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Fast Uplink Grant for Machine Type
Communications: Challenges and Opportunities

Samad Ali, Nandana Rajatheva, and Walid Saad

Abstract—The notion of a fast uplink grant is emerging
as a promising solution for enabling massive machine type
communications (MTCs) in the Internet of Things over cellular
networks. By using the fast uplink grant, machine type devices
(MTD) will no longer require random access (RA) channels
to send scheduling requests. Instead, uplink resources can be
actively allocated to MTDs by a base station. In this paper, the
challenges and opportunities for adopting the fast uplink grant
to support MTCs are investigated. First, the fundamentals of
fast uplink grant and its advantages over conventional scheduled
and uncoordinated access schemes are presented. Then, the key
challenges that include the prediction of the set of MTDs with
data to transmit, as well as the optimal scheduling of MTDs, are
exposed. To overcome these challenges, a two-stage approach that
includes traffic prediction and optimized scheduling is proposed.
In particular, various solutions for source traffic prediction for
periodic MTC traffic are reviewed and novel methods for event-
driven traffic prediction are proposed. For optimal allocation
of uplink grants, advanced machine learning techniques are
presented. By using the proposed solutions, the fast uplink
grant has the potential to enable cellular networks to support
massive MTCs and effectively reduce the signaling overhead and
overcome the delay and congestion challenges of conventional RA
schemes.

I. INTRODUCTION

Realizing the smart cities vision hinges on the introduction
of effective wireless solutions for pervasive Internet of Things
(IoT) connectivity [1] across both human type devices, such
as smartphones, and machine type devices (MTDs), such as
drones, sensors, and actuators. While cellular networks provide
an appealing solution for IoT connectivity, existing networks
were designed with a focus on providing high data rates to
a small number of human type devices, in the downlink.
However, as shown in Fig. 1, IoT applications will rely on a
massive number of MTDs that generate small data packets [2]
that are mostly transmitted in the uplink direction, towards a
central base station (BS). Beyond its uplink-centered nature,
machine type communications (MTCs) in the IoT will also
differ from conventional human type communications by the
heterogeneous quality-of-service (QoS) requirements of the
IoT applications, in terms of latency and reliability, two
metrics that are seen as key enablers for IoT applications
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such as smart grids, autonomous vehicles, factory automation,
and e-health. Clearly, supporting such uplink-centric MTCs,
with heterogeneous QoS needs will pose major challenges for
cellular networks that range from QoS modeling to network
optimization and multiple access [2].

One of the main challenges of cellular-enabled MTC in the
IoT is the inability of existing random access (RA) proto-
cols to support massive, short-packet transmissions. Moreover,
the dense nature of MTCs will inevitably strain the highly-
constrained resources of the RA process and, thus, render it
inefficient. The RA challenges of MTC are further exacer-
bated by the massive nature of the IoT which is expected
to encompass thousands of MTDs within a geographically
constrained area [2], [3]. Recently, there has been a surge
in the literature that focuses on optimizing RA process for
MTC (e.g., see [3] and references therein). Such works are
primarily focused on either reducing signaling overhead to
increase efficiency, or developing new backoff mechanisms to
reduce collisions. However, solutions that focus on optimizing
the signaling overhead fall short in addressing the problem
of resource congestion. Moreover, prior art [3] that addresses
the RA channel congestion problem typically does so at
the cost of increased latency. Such added latency cannot
be sustained by mission-critical IoT applications that require
reliable packet delivery within stringent deadlines. As a result,
without discounting the existing efforts on improving RA for
MTC, most of this prior art is still unsuitable to handle massive
access due to the associated signaling overhead, collisions, and
delays.

Another promising approach to integrating the IoT into
cellular systems is to use uncoordinated transmissions in
which no RA procedure is performed and the MTDs are not
scheduled [4]. For such uncoordinated access, MTDs select
a random radio resource block (RB) and transmit their data.
Even though this method reduces signaling, it still suffers from
collisions since many MTDs might select the same RB. De-
spite some recent promising solutions for this uncoordinated
access problem (e.g., see [4]), these existing approaches will
still yield high congestion and associated delays.

Clearly, from the radio access point of view, there is a need
for new solutions for MTC that can strike a balance between
fully scheduled solutions, (that are controlled and reliable but
have high signaling overhead, RA congestion, and long delays)
and fully uncoordinated solutions (that have low signaling
overhead but experience collisions and long delays).

