respectively, and the
optimal action is also threshold-based with respect to the
channel state. For the case of multiple devices, numerical
results show that the proposed semi-distributed policy
outperforms a zero-wait baseline policy (i.e., sampling
immediately after updating), with average AoI reductions
reaching up to 33%. In summary, the derived results
provide novel and holistic insights on the design of AoI-
aware sampling and updating in practical IoT systems.

The rest of this paper is organized as follows. In Section
II, we present the single IoT device model and analyze its
properties. In Section III, we present the analysis for the case
of multiple IoT devices using online learning. Section IV
presents and analyzes numerical results. Finally, conclusions
are drawn in Section V.

II. OPTIMAL SAMPLING AND UPDATING CONTROL FOR A
SINGLE IOT DEVICE

A. System Model

Consider a real-time IoT monitoring system composed of
a single IoT device and a destination node (e.g., a base
station or control center), as illustrated in Fig. 1. The IoT
device encompasses a sensor which can monitor the real-time
status of a physical process (referred to hereinafter as status
sampling) and a transmitter which can send status information
packets to the destination through a wireless channel (referred
to hereinafter as status updating). For the status sampling
process, different from the existing literature where the device
is usually assumed to perform simple sampling tasks [4]–[17],
e.g., temperature and humidity monitoring, here, we consider
that the IoT device can perform more sophisticated tasks, e.g.,
initial feature extraction and pre-classification using machine
learning and neural network tools. Hence, the time for status
sampling and updating is not negligible and there will be some
associated energy expenditures, which constrain the operation
of the IoT device.
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We consider a time-slotted system with unit slot length
(without loss of generality) that is indexed by t = 1, 2, × × × .
Let h)t[ ∅ H be the channel state, representing the channel
gain at slot t, where H is the finite channel state space.
We assume a block fading wireless channel over all time
slots and we consider an i.i.d. channel state process }h)t[|
that is distributed according to a general distribution pH)h[.
Note that, the analytical framework and results can be readily
extended to the Markovian fading channels.

1) Monitoring Model: In each slot, the IoT device must
decide whether to generate a status packet and whether to send
to the status packet to the destination. Let s)t[ ∅ }0, 1| be the
sampling action of the device at slot t, where s)t[ = 1 indicates
that the device samples the physical process and generates a
status packet at slot t, and s)t[ = 0, otherwise. We consider that
a newly generated status packet will replace the older one at
the device, as the destination will not benefit from receiving an
outdated status update. This is similar to the LCFS principle
explored in [5]. Let Cs be the sampling cost for generating
the status packet. This cost captures the computational cost
needed for running some pre-classification algorithms using
neural network models. We assume that the status sampling
process takes one time slot. Let u)t[ ∅ }0, 1| be the update
action of the device at slot t, where u)t[ = 1 indicates that the
device sends the status packet to the destination at slot t and
u)t[ = 0, otherwise. The IoT device can only send the status
packet available locally. We denote by Cu)h[ the minimum
transmission power required by the IoT device for successfully
updating a status packet to the destination within a slot when
the channel state is h. Without loss of generality, we assume
that Cu)h[ is decreasing with h.

Let w)t[ ≜ )s)t[, u)t[[ ∅ W ≜ }0, 1| ∗ }0, 1| be the control
action vector of the IoT device at t. Then, the energy cost at
the device associated with action w)t[ is given by: C)w)t[[ ≜
s)t[Cs + u)t[Cu)h)t[[.

2) Age of Information Model: We adopt the AoI as the
key performance metric to quantify the freshness of the status
information packet [4]. The AoI is essentially defined as the
time elapsed since the generation of the last status update of
the physical process. Let Ar )t[ be the AoI at the destination
at the beginning of slot t. Then, we have Ar )t[ = t δ)t[,
where δ)t[ is the time slot during which the most up-to-date
status packet received by the destination was generated. Note
that, the IoT device can only send its currently available status
packet to the destination. Thus, the AoI at the destination
depends on the AoI at the device, i.e., the age of the status
packet at the device. Let Al)t[ be the AoI at the device at
the beginning of slot t. The AoI at the device and the AoI
at the destination are maintained by the device and can be
implemented using counters. Let Âl and Âr be, respectively,
the upper limits of the corresponding counters for the AoI at
the device and the AoI at the destination. We assume that
Âl and Âr are finite. This is due to that, for time-critical
IoT applications, it is not meaningful for the destination node
to receive a status information with an infinite age. Such
highly outdated status information will not be of any use to
the system or underlying application. Note that, the obtained
results hold for arbitrarily finite Âl and Âr , no matter how

small or large Âl and Âr are. We denote by Al ≜ }1, 2, × × × , Âl|
and Ar ≜ }1, 2, × × × , Âr | the state space for the AoI at the
device and the AoI at the destination, respectively. We also
define A)t[ ≜ )Al)t[, Ar )t[[ ∅ A as the system AoI state at the
beginning of slot t, where A ≜ Al ∗ Ar is the system AoI
state space.

For the AoI at the device, if the device samples the physical
process at slot t (i.e., s)t[ = 1), then the AoI decreases to one
(due to one slot used for status sampling), otherwise, the AoI
increases by one. Then, the dynamics of the AoI at the device
will be given by:

Al)t + 1[ =
{

1, if s)t[ = 1,
min}Al)t[ + 1, Âl|, otherwise.

. (1)

For the AoI at the destination, if the device sends the status
packet to the destination at slot t (i.e., u)t[ = 1), then the AoI
decreases to the AoI at the device at slot t plus one (due to
one slot used for status packet transmission), otherwise, the
AoI increases by one. Then, the dynamics of the AoI at the
destination will be given by:

Ar )t + 1[ =
{

min}Al)t[ + 1, Âr |, if u)t[ = 1,
min}Ar )t[ + 1, Âr |, otherwise.

. (2)

Note that, the analytical framework can be extended to the
scenario in which more than one slot are needed to generate
or send a status packet, by modifying the AoI dynamics in
(1) and (2), accordingly. Clearly, it may not be optimal for
the device to sample the physical process immediately after
updating the status. The reason is that the newly generated
status packet, if not transmitted to the destination immediately
(due to a possibly poor channel state), can become stale
and less useful for the destination, yielding energy waste for
sampling. Therefore, we are motivated to investigate how to
jointly control the sampling and updating processes so as to
minimize the AoI at the destination, under the stringent energy
constraint at the IoT device.

B. CMDP Formulation and Optimality Equation

1) CMDP Formulation: Given an observed system AoI
state A and channel state h, the IoT device determines the
sampling and updating action w according to the following
policy.2

Definition 1: A stationary sampling and updating policy π
is defined as a mapping from the system AoI and the channel
states )A, h[ ∅ A∗H to the control action of the device w ∅ W,
where π)A, h[ = w.

Under the i.i.d. assumption for the channel state process and
the AoI dynamics in (1) and (2), the induced random process
})A)t[, h)t[[| is a controlled Markov chain. Hereinafter, as
is commonly done (e.g., see [21] and [16]), we restrict our
attention to stationary unichain policies to guarantee the exis-
tence of the stationary optimal policies. For a given stationary

2Here, we consider the entire AoI state space of A. However, in practice,
one may only consider the AoI states A such that Ar � Al without sacrificing
optimality.
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unichain policy π, the average AoI at the destination and the
average energy cost will be:

Ār )π[ ≜ lim sup
T⇒∈

1
T

T∑
t=1
E ]Ar )t[¼ , (3)

C̄)π[ ≜ lim sup
T⇒∈

1
T

T∑
t=1
E ]C)w)t[[¼ , (4)

where the expectation is taken with respect to the measure
induced by the policy π.

We seek to find the optimal sampling and updating policy
that minimizes the average AoI at the destination under an
average energy cost constraint at the device, as follows:

Ā•r ≜ min
π

Ār )π[, (5a)

s.t. C̄)π[ ≥ Cmax. (5b)

Here π is a stationary unichain policy and Ā•r denotes the
minimum average AoI at the destination achieved by the
optimal policy π• under the constraint in (5b). The problem
in (5) is an infinite horizon average cost CMDP, which is to
known to be challenging due to the curse of dimensionality.

