2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-
SEIP)

A Longitudinal Study of Identifying and Paying
Down architecture debt

Maleknaz Nayebi
Ecole Polytechnique de Montreal
Email: mnayebi@polymtl.ca

Guenther Ruhe
University of Calgary
Email: ruhe @ucalgary.ca

Qiong Feng
Drexel University
Email: qf28 @cs.drexel.edu

Abstract—Architecture debt is a form of technical debt that
derives from the gap between the intended and the actual
architecture design. In this study we measured architecture debt
in two ways: 1) in terms of system-wide coupling measures,
and 2) in terms of the number and severity of architecture
flaws. In recent research it was shown that the amount of
architecture debt has a huge impact on software maintainability
and evolution. Consequently, reducing debt is expected to make
software less costly and more amenable to change. This paper
reports on a longitudinal study of a healthcare communications
product created by BrightSquid Secure Communications Corp.
This young company is facing the typical trade-off problem of
desiring responsiveness to change requests, but wanting to avoid
the ever-increasing effort that the accumulation of quick-and-
dirty changes eventually incurs. In the first stage of the study,
we analyzed the status of the ‘“before” system, which showed
the impacts of change requests. This initial study motivated a
more in-depth analysis of architecture debt. The results of this
debt analysis were used in the second stage of the work to
motivate a comprehensive refactoring of the software system.
The third stage was a follow-on architecture debt analysis which
quantified the improvements realized. Using this quantitative
evidence, augmented by qualitative evidence gathered from in-
depth interviews with BrightSquid’s architects, we present lessons
learned about the costs and benefits of paying down architecture
debt in practice.

Index Terms—Architecture debt, Cost-benefit analysis, Longi-
tudinal study, Refactoring

I. INTRODUCTION

Recent research [9], [24] has shown that architecture design
flaws accumulate in software projects over time, and that the
accumulation of these flaws creates a specific kind of technical
debt [2] that we call architecture debt. architecture debt
exists and grows because design flaws are easy to introduce
unnoticed; they are introduced by the maintenance activities
of programmers as they go about their “main” business of
adding features and fixing bugs. These design flaws erode
the quality of a software system and propagate bugginess
among the system’s source files. These flawed structures have
been shown to incur high maintenance penalties [6], [15]—
increased numbers of bugs, increased numbers of changes, and
consequently more lines of code committed and more effort.

978-1-7281-1760-7/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE-SEIP.2019.00026

Yuanfang Cai
Drexel University
Email: yfcai@cs.drexel.edu

chris.carlson @BrightSquid.com

171

Rick Kazman
University of Hawaii
Email: kazman@hawaii.edu

Francis Chew
BrightSquid
francis @BrightSquid.com

Chris Carlson
BrightSquid

This additional effort is the interest that a project pays on
the incurred debt. Removing these flaws requires effort, in
the form of refactoring, and the benefits of refactoring have
historically been difficult for architects and project managers
to quantify or justify; they simply do not have the data and
analytic tools available to quantify the costs and benefits of a
proposed refactoring. For this reason large-scale refactorings
to remove debt are exceedingly rare.

In this paper we report on the results of a longitudinal
study at a company that produces secure communication
software for health information. BrightSquid' is a global
provider of HIPAA-compliant?> communication solutions, pro-
viding messaging and large file transfer for medical and dental
professionals since 2009. Secure-Mail is BrightSquid’s core
communication and collaboration platform. It offers role-based
API access to a catalog of services and automated workflows.
Their platform supports aggregating, generating, and sharing
protected health information across communities of health care
patients, practitioners, and organizations. BrightSquid has been
working on a number of projects to achieve these business
goals, and this study is focused on analyzing their core
software platform. The company is facing the typical problem
of young software companies: they need to quickly enter a
competitive market with innovative product ideas to produce
revenue in the near-term; they need to satisfy current users and
their expectations. At the same time, the company is facing
the demands of growing their customer base and satisfying
their requirements [8]. As BrightSquid’s product manager puts
it: “The job of the start-up is to find a sustainable business
model—in other words, to discover an important and urgent
problem, that a defined and accessible segment of customers
will pay for to have solved. The likelihood of finding the
right problem and customer segment, let alone building the
right and enduring technology solution on the first try is about
0%. This means that if ignored, the likelihood of architecture
debt in a start-up is conversely 100%. Many start-ups embrace

Uhttps://BrightSquid.com/
2HIPAA: Health Insurance Portability and Accountability Act of 1996

agile software development methodologies, where the typical
attitude is that solution architecture evolves organically. Evo-
lution is at the mercy a continually changing environment,
so key start-up characteristics comprise survival, flexibility,
speed, and a revolving door of opportunities, stakeholders and
employees.”