The main contribution of this paper is to develop such a
middle-ground multiple access solution by leveraging the idea
of a fast uplink grant, a method that was proposed by 3GPP in
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Fig. 1: An illustration of an example IoT environment in which
multiple MTDs communicate with BSs connected to a cloud-
based gateway.

[5] and later approved to be in the standards [6]. In a fast up-
link grant scheme, MTDs do not send RA scheduling requests.
Instead, the BS will actively allocate uplink resources to those
MTDs. Moreover, in contrast to uncoordinated transmission,
MTDs are scheduled by the BS and, hence, collisions can be
avoided. The fast uplink grant is suitable for uplink resource
allocation in IoT applications with stationary or low-mobility
MTDs such as smart grids, smart homes, and environment
monitoring. To better understand the potential of this approach
for the IoT, first, we present the opportunities provided by
the use of the fast uplink grant for MTC. Then, we present
an overview of the associated challenges, such as predicting
which MTDs have data to transmit and properly scheduling
those MTDs. To address these problems, we first exploit
the potential of different learning methods for source traffic
prediction. In this regard, we discuss a variety of tools and
machine learning algorithms that can potentially be used to
predict both periodic and event-driven MTC traffic. We then
shed light on the use of multi-armed bandit (MAB) theory
and deep reinforcement learning (Deep RL) as effective tools
for enabling fast uplink grant allocation for massive MTC
scenarios. Even though short reviews of the fast uplink grant
are provided in [7] and [8], to the best of our knowledge,
this is the first work that analyzes how the fast uplink grant
can be effectively leveraged to solve the emerging problem of
massive MTCs.

The rest of the paper is organized as follows. Section II
overviews the cellular RA process and its challenges. The fast
uplink grant is overviewed in Section III. A two-stage fast

uplink grant approach for MTC is presented in Section IV
and conclusions are drawn in Section V.

II. RANDOM ACCESS FOR MTC: OVERVIEW AND
CHALLENGES

A. Overview of the RA Process

The RA procedure, illustrated in Fig. 2, is the first step
needed to establish an uplink connection between any cellular
device and a BS [3]. In the LTE/LTE-A RA process, upon hav-
ing data to transmit, each user selects one RA slot, randomly
from a set of available RA slots to send a scheduling request.
The number of RBs that are available for RA is limited since
RA slots share the same RBs with the uplink channel. In the
frequency domain, each RA slot is 1.08 MHz, which is equal
to 6 LTE RBs. In LTE, each RB is a frequency-time unit with
180 kHz bandwidth and 1 ms duration. In the time domain,
the time intervals for RA availability vary between every 1 ms
to every 20 ms, depending on the system configuration. Once
RA slots are available, cellular users randomly select one of
the available RA slots to send their scheduling request. If the
RA process is successful, the BS sends an RA response to
the cellular user. However, if more than one device selects the
same RA slot for sending a scheduling request, a collision
will occur. The BS will attempt to decode the scheduling
request in case of collision and will send an RA response
which is received by all the users that had used the same
RA slot. However, only the MTD whose data is successfully
decoded at the BS can continue the RA process while others
are barred and have to send a scheduling request in the next
RA opportunity. Once an RA response is received, the cellular
user will transmit a connection request to the BS. Finally,
the BS transmits contention resolutions and, subsequently, the
users transmit their data.

B. Challenges of RA in MTC

While the RA process of Section II-A is suitable for
conventional human type devices, adopting it for MTC faces
several challenges. For instance, the first challenge pertains to
the limited number of RA opportunities in a cellular network.
In fact, cellular RA resources are often much smaller than
the anticipated number of MTDs in the IoT. RA efficiency
is maximized when the number of RA opportunities is equal
to the number of competing devices. Increasing the number
of RA slots is not feasible because RA slots are allocated
in the uplink channel which has limited resources, and, there
should be a balance between the number of RBs allocated for
the RA process and the number of resources left for uplink
transmission. Hence, a small number of RA slots relative to
the number of contending devices increases the probability of
collisions. These collisions will make it impossible for the BS
to decode RA pilots which will lead to a waste of resources
and long delays since the affected MTD has to wait until the
next RA opportunity to send the scheduling request again.

The second key RA challenge pertains to the short data
packets size in MTC compared to conventional cellular ser-
vices. For example, using an RA slot (six RBs) for sending
a scheduling request to transmit a short data packet that
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might require only one RB, is highly inefficient. The signaling
overhead for RA is no longer negligible compared to the
actual size of the data packets that will be transmitted by
MTDs. Therefore, it is desirable to develop MTC scheduling
mechanisms with low signaling overhead.