2) Optimality Equation: To obtain the optimal policy π• for
the CMDP in (5), we reformulate the CMDP into a parameter-
ized unconstrained MDP using the Lagrangian approach [22].
For a given Lagrange multiplier λ, we define the Lagrange
cost at slot t as

L)A)t[, h)t[, w)t[; λ[ ≜ Ar )t[ + λC)w)t[[. (6)

Then, the average Lagrange cost under policy π is given by:

L̄)π; λ[ ≜ lim sup
T⇒∈

1
T

T∑
t=1
E ]L)A)t[, h)t[, w)t[; λ[¼ . (7)

Now, we have an unconstrained MDP whose goal is to
minimize the average Lagrange cost:

L̄•)λ[ ≜ min
π

L̄)π; λ[, (8)

where L̄•)λ[ is the minimum average Lagrange cost achieved
by the optimal policy π•λ for a given λ. According to [21,
Theorem 1] and [23, Theorem 4.4], we have the following
relation between the optimal solutions of the problems in (5)
and (8).

Lemma 1: The optimal average AoI cost in (5a) and the
optimal average Lagrange cost in (8) satisfy:

Ā•r = max
λ�0

L̄•)λ[ λCmax. (9)

The optimal policy π• of the CMDP in (5) is a randomized
mixture of two deterministic stationary policies π•λ1

and π•λ2
,

in the form of

π• = απ•λ1
+ )1 α[π•λ2

, (10)

where α ∅ ]0, 1¼ is the randomization parameter, and π•λ1
and

π•λ2
are the optimal policies of the unconstrained MDP in (8)

under the Lagrange multipliers λ1 and λ2, respectively.
To obtain the optimal policy π• of the CMDP, according to

[24, Propositions 4.2.1, 4.2.3, and 4.2.5] (these propositions
are restated in Appendix H), we first obtain the optimal policy

π•λ for a given λ of the unconstrained MDP by solving the
following Bellman equation.

Lemma 2: For any λ, there exists )θλ, }V)A, h; λ[|[ satis-
fying:

θλ + V)A, h; λ[ = min
w∅W

{
L)A, h, w; λ[

+
∑
h′∅H

pH)h′[V)A′, h′; λ[
}
, ∀)A, h[ ∅ A ∗H, (11)

where A′ satisfies the AoI dynamics in (1) and (2), θλ = L̄•)λ[
is the optimal value to (8) for all initial state )A)1[, h)1[[, and
V)×[ is the value function which is a mapping from )A, h[
to real values. Moreover, for a given λ, the optimal policy
achieving L̄•)λ[ will be

π•λ)A, h[ = arg min
w∅W

{
L)A, h, w; λ[

+
∑
h′∅H

pH)h′[V)A′, h′; λ[
}
, ∀)A, h[ ∅ A ∗H. (12)

From Lemma 2, we can see that π•λ , which is given by (12),
depends on )A, h[ through the value function V)×[. Determining
V)×[ involves solving the Bellman equation in (11), for which
there is no closed-form solution in general [24]. Numerical
algorithms such as value iteration and policy iteration are
usually computationally impractical to implement for an IoT
due to the curse of dimensionality and they do not typically
yield many design insights. Therefore, it is desirable to analyze
the structural properties of π•λ, as we do next.

C. Structural Analysis and Algorithm Design

First, we characterize the structural properties of π•λ for the
unconstrained MDP in (8). Then, we propose a novel structure-
aware optimal algorithm to obtain the optimal policy π• for
the CMDP in (5). Finally, we study the effects of the wireless
channel fading.

1) Optimality Properties: By using the relative value itera-
tion algorithm and the special structures of the AoI dynamics
in (1) and (2), we can prove the following property.

Lemma 3: Given λ � 0, V)A, h; λ[ is non-decreasing with
Al and Ar for any h ∅ H.

Proof: See Appendix A.
Then, we introduce the state-action Lagrange cost function,

which is related to the right-hand side of the Bellman equation
in (11) and is given by:

J)A, h, w; λ[ ≜ L)A, h, w; λ[ +
∑
h′∅H

pH)h′[V)A′, h′; λ[. (13)

We now define ∆Jw,w′)A, h; λ[ ≜ J)A, h, w; λ[ J)A, h, w′; λ[.
If ∆Jw,w′)A, h; λ[ ≥ 0, we say that action w dominates action
w′ at state )A, h[ for a given λ. By Lemma 3, if w dominates
all other actions at state )A, h[ for a given λ, then we have
π•λ)A, h[ = w. Based on Lemma 3, we can obtain the following
properties of ∆Jw,w′)A, h; λ[.

Lemma 4: Given λ � 0, for any A ∅ A, h ∅ H, and
w, w′ ∅ W, ∆Jw,w′)A, h; λ[ has the following properties:
A) If w = )0, 0[, then ∆Jw,w′)A, h; λ[ is non-decreasing with

Al for w′ = )1, 0[ and non-decreasing with Ar for w′ =
)0, 1[ or )1, 1[.
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B) If w = )0, 1[ or )1, 1[, then ∆Jw,w′)A, h; λ[ is non-
increasing with Ar for any w′ , w.

C) If w = )1, 0[, then ∆Jw,w′)A, h; λ[ is non-increasing with
Al for any w′ , w.
Proof: See Appendix B.

Lemma 4 follows from the special properties of the AoI
dynamics and is essential for the characterization of the
structural properties of π•λ. The property shown in Lemma 4 is
similar to the diminishing-return property of multimodularity
functions [25]. From Lemma 4, we can see that for a given
λ and h, if action w dominates action w′ for some AoI
state A, then w still dominates w′ for another AoI A′,
provided that A and A′ satisfy certain conditions such that
∆Jw,w′)A′, h; λ[ ≥ ∆Jw,w′)A, h; λ[ ≥ 0. Before presenting
the structure of π•λ in Theorem 1, we make the following
definitions:

Φw)Ar, h; λ[ ≜ }Al †Al ∅ Al and ∆Jw,w′)A, h; λ[ ≥ 0
∀w′ ∅ W and w′ , w|, (14)

Ψw)Al, h; λ[ ≜ }Ar †Ar ∅ Ar and ∆Jw,w′)A, h; λ[ ≥ 0
∀w′ ∅ W and w′ , w|. (15)

Then, we define:

ϕ+w)Ar, h; λ[ ≜
{

maxΦw)Ar, h; λ[, if Φw)Ar, h; λ[ , ∅,
∈, otherwise,

(16)

ϕw)Ar, h; λ[ ≜
{

minΦw)Ar, h; λ[, if Φw)Ar, h; λ[ , ∅,
+∈, otherwise,

(17)

ψ+w)Al, h; λ[ ≜
{

maxΨw)Al, h; λ[, if Ψw)Al, h; λ[ , ∅,
∈, otherwise,

(18)

ψw)Al, h; λ[ ≜
{

minΨw)Al, h; λ[, if Ψw)Al, h; λ[ , ∅,
+∈, otherwise.

(19)

Theorem 1: Given λ, for any A ∅ A and h ∅ H, there exists
an optimal policy satisfying the following structural properties:
A) π•λ)A, h[ = )0, 0[, for all A ∅ A0)h; λ[ ≜ }A†Al ≥

ϕ+)0,0[)Ar, h; λ[, Ar ≥ ψ+)0,0[)Al, h; λ[|.
B) π•λ)A, h[ = )0, 1[ if Ar � ψ)0,1[)Al, h; λ[.
C) π•λ)A, h[ = )1, 0[ if Al � ϕ)1,0[)Ar, h; λ[.
D) π•λ)A, h[ = )1, 1[ if Ar � ψ)1,1[)Al, h; λ[.

Theorem 1 characterizes the structural properties of the
optimal policy π•λ of the unconstrained MDP in (8) for a
given λ. Fig. 2 illustrates the analytical results of Theorem 1,
where the optimal policy is computed numerically using policy
iteration [26, Chapter 8.6]. Fig. 2 shows that, if the AoI
state falls into the region of the black squares (i.e., A0)h; λ[),
the device will remain idle and will not sample the physical
process nor send the status update. Thus, A0)h; λ[ is referred
to as the idle region. For given Al , h, and λ, the scheduling
of )0, 1[ (or )1, 1[) is threshold-based with respect to Ar . In
other words, when Ar is small, it is not efficient to send a
new status update to the destination, as a higher updating
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Fig. 2: Structure of the optimal policy π•λ for a given Lagrange
multiplier λ and channel state h. Âl = Âr = 10. Cs = 2,
Cu)h[ = 3.5(h, where h = 1, 2, Cmax = 3.

cost per age is consumed. Meanwhile, when Ar is large, it
is more efficient to update the status, as the status packet at
the destination becomes more outdated. For given Ar , h, and
λ, the scheduling of )1, 0[ is threshold-based with respect to
Al . Hence when Al is small, it is not efficient to sample
the physical process, as a higher sampling cost per age is
incurred. In contrast, when Al is large, it is more efficient to
generate a new status packet, as the status packet at the device
becomes more outdated and less useful for the destination.
These observations indicate that the zero-wait policy (i.e.,
transmit the status packet immediately after sampling) may
be detrimental to the minimization of the AoI, because of the
energy cost constraint. This is reminiscent of the result in [11],
however, the work in [11] obtained this outcome because of
the considered random service times. These threshold-based
properties reveal a fundamental tradeoff between the AoI at
the destination and the sampling and updating costs. Such
structural properties provide valuable insights for the design of
the sampling and updating processes in practical IoT systems.
Here, we would like to emphasize that, although the threshold-
based structures may look intuitive, it is challenging to prove
these structures rigorously. This is due to the coupled two AoI
states and the special AoI dynamics. Moreover, it is not always
possible to fully characterize the structural properties of the
optimal policy, e.g., the structure with respect to h and the
structures of the thresholds, as the (generally required) key
property of the value function, i.e., the multimodularity [25],
does not hold for our value function.

