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Abstract We present an efficient algorithm for recent generalizations of optimal mass trans-
port theory tomatrix-valued and vector-valued densities. These generalizations lead to several
applications including diffusion tensor imaging, color image processing, and multi-modality
imaging. The algorithm is based on sequential quadratic programming. By approximating the
Hessian of the cost and solving each iteration in an inexact manner, we are able to solve each
iteration with relatively low cost while still maintaining a fast convergence rate. The core of
the algorithm is solving a weighted Poisson equation, where different efficient precondition-
ers may be employed.We utilize incomplete Cholesky factorization, which yields an efficient
and straightforward solver for our problem. Several illustrative examples are presented for
both the matrix and vector-valued cases.
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1 Introduction

The theory of optimal mass transport (OMT) [1,31,36] has proven its power and usefulness
in both theory and applications. The theory part has been developed through a sequence of
elegant papers, and the research is still going strong; see [4,7,17,19,20,25,27,30] and the
references therein. On the other hand, during the past decade, the need for applications has
engendered the fast development of efficient algorithms for OMT [2,5,6,10,15,18,22,24].
Recently, the OMT theory has been extended to study matrix-valued [9,11,26] and vector-
valued densities [12].

The mathematical approach to matrix optimal mass transport in [9,11,26] is based on the
seminal work of Benamou-Brenier [4], where optimal mass transport with quadratic cost
is recast as the problem of minimizing kinetic energy (i.e., an action integral) subject to a
continuity equation. In the matrix case, one needs to develop a non-commutative counterpart
to scalar optimal transport where probability distributions are replaced by density matrices
ρ (Hermitian positive-definite with unit trace) and where “transport” corresponds to a flow
on the space of such matrices that minimizes a corresponding action integral. The work is
motivated by a plethora of applications including spectral analysis of vector-valued time-
series, which may encode different modalities (e.g., frequency, color, polarization) across a
distributed array of sensors [28]. The associated power spectra are matrix-valued and hence
there is a need for suitable metrics that quantify distances and provide tools to average
and interpolate spectra. The generalization of the Benamou-Brenier theory is founded upon
concepts from quantum mechanics, and allows us to formulate a continuity equation for
matrix-flows, and then derive a Wasserstein distance between density matrices and matrix-
valued distributions.

Similar remarks apply to the vector-valued case in which one must also invoke some ideas
from graph theory in formulating our generalization of scalar-valued densities. See [12] for
all the details. For another approach to extending the Benamou-Brenier theory to graphs, see
[16]. The extension of mass transport theory to vector-valued data may also have far-reaching
consequences for several key problems, e.g., combining genomic and proteomic networks in
medical applications [35].

In this paper, we focus on algorithms for the numerical solution of the optimal
matrix-valued mass transport problems introduced in [9,11,26], and the vector-valued case
formulated in [12]. In [11,12], both problems are reformulated as convex optimization prob-
lems. We adopt an inexact sequential quadratic programming (SQP) method [8,29,34] to
tackle such convex optimization problems. Similar methods have been applied to scalar
optimal mass transport [18]. Recently, an efficient algorithm for the L1 counterpart of vector-
valued and matrix-valued mass transport problems was studied in [33].

The remainder of this paper is summarized as follows. Section 2 is a brief introduction
to the matrix-valued optimal transport theory. We develop the corresponding algorithm in
Sect. 3, and then the algorithm for vector-valued optimal transport is described in Sect. 4.
We conclude with several illustrative examples to demonstrate our algorithm in Sect. 5.
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2 Matrix-Valued Optimal Mass Transport

In this section, we sketch the approach [11] for which the convex optimization algorithm
given in the present note was formulated. As noted above, similar approaches to matrix-
valued OMT were formulated independently in [9,26].

2.1 Gradient on Space of Hermitian Matrices

Denote by H and S the set of n × n Hermitian and skew-Hermitian matrices, respectively.
We will assume that all of our matrices are of fixed size n × n. Next, we denote the space
of block-column vectors consisting of N elements in S and H as SN and HN , respectively.
We also let H+ and H++ denote the cones of nonnegative and positive-definite matrices,
respectively, and we use the standard notion of inner product, namely

⟨X, Y ⟩ = tr
!
X∗Y

"
,

for both H and S. For X, Y ∈ HN (SN ),

⟨X, Y ⟩ =
N#

k=1

tr
!
X∗k Yk

"
.

Given X = [X∗1, . . . , X∗N ]∗ ∈ HN (SN ), Y ∈ H (S), set

XY =

⎡

⎢⎣
X1
...

XN

⎤

⎥⎦Y :=

⎡

⎢⎣
X1Y
...

XNY

⎤

⎥⎦ ,

Y X = Y

⎡

⎢⎣
X1
...

XN

⎤

⎥⎦ :=

⎡

⎢⎣
Y X1
...

Y XN

⎤

⎥⎦ ,

and

X̄ =

⎡

⎢⎣
X∗1
...

X∗N

⎤

⎥⎦ .

For a given L ∈ HN we define

∇L : H→ SN , X (→

⎡

⎢⎣
L1X − XL1

...

LN X − XLN

⎤

⎥⎦ (1)

to be the gradient operator [9,12]. By analogy with the ordinary multivariable calculus, we
refer to its dual with respect to the Hilbert-Schmidt inner product as the (negative) divergence
operator, and this is

∇∗L : SN → H, Y =

⎡

⎢⎣
Y1
...

YN

⎤

⎥⎦ (→
N#

k

LkYk − Yk Lk, (2)
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i.e., ∇∗L is defined by means of the identity

⟨∇L X, Y ⟩ =
*
X,∇∗LY

+
.

A standing assumption throughout, is that the null space of∇L , denoted by ker(∇L), contains
only scalar multiples of the identity matrix. In this note, we use one such basis generated by
the following N = 2 components:

L1 =

⎡

⎢⎢⎢⎣

1 1 · · · 1
1 0 · · · 0
...
...
. . .