C. Overview of Existing Access Solutions for MTC
To address the aforementioned challenges of RA for MTC,

several recent solutions have been proposed, as extensively
reviewed in [3]. The first class of solutions focuses on co-
ordinated transmissions. One solution that is designed for
access control in congestion situations is access class barring
(ACB) [9]. In ACB, each device has a class and under special
circumstances, some of those classes are barred from access
attempts by broadcasting an ACB parameter by the BS. While
ACB solves the problem of RA channel congestion, it can
potentially produce excessive delays due to the long waiting
times of barred MTDs. Moreover, the ACB scheme can yield
a high RA signaling overhead. Another approach to improve
RA for MTC is to use an access backoff process. In this
method, the BS encourages MTDs to not send a scheduling
request for a time duration. However, by doing so, it increases
latency. Another alternative solution is the notion of slotted RA
in which each MTD is allocated a fixed RA opportunity to
transmit only on that slot. However, slotted RA is not suitable
for massive MTC access since the periodicity of the RA slots
will be large and, hence, incurring long delays. Moreover, if an
MTD does not send an RA pilot, the RA slot is wasted. Other
methods have also been proposed for improving RA such as
pull-based RA in which MTDs wait for permissions from BS
to send RA pilots, and, priority-based RA in which specific
RA priorities are assigned for devices. A comprehensive list
of such methods and their advantages and disadvantages is
presented in [3]. However, all of these methods still exhibit
high signaling overhead, collisions, and long delays which
limits their applicability to MTC.

The second class of solutions for the access problem in
MTC focus on the uncoordinated transmissions [4], where
MTDs do not send scheduling requests. Instead, the MTDs
will select a random RB to transmit data [4]. Obviously,
this method reduces the signaling level and can potentially
increase the efficiency of the system. However, uncoordinated
MTCs will still heavily suffer from collisions since the largely
constrained uplink resources are shared among a potentially
large number of MTDs. Moreover, to realize uncoordinated
MTC in practice, there is a need to design complicated receiver
structures and retransmission mechanisms. Another major is-
sue is scalability in terms of the number of supported devices
since efficiency is maximized when the number of devices is
equal to the number of resources. Clearly, in massive MTC,
such a requirement is not met, and, hence, the performance
of the system will suffer. These drawback of uncoordinated
transmissions limit the scope of their applicability to MTC, in
general, and massive MTC, in particular.

III. FAST UPLINK GRANT

A balanced approach between a conventional coordinated
access and uncoordinated transmissions can be developed by
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Fig. 2: Comparison of the scheduling process in conventional
RA (left) and in a fast uplink grant process (right).
using the fast uplink grant, as shown in Fig. 2.

A. Fast Uplink Grant: Definition and Opportunities

The fast uplink grant was introduced in [5] as an effective
process that a cellular BS can use to select an MTD and
allocate uplink resources to it. As such, by using the fast
uplink grant, the MTDs will no longer need to perform an
RA process. Instead, whenever an MTD has data to transmit,
it can simply wait for obtaining a fast uplink grant.

The fast uplink grant presents several benefits compared
to the previously discussed approaches. First, the amount of
signaling that is required is much less than RA. This is due
to the fact that, by using the fast uplink grant:

• Only one level of signaling is performed.
• The amount of signaling is minimal since the fast uplink

grant for the entire system can be sent in one broadcast
message.

Second, in a system with a large number of devices, collisions
of RA pilots in coordinated access and packet collisions in
uncoordinated transmission can be overcome by using the fast
uplink grant. The benefits of the fast uplink grant can be
summarized as follows:

• RA congestion is mitigated.
• RA radio resources can be used to transmit uplink data

and, hence, a larger number of devices can be supported
at each time, this will also decrease the latency of the
entire system.

• Packet collisions of uncoordinated transmission are
avoided.

• The BS can satisfy the heterogeneous QoS requirements
of MTDs by performing an active allocation of the fast
uplink grant to MTDs with stricter latency requirements.

• MTDs can save energy by eliminating the need for an RA
process and for retransmission of scheduling requests in
case of RA failure.

• The RA process delay and delay of waiting for next RA
opportunity in case of collisions are eliminated.

A summary of the differences between the fast uplink grant
and conventional schemes is given in Table I.