The paper reports on the results of a longitudinal study
of BrightSquid’s main software platform. In this study we
performed an architecture analysis of the module structure
of the platform before and after refactoring, with the goal of
identifying and quantifying the architecture debt in the before
and after states. To the best of our knowledge, this is the first
real-world empirical study of architecture debt over a long
period of time with the goal of demonstrating the benefit of
improving a product’s software architecture by paying down
architecture debt (through refactoring).

Specifically this study is focused on answering three main
research questions:

RQ1: Do quantitative measures of architecture complexity
change significantly before/after refactoring?

RQ2: Do quantitative project measures of quality change
significantly before/after refactoring?

RQ3: Do qualitative perceptions of architectural quality
change before/after and does this match the quantitative
changes?

The results of this longitudinal study are, we believe, quite
dramatic. BrightSquid, by paying down its architecture debt,
improved the maintainability of their code based significantly.
Velocity went up significantly: the average time to resolve
new issues in the after version went down by 72% and build
time was reduced by over 83%, as compared with the before
version. In addition, the number of bugs resolved per month
nearly doubled and the lines of code required to make these
fixes were reduced by 2/3.

In the remainder of this paper we will describe Bright-
Squid’s business context, the details of the longitudinal anal-
yses that we conducted, and the results that we obtained.

Extent of change for all files ~ # of mutually changed files between two releases

o Rz
Rgy

o R0+
Rar]

3e+05
L

Fas]
Pl
o]

0 Rigd

g]

9 Ry5]

s]
o s

Rri11]

Churn
2e405
Churn

1e+05
I

:
i

Code Files

0e+00
I

(a) (b)

II. CONTEXT AND BASELINE ANALYSIS

This study has been done as part of a three year collabora-
tive program designed to analyze the impact of code changes
at BrightSquid. The project had multiple phases and was
kicked off in the Summer of 2016. As part of this project, we
studied the status of architecture debt and its impact on code
maintainability at BrightSquid. The timeline of this project in
regards to the scope of the paper is presented in Figure 3.

Inspired by the work of Begel and Zimmermann [1], in
the initial phase of this project we performed a survey that
included all of BrightSquid’s developers, project and product
managers (a total of nine employees) to pinpoint the most
interesting questions in the domain of the project. Among the
21 stated questions the most frequently asked questions were:

“How extensible is BrightSquid’s software in comparison to
some type of recognized standard?”

“What is the general cost of change on this software in
comparison with some type of accepted standard?”

“What areas of code / services are non-performant?”

“What areas of the code-base are not utilized?”

To answer these questions, we performed a preliminary
analysis of the code for the “Platform” project which includes
the main shared functionality of the project. We analyzed the
code changes maintained in GitHub and traced them to the
change requests maintained on the project’s Jira issue tracking
system, looking into all the (Java and Javascript) files. An
overview of the results is shown in Figure 1. We found that
the 10% of the commits with the highest churn (changed lines
of code) were applied to just 270 files (2.5% of all files).
The 25% of the commits with the highest churn were applied
to 26.1% of the files (2,870 files). Our results also showed
that 27.1% of the files (2,977 files) were never changed after
creation. And we found that 0.4% of all the files have changed
with all the change requests. The distribution of churn for
all the files is shown in Figure 3 - (a). As we will show in
Section V, these are all symptoms of architecture debt. For
example, these 0.4% of files that are constantly changing are
all members of architecture roots [22].

Ranking of issues in terms of churn created and their nature

1715

B improvement

SN Bug

- story
Technical task

B Task
Technical Debt

684

a8

Issue ID

()

Fig. 1: Results of preliminary study at BrightSquid (a) churn distribution of all the files (b) Heatmap of co-changed files
between releases (c) Type of change requests for top 10% of file with highest churn.

172

Among the files in the Platform project, 49.1% of them
had only a single contributor—the creator—and were never
touched by any other person. Looking across all releases
and all the files that have been changed by each pair of
non-consecutive releases showed that there is a 34% overlap
between changed files on average. If we include consecutive
releases, this number goes up to 41%. In addition, we present
a heatmap for the mutual file changes in Figure 1 - (b). Figure
1 - (c) shows the types of issues with respect to code churn
for the 10*" percentile of the churn.