...

1 0 · · · 0

⎤

⎥⎥⎥⎦
, L2 = diag([1, 2, . . . , n − 1, 0]).

It should be noted that a different basis L will lead to a different metric and a different result.

2.2 Matrix-Valued Optimal Mass Transport

We next sketch the formulation for matrix-valued optimal mass transport proposed in [11].
Given a convex compact set E ⊂ Rm , denote

D =
,
ρ(·) ∈ H+ |

-

E
tr(ρ(x))dx = 1

.
,

D+ =
,
ρ(·) ∈ H++ |

-

E
tr(ρ(x))dx = 1

.
.

Letρ0, ρ1 ∈ D+ be twomatrix-valued densities defined on E with positive values.Adynamic
formulation of matrix-valued optimal mass transport between these two given marginals is
[11],

min
ρ∈D+,w∈Hm ,v∈SN

- 1

0

-

E

/
tr
!
ρw∗w

"
+ γ tr

!
ρv∗v

"0
dxdt, (3a)

subject to
∂ρ

∂t
+ 1

2
∇x · (wρ + ρw)− 1

2
∇∗L (vρ + ρv) = 0, (3b)

ρ(0, ·) = ρ0, ρ(1, ·) = ρ1 (3c)

with ∇x · being the standard divergence operator in Rm . We impose a Neumann zero-flux
boundary condition on the flux wρ. Note no boundary condition is needed for vρ since ∇∗L
is applied pointwise. By defining p = wρ, u = vρ, the above can be cast as a convex
optimization problem

min
ρ, p ,u

- 1

0

-

E

/
tr
!
p ρ−1 p ∗

"
+ γ tr

!
u ρ−1u ∗

"0
dxdt, (4a)

subject to
∂ρ

∂t
+ 1

2
∇x · ( p + p̄ )−

1
2
∇∗L (u − ū ) = 0, (4b)

ρ(0, ·) = ρ0, ρ(1, ·) = ρ1. (4c)

We remark that ( p + p̄ )/2 ∈ Hm and (u − ū )/2 ∈ SN , which is consistent with the domain
of ∇∗L . For the sake of brevity, the set E is taken to be the unit cube [0, 1]m .
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3 Discretization and Algorithm: Matrix-Valued Case

We follow closely the algorithmdeveloped in [18] for scalar optimalmass transport problems.
We restrict ourselves to the real-valued case, that is, H and S denote symmetric and skew-
symmetric matrices, respectively. In order to highlight the key parts of our methodology, we
first consider the discretization for the 1D case, i.e.,m = 1. In particular, we take E = [0, 1].
The algorithm extends almost verbatim to the higher dimensional setting as we will see in
Sect. 3.4.

We discretize the space-time domain [0, 1]×[0, 1] into nx ×nt rectangular cells. Denote
$i j , 1 ≤ i ≤ nx , 1 ≤ j ≤ nt as the (i, j) box. As shown in Fig. 1, we use a staggered grid
to discretize p and ρ. The variable u is, however, valued at the centers of the cells {$i j }.
This is due to the fact the quantum gradient operator ∇L doesn’t involve time or space. More
specifically,

p =
1
p i+ 1

2 , j

2
, 0 ≤ i ≤ nx , 1 ≤ j ≤ nt

ρ =
1
ρi, j+ 1

2

2
, 1 ≤ i ≤ nx , 0 ≤ j ≤ nt

u =
!
u i, j
"
, 1 ≤ i ≤ nx , 1 ≤ j ≤ nt .

Note that p i+ 1
2 , j
∈ Cn×n, ρi, j+ 1

2
∈ H+, u i, j ∈ CnN×n . The boundary values are

p 1
2 , j

= 0, p nx+ 1
2 , j

= 0, 1 ≤ j ≤ nt

and

ρi, 12
= ρ0

i , ρi,nt+ 1
2
= ρ1

i , 1 ≤ i ≤ nx .

Fig. 1 $i j
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We exclude the boundary values from the variables and denote

p =
1
p i+ 1

2 , j

2
, 1 ≤ i ≤ nx − 1, 1 ≤ j ≤ nt

ρ =
1
ρi, j+ 1

2

2
, 1 ≤ i ≤ nx , 1 ≤ j ≤ nt − 1.

3.1 Continuity Equation: Matrix-Valued Case

We use the above discretizing scheme, together with the boundary conditions to rewrite the
continuity Eq. (4b) as

D1 p + D2ρ + D3u = b. (5)

Here the linear operators D1, D2, D3 are defined as

(D1 p )i, j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2

7
p i+ 1

2 , j
+ p ∗

i+ 1
2 , j
− p i− 1

2 , j
− p ∗

i− 1
2 , j

8
/ h x , if 2 ≤ i ≤ nx − 1,

1
2

7
p 3

2 , j
+ p ∗3

2 , j

8
/ h x , if i = 1,

− 1
2

7
p nx− 1

2 , j
+ p ∗

nx− 1
2 , j

8
/ h x , if i = nx ,

(D2ρ)i, j =

⎧
⎪⎪⎨

⎪⎪⎩

1
ρi, j+ 1

2
− ρi, j− 1

2

2
/ h t , if 2 ≤ j ≤ nt − 1,

ρi, 32
/ h t , if j = 1,

−ρi,nt− 1
2
/ h t , if j = nt ,

(D3u )i, j = −
1
2
∇∗L
!
u i, j − ū i, j

"
, 1 ≤ i ≤ nx , 1 ≤ j ≤ nt .

The matrices b= (bi, j ), 1 ≤ i ≤ nx , 1 ≤ j ≤ nt carries the information of the boundary
values ρ0 and ρ1. More specifically,

bi, j =

⎧
⎪⎨

⎪⎩

ρ0
i / h t if j = 1,
−ρ1

i / h t if j = nt ,
0 otherwise.