2) Algorithm Design: By exploiting the results of Theo-
rem 1, we first propose a structure-aware algorithm to compute
the optimal policy π•λ for a given λ, and, then, we describe
how to update λ and obtain the optimal policy π•. Note that,
although the exact values of the thresholds in Theorem 1 rely
on the exact values of V)A, h; λ[, the threshold-based structure
only relies on the properties of V)A, h; λ[ and J)A, h, w; λ[.
These properties can be exploited to reduce the computational
complexity for obtaining the optimal policy, without knowing
the exact values of the thresholds. In particular, by properties
B)-D) in Theorem 1, we know that the optimal action for
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Algorithm 1 Structure-aware Policy Iteration Algorithm

1: Set π•λ,0)A, h[ = )0, 0[ for all )A, h[ ∅ A ∗ H, select
reference state )A/, h/[, and set m = 0.

2: (Policy Evaluation) Given policy π•λ,m, compute the value
θλ,m and value function Vm)A, h[ from the linear system
of equations3{{{{{{
θλ,m + Vm)A, h; λ[ = L)A, h, π•λ,m)A, h[; λ[

+
∑

h′∅H pH)h′[Vm)A′, h′; λ[, ∀)A, h[
Vm)A/, h/; λ[ = 0

,

(21)
where A′ satisfies the AoI dynamics in (1) and (2) under
the action π•λ,m)A, h[.

3: (Structured Policy Improvement) Find a new policy π•λ,m+1
for each A ∅ A and h ∅ H, where for each )A, h[ ∅ A∗H,
π•λ,m+1)A, h; λ[ is such that:
if π•λ,m+1))Al, Ar 1[, h; λ[ = )0, 1[, then
π•λ,m+1)A, h; λ[ = )0, 1[.
else if π•λ,m+1))Al 1, Ar [, h; λ[ = )1, 0[, then
π•λ,m+1)A, h; λ[ = )1, 0[.
else if π•λ,m+1))Al, Ar 1[, h; λ[ = )1, 1[, then
π•λ,m+1)A, h; λ[ = )1, 1[.
else

π•λ,m+1)A, h; λ[ = arg min
w∅W

{
L)A, h, w; λ[

+
∑
h′∅H

pH)h′[Vm)A′, h′; λ[
}
. (22)

4: Go to Step 2 until µ•
l+1 = µ

•
l
.

a certain system state is still optimal for some other system
states. In particular, we can see that, for all A and h,{{{{{{

π•λ)Al, Ar, h[ = )0, 1[ ′ π•λ)Al, Ar + 1, h[ = )0, 1[,
π•λ)Al, Ar, h[ = )1, 0[ ′ π•λ)Al + 1, Ar, h[ = )1, 0[,
π•λ)Al, Ar, h[ = )1, 1[ ′ π•λ)Al, Ar + 1, h[ = )1, 1[.

(20)
Therefore, to find π•λ, we only need to minimize in the right-
hand side of (12) for some A, rather than for all A, which
reduces the computational complexity. By incorporating (20)
into a standard policy iteration algorithm, we can develop
a structure-aware policy iteration algorithm, as shown in
Algorithm 1. It can be seen that Algorithm 1 is a monotone
policy iteration algorithm (see an example in [26, Chapter
8.11.2]), and thus, converges to the optimal policy π•λ [26,
Theorem 8.6.6] (restated in Appendix H). Note that, when
one of the “if” conditions in Step 3 of Algorithm 1 is satisfied
for a certain system state, we can determine the optimal
action immediately, without performing the minimization in
(22). The computational complexity saving for each iteration
in Algorithm 1 is O)†M†)†A† †H†[2[ [27]. This is reasonable
since the complexity saving grows exponentially with the state
space.

From (10), we know that obtaining π• requires computing
the two Lagrange multipliers λ1 and λ2, and the randomization

3The solution to (21) can be derived using Gaussian elimination or the
relative value iteration method [24].

parameter α. As in [23] and [28], we set λ1 = λ• η and
λ2 = λ• + η, where the perturbation parameter η is some
small constant and λ• is the optimal Lagrange multiplier
satisfying λ• = min}λ : C̄)π•λ[ ≥ Cmax|. By using the Robbins-
Monro algorithm [29], which is a stochastic gradient-based
algorithm, the Lagrange multiplier is updated according to
λm+1 = λm + ϵm

(
C̄)π•λm

[ Cmax
)
, where the step ϵm =

1
m

and λ1 is initialized with a sufficiently large number. The
generated sequence }λm| converges to the optimal Lagrange
multiplier λ• [29]. Then, the randomization parameter α is
given by: α = )Cmax C̄)π•λ2

[[()C̄)π•λ1
[ C̄)π•λ2

[[. Here, α
is chosen such that αC̄)π•λ1

[ + )1 α[C̄)π•λ2
[ = Cmax. Then,

for some perturbation parameter η, by [23, Theorem 4.3], we
have that π• = απ•λ1

+ )1 α[π•λ2
is the optimal policy for the

CMDP. Note that, α is guaranteed to lie in )0, 1[ since C̄)π•λ[ is
non-increasing with λ [23]. So far, we have characterized the
structural properties of the optimal policy π•λ and developed a
structure-aware optimal algorithm.

3) Effects of Wireless Channel Dynamics: Next, we study
the influence of the wireless channel fading distribution on
the optimal average AoI at the destination. The results are
established by using the stochastic dominance relations of ran-
dom variables. From [21] and [30], we present the following
definition.

Definition 2: Let x)γ[ be a random variable with the
support on the set X according to a probability measure
µ)γ[ parameterized by some γ. x)γ1[ is said to stochastically
dominate x)γ2[ on the set of functions F, or x)γ1[ ⪰F x)γ2[, if
E] f )x)γ1[[¼ � E] f )x)γ2[[¼, for all functions f ∅ F. If F is the
set of increasing functions, then ⪰F corresponds to the first-
order stochastic dominance. If F is the set of increasing and
concave functions, then ⪰F corresponds to the second-order
stochastic dominance.

Consider two channels I and J. Let hI ∅ H and hJ ∅ H

be random variables with the fading distributions pI
H
)h[ and

pJ
H
)h[ for channels I and J, respectively.

Theorem 2: If hI first-order stochastically dominates hJ ,
then we have

ĀI•
r ≥ ĀJ•

r , (23)

where ĀI•
r and ĀJ•

r are the optimal average AoI at the
destination under channels I and J, respectively.

Proof: See Appendix D.
Theorem 2 demonstrates that channels with larger mean

channel gain can achieve smaller AoI at the destination
under the same resource constraint. Following the proof of
Theorem 2, we have the following corollary for second-order
stochastically dominating channels.

Corollary 1: If hI second-order stochastically dominates hJ

and Cu)h[ is decreasing and convex with h, then the optimal
average AoI at the destination under channel I is smaller than
that under channel J, i.e., ĀI•

r ≥ ĀJ•
r .

Note that, for the transmission cost Cu)h[ defined according
to the Shannon’s formula (e.g., in [21]), it can be easily
seen that Cu)h[ satisfies the conditions of Corollary 1. If
hI has the same mean as hJ , by Definition 2, the second-
order stochastic dominance of hJ over Cu)h[ indicates that hI

has smaller variance (i.e., less scattering) than hJ . Therefore,
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Corollary 1 reveals that channels with less scattering and the
same mean channel gain can achieve a smaller AoI at the
destination under the same resource constraint. The results
obtained in Theorem 2 and Corollary 1 reveal the fundamental
monotone dependency of the optimal AoI at the destination on
the transmission probability distribution of the CMDP in (5).