B. Challenges of the Fast Uplink Grant

The first drawback of the fast uplink grant is the possibility
of wasting resources whenever an MTD that receives a fast
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TABLE I: Coordinated vs uncoordinated vs fast uplink grant

Signaling Collisions Latency

Coordinated High (6 RBs) +
messages 2 to 4

High (number of MTDs >>
number of RA slots)

Waiting for RA slot +
RA signaling

Uncoordinated Zero High(number of MTDs >>
number of RBs)

High (when number of
MTDs >> number of RBs)

Fast uplink grant Small (one broadcast
message for entire cell) Zero Small (a few ms if grant

is allocated on time)

uplink grant does not have data to transmit [7]. Moreover,
if the fast uplink grant is not received within the maximum
tolerable access delay of the data packets, packets will be
dropped, yielding transmission failures. This can potentially
lead to unreliable and high latency MTD transmissions. Hence,
to adopt the fast uplink grant for MTC, one of the main
challenges that must be overcome is the optimal selection
of MTDs by the BS. This MTD selection process, in turn,
faces two key challenges. First, there is a need to predict the
set of MTDs that will likely have data to transmit, at any
given time. By doing accurate predictions, the BS can solve
the problem of allocating the fast uplink grant to silent MTDs.
Once predictions are properly implemented, the BS must also
be able to determine the scheduling sequence of MTDs. This
challenge is particularly pronounced when the number of
devices significantly exceeds the number of resources. Hence,
sophisticated scheduling algorithms are needed to enable fast
uplink grant allocation. Next, we propose a two-stage approach
for leveraging the fast uplink grant for MTCs.

IV. PROPOSED TWO-STAGE SOLUTION

A. Source Traffic Prediction in MTC
As stated previously, if an MTD is selected for the fast

uplink grant and does not have data to transmit, uplink
radio resources are wasted. To address this challenge, the
BS must implement advanced traffic prediction mechanisms
to predict the set of MTDs that have data to transmit. Most
of the prior art on traffic modeling for MTC is focused on
aggregate traffic modeling at the BS. Such traffic modeling
only estimates the number of devices or the number of packets
arriving in the system. However, source traffic modeling is
a fundamentally different problem since we are interested in
precisely predicting which MTDs will enter the network. In
essence, at each time slot, the BS needs to predict which MTDs
will have traffic to send and, hence, need uplink resources.
Since the majority of MTDs are in idle mode most of the time,
such a source traffic prediction becomes more challenging.
However, such predictions for idle mode MTDs are generally
feasible in an IoT due to two facts: a) most of the MTDs
are stationary or exhibit low mobility and therefore, we can
assume that the BS has location information of the idle mode
MTDs and, b) the set of MTDs communicating with a BS
is often fixed. Alternatively, this prediction can also be done
across multiple BSs in a central controller that keeps track of
the BSs and their associated MTDs.

For traffic predictions, one must distinguish between two
types of MTC traffic: periodic reporting and event-driven
transmissions. In periodic reporting, MTDs periodically trans-
mit data packets at specific, pre-determined times. In event-
driven traffic, often, a large number of MTDs will initiate a

transmission request to provide reports on a certain IoT event.
Clearly, the prediction of event-driven traffic is much harder
than periodic traffic. Next, we present mathematical tools that
can be used to develop algorithms for prediction of both MTC
traffic types.

1) Prediction of Periodic Traffic: Many IoT applications,
such as smart metering and environment sensing, rely on
MTDs that periodically transmit sensory data generated from
the observations of the physical environment. Different appli-
cations generate heterogeneous data sizes in various durations.
These durations could be as low as a few milliseconds and up
to once a month. An MTD might also transmit data pertaining
to multiple IoT applications. This results in different data pack-
ets with different transmission intervals. Hence, the BS must
learn the exact time instances at which any given MTD will
generate its data, as well as the associated packet size. Clearly,
the BS must collect data from the past transmissions of all
MTDs and subsequently use machine learning algorithms to
predict the source traffic for each MTD. This prediction must
be precise, since some IoT applications generate data with very
strict latency requirements, as low as 10 ms. Mathematical
methods such as a non-homogeneous Poisson process (NHPP)
could be used to model the arrival rate of packets to the queue
of each MTD at different times. In an NHPP, arrivals follow a
Poisson distribution, however, at each time, the rate of arrival
is different. Such pattern analysis is called calendar-based
periodic pattern mining and models such as the sequential
association rule and the calendar association rule exist for
analyzing them (e.g, see [10]).