These initial analyses led us to believe that BrightSquid’s
code base had serious structural problems, which motivated us
to perform an architecture analysis.

III. ARCHITECTURE DEBT ANALYSIS

In our architecture analysis, we attempted to detect, mea-
sure, and assess the consequences of architecture debt in
two ways: 1) by calculating architecture-based maintainability
metrics on the before- and after-refactoring versions of Bright-
Squid’s software, and 2) by identifying the architecture flaws
and architecture roots in their software.

A. Maintainability metrics suite

We employed two state-of-the-art architecture maintainabil-
ity metrics to measure and compare the platform’s maintain-
ability before and after refactoring:

Decoupling Level (DL), introduced by Mo et al. [16].
Decoupling Level measures how well a software system is de-
coupled into independent modules, using Baldwin and Clark’s
design rule theory as the underlying theoretical foundation:
the more active, independent, and small modules there are, the
higher option values can be produced. Based on this rationale,
Mo et al.’s algorithm first clusters source files into a design rule
hierarchy (DRH), a hierarchical structure in which (1) files in
lower layers can only depend on files in higher layers; (2) files
within the same layer are clustered into mutually independent
modules. Based on DRH, DL is calculated based on the design
rule theory: the larger a module is, the lower its DL; the more
independent modules there are, the higher the DL; the more
dependents a module has, the lower its DL.

Propagation Cost (PC), proposed by MacCormack et al.
[13] to measure how tightly coupled a system is. The calcu-
lation of PC is based on a matrix model of the dependencies
among files. The rows and columns of the matrix are labeled
with the files in the same order, and each nonempty cell in
the matrix indicates an indirect or direct dependency between
the file on the row and the file on the column. MacCormack
et al’s algorithm starts from the direct dependency relations
among files in a system, and calculates the transitive closure of
the matrix by adding indirect dependencies to it until no more
dependencies can be added. The final matrix thus contains
all direct and indirect dependencies, PC is calculated as the
number of nonempty cells divided by the total number of
cells in the final matrix. PC has been used by researchers and
practitioners to analyze large projects with similar domains
and sizes [12].

173

These metrics measure software from two complementary
aspects: the level of decoupling vs. the level of coupling. In
all systems the higher the DL, and lower the PC, and vice
versa. These metrics are architectural because they measure
the module view formed by the project’s source files.

B. architecture flaws

Following the work of Mo et al. [15], we detected the fol-
lowing 6 types of architecture design flaws from Brighsquid’s
software base:

Clique: A group of files that are interconnected, forming a
strongly connected component.

Package cycle: typically the package structure of a software
system should form a hierarchical structure. A cycle among
packages is therefore considered to be harmful.

Improper inheritance: we consider an inheritance hierarchy
to be problematic if it falls into one of the following cases:
(1) a parent class depends on one or more of its children;
(2) the client of the class hierarchy uses/calls both a parent
and one or more of its children, thus violating the Liskov
Substitution Principle.

Modularity violation: Modules designed properly with in-
formation hiding in mind should be able to change inde-
pendently from each other. If two structurally independent
modules in a DRSpace are shown to change together fre-
quently in the revision history, it means that they are not
truly independent from each other. Often, these modules
have harmful implicit dependencies that should be removed.
We call this flaw modularity violation. In this project, since
the number of changes and co-changes are few, due to the
relatively short revision history, we consider two files to have
modularity violations if they have changed together at least
2 times but have no structural dependency on each other.

Crossing: if a file has many dependents and depends on many
other files, that is, having high fan-in and high fan-out, then
this file will appear to be at the center of a cross in its
DSM. If the file at the center also changes frequently with
it dependents and the files it depends on, we call these files
form a Crossing. An example crossing from BrightSquid’s
platform is shown in Figure 2.

Unstable interface: if a highly influential file is changed
frequently with other files that directly or indirectly depend
on it, then we call it an Unstable Interface. In this project,
we consider a file to be an unstable interface if it changes
together with at least 5 other files two times or more.