Thus far, we have analyzed the optimality properties for the
case of a single IoT device so that to gain a deep understanding
of the behavior of the optimal sampling and updating policy
for the real-time monitoring system. Next, we consider a more
general scenario in which there are multiple IoT devices. For
such a scenario, the system state space is much larger than that
for the case of a single IoT device, as it grows exponentially
with the number of the devices. This hinders the structural
analysis of the optimal policy and the design of an optimal
algorithm with low-complexity. Therefore, we will focus on
the design of a low-complexity suboptimal solution for the
case of multiple IoT devices.

III. SEMI-DISTRIBUTED SUBOPTIMAL SAMPLING AND
UPDATING CONTROL FOR MULTIPLE IOT DEVICES

A. System Model and Problem Formulation

We now extend the real-time monitoring system in Section
II to a more general scenario, in which a set K of K IoT
devices sample the associated physical processes and update
the status packets to a common destination. Hereinafter, with
some notation abuse, for each IoT device k ∅ K, we denote
by Ak)t[ ≜ )Al,k)t[, Ar,k)t[[ ∅ Ak , hk)t[, and wk)t[ ≜
)sk)t[, uk)t[[ ∅ Wk the AoI state, the channel state, and the
control action vector at slot t, respectively. Under action wk)t[,
the AoI state Ak)t[ for each IoT device k is updated in the
same manner of (1) and (2). We define A)t[ ≜ )Ak)t[[k∅K ∅
A ≜ ∏

k∅K Ak , h)t[ ≜ )hk)t[[k∅K ∅ H ≜ ∏
k∅K Hk ,

and w)t[ = )wk)t[[k∅K ∅ W as the system AoI state, the
system channel state, and the system control action at slot
t, respectively. Let Cs,k and Cu,k)hk[ be the sampling cost
and the updating cost under channel state hk of IoT device
k, respectively. We assume that, the channel state processes
}hk)t[|)k ∅ K[ at the devices are mutually independent. As
in [9], we consider that, in each slot, the multiple IoT devices
cannot update their status packets concurrently; otherwise
collisions occur and no status packets will be transmitted to
the destination successfully. Thus, different from the case of
a single IoT device, the updating process of the multiple IoT
devices should be carefully scheduled to avoid such collisions.
Mathematically, we have

∑
k∅K uk)t[ ≥ 1, for all t. Then,

we define W ≜ S ∗ U as the feasible system control action
space, where S ≜ }0, 1|K and U ≜ })uk[k∅K †uk ∅ }0, 1|∀k ∅
K and

∑
k∅K uk ≥ 1|. Note that, the proposed analytical

framework and algorithm design can be readily extended to
support the orthogonal frequency division multiple access
(OFDMA) mode, in which multiple IoT devices can update
their status at the same time without collisions over different
non-overlapping channels [31].

Similar to the single device case, given an observed system
AoI state A and system channel state h, the system control
action w is derived as per the following policy.

Definition 3: A feasible stationary sampling and updating
policy π = )πs, πu[ is defined as a mapping from the system
AoI state and the system channel state )A, h[ ∅ A ∗ H to
the feasible system control action of the IoT devices w ∅ W,
where πs)A, h[ = s and πu)A, h[ = u.

Under a given stationary unichain policy π, the average AoI
at the destination and the average energy cost for each IoT
device k are respectively given by:

Ār )π[ ≜ lim sup
T⇒∈

1
T

T∑
t=1

K∑
k=1
E

[
Ar,k)t[

]
, (24)

C̄k)π[ ≜ lim sup
T⇒∈

1
T

T∑
t=1
E ]Ck)wk)t[[¼ , ∀k ∅ K, (25)

where Ck)wk)t[[ ≜ sk)t[Cs,k + uk)t[Cu,k)hk)t[[ and the expec-
tation is taken with respect to the measure induced by the
policy π.

We want to find the optimal feasible sampling and updating
policy that minimizes the average AoI at the destination, under
an average energy cost constraint for each IoT device, as
follows:

Ā•r ≜ min
π

Ār )π[, (26a)

s.t. C̄k)π[ ≥ Cmax
k , ∀k ∅ K. (26b)

To obtain the optimal policy π• in (26), we again introduce
the Lagrangian for a given vector of Lagrange multipliers λ ≜
)λk[k∅K, given by:

L̄)π;λ[ ≜ lim sup
T⇒∈

1
T

T∑
t=1
E ]L)A)t[, h)t[, w)t[;λ[¼ , (27)

where L)A)t[, h)t[, w)t[;λ[ ≜ ∑K
k=1 Ar,k)t[ + λk)Ck)wk)t[[

Cmax
k
[
)

is the Lagrange cost at slot t. Then, the corresponding
unconstrained MDP for a given λ will be:

L̄•)λ[ ≜ min
π

L̄)π;λ[, (28)

where L̄•)λ[ is the minimum average Lagrange cost achieved
by the optimal policy π•λ for a given λ. The optimal average
AoI at the destination in (26a) is given by Ā•r = maxλ L̄•)λ[.
In the following lemma, we summarize the solution to the
unconstrained MDP in (28).

Lemma 5: For any λ, there exists )θλ, }Q)A, h, u;λ[|[
satisfying:

θλ +Q)A, h, u;λ[ = min
s∅S

{
L)A, h, w;λ[

+
∑
h′∅H

pH)h′[ min
u′∅U

Q)A′, h′, u′;λ[
}
, (29)

where A′ satisfies the AoI dynamics in (1) and (2) for
each IoT device, θλ = L̄•)λ[ is the optimal value to (28)
for all initial state )A)1[, h)1[, u)1[[, and Q)×[ is the Q-factor
which is a mapping from )A, h, u[ to real values. Moreover,
for a given λ, the optimal policy achieving the optimal value
L̄•)λ[ is given by π•λ)A, h[ = )π

•
λ,s)A, h[, π

•
λ,u)A, h[[, where

π•λ,s)A, h[ attains the minimum of the right-hand side of (29)
and π•λ,u)A, h[ = arg minu∅U Q)A, h, u;λ[.

Proof: See Appendix E.
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From Lemma 5, we can see that the optimal sampling
and updating action depends on the Q-factor Q)A, h, u;λ[
and the K Lagrange multipliers. For a given λ, obtaining the
Q-factor Q)×[ requires solving the Bellman equation in (29),
which suffers from the curse of the dimensionality due to the
exponential growth of the cardinality of the system state space
(†A ∗ H† = ∏K

k=1 Amax
l,k

Amax
r,k
†Hk †). Even if we could obtain

the optimal Q-factors by solving (29), the derived control
will be centralized thus requiring a knowledge of the system
AoI states and channel states at each slot by the destination
node, which is highly undesirable. Moreover, the optimal
policy of the CMDP in (26) is a randomized stationary policy
with a degree of randomization no greater than K [32], and,
thus, may not be very suitable for practical implementations.
Note that, since we need to jointly control the sampling and
updating processes, our problem cannot be cast into a restless
multi-armed bandit problem (RMAB) [33] as is often done
in the literature4, thus rendering the existing low-complexity
solutions (e.g., [7], [8], and [9]) not applicable. Therefore,
we next introduce a novel semi-distributed low-complexity
algorithm to obtain a deterministic suboptimal sampling and
updating policy.

B. Algorithm Design

In this subsection, we first approximate the Q-factor
Q)A, h, u;λ[ by the sum of the per-device Q-factor
Qk)Ak, hk, uk ; λk[. Based on the approximated Q-factor, we
propose a semi-distributed sampling and updating policy,
inspired by [34]. Then, we develop an online learning al-
gorithm that enables each device to determine its per-device
Q-factor and the associated Lagrange multiplier based on the
observation of its AoI and channel states. Finally, we show that
the proposed semi-distributed learning algorithm converges to
the proposed suboptimal policy.