3.2 Discretizing the Cost Function: Matrix-Valued Case

We use a combination of midpoint and trapezoidal methods to discretize the cost function.
On the volume $i j we have
-

$i j

/
tr
!
p ρ−1 p ∗

"
+ γ tr

!
u ρ−1u ∗

"0
≈ h x h t

4
tr
11
p ∗
i− 1

2 , j
p i− 1

2 , j
+ p ∗

i+ 1
2 , j
p i+ 1

2 , j

2

7
ρ−1
i, j− 1

2
+ ρ−1

i, j+ 1
2

88

+γ h x h t
2

tr
7
u ∗i, j u i, j

7
ρ−1
i, j− 1

2
+ ρ−1

i, j+ 1
2

88
.

Let A1 be the averaging operator over the spatial domain and A2 be the averaging operator
over the time domain (one needs to be careful about the boundaries). Then the cost function
(4a) may be approximated by
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*
A1
!
p ∗ ◦ p

"
, A2

!
ρ−1

"
+ a
+
h x h t +

*
u ∗ ◦ u , A2

!
ρ−1

"
+ a
+
γ h x h t , (6)

where a ≥ 0 depends only on the boundary values ρ0 and ρ1. The inverse operator and
the multiplication operator ◦ are applied block-wise. More specifically, the expressions for
A1, A2, a are

!
A1
!
p ∗ ◦ p

""
i, j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2

7
p ∗
i− 1

2 , j
p i− 1

2 , j
+ p ∗

i+ 1
2 , j
p i+ 1

2 , j

8
, if 2 ≤ i ≤ nx − 1,

1
2 p
∗
3
2 , j
p 3

2 , j
, if i = 1,

1
2 p
∗
nx− 1

2 , j
p nx− 1

2 , j
, if i = nx ,

!
A2
!
ρ−1

""
i, j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2

7
ρ−1
i, j− 1

2
+ ρ−1

i, j+ 1
2

8
, if 2 ≤ j ≤ nt − 1,

1
2ρ
−1
i, 32

, if j = 1,
1
2ρ
−1
i,nt− 1

2
, if j = nt ,

ai, j =

⎧
⎪⎨

⎪⎩

1
2

!
ρ0
i

"−1 if j = 1,
1
2

!
ρ1
i

"−1 if j = nt ,
0 otherwise.

We remark that it is important to first square then average, and first invert then average, to
guarantee stability [3,18].

3.3 Sequential Quadratic Programming (SQP)

Following the above discretization scheme, we obtain the discrete convex optimization prob-
lem

min f ( p , ρ, u ) =
*
A1
!
p ∗ p

"
, A2

!
ρ−1

"
+ a
+
h x h t +

*
u ∗u , A2

!
ρ−1

"
+ a
+
γ h x h t ,

(7a)

subject to D1 p + D2ρ + D3u = b. (7b)

The Lagrangian of this problem is

L ( p , ρ, u ) = f ( p , ρ, u ) / (h x h t )+ ⟨λ, D1 p + D2ρ + D3u −b⟩ .
The KKT condition [8,29]

∇ p L = D∗1λ + 2 p ◦ A∗1
!
A2
!
ρ−1

"
+ a
"
= 0 (8a)

∇ρL = D∗2λ− ρ−1 ◦ A∗2A1
!
p ∗ p

"
◦ ρ−1 − γρ−1 ◦ A∗2

!
u ∗u
"
◦ ρ−1 = 0 (8b)

∇u L = D∗3λ + 2γ u ◦
!
A2
!
ρ−1

"
+ a
"
= 0 (8c)

∇λL = D1 p + D2ρ + D3u −b= 0 (8d)

follow, with ◦ denoting block-wise multiplication.
Let w = ( p , ρ, u ), D = (D1, D2, D3), then at each SQP iteration we solve the system

7
Â D∗

D 0

87
δw

δλ

8
= −

7∇wL
∇λL

8
, (9)

and update w, λ using line search. In (9), by slight abuse of notation, w, λ,∇wL,∇λL are
vectorizations of the correspondingmatrices and D is thematrix version of the linear operator
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D. In principle, Problem 7 can be solved using Newton’s method. However, the mixed terms
introduce off-diagonal elements in the Hessian, which makes it forbidden for large problems.
We adopt an inexact SQP method [8]. The matrix Â is an approximation of the Hessian of
the objective function

Â =

⎛

⎝
2Bdiag

!
A∗1
!
A2
!
ρ−1

"
+ a
""

0 0
0 Bdiag (g ( p , ρ, u )) 0
0 0 2γBdiag

!
A2
!
ρ−1

"
+ a
"

⎞

⎠ .

Here Bdiag denotes block diagonal operator. More specifically,

Bdiag ([T1, T2, . . . , Tk]) =

⎡

⎢⎢⎢⎣

T1 0 · · · 0
0 T2 · · · 0
...

...
. . .

...

0 0 · · · Tk

⎤

⎥⎥⎥⎦

for a block vector of linear operators [T1, T2, . . . , Tk]. The operator g ( p , ρ, u ) is the Hessian
of f over ρ with g i, j+ 1

2
being the map

g i, j+ 1
2
(X) = ρ−1

i, j+ 1
2

!
A∗2A1

!
p ∗ p

""
i, j+ 1

2
ρ−1
i, j+ 1

2
Xρ−1
i, j+ 1

2

+ρ−1
i, j+ 1

2
Xρ−1
i, j+ 1

2

!
A∗2A1

!
p ∗ p

""
i, j+ 1

2
ρ−1
i, j+ 1

2

+γρ−1
i, j+ 1

2

!
A∗2
!
u ∗u
""
i, j+ 1

2
ρ−1
i, j+ 1

2
Xρ−1
i, j+ 1

2

+γρ−1
i, j+ 1

2
Xρ−1
i, j+ 1

2

!
A∗2
!
u ∗u
""
i, j+ 1

2
ρ−1
i, j+ 1

2
.