2) Prediction of Event-Driven Traffic: In IoT applications
that rely on event-driven MTC, whenever an event occurs, sev-
eral MTDs that detect the event must initiate data transmission
to the BS. This leads to a burst of RA scheduling requests
from a large number of MTDs. Such event-driven MTC
traffic will exacerbate the challenges pertaining to scheduling
a large number of MTDs (identified in Section II-B). Hence,
effective traffic prediction in event-driven MTCs is critical.
Naturally, predicting an IoT event that was never observed is
not possible1. However, it is possible to detect an event based
on unusual traffic generated by MTDs. If the BS, based on
the data gathered from previous IoT events, can calculate the
likelihood with which other MTDs face the same event, it will
be possible to design algorithms to predict event-driven traffic.

Here, we present novel methods that can be used for source
traffic prediction in event-driven MTCs. First, we assume that,
during past events, the BS has collected sufficient data about
the transmission of MTDs. That is, the BS knows which

1The BS can use these uncoordinated events as side information for better
aggregate scheduling or potential future predictions.
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devices were transmitting during each event along with their
order of transmission. Second, we assume that the set of
MTDs with periodic traffic is predicted and MTDs do not
send scheduling requests for periodic reporting. Hence, any
scheduling request can be considered as an event trigger and
used for detection of events. We could also consider that, once
an event happens, MTDs wait for a short period of time for
an uplink grant, if they do not receive it, they use RA. A
flowchart of decision making at MTD for RA is given in Fig.
4. Now, once an event happens, some MTDs will report it
earlier than others. The BS considers the first RA request as
an event trigger. The event-driven traffic prediction problem is
now reduced to the following question: Once a specific MTD
detects an event, which other MTDs will experience the same
event with a high probability?

Answering this question requires analysis of the data col-
lected from previous events. One natural solution is to use
probabilistic models from machine learning. Using previously
collected data, a probabilistic relationship between two MTDs
facing the same event can be calculated. Another possible
solution is to use the paradigm of causality. Causality deals
with the following problem: Given that an MTD detects
an event, which other MTDs that specific MTD statistically
causes to detect the same event. A novel method for causal
inference is based on the concept of directed information
[11] which can be used to infer causality between sequences
of random variables. Considering two sequences of random
variables, past and present values of the first sequence, and
past values of the second sequence can be used to evaluate the
present value of the second sequence. Directed information
is a powerful method that is used for prediction of seizure
in epilepsy patients and causality between neurons of the
human brain. We can model the transmission history of each
MTD with a sequence of binary random variables, where
transmitting at each time is presented by 1 and being silent
with 0. Fig. 3 presents the values of directed information
between two sequences of binary random variables with event
length 12. Directed information is calculated between pairs of
length two of the sequence X to sequence Y and vice versa.
Fig. 3 presents the amount of the flow of information between
two sequences of transmission history of MTDs which can
be used for inferring the causality and hence, source traffic
prediction. Details of this method are outlined in [12]. It is
clear from Fig. 3 that flow of information from X to Y is
higher than Y to X . Once causality is inferred, one can predict
which MTDs face the same IoT event and start allocating the
fast uplink grant to them. In Fig. 4, we present the flowchart
of an algorithm that can use event-detection in the BS for fast
uplink grant allocation. We note that the data analytics for
source traffic prediction can be performed in an offline manner
and, hence, the complexity of the source traffic prediction
algorithms is not a major concern.

B. Optimal Fast Uplink Grant Allocation

Once the set of MTDs that have data to transmit is predicted,
if the number of devices is smaller than the number of
available RBs, all the MTDs can be scheduled to transmit.
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Fig. 3: Directed information between sequences of length
two of two binary random sequences. Transmission history
of each MTD is presented by a sequence of binary random
variables. In sequence X , binary value randomly takes values
of 1 at times {1, 2, 3, 4, 6, 7, 8, 9} and in sequence Y at times
{4, 5, 6, 8, 9, 10, 11}. I(Xk,k+1 → Yk+i−1,k+i) is presented in
element (i, k) of I(X → Y ) [12].