1) Semi-Distributed Sampling and Updating Control: To
reduce the complexity for obtaining the optimal Q-factor, we
adopt the linear approximation architecture [24] to approxi-
mate the Q-factor in (29) by the sum of the per-device Q-factor
Qk)Ak, hk, uk ; λk[:

Q)A, h, u;λ[ ≈
K∑
k=1

Qk)Ak, hk, uk ; λk[, (30)

where Qk)Ak, hk, uk ; λk[ satisfies the following per-device Q-
factor fixed point equation of each IoT device k for each given
λk :

θk+Qk)Ak, hk, uk ; λk[ = min
sk ∅}0,1|

{
Lk)Ak, hk, sk, uk ; λk[

+
∑

h′
k
∅Hk

pHk
)h′k[ min

u′
k
∅}0,1|

Qk)A′k, h
′
k, u
′
k ; λk[

}
,

∀)Ak, hk, uk[ ∅ Ak ∗Hk ∗ }0, 1|. (31)

Here, Lk)Ak, hk, sk, uk ; λk[ = Ar,k + λk)Ck)wk[ Cmax
k
[ is the

per-device Lagrange cost for IoT device k. Then, according to

4In general, RMAB only works for the problem with only one type of
control actions.

Lemma 5, the destination node determines the updating control
policy of all IoT devices based on the linear approximation in
(30), given by:

π̂•λ,u)A, h[ = arg min
u∅U

K∑
k=1

Qk)Ak, hk, uk ; λk[. (32)

Problem (32) can be solved by a brute-force search with
complexity of O)†U†[. In particular, each IoT device k observes
its AoI state Ak and channel state hk and reports its current
per-device Q-factor }Qk)Ak, hk, uk ; λk[, uk = 0, 1| to the
destination node. Then, the destination node determines the
system updating action û• = π̂•λ,u)A, h[ according to (32)
and broadcasts the updating action û• = )û•

k
[k∅K to the K

IoT devices. Based on the local observation of Ak and hk , as
well as the updating action û•

k
, each IoT device k decides its

sampling action ŝ•
k
, which minimizes the right-hand side of

(31):

ŝ•k = arg min
sk ∅}0,1|

{
Lk)Ak, hk, sk, û•k ; λk[

+
∑

h′
k
∅Hk

pHk
)h′k[ min

u′
k
∅}0,1|

Qk)A′k, h
′
k, u
′
k ; λk[

}
. (33)

Note that, to obtain the proposed suboptimal policy π̂•

in (32) and (33), we need to compute Qk)Ak, hk, uk ; λk[
by solving (31) for all IoT devices, which is a total of
O)∑K

k=1 Amax
l,k

Amax
r,k
†Hk †[ values. However, to obtain the optimal

policy π•, computing Q)A, h, u;λ[ by solving (29) requires a
total of O)∏K

k=1 Amax
l,k

Amax
r,k
†Hk †[ values. Therefore, the com-

plexity of the proposed suboptimal policy decreases from
exponential with K to linear with K . 5

2) Online Stochastic Learning and Convergence Analysis:
We observe that the proposed semi-distributed policy π̂•

requires the knowledge of the per-device Q-factor and the
associated Lagrange multiplier, which is challenging to obtain.
Thus, we propose an online learning algorithm to estimate
Qk)Ak, hk, uk ; λk[ and λk at each IoT device k.

For IoT device k, based on the locally observed AoI state
Ak)t[, channel state hk)t[, the updating action û•

k
)t[ from the

destination node, and the sampling action ŝ•
k
)t[, the per-device

Q-factor and the Lagrange multiplier are respectively updated
according to

Qt+1
k )Ak, hk, uk ; λtk[ = Qt

k)Ak, hk, uk ; λtk[ + ϵ
υt
k
)Ak,hk,uk [

q,k
(34)

∗
(
Fk)Ak, hk, uk, ŝ•k)t[; λ

t
k[ Fk)Ar

k, h
r
k, u

r
k, ŝ
•
k)t

r [; λtk[

Qt
k)Ak, hk, û•k ; λtk[

)
∗ 1 )Ak)t[, hk)t[, û•k)t[[ = )Ak, hk, uk[

)
,

λt+1
k = ]λtk + ϵ

t
λ,k)Ck)ŵk)t[[ Cmax

k [¼+, (35)

where 1)×[ is the indicator function, υτ
k
)Ak, hk, uk[ ≜∑t

τ=1 1))Ak)τ[, hk)τ[, û•k)τ[[ = )Ak, hk, uk[[ is the
number of updates of the state-action pair )Ak, hk, uk[
till t, Fk)Ak, hk, uk, sk ; λt

k
[ ≜ Lk)Ak, hk, sk, uk ; λt

k
[ +

5The approximation error analysis of the linear approximation in (30)
(which is a feature-based method) remains an open problem for CMDPs.
Thus, we only provide numerical comparisons to illustrate its performance in
the simulations.
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Algorithm 2 Semi-Distributed Sampling and Updating Learn-
ing Algorithm.

1: Initialization: Set t = 1. Each IoT device initializes its
per-device Q-factor Qt

k
)×[ and Lagrange multiplier λt

k
.

2: Updating control at the destination: At slot t, each IoT
device k reports }Qk)Ak)t[, hk)t[, uk ; λk)t[[, uk = 0, 1| to
the destination node. Then, the destination node deter-
mines the system updating action according to (32) and
broadcast the updating action û•)t[ = )û•

k
)t[[k∅K to the K

IoT devices.
3: Sampling control at each IoT device: Based on the

updating action u•
k
)t[, each IoT device k decides its

sampling action ŝ•
k
)t[ according to (33).

4: Per-device Q-factor and Lagrange multiplier update
at each IoT device: Based on the current observations
Ak)t[ and hk)t[, each IoT device k updates the per-device
Q-factor Qt+1

k
)Ak, hk, uk ; λt

k
[ and λt+1

k
according to (34)

and (35), respectively.
5: Set t → t + 1 and go to Step 2 until the convergence of

Qt
k
)×[ and λt

k
.

∑
h′
k
∅Hk

pHk
)h′

k
[minu′

k
∅}0,1| Qt

k
)A′

k
, h′

k
, u′

k
; λt

k
[ with

A′
k

and Ak satisfying the relations in (1) and (2),
)Ar

k
, hr

k
, ur

k
[ is some fixed reference state-action pair,

tr ≜ sup}t †)Ak)t[, hk)t[, û•k)t[[ = )Ar
k
, hr

k
, ur

k
[|, and

]x¼+ = max}x, 0|. }ϵ t
q,k
| and }ϵ t

λ,k
| are the sequences

of step sizes satisfying:∑
t

ϵ tq,k = ∈, ϵ
t
q,k > 0, lim

t⇒∈
ϵ tq,k = 0,

∑
t

ϵ tλ,k = ∈, ϵ
t
λ,k > 0,

lim
t⇒∈

ϵ tλ,k = 0,
∑
t

))ϵ tq,k[
2 + )ϵ tλ,k[

2[ < ∈, and lim
t⇒∈

ϵ t
λ,k

ϵ t
q,k

= 0.

(36)

Here, (34) is formulated following the asynchronous relative
value Q-learning algorithm [35].

From (34) and (35), to implement the proposed online
learning algorithm at each IoT device, we only need the local
AoI and channel states, as well as the updating control action
from the destination. The proposed algorithm is illustrated
in Algorithm 2. It can be seen that the proposed algorithm
is essentially a grant-based uplink transmission protocol (see
examples in [36], [37]), which involves the exchange of
messages between the IoT devices and the destination node.
However, this will not incur any notable overhead, because in
each slot, each IoT device needs to only transmit a few bits to
exchange its per-device Q-factor value with the destination.
Note that, we need to update both the per-device Q-factors and
the Lagrange multipliers simultaneously. Thus, conventional
value iteration and policy iteration algorithms [24], and the
Q-learning algorithm under which the Lagrange multipliers
are determined offline [38] are not applicable to our case.

Now, we show the almost-sure convergence of Algorithm 2.
From (36), we can see that the per-device Q-factor and the
Lagrange multiplier are updated concurrently, albeit over two
different timescales [39]. During the update of the per-device
Q-factor (timescale I), we have λt+1

k
λt
k
= O)ϵ t

λ,k
[ = o)ϵ t

q,k
[,

and thus, λt
k

can be seen as quasi-static [39] when updating
Qt

k
)Ak, hk, uk ; λt

k
[ in (34). We first have the following lemma

on the convergence of the per-device Q-factor learning over
timescale I.

Lemma 6: For step sizes }ϵ t
q,k
| and }ϵ t

λ,k
| satisfy-

ing the conditions in (36), the update of the per-device
Q-factor at each IoT device k converges almost surely
to the solution of the fixed point equation in(31), un-
der any initial per-device Q-factor Q1

k
)×[ and the La-

grange multiplier vector λ, i.e., limt⇒∈Qt
k
)Ak, hk, uk ; λk[ =

Q∈
k
)Ak, hk, uk ; λk[, a.s. , ∀Ak, hk, uk, k .