In each step we solve the linear system (9) in an inexact manner. There are many methods
to achieve this. In our approach, we apply the Schur complement and solve the reduced
system

DÂ−1D∗δλ = ∇λL− DÂ−1∇wL

using preconditioned conjugated gradients method with incomplete Cholesky factorization
[21] as a preconditioner. The matrix D is essentially a discretization of a divergence operator.
Therefore, solving the above system is equivalent to solving a Poisson equation. The update
for w is then given by

δw = − Â−1
!
D∗δλ + ∇wL

"
.

A merit function based line search is used [29]. Moreover, the step size is chosen to be
sufficiently small so that the positivity of ρ is preserved. One alternative approach to guar-
antee the positivity of ρ is via a projection method as discussed in [32]. One may also add
regularization terms as described in [14,23].

Remark 1 In our numerical implementation, we take advantage of the structure of ρ being
symmetric, and only save the upper triangular part of it. This is beneficial in terms of both
memory and speed.

3.4 Higher Dimensions: Matrix-Valued Case

In this section we work out higher dimensional cases, namely 2D and 3D. In practice, for the
applications we have in mind, 3D suffices.
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We begin with the 2D case. Accordingly, we have the discrete convex optimization prob-
lem

min f ( p , ρ, u ) =
=
A1x

!
p ∗x p x

"
+ A1y

1
p ∗y p y

2
, A2

!
ρ−1

"
+ a
>
h x h y h t

+
*
u ∗u , A2

!
ρ−1

"
+ a
+
γ h x h y h t

subject to D1x p x + D1y p y + D2ρ + D3u = b.

The Lagrangian of this problem is

L ( p , ρ, u ) = f ( p , ρ, u ) /
!
h x h y h t

"
+
*
λ, D1x p x + D1y p y + D2ρ + D3u −b

+
.

In the above,

ai, j,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

1
ρ0
i, j

2−1
if k = 1,

1
2

1
ρ1
i, j

2−1
if k = nt ,

0 otherwise.

and

bi, j,k =

⎧
⎪⎨

⎪⎩

ρ0
i, j/ h t if k = 1,

−ρ1
i, j/ h t if k = nt ,

0 otherwise.

It follows that the KKT conditions are

∇ p xL = D∗1xλ + 2 p x ◦ A∗1x
!
A2
!
ρ−1

"
+ a
"
= 0 (10a)

∇ p yL = D∗1yλ + 2 p y ◦ A∗1y
!
A2
!
ρ−1

"
+ a
"
= 0 (10b)

∇ρL = D∗2λ− ρ−1 ◦ A∗2
1
A1x

!
p ∗x p x

"
+ A1y

1
p ∗y p y

22
◦ ρ−1

−γρ−1 ◦ A∗2
!
u ∗u
"
◦ ρ−1 = 0 (10c)

∇u L = D∗3λ + 2γ u ◦
!
A2
!
ρ−1

"
+ a
"
= 0 (10d)

∇λL = D1 p + D2ρ + D3u −b= 0, (10e)

with ◦ denoting block-wise multiplication as before.
Let w = ( p x , p y, ρ, u ). Then at each SQP iteration, we solve the system

7
Â D∗

D 0

87
δw

δλ

8
= −

7∇wL
∇λL

8
, (11)

where D = (D1x , D1y, D2, D3). The matrix Â is an approximation of the Hessian of the
objective function

Â=

⎛

⎜⎜⎜⎝

2Bdiag
!
A∗1x

!
A2
!
ρ−1

"
+ a
""

0 0 0

0 2Bdiag
1
A∗1y

!
A2
!
ρ−1

"
+ a
"2

0 0

0 0 Bdiag (g ( p , ρ, u )) 0
0 0 0 2γBdiag

!
A2
!
ρ−1

"
+ a
"

⎞

⎟⎟⎟⎠
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The operator g ( p , ρ, u ) is the Hessian of f over ρ with g i, j,k+ 1
2
being the map

g i, j,k+ 1
2
(X) = ρ−1

i, j,k+ 1
2

1
A∗2
1
A1x

!
p ∗x p x

"
+ A1y

1
p ∗y p y

2
+ γ u ∗u

22

i, j,k+ 1
2

ρ−1
i, j,k+ 1

2
Xρ−1
i, j,k+ 1

2

+ρ−1
i, j,k+ 1

2
Xρ−1
i, j,k+ 1

2

1
A∗2
1
A1x

!
p ∗x p x

"
+ A1y

1
p ∗y p y

2
+ γ u ∗u

22

i, j,k+ 1
2

ρ−1
i, j,k+ 1

2
.

The 3D case is quite similar. Now, we have the discrete convex optimization problem

min f ( p , ρ, u ) =
=
A1x

!
p ∗x p x

"
+ A1y

1
p ∗y p y

2
+ A1z

!
p ∗z p z

"
, A2

!
ρ−1

"
+ a
>
h x h y h z h t

+
*
u ∗u , A2

!
ρ−1

"
+ a
+
γ h x h y h z h t

subject to D1x p x + D1y p y + D1z p z + D2ρ + D3u = b.

The Lagrangian of this problem is

L ( p , ρ, u ) = f ( p , ρ, u ) /
!
h x h y h z h t

"
+
*
λ, D1x p x + D1y p y + D1z p z + D2ρ + D3u −b

+
.

In the above,

ai, j,k,ℓ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

1
ρ0
i, j,k

2−1
if ℓ = 1,

1
2

1
ρ1
i, j,k

2−1
if ℓ = nt ,

0 otherwise.

and

bi, j,k,ℓ =

⎧
⎪⎨

⎪⎩

ρ0
i, j,k/ h t if ℓ = 1,

−ρ1
i, j,k/ h t if ℓ = nt ,

0 otherwise.