C. Architecture Roots

Xiao et al. [22] proposed a new software architecture model,
design rule space (DRSpace), which contain a set of related
files. These DRSpaces can model various aspects of a software
system, such as a feature, a pattern, etc. A software architec-
ture can thus be viewed as multiple overlapping DRSpaces.
They also define a new concept called architecture roots (or
roots for short), to capture the architectural relations between
the project’s most error-prone files. An architecture root is a
DRSpace that captures a set of error-prone/change-prone files.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36]
1 domain. people.Contact javal (1) 3 E 73 "4 "3 73
2 Organization_java @lx3[3"3|xa[3"3"6 "3 7374373737276 "3"5"73"7" 6 "373"5 7376 "5"73"3"3"4"3
3 UserOrganizationMapping_javalx1 x3[(3)[3 "4 [x3 "3 "3 "373"4 "3 "4 "4 "3 "3 "33 "3 "3
4 Specialty java| 3 '3 (@[3 [3 "3 "3 "373"73 "3 "3 "3 "3 "3 "33 "3 "3
5 ProfessionalAssociation java| "3 "4 "3 [(5)|x3 "3 "3 "373 "4 "3 "4 "4 "3 "3 "33 "3 "3
6 User_java[x3 x4 x3 x3 x3 (6 "6 "4 "5 "3"5 "6 T4 "5 "5 "3 "3 "5 "6 "4 "3 "4
7 OrganizationAssociationRequestAcceptedEvent_java z 33 "373"373"3 "3"3"373"3"73"3 "3
8 OrganizationAssociationRequestEvent_java : 373 "3737"3/3"3 "3"3"373"3"73"3 "3
9 OrganizationService_java ! 9 7 "10"3"5 7375 "5 "77373"5"3"1576 "3 "3"3"5"3
10 UserService_java|x3 x, ’ 7 70 "157473 "3 "5 "7 "3 74 "3"573"7"3"3"3 "3
11 NotificationService_java| : 3 "373"3"3 "3 "37373"3"3"3"3 "3
12 TestSupport javalx2 x4 ” Y 4 "6 73”5 "6 "6 "3 "6 "4 "4 "4
13 ReferFriendService java|x2 x, g 3 "373"5"3"73 "373"73"7373"73"3 "33
14 ReferFriendInvite java|x.2 ; 3 "47373"73"73 "373737373"73"3 "3
15 AbstractDentalSpringlntegrationTest java i % 3 "3 "3 "3 "3 "3 "3 "33 "3 "3
16 TestSupport_java|x2” y a4’ "5 4 "5 74 "5 "5 73 "5 "4 374
17 UserServicelmpl java|x3 x.6 x4 x3”4 |x6/3 "3 x10x15 x376 "3 "4 "3 "an"s e "3 "8 "7 "8"674a"3"8" 371176737374 473
18 TestUserService_java| 3 x2[373 x3 x4"3 x3"3"3 x5718 4 "3 "4 "3 "37"4737373"73"3 "3
19 ReferFriendServicelmpl_java[x2 x5 x373 "3 [x4[3 x3 x5 x3 x3 5 x5 x3 3476 4 [(19 x3[6 "5 "3"376"3"5"573"3"74"75"3
20 OrgAssociationPostReferredRegistrationCommand_java| x3 x2[3 x3 x373 "3 x3 x3 "3 "33 o3 "3"3"7373"3"73"3 "3
21 Denta\DevBootStrappeuava><4><‘7x,4x3'><4><‘5'3'3 x5 x5 3 6'3'3:3:5:8:4'6'3 21 :3'3:8'3:5:5'3'3:4:5'3
22 AbstractDataBootStrapper_java[x2 x6 x4 x3” 4 x5 x5 x4 6 35777375 8 3 6 574 474
23 PatientContactServicelmpl_java|x3 x x2 X x2 5
24 BrightsquidUserSearchProvider_java[x,2 X x x3 x2 x3 "8 r
25 OrganizationController_java| ~ x1 x.1 x2 x7 x4 "6 8
26 TestMedDialogServicelntegration_java| "3 "3 "3 "3 [x3 "3 x2 x3 "3[3"4 "3 "3 "3 r 373
27 OrganizationAssociationRequestRecipientResolver_java| ~ x3 x.1 x2[3 x3"3 73 "3 "3 73 "373"3"3"3 373