Proof: See Appendix F.
During the update of the Lagrange multiplier (timescale

II) in (35), the per-device Q-factor can be seen as nearly
equilibrated [39]. Then, we have the following convergence
result.

Lemma 7: The update of the vector of the Lagrange
multipliers λ converges almost surely, i.e., limt⇒∈ λt = λ∞

a.s., where the policy under λ∞ satisfies the constraints in
(26b).

Proof: See Appendix G.
Based on Lemma 6 and Lemma 7, we summarize the con-

vergence of the proposed semi-distributed online sampling and
updating algorithm in Algorithm 2 in the following Theorem.

Theorem 3: For step sizes }ϵ t
q,k
| and }ϵ t

λ,k
| satisfying the

conditions in (36), the iterations of the per-device Q-factor and
the Lagrange multipliers in Algorithm 2 converge w.p. 1, i.e.,
)Qt

k
, λt

k
[ ⇒ )Q∈

k
, λ∈

k
[ almost surely, for each IoT device k,

where )Q∈
k
, λ∈

k
[ satisfies the fixed-point equation in (31) and

the sampling and updating policy under )Q∈
k
, λ∈

k
[ satisfies the

average energy cost constraints in (26b).
In a nutshell, we have proposed a low-complexity semi-

distributed learning algorithm to find a suboptimal sampling
and updating policy so as to minimize the average AoI at the
destination for the case of multiple IoT devices. The proposed
semi-distributed learning algorithm can be implemented at
each device, requiring only the local knowledge and simple
signaling from the destination, and, thus, is highly desirable
for practical implementations.

IV. SIMULATION RESULTS AND ANALYSIS

A. Case of A Single IoT Device

We first illustrate the structural properties of
the optimal sampling and updating policy for the
single IoT device case. In the simulations, we
set H = }0.0131, 0.0418, 0.0753, 0.1157, 0.1661,
0.2343, 0.3407, 0.6200| and the corresponding probabilities
are pH = ]1, 1, 2, 3, 3, 2, 1, 1¼(14 [40]. Similar to [40], we
assume that the updating cost is Cu)h[ = Cu(h, where
Cu = 0.2. For the sampling cost, we adopt the local-
computing model in [41] and assume that Cs = 0.2. We set
the upper limits of the AoI at the device and the AoI at the
destination Âl and Âr be 10.

Fig. 3 illustrates the effects of the sampling and updating
costs on the structural properties of the optimal policy π•λ for
a given λ as shown in Theorem 1. In particular, Fig. 3(a)
shows the relationship between the threshold ϕ)1,0[)Ar, h; λ[
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Fig. 3: Impacts of the sampling and updating costs on struc-
tures of the optimal policy π•λ for a given λ in the single
IoT device case. λ = 0.1. (a) Sampling cost. h = 0.0418. (b)
Updating cost. h = 0.1157.
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(b)

Fig. 4: Structure of the optimal policy π•λ for given Al and λ.
λ = 0.1. (a) Al = 4. (b) Al = 5.

of choosing action )1, 0[ and Ar under different sampling
costs Cs , for given h and λ. From Fig. 3(a), we can see,
ϕ)1,0[)Ar, h; λ[ is non-decreasing with Cs . This indicates that
the IoT device is unlikely to sample the physical process, if
the sampling cost is high. Fig. 3(b) shows the relationship
between ψ

u=1)Al, h; λ[ ≜ min}ψ)0,1[)Al, h; λ[, ψ)1,1[)Al, h; λ[|
and Al under different updating costs Cu , for given h and
λ. According to Theorem 1, if Ar � ψ

u=1)Al, h; λ[, then the
optimal updating action is u = 1, as π•λ)A, h[ = )0, 1[ or )1, 1[.
We observe that, ϕ)1,0[)Ar, h; λ[ is non-decreasing with Cu .
This indicates that the IoT device is not willing to send the
status packet to the destination, if the updating cost is high.

Fig. 4 shows the structure of the optimal sampling and
updating policy π•λ for given Al and λ. From Fig. 4(a) and
Fig. 4(b), we can see that the scheduling of action )0, 1[ or
action )1, 1[ is threshold-based with respect to the channel state
h. In particular, Fig. 4 shows that, if the channel state is poor,
it is not efficient for the IoT device to send the status packet
to the destination, as a high updating cost will be incurred.
Therefore, the optimal policy can fully exploit the random
nature of the wireless channel by seizing good transmission
opportunities to optimize the system performance. We also
notice that the optimal actions )0, 1[ and )1, 1[ do not concur-
rently appear in the whole state space of )Ar, h[, under a given
Al . This is due to the fact that the decisions of choosing )0, 1[
or )1, 1[ are threshold-based with respect to Ar and h, as seen
in the upper right corners of Fig. 4(a) and Fig. 4(b).
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Fig. 5: Performance comparison among the optimal policy, the
proposed semi-distributed policy, and the zero-wait baseline
policy. K = 2, Amax

l,k
= Amax

r,k
= 20, ∀k = 1, 2.
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Fig. 6: Performance comparison between the proposed semi-
distributed policy and the zero-wait baseline policy. Cmax

k
=

0.3, ∀k. Amax
l,k
= Amax

r,k
= 100, ∀k. (a) Average per-device AoI

at the destination. (b) Average per-device energy cost.

B. Case of Multiple IoT Devices

Next, we evaluate the performance of the proposed semi-
distributed online sampling and updating policy in Algo-
rithm 2. The system parameters are analogous to those for
the single IoT device case. For each device k, the sampling
cost Cs,k is randomly selected from ]0.2, 0.3¼ and the updating
cost is Cu,k)hk[ = Cu,k(hk , where Cu,k is randomly selected
from ]0.2, 0.3¼. We assume that the channel statistics of all
IoT devices are the same, as given in Section IV-A. For
comparison, consider a zero-wait baseline policy, i.e., in each
slot, if an IoT device is scheduled to update its status packet,
then it will sample the physical process immediately, which
takes one slot. For the zero-wait baseline policy, the updating
control and the updates of the per-device Q-factors and the
Lagrange multipliers are similar to those of the proposed
suboptimal policy, i.e., Step 2 and Step 4 in Algorithm 2.
This is a commonly used baseline in the literature on AoI
minimization, e.g., see [11] and references therein.

In Fig. 5, we compare the average AoI at the destina-
tion, resulting from the optimal policy, the proposed semi-
randomized policy, and the zero-wait baseline policy, for two
IoT devices under different values of Cmax

k
. From Fig. 5, we

can see that the proposed semi-distributed policy achieves a
near-optimal performance and significantly outperforms the
zero-wait policy.
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Fig. 7: Illustration of the convergence property. The number
of IoT devices is K = 5. Amax

l,k
= Amax

r,k
= 100, ∀k.

Fig. 6 shows the average, per-device AoI at the des-
tination and the average, per-device energy cost, result-
ing from the proposed semi-distributed policy and the
zero-wait baseline policy. The simulation results are ob-
tained by averaging over 100,000 time slots. In the
simulations, for K = 10, 20, 30, 40, 50, it takes about
17000, 23000, 30000, 41000, 50000 time slots for the conver-
gence of the proposed suboptimal policy, respectively. From
Fig. 6, we can see that the proposed semi-distributed policy
can achieve up-to 20% reduction of the average AoI at the
destination over the zero-wait baseline policy, with similar
energy costs. Thus the proposed policy can make better
use of the limited energy at the IoT device. Moreover, for
both policies, we observe that, as the number of the IoT
devices increases, the average per-device AoI at the destination
increases, while the average energy cost decreases. This is due
to the fact that the transmission opportunities for each IoT
device become lower with more IoT devices.

In Fig. 7, we show the evolution of the average per-
device AoI at the destination, resulting from the proposed
semi-distributed policy and the zero-wait baseline policy,
under different Cmax

k
. The convergence of the proposed semi-

distributed learning algorithm can be clearly observed (after
about 15,000 time slots). Moreover, with the increase of Cmax

k
,

the average per-device AoI at the destination for the two
policies decreases. The performance gain of the proposed
policy over the baseline policy can be as much as 33% when
Cmax
k
= 0.3.