It follows that the KKT conditions now are

∇ p xL = D∗1xλ + 2 p x ◦ A∗1x
!
A2
!
ρ−1

"
+ a
"
= 0

∇ p yL = D∗1yλ + 2 p y ◦ A∗1y
!
A2
!
ρ−1

"
+ a
"
= 0

∇ p zL = D∗1zλ + 2 p z ◦ A∗1z
!
A2
!
ρ−1

"
+ a
"
= 0

∇ρL = D∗2λ− ρ−1 ◦ A∗2(A1x ( p ∗x p x )+ A1y( p ∗y p y)+ A1z( p ∗z p z)) ◦ ρ−1

−γρ−1 ◦ A∗2
!
u ∗u
"
◦ ρ−1 = 0

∇u L = D∗3λ + 2γ u ◦
!
A2
!
ρ−1

"
+ a
"
= 0

∇λL = D1 p + D2ρ + D3u −b= 0,

with ◦ the block-wise multiplication as earlier.
Let w = ( p x , p y, p z, ρ, u ), then at each SQP iteration we solve the system

7
Â D∗

D 0

87
δw

δλ

8
= −

7∇wL
∇λL

8
, (12)
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where D = (D1x , D1y, D1z, D2, D3). The matrix Â is an approximation of the Hessian of
the objective function

⎛

⎜⎜⎜⎜⎜⎝

2Bdiag
!
A∗1x

!
A2
!
ρ−1

"
+ a
""

0 0

0 2Bdiag
1
A∗1y

!
A2
!
ρ−1

"
+ a
"2

0

0 0 2Bdiag
!
A∗1z
!
A2
!
ρ−1

"
+ a
""

0 0 0
0 0 0

0 0
0 0
0 0

Bdiag (g ( p , ρ, u )) 0
0 2γBdiag

!
A2
!
ρ−1

"
+ a
"

⎞

⎟⎟⎟⎟⎠

The operator g ( p , ρ, u ) is the Hessian of f over ρ with g i, j,k,ℓ+ 1
2
being the map

g i, j,k,ℓ+ 1
2
(X) = ρ−1

i, j,k,ℓ+ 1
2

1
A∗2
1
A1x

!
p ∗x p x

"
+ A1y

1
p ∗y p y

2
+ A1z

!
p ∗z p z

"

+ γ u ∗u
""
i, j,k,ℓ+ 1

2
ρ−1
i, j,k,ℓ+ 1

2
Xρ−1
i, j,k,ℓ+ 1

2

+ ρ−1
i, j,k,ℓ+ 1

2
Xρ−1
i, j,k,ℓ+ 1

2

1
A∗2
1
A1x

!
p ∗x p x

"
+ A1y

1
p ∗y p y

2
+ A1z

!
p ∗z p z

"

+ γ u ∗u
""
i, j,k,ℓ+ 1

2
ρ−1
i, j,k,ℓ+ 1

2

4 Vector-Valued Optimal Mass Transport

Next we move to vector-valued optimal transport, which was proposed recently in [12]. We
briefly review the setup in this section, and refer the reader to [12] for details.

4.1 Gradients on Graphs

We consider a connected, positively weighted, undirected graph F = (V, E,W) with n
nodes labeled as i , with 1 ≤ i ≤ n, and N edges. We have that (F = −DWDT where
(F ,D,W = diag{w1, . . . ,wN } are the graph Laplacian, incidence, and weight matrices,
respectively. One can define the Laplacian in terms of a graph gradient and divergence as

(F = −∇∗F∇F ,

where

∇F : Rn → RN , x (→ W 1/2DT x

denotes the gradient operator and

∇∗F : RN → Rn, y (→ DW 1/2y

denotes its dual.
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4.2 Vector-Valued Optimal Mass Transport

We begin by considering a vector-valued density ρ on Rm , i.e., a map from E ⊂ Rm to Rn+
such that

n#

i=1

-

E
ρi (x)dx = 1.

Here the convex compact set E ⊂ Rm is a domain where the densities are defined, typically
the unit n-dimensional cube. To avoid proliferation of symbols, we denote the set of all
vector-valued densities and its interior again by D and D+, respectively. We refer to the
entries of ρ as representing density or mass of individual species/particles that can mutate
between one another while maintaining total mass. Mass transfer may only be permissible
between specific types of particles. Thus, allowable transfer can be modeled by the existence
of a corresponding edge in a graph F = (V, E,W) whose vertices in V correspond to those
individual species, see [12]. The edge weights in W can quantify cost, rate, or likelihood of
transfer.

Following the arguments in [12], this leads to the following (symmetric) Wassertein 2-
metric on vector-valued distributions: Given two given marginals ρ0, ρ1 ∈ D+ the (square)
of the Wasserstein distance is given by:

min
ρ, p ,u

- 1

0

-

E

,
p T diag(ρ)−1 p +γ u T [diag

1
DT2 ρ

2−1
+diag

1
DT1 ρ

2−1
]u
.
dxdt

(13a)

subject to
∂ρ

∂t
+ ∇x · p − ∇∗F u = 0, (13b)

ρ(0, ·) = ρ0, ρ(1, ·) = ρ1. (13c)

Here u is the “flux” on graphs, p = [ p 1, . . . , p n]T is the “momentum” (mass times velocity
vector field), the matrix D1 is the portion of the incidence matrix D containing 1’s (sources),
and D2 = D1 − D (sinks).

We note that the algorithm is very similar to that of the matrix case. For completeness,
the numerical implementation is described in detail in the “Appendix” below.

5 Numerical Experiments

Several examples are provided in this section to illustrate the effectiveness of our algorithms.
For matrix-valued densities, we present examples in both 2D and 3D settings. In contrast,
only 2D examples are studied for vector-valued densities.