However, if the number of MTDs exceeds the number of
available RBs at any given time, the network must select which
MTDs can be granted access. MTDs should be scheduled
based on their QoS requirements, namely, their maximum
tolerable delay. If fast uplink grants are allocated randomly, it
is possible that the network may prioritize the scheduling of
delay-tolerant MTD data, thus jeopardizing the performance
of delay-sensitive MTD data. If the BS has full knowledge
of the QoS requirements of all MTDs, this scheduling can
be performed in a centralized manner. However, in a realistic
scenario, such information might not be available to the BS
and any fast uplink grant allocation algorithm should be able
to select MTDs in an uncertain environment. Therefore, the
design of sophisticated algorithms for optimal fast uplink grant
allocation is needed. Here, we present some initial directions
toward building such scheduling algorithms that exploit recent
advances in machine learning and artificial intelligence to
optimize the allocation of fast uplink grants to MTDs [13].
Each MTD should be allowed to transmit in a given frequency
band until they finish their transmission. This can help in
dealing with various data packets sizes of IoT applications.

1) Multi-Armed Bandit Theory: MABs are a class of re-
inforcement learning (RL) problems that deal with decision
making in uncertain environments with limited or no prior
information [14]. The basic MAB problem consists of a set
of arms (available actions) that can be chosen by a decision-
making agent that plays an arm at each time and receives a
reward. The rewards are drawn from an unknown probability
distribution. The agent has no prior information about the
rewards of each arm and has to randomly select arms, observe
the rewards, and, then, try to find the best possible arm. In
MAB, the notion of regret – defined as the difference between
the best possible arm that could have been played and the
arm that is selected – is used as a measure of performance.
The main goal of any MAB algorithm is to minimize the
cumulative regret over time. To solve conventional MAB
problems, algorithms such as ε-greedy and upper confidence
bound (UCB) are often adopted [14]. There are also special
MAB problems such as sleeping MAB problems in which, at
each time, only a subset of arms is available for the agent, or
contextual MAB where at each time there is some side infor-
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Fig. 4: Flowchart of the proposed algorithm for RA decision making as implemented by any given MTD (left) and event

detection and uplink grant allocation at the BS (right).

mation provided to the decision maker. Clearly, such problems

are apropos for addressing the MTD selection problem. For

example, the sleeping MAB framework is particularly suitable

to select MTDs for the fast uplink grant, since the availability

of MTDs can change at each time. Here, we note that the

MAB reward functions can be defined in terms of the various

QoS metrics that the system seeks to optimize. A sleeping

MAB fast uplink grant allocation is presented for MTC in

[15]. In Fig. 5, we show the performance of the probabilistic

sleeping MAB method that is used to learn the maximum

tolerable access delay requirements of the MTDs in a system.

The proposed method in [15] can achieve up to three-fold

performance gain in terms of achieved access delay compared

to a random fast uplink grant allocation policy.

2) Deep Reinforcement Learning: Deep RL is used in RL

problems having an extremely large action-state space where

it is not possible to explore all the possible states and actions.

In deep RL, neural networks are used to approximate the

environment, and, for the states that were not seen before,

the neural network output determines the action [13]. To

use deep RL for MTD selection using the fast uplink grant,

one can first formulate the problem using a Markov decision

process (MDP) [14]. In this MDP formulation, each state

is a combination of the set of available MTDs and their

Fig. 5: Sleeping MABs for learning the maximum tolerable

access delay of the MTDs and optimal allocation of fast uplink

grants in terms of satisfying the QoS requirements of the IoT

applications [15].

associated QoS requirements and each MDP action is a subset

of the set of available MTDs. For each selected subset, with

some probability, some of the MTDs with have successful
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transmission, and some will fail. QoS requirements of the
failed and not selected MTDs might change due to time. In the
next time step, some new MTDs will be active. Therefore, each
action will move the system to a new state, that is the new set
of available MTDs with different QoS requirements. Clearly,
MTC scheduling problems with a large number of MTDs will
have to deal with very large action and state spaces and one
can use deep RL to find the optimal action for each given set.

V. CONCLUSION

In this paper, we have studied the potential of incorporating
the fast uplink grant as an enabler for massive MTCs in the
IoT. First, we have reviewed the challenges faced by conven-
tional access schemes in MTC and discussed the merits of the
fast uplink grant. Then, we have presented the shortcomings of
the fast uplink grant, and outlined solutions to address them.
In particular, we have elaborated on the methods for source
traffic prediction, for both periodic and event-driven traffic.
Then, we have proposed machine learning techniques for the
optimal selection of MTDs to be used in the fast uplink grant.
In a nutshell, this work can be thought of as a stepping stone
towards a better understanding of how the fast uplink grant
can be effectively leveraged for massive MTCs.
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