V. CONCLUSION

In this paper, we have studied the optimal sampling and
updating processes that enable IoT devices to minimize the
average AoI at the destination under an average energy con-
straint for each IoT device in a real-time IoT monitoring
system. We have formulated this problem as an infinite horizon
average cost CMDP and transformed it into an unconstrained
MDP. For the single IoT device case, we have shown that
the optimal sampling and updating policy is of threshold type,
which reveals a fundamental tradeoff between the average AoI
at the destination and the sampling and updating costs. Based
on this optimality property, we have proposed a structure-
aware algorithm to obtain the optimal policy for the CMDP.
We have also studied the effects of the wireless channel fading

and shown that channels with large mean channel gain and
less scattering can achieve better AoI performance. For the
case of multiple IoT devices, we have shown that the optimal
sampling and updating policy is a function of the Q-factors of
the unconstrained MDP. To reduce the complexity in obtaining
the optimal Q-factors, we have developed a semi-distributed
low-complexity suboptimal policy by approximating the opti-
mal Q-factors by a linear form of the per-device Q-factors.
We have proposed an online algorithm for each device to
estimate and learn its per-device Q-factor based on the locally
observed AoI and channel states. We have shown the almost
surely convergence of the proposed learning algorithm to the
proposed suboptimal policy. Simulation results have shown
that, for the single IoT device case, the optimal thresholds
for sampling (updating) are non-decreasing with the sampling
(updating) cost and the optimal action is threshold-based with
respect to the channel state; and the proposed semi-distributed
suboptimal policy for multiple IoT devices yields significant
performance gain in terms of the average AoI compared to
a zero-wait baseline policy. Future work will address key
extensions such as providing an approximation analysis of the
considered linear decomposition method and proposing grant-
free uplink transmission protocols.

APPENDIX

A. Proof of Lemma 3

We prove Lemma 3 using the value iteration algorithm
(VIA) and mathematical induction. First, we introduce the VIA
[24, Chapter 4.3]. For notational convenience, we omit λ in
the notation of V)A, h; λ[. For each state )A, h[ ∅ A ∗ H,
let Vm)A, h[ be the value function at iteration m. Define the
state-action cost function at iteration m as:

Jm+1)A, h, w[ ≜ L)A, h, w; λ[ +
∑
h′∅H

pH)h′[Vm)A′, h′[, (37)

where A′ is given by Lemma 2. Note that Jm+1)A, h, w[ is
related to the right-hand side of the Bellman equation in (11).
For each )A, h[, VIA calculates Vm+1)A, h[ according to

Vm+1)A, h[ = min
w∅W

Jm+1)A, h, w[, ∀l . (38)

Under any initialization of V0)A, h[, the generated sequence
}Vm)A, h[| converges to V)A, h[ [24, Proposition 4.3.1], i.e.,

lim
m⇒∈

Vm)A, h[ = V)A, h[, ∀)A, h[ ∅ A ∗H, (39)

where V)A, h[ satisfies the Bellman equation in (11). Let
π•m)A, h[ denote the control that attains the minimum of the
first term in (38) at iteration m for all A, h, i.e.,

π•m)A, h[ = arg min
w∅W

Jm+1)A, h, w[, ∀)A, h[ ∅ A ∗H. (40)

We refer to π•m = )π•s,m, π•u,m[ as the optimal policy for
iteration m.

Now, consider two AoI states, A1 = )A1
l
, A1

r [ and A2 =

)A2
l
, A2

r [. To prove Lemma 3, we only need to show that for
any A1, A2 ∅ A, such that A2

l
� A1

l
and A2

r � A1
r ,

Vm)A2, h[ � Vm)A1, h[, (41)
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holds for all m = 0, 1, × × × .
First, we initialize V0)A, h[ = 0 for all A, h. Thus, (41) holds

for m = 0. Assume that (41) holds for some m > 0. We will
prove that (41) also holds for m + 1. By (38), we have

Vm+1)A1, h[ = Jm+1

(
A1, h, π•m)A1, h[

)
)a[
≥ Jm+1

(
A1, h, π•m)A2, h[

)
)b[
= A1

r + λC)π•m)A2, h[[ +
∑
h′∅H

pH)h′[Vm)A1′
l , A1′

r , h
′[, (42)

where )a[ is due to the optimality of π•m)A1, h[ for )A1, h[
in the m-th iteration, )b[ directly follows from (37), A1′

l
=

min}π•s,m)A2, h[ + )1 π•s,m)A2, h[[)A1
l
+ 1[, Âl| and A1′

r =

min}π•u,m)A2, h[)A1
l
+ 1[ + )1 π•u,m)A2, h[[)A1

r + 1[, Âr |. By
(37) and (38), we also have

Vm+1)A2, h[ = Jm+1

(
A2, h, π•m)A2, h[

)
= A2

r + λC)π•m)A2, h[[ +
∑
h′∅H

pH)h′[Vm)A2′
l , A2′

r , h
′[, (43)

where A2′
l
= min}π•s,m)A2, h[+)1 π•s,m)A2, h[[)A2

l
+1[, Âl| and

A2′
r = min}π•u,m)A2, h[)A2

l
+1[+ )1 π•u,m)A2, h[[)A2

r +1[, Âr |.
It can be seen that A2′

l
� A1′

l
and A2′

r � A1′
r for all

possible π•m)A2, h[ ∅ W, which implies that Vm)A2′
l
, A2′

r , h
′[ �

Vm)A1′
l
, A1′

r , h
′[ by induction. Thus, we have Vm+1)A2, h[ �

Vm+1)A1, h[, i.e., (41) holds for m+1. Therefore, by induction,
we can show that (41) holds for any m. By taking limits on
both sides of (41) and by (39), we complete the proof of
Lemma 3.

B. Proof of Lemma 4

First, we derive the general relation between ∆Jw,w′)A1, h[
and ∆Jw,w′)A2, h[ for any w, w′ ∅ W, h ∅ H, and A1, A2 ∅ A.
Here, λ is also omitted in the notation of ∆Jw,w′)A1, h; λ[ for
notational convenience. By (13), we have

∆Jw,w′)A1, h[ ∆Jw,w′)A2, h[

=
(
L)A1, h, w[ +

∑
h′∅H

pH)h′[V)A1,w, h′[ L)A1, h, w′[

+
∑
h′∅H

pH)h′[V)A1,w′, h′[
)

(
L)A2, h, w[ +

∑
h′∅H

pH)h′[V)A2,w, h′[ L)A2, h, w′[

+
∑
h′∅H

pH)h′[V)A2,w′, h′[
)

=
∑
h′∅H

pH)h′[
(
V)A1,w, h′[ V)A1,w′, h′[

V)A2,w, h′[ + V)A2,w′, h′[
)
, (44)

where A1,w
l
= min}s + )1 s[)A1

l
+ 1[, Âl|, A1,w

r = min}u)A1
l
+

1[+ )1 u[)A1
r + 1[, Âr |, A1,w′

l
= min}s′+ )1 s′[)A1

l
+ 1[, Âl|,

A1,w′
r = min}u′)A1

l
+ 1[+ )1 u′[)A1

r + 1[, Âr |, A2,w
l
= min}s+

)1 s[)A2
l
+1[, Âl|, A2,w

r = min}u)A2
l
+1[+ )1 u[)A2

r +1[, Âr |,
A2,w′
l
= min}s′+ )1 s′[)A2

l
+1[, Âl|, and A2,w′

r = min}u′)A2
l
+

1[ + )1 u′[)A2
r + 1[, Âr |.

Next, based on (44), we show that ∆Jw,w′)A1, h[ is non-
decreasing with Al for w′ = )1, 0[. Consider w = )0, 0[,
w′ = )1, 0[, and A1 and A2 satisfying A1

l
� A2

1 and A1
r = A2

r .
We can see that, A1,w

l
� A2,w

l
, A1,w

r = A2,w
r , A1,w′

l
= A2,w′

l
, and

A1,w′
r = A2,w′

r . Thus, we have V)A1,w′, h′[ = V)A2,w′, h′[ and
by Lemma 3, we have V)A1,w, h′[ � V)A2,w, h′[. Therefore, by
(44), we have ∆Jw,w′)A1, h[ ∆Jw,w′)A2, h[ � 0, which com-
pletes the proof. Similarly, we can also prove the remaining
properties of ∆Jw,w′)A1, h[ in Lemma 4.