5.1 Matrix-Valued Case

One motivation for matrix-valued optimal mass transport comes from diffusion tensor imag-
ing (DTI). This is a widely used technique in magnetic resonance imaging. In diffusion
images, the information at each pixel is captured in a ellipsoid, i.e., a 3× 3 positive definite
matrix, in lieu of a nonnegative number. The ellipsoids describe useful information such as
the orientations of the brain fibers.

We tested our algorithm on a synthetic data set with n = 3. The initial density is a disk
positioned at the center of the square domain and all the ellipsoids are isotropic. The terminal
density contains four quarter discs located at the corners of the square domain, and the four
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Fig. 2 Marginal distributions

components have different dominant directions. Both of them are depicted in Fig. 2. The
densities have been smoothed to have low density contrast 10. Here the density contrast
is defined to be the maximum of the ratios between the eigenvalues at different locations.
In Fig. 3, we show the optimal density flow with grid size 32 × 32 × 10 in space-time
and parameter γ = 0.01. The masses split into four components and the ellipsoids change
gradually from isotropic to anisotropic. However, the total mass is preserved along the entire
interpolation as expected.

To demonstrate the performance of our algorithm, we tested it on the same problem with
different mesh grid sizes: 16× 16× 10, 32× 32× 20, 64× 64× 40 in space-time. We set
the tolerance of the outer SQP iterations to 10−3, and that of the preconditioning conjugate
gradient solver in each iteration to 10−3. The numbers of SQP iterations for convergence are
shown in Table 1 for different mesh sizes.

We then studied the influence of density contrast and the parameter γ on the number of
iterations needed to converge. The results for density contrast 50 are shown in Table 2 with
tolerance 10−2. We can see that the number of iterations increases as we increase the density
contrast. Table 3 showcases the results for different γ values with fixed grid size 32×32×20.
We observe that the number of iterations is positively correlated with the value of γ .

Finally, we test our algorithm on a 3D data set. Table 4 displays the number of iterations
for different grid sizes with density contrast 30 and parameter γ = 0.1.

5.2 Vector-Valued Case

An important application of vector-valued optimal mass transport is color image processing.
In this cases, the vector-valued densities have three components corresponding to the inten-
sities of the three basic colors red (R), green (G) and blue (B). The masses can transfer from
one color channel to another and the cost of transferring is captured using a weighted graph
F . Here, we treat the three colors equally and take the graph to be a complete graph with
unit weights, namely, W = I and

D =

⎡

⎣
1 1 0
−1 0 1
0 −1 −1

⎤

⎦ .
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Fig. 3 Interpolation with γ = 0.01

The matrices D1,D2 in (13) are then

D1 =

⎡

⎣
1 1 0
0 0 1
0 0 0

⎤

⎦ , D2 =

⎡

⎣
0 0 0
1 0 0
0 1 1

⎤

⎦ .

The two marginal densities are depicted in Fig. 4. The initial image ρ0 is a disk located in
the center of the square in white color, i.e., all three colors have equal intensity. The terminal
distribution ρ1 is an image of four circle quarters; one at each corner in different colors. Both
the images have been smoothed to have density contrast maxk supx,y ρik(x)/ρ

i
k(y) ≈ 10.

Figure 5 illustrates the optimal interpolation using vector-valued optimal transport with grid
size 128× 128× 10 in space-time and parameter γ = 0.01. We observe that the white disk
split into four circle quarters and meanwhile the colors change gradually from white to four
different colors.

We next tested the performance of the algorithm with respect to the grid size. For this, we
consider a grid hierarchy from a coarse grid of 32×32×10 in space and time through a grid
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Table 1 Number of SQP
iterations required on different
grid sizes for density contrast 10

Grid size SQP iterations

16× 16× 10 19

32× 32× 20 27

64× 64× 40 35

Table 2 Number of SQP
iterations required on different
grid sizes for density contrast 50

Grid size SQP iterations

16× 16× 10 25

32× 32× 20 31

64× 64× 40 62

Table 3 Number of SQP
iterations required for different γ

Parameter γ SQP iterations

1 77

0.1 52

0.01 31

Table 4 Number of SQP
iterations required on different
grid sizes for 3D densities

Grid size SQP iterations

16× 16× 16× 10 19

32× 32× 32× 10 25

64× 64× 64× 10 23

Fig. 4 Marginal distributions

of 64× 64× 20 to a grid of 128× 128× 40. The parameter γ is set to be 0.01. The tolerance
for the outer SQP iteration is set to be 10−3 and in each iteration the linear equation is solved
with a relative residual of 10−2. The numbers of SQP iterations are recorded in Table 5, from
which we observe that the number of iterations needed doesn’t increase much as we increase
the size of the mesh grids.
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Fig. 5 Interpolation with γ = 0.01

Table 5 Number of SQP
iterations required on different
grid sizes for density contrast 10

Grid size SQP iterations

32× 32× 10 11

64× 64× 20 12

128× 128× 40 14

Table 6 Number of SQP
iterations required on different
grid sizes for density contrast 100

Grid size SQP iterations

32× 32× 10 24

64× 64× 20 27

128× 128× 40 32

Table 7 Number of SQP
iterations required for different γ

Parameter γ SQP iterations

1 48

0.1 42

0.01 27

We also applied the same algorithm to images with a higher density contrast 100. The
results are shown in Table 6 for different grid sizes. As can be seen from the table, increasing
the density contrast leads to an increasing of the number of SQP iterations. Again, the number
of iterations needed to achieve certain precision is affected by the parameter. In Table 7 we
display this change as a function of γ for fixed grid size 64× 64× 20 and density contrast
100.