C. Proof of Theorem 1

We first prove Property A) of Theorem 1. Consider action
w = )0, 0[, action w′ = )1, 0[, channel state h, AoI state A
where Al = ϕ+)0,0[)Ar, h[. (λ is omitted here.) Note that, we
only need to consider ϕ+)0,0[)Ar, h[ > ∈. According to the
definition of ϕ+w)Ar, h[ in (16), we can see that ∆Jw,w′)A, h[ ≥
0, i.e., w dominates w′ for state )A, h[. Now, consider another
AoI state A′ where A′

l
≥ Al and A′r = Ar . By Lemma 4, we

obtain that

∆Jw,w′)A′, h[ ≥ ∆Jw,w′)A, h[ ≥ 0, (45)

i.e., w = )0, 0[ also dominates w′ = )1, 0[ for state )A′, h[.
Now, we consider w′ = )0, 1[ or )1, 1[, channel state h, AoI
state A where Al = ψ

+
)0,0[)Al, h[, AoI state A′ where A′

l
= Al

and A′r ≥ Ar . According to the definition of ψ+w)Al, h[ in (18)
and Lemma 4, we can prove that (45) still holds, i.e., w =
)0, 0[ also dominates w′ = )1, 0[ or )1, 1[ for state )A′, h[. By
the definition of A0)h[, we can see that if A ∅ A0)h[, then
w = )0, 0[ dominates all other actions, i.e., π•)A, h[ = )0, 0[.
We complete the proof of Property A).

Next, we prove Property B) of Theorem 1. Consider action
w = )0, 1[, channel state h, AoI state A where Ar =

ψ)0,1[)Al, h[. We only need consider that ψ)0,1[)Al, h[ < +∈. By
the definition of ψ)0,1[)Al, h[ in (19), we have ∆Jw,w′)A, h[ ≥ 0
for all w′ , w, i.e., π•)A, h[ = )0, 1[. Now consider another
AoI state A′ where A′

l
= Al and A′r � Ar . By Lemma 4,

we can see that ∆Jw,w′)A′, h[ ≥ ∆Jw,w′)A, h[ ≥ 0 holds for
all w′ , w, i.e., π•)A′, h[ = )0, 1[. We complete the proof
of Property B). Following the proof of Property B), we can
also prove Properties C) and D). This completes the proof of
Theorem 1.

D. Proof of Theorem 2

To prove Theorem 2, we first prove that for any channels I
and J such that hI first-order stochastically dominates hJ ,

V I )A, h; λ[ ≥ VJ )A, h; λ[, (46)

holds for all )A, h[, where V I )A, h; λ[ and VJ )A, h; λ[ are
the value functions under channels I and J, respectively.
We prove (46) through mathematical induction and the
VIA in Appendix A. Similar to Appendix A, we intro-
duce V I

m)A, h; λ[,VJ
m)A, h; λ[, J I

m)A, h, w[, JJ
m)A, h, w[, πI•m =

)πI•s,m, πI•u,m[, and πJ•m = )πJ•s,m, πJ•u,m[ for channels I and J.
Since Cu)h[ is non-increasing with h, it can be easily shown
that V I

m)A, h; λ[ and VJ
m)A, h; λ[ are non-increasing with h, by
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using induction and the VIA. To show (46), by (39), we only
need to show that

V I
m)A, h; λ[ ≥ VJ

m)A, h; λ[, (47)

holds for m = 0, 1, × × × . We initialize V I
0 )A, h; λ[ =

VJ
0 )A, h; λ[ = 0, for all )A, h[, i.e., (47) holds for m = 0.

Assume that (47) holds for some m > 0. We will show that
(47) also holds for m + 1. By (37) and (38), we have

V I
m+1)A, h; λ[ = J I

m+1

(
A, h, πI•m )A, h[; λ

)
)c[
≥ J I

m+1

(
A, h, πJ•m )A, h[; λ

)
= L)A, h, πJ•m )A, h[; λ[ +

∑
h′∅H

pI
H)h

′[V I
m)A′, h′; λ[

)d[
≥ L)A, h, πJ•m )A, h[; λ[ +

∑
h′∅H

pJH)h
′[V I

m)A′, h′; λ[

)e[
≥ L)A, h, πJ•m )A, h[; λ[ +

∑
h′∅H

pJH)h
′[VJ

m)A′, h′; λ[

= VJ
m+1)A, h; λ[, (48)

where )c[ is due to the optimality of πI•m )A, h[ for )A, h[
under channel I in the m-th iteration, )d[ is due to that hI

first-order stochastically dominates hJ and V I
m)A, h; λ[ is non-

increasing with h, )e[ follows from the induction hypothe-
sis V I

m)A, h; λ[ ≥ VJ
m)A, h; λ[, A′

l
= min}πJ•s,m)A, h[ + )1

πJ•s,m)A, h[[)Al + 1[, Âl|, and A′r = min}πJ•u,m)A, h[)Al + 1[ +
)1 πJ•u,m)A, h[[)Ar + 1[, Âr |. Thus, we prove (47) holds for
m + 1. Then, by induction and (39), we can show that (46)
holds. Based on (46), Lemma 2 and Propositions 4.3.1 in
[24], we have L̄I•)λ[ = θ Iλ ≥ θJλ = L̄J•)λ[. Finally, by
Lemma 1, we can see that ĀI•

r = maxλ�0 L̄I•)λ[ λCmax ≥
maxλ�0 L̄J•)λ[ λCmax = ĀJ•

r , which completes the proof of
Theorem 2.

E. Proof of Lemma 5
For a given λ, by Propositions 4.2.1, 4.2.3, and 4.2.5 in

[24] (see Propositions 4.2.3 and 4.2.5 in Appendix H), the
optimal average Lagrange cost for the unconstrained MDP in
(28) is the same for all initial states and the optimal policy can
be obtained by solving the following Bellman equation with
respect to )θλ, }V)A, h;λ[|[.

θλ+V)A, h;λ[ = min
w∅W

{
L)A, h, w;λ[

+
∑
h′∅H

pH)h′[V)A′, h′;λ[
}
, ∀)A, h[ ∅ A ∗H, (49)

where V)A, h;λ[ is the value function. Since π•λ)A, h[ =
)π•λ,s)A, h[, π

•
λ,u)A, h[[, we introduce the Q-factor of state

)A, h[ under updating action u as:

Q)A, h, u;λ[ ≜min
s∅S

{
L)A, h, w;λ[ +

∑
h′∅H

pH)h′[V)A′, h′;λ[
}

θλ . (50)

Thus, we have V)A, h;λ[ = minu∅U Q)A, h, u;λ[ for all )A, h[
and )θλ, }Q)A, h, u;λ[|[ satisfies the Bellman equation in (29).
We complete the proof.

F. Proof of Lemma 6

Under a unichain policy defined in Definition 3, the induced
random process })A)t[, h)t[[| is a controlled Markov chain
with a single recurrent class and possibly some transient
states [24]. According to the explanation for the condition of
Proposition 4.3.2 in [24], the condition of Lemma 2 in [34]
is satisfied for our problem. Then, by following the proofs
of Lemma 2 in [34] and Proposition 4.3.2 in [24], we can
prove the Lemma 6. The detailed proof is omitted due to page
limitations.

G. Proof of Lemma 7

Due to the separation of the two timescales of the updates
in (34) and (35), the update of the Q-factors can be regarded
as converged to Q∈

k
)λt [ under λt [39]. Then, by the theory of

stochastic approximation [34], [39], [42], the iterations of the
update of the Lagrange multiplier in (35) can be described by
the following Ordinary Differential Equation (ODE):

Ûλt = Eπ
•
λ t ]C1)ŵ1)t[[ Cmax

1 , × × × ,CK )ŵK )t[[ Cmax
K ¼, (51)

where π•
λt is the converged control policy in Algorithm 2 under

λt and the expectation is taken with respect to the measure
induced by the policy π•

λt . Denote L̄)λt [ = Eπ
•
λ t ]∑K

k=1)Ar,k +

λk)Ck)ŵk[ Cmax
k
[[¼. Since the sampling and updating actions

are discrete, we have π•
λt = π

•
λt+δλ

. By chain rule, it can be

seen that ∂L̄)λt [
∂λt

k

= Eπ
•
λ t ]Ck)ŵk)t[[ Cmax

k
¼. Thus, the ODE in

(51) can be expressed as Ûλt = ▽L̄)λt [. Therefore, the ODE
in (51) will converge to arg max L̄)λ∈[, which corresponds
to ▽L̄)λ∈[ = 0. In other words, the policy under )Q∈, λ∈[
satisfies the constraint in (26b). This completes the proof.

H. Some preliminaries on MDP

Proposition 4.2.3 in [24]: Let the weak accessibility (WA)
condition hold. Then the optimal average cost is the same for
all initial states.

Proposition 4.2.5 in [24]: If all stationary policies are
unichain, the WA condition holds.

Theorem 8.6.6 in [26]: Suppose all stationary policies are
unichain, and the set of states and actions are finite, then
policy iteration converges in a finite number of iterations to
the optimal policy satisfying the Bellman equation.
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