6 Conclusions and Future Work

In this paper, we described a fast algorithm for the numerical implementation of both matrix-
valued and vector-valued versions of optimal mass transport. It is straightforward to extend
this algorithm to cover matrix-valued transport problems with unequal masses (“unbalanced
mass transport”) [13]. In the future, we intend to apply this methodology to various problems
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including diffusion tensor magnetic resonance data, biological networks, and various types
of vector-valued image data such as color and texture imagery. Finally, applying a multigrid
methodology may speed up the linear solver even further, and will be a future direction in
our research.
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7 Appendix

As in the matrix-valued case, for simplicity of exposition, we consider the discretization
in 1D case, and then describe the 2D case in Sect. 7.4 below. Thus, we take E = [0, 1],
and as before our technique extends almost verbatim to the higher dimensional setting. We
should note that the algorithm presented here in the vector-valued case is very similar to the
matrix optimal transport just described in the preceding sections. Nevertheless, for the sake
of completeness, we present the key details here.

We discretize the space-time domain [0, 1]×[0, 1] into nx ×nt rectangular cells. Denote
$i j , 1 ≤ i ≤ nx , 1 ≤ j ≤ nt as the (i, j) box. We use staggered grid to discretize p and ρ.
The variable u is, however, valued at the centers of the cells {$i j }. More specifically,

p =
1
p i+ 1

2 , j

2
, 0 ≤ i ≤ nx , 1 ≤ j ≤ nt

ρ =
1
ρi, j+ 1

2

2
, 1 ≤ i ≤ nx , 0 ≤ j ≤ nt

u =
!
u i, j
"
, 1 ≤ i ≤ nx , 1 ≤ j ≤ nt .

Note that the boundary values are

p 1
2 , j

= 0, p nx+ 1
2 , j

= 0, 1 ≤ j ≤ nt

and

ρi, 12
= ρ0

i , ρi,nt+ 1
2
= ρ1

i , 1 ≤ i ≤ nx .

We exclude the boundary values from the variables and denote

p =
1
p i+ 1

2 , j

2
, 1 ≤ i ≤ nx − 1, 1 ≤ j ≤ nt

ρ =
1
ρi, j+ 1

2

2
, 1 ≤ i ≤ nx , 1 ≤ j ≤ nt − 1.
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7.1 Continuity Equation: Vector-Valued Case

We use the preceding discretizing scheme, together with the boundary conditions to rewrite
the continuity Eq. (13b) as

D1 p + D2ρ + D3u = b. (14)

Here the linear operators D1, D2, D3 are defined as

(D1 p )i, j =

⎧
⎪⎪⎨

⎪⎪⎩

1
p i+ 1

2 , j
− p i− 1

2 , j

2
/ h x , if 2 ≤ i ≤ nx − 1,

p 3
2 , j

/ h x , if i = 1,

− p nx− 1
2 , j

/ h x , if i = nx ,

(D2ρ)i, j =

⎧
⎪⎪⎨

⎪⎪⎩

1
ρi, j+ 1

2
− ρi, j− 1

2

2
/ h t , if 2 ≤ j ≤ nt − 1,

ρi, 32
/ h t , if j = 1,

−ρi,nt− 1
2
/ h t , if j = nt ,

(D3u )i, j = −∇∗F u i, j , 1 ≤ i ≤ nx , 1 ≤ j ≤ nt .

The parameterbcarries the information of the boundary values ρ0 and ρ1. More specifically,

bi, j =

⎧
⎪⎨

⎪⎩

ρ0
i / h t if j = 1,
−ρ1

i / h t if j = nt ,
0 otherwise.

7.2 Discretization of the Cost Function: Vector-Valued Case

Let A1 be the averaging operator over the spatial domain and A2 be the averaging operator
over the time domain (as before one needs to be careful about the boundaries). Then the cost
function (13a) may be approximated by

*
A1
!
p 2
"
, A2(1/ρ)+ a

+
h x h t +

=
u 2, A2

1
1/
1
DT2 ρ

2
+ 1/

1
DT1 ρ

22
+ c
>
γ h x h t , (15)

where a ≥ 0 depends only on the boundary values ρ0 and ρ1. The inverse operator and
multiplication operators are applied block-wise. The expressions for A1, A2, a are

!
A1
!
p 2
""
i, j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2

7
p 2
i− 1

2 , j
+ p 2

i+ 1
2 , j

8
, if 2 ≤ i ≤ nx − 1,

1
2 p

2
3
2 , j

, if i = 1,
1
2 p

2
nx− 1

2 , j
, if i = nx ,

(A2 (1/ρ))i, j =

⎧
⎪⎪⎨

⎪⎪⎩

1
2

1
1/ρi, j− 1

2
+ 1/ρi, j+ 1

2

2
, if 2 ≤ j ≤ nt − 1,

1/ρi, 32
/2, if j = 1,

1/ρi,nt− 1
2
/2, if j = nt ,

ai, j =

⎧
⎪⎨

⎪⎩

1/ρ0
i /2 if j = 1,

1/ρ1
i /2 if j = nt ,

0 otherwise,
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ci, j =

⎧
⎪⎨

⎪⎩

1/DT2 ρ0
i /2+ 1/DT1 ρ0

i /2 if j = 1,
1/DT2 ρ1

i /2+ 1/DT1 ρ1
i /2 if j = nt ,

0 otherwise.

7.3 Sequential Quadratic Programming (SQP)

From the above discussion, we obtain the discrete convex optimization problem

min f ( p , ρ, u ) =
*
A1
!
p 2
"
, A2 (1/ρ)+a

+
h x h t

+
=
u 2, A2

1
1/
1
DT2 ρ

2
+ 1/

1
DT1 ρ

22
+c
>
γ h x h t (16a)

subjectto D1 p + D2ρ + D3u = b. (16b)

The Lagrangian of this problem is

L ( p , ρ, u ) = f ( p , ρ, u ) / (h x h t )+ ⟨λ, D1 p + D2ρ + D3u −b⟩ .

It follows that the KKT conditions are given by

∇ p L = DT1 λ + 2 p ◦ AT1 (A2 (1/ρ)+ a) = 0 (17a)

∇ρL = DT2 λ− AT2 A1
!
p 2
"
/ρ2 − γD2

7
AT2
!
u 2
"
/
1
DT2 ρ

228

−γD1

7
AT2
!
u 2
"
/
1
DT1 ρ

228
= 0 (17b)

∇u L = DT3 λ + 2γ u ◦
1
A2
1
1/
1
DT2 ρ

2
+ 1/

1
DT1 ρ

22
+ c
2
= 0 (17c)

∇λL = D1 p + D2ρ + D3u −b= 0, (17d)

with ◦ denoting block-wise multiplication.
Let w = ( p , ρ, u ). Then at each SQP iteration, we solve the system

7
Â DT

D 0

87
δw

δλ

8
= −

7∇wL
∇λL

8
, (18)

where D = (D1, D2, D3). Again, the matrix Â is an approximation of the Hessian of the
objective function

Â =

⎛

⎝
2diag

!
AT1 (A2 (1/ρ)+ a)

"
0 0

0 diag (g ( p , ρ, u )) 0
0 0 2γ diag

!
A2
!
1/
!
DT2 ρ

"
+ 1/

!
DT1 ρ

""
+ c
"

⎞

⎠ .

The operator g ( p , ρ, u ) is the Hessian of f over ρ with g i, j+ 1
2
being the map

g i, j+ 1
2
(X) = 2

1
AT2 A1

!
p 2
"2

i, j+ 1
2

/ρ3
i, j+ 1

2
X

+2γD2

A1
AT2
!
u 2
"2

i, j+ 1
2

/
1
DT2 ρ

23
i, j+ 1

2

DT2 X
B

+2γD1

A1
AT2
!
u 2
"2

i, j+ 1
2

/
1
DT1 ρ

23
i, j+ 1

2

DT1 X
B
.
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7.4 Higher Dimensions: Vector-Valued Case

We concretely work out the 2D case in this section. The higher dimensional cases are very
similar, but naturally involve additional indices.We should note that for all of the applications
we have in mind, the 2D case is sufficient.

We have the discrete convex optimization problem

min f ( p , ρ, u ) =
=
A1x

!
p 2x
"
+ A1y

1
p 2y
2
, A2 (1/ρ)+ a

>
h x h y h t

+
=
u 2, A2

1
1/
1
DT2 ρ

2
+ 1/

1
DT1 ρ

22
+ c
>
γ h x h y h t

subject to D1x p x + D1y p y + D2ρ + D3u = b.

The Lagrangian of this problem is

L ( p , ρ, u ) = f ( p , ρ, u ) /
!
h x h y h t

"
+
*
λ, D1x p x + D1y p y + D2ρ + D3u −b

+
.

In the above,

ai, j,k =

⎧
⎪⎨

⎪⎩

1/ρ0
i, j/2 if k = 1,

1/ρ1
i, j/2 if k = nt ,

0 otherwise,

and

bi, j,k =

⎧
⎪⎨

⎪⎩

ρ0
i, j/ h t if k = 1,

−ρ1
i, j/ h t if k = nt ,

0 otherwise,

ci, j,k =

⎧
⎪⎨

⎪⎩

1/DT2 ρ0
i, j/2+ 1/DT1 ρ0

i, j/2 if k = 1,

1/DT2 ρ1
i, j/2+ 1/DT1 ρ1

i, j/2 if k = nt ,
0 otherwise.

The KKT conditions now are

∇ p xL = DT1xλ + 2 p x ◦ AT1x (A2 (1/ρ)+ a) = 0

∇ p yL = DT1yλ + 2 p y ◦ AT1y (A2 (1/ρ)+ a) = 0

∇ρL = DT2 λ− AT2
1
A1x

!
p 2x
"
+ A1y

1
p 2y
22

/ρ2 − γD2

7
AT2
!
u 2
"
/
1
DT2 ρ

228

−γD1

7
AT2
!
u 2
"
/
1
DT1 ρ

228
= 0

∇u L = DT3 λ + 2γ u ◦
1
A2
1
1/
1
DT2 ρ

2
+ 1/

1
DT1 ρ

22
+ c
2
= 0

∇λL = D1 p + D2ρ + D3u −b= 0,

with ◦ denoting block-wise multiplication.
Let w = ( p x , p y, ρ, u ), then at each SQP iteration we solve the system

7
Â D∗

D 0

87
δw

δλ

8
= −

7∇wL
∇λL

8
, (19)
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where D = (D1x , D1y, D2, D3). The matrix Â is an approximation of the Hessian of the
objective function

⎛

⎜⎜⎜⎝

2diag
!
AT1x (A2 (1/ρ)+ a)

"
0

0 2diag
1
AT1y (A2 (1/ρ)+ a)

2

0 0
0 0

0 0
0 0
diag (g ( p , ρ, u )) 0
0 2γ diag

!
A2
!
1/
!
DT2 ρ

"
+ 1/

!
DT1 ρ

""
+ c
"

⎞

⎟⎟⎠ .

The operator g ( p , ρ, u ) is the Hessian of f over ρ with g i, j,k+ 1
2
being the map

g i, j+ 1
2
(X) = 2

1
AT2
1
A1x

!
p 2x
"
+ A1y

1
p 2y
222

i, j+ 1
2

/ρ3
i, j+ 1

2
X

+2γD2

A1
AT2
!
u 2
"2

i, j+ 1
2

/
1
DT2 ρ

23
i, j+ 1

2

DT2 X
B

+2γD1

A1
AT2
!
u 2
"2

i, j+ 1
2

/
1
DT1 ρ

23
i, j+ 1

2

DT1 X
B
.
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