rar (D S P T A P e 1 1

28 TestDentalUserServicelntegration_java[x3 x5 x373 "3 [x5[3 73 x5 xx5 x3 x673 73 "3 [5"8 74767378 "6 3 3 575
29 OrganizationAssociationRequestStrategy_java| — x.3 x2[3 x3"3 x373 "33 "3737373"73 373 3”3
30 OrganizationServicelmpl java|x2 x6 373 "3 |x6(x3 x3 x15 x7 x3"4 x373 " 3[4 1173757375 "5 "8 737375 "3 (@) 6
31 TestOrganizationServicelntegration java[x2 x5 x373 "3 [x4[373 x6 x373 x4"3 73 x3[476 73757375 "4 "3"7375 73 76 [(31)
32)rganizationAssociationRequestAcceptedRecipientResolver_java| 3 x2(x373"3 "3 "3 373 "3737373"3 "3737373"73
33 OrganizationAssociationRequestAcceptedContextBuilder_java| ~ x3 x2(x3"3"3 "3 "3 "3"73 "3737373"3 "3"37373"3
34 TestRegistrationController_java| x373 "3 73 |x3 x3 x1 4 x1 x1"3[3 "4 "4 "4 "3 "4 "33
35 TestMessageServicelntegration_java|x1 x4 x3 3 3 |x4 x5 x2 x4 x3 x3la"a "5 "5 "4 "5 "6 "5 "4
36 TestReferfriendServicelntegration_java|x.2 x3 x2[373 x3 x3 x3 x2 x3 x3 xl "373"3"3"3 "37"3"3"3 "3

Fig. 2: A Design Structure Matrix with a Crossing Flaw (highlighted)

Several studies (e.g. [22], [9]) have shown that five roots
can typically cover 50% to 90% of the most error-prone files
in a system. This result implies that most error-prone files in
a system are usually architecturally connected. And the more
error-prone the files are, the more likely that these files are
architecturally connected, so that bugs propagate through the
connections. Following recent research [17], [9], we detected
the set of roots in the BrightSquid platform that cover at least
80% of all the error-prone files, before and after refactoring.
By comparing these before and after roots, and by interviewing
the practitioners, we could determine if these roots do indeed
reveal the problematic areas of the system.

IV. ORGANIZATION OF THE STUDY
A. Main Phases

The research study commenced in June 2016. Its main ob-
jective was to provide a methodology that we called Intelligent
Change Management that would aid BrightSquid in respond-
ing more quickly to requested changes. The cornerstone of this
strategy was to identify and pay down architecture debt so that
the company could increase its feature-delivery and bug-fixing
velocity.

From the perspective of identifying and paying down archi-
tecture debt, the study was structured into three phases (see
Figure 3).

1) Baseline analysis (June 2016 to May 2017.) During this
time the data and key findings from Phase 1, as described

Initial Observ. Observ.
Start analysis #1 Refactoring #2 .
Yy Time
| A
June June July Jan. July
2016 2017 2017 2018 2018

Fig. 3: Time line of the collaborative project

174

in Section II, were collected and analyzed. These findings
served as a strong motivation for the company to look more
deeply into technical debt and its root causes and a decision
was made to analyze the root causes of architecture debt.
2) architecture analysis before refactoring. (July 2017.) At
this time an in-depth architecture analysis was performed.
The key attributes studied in this architecture debt analy-
sis were those described in Section III: we captured the
project’s DL and PC scores, we calculated the architecture
roots, and we calculated the architecture flaws.
3) Refactoring and repeated architecture debt analysis.
(January to August 2018.) During this period, given the
results from Phase 2, an extensive architecture refactoring
was undertaken by BrightSquid. The refactoring done in
Phase 3 served multiple purposes: (i) reducing the technical
(architectural) debt that had accumulated over time, (ii)
adding new functionality in response to major emergent
customer requirements, and (iii) fixing bugs. This process
included purging of packages, consolidating tightly coupled
functionality together, cleaning up inheritance structures,
and purging complex and obsolete business logic that had
accumulated over the years.

B. The Process of architecture debt Analysis

To assess if and how the refactoring activity had affected the
architecture, and, most importantly, the maintainability of the
architecture, we conducted both quantitative and qualitative
analyses. For the qualitative analysis, which is independent
of the architecture debt analysis, we conducted a survey and
multiple interviews to collect the opinions and experiences
of the Brighsquid team, so that we could better understand
the implications and outcomes of the refactoring activity. For
example, we wanted to learn if the BrightSquid developers
felt that it had become easier to maintain the system after

refactoring, and if they thought that the 3 months of refactoring
was worthwhile.

For quantitative analysis, we analyzed two versions of the
system—before and after refactoring—as well as 6 months
of revision history after each of these versions. In both
analyses, we employed DV83—a commercial version of the
Titan architecture analysis tool suite [22], [23]—to analyze
the architecture of each system version to assess architecture
debt. To support this analysis we collected project history
data, including issue records and git logs, so that we could
quantitatively assess how maintenance activities have changed
before and after refactoring. Since the refactoring began on
January 8%, 2018, for the before-refactoring analysis we
analyzed the evolution history of the system 6 months prior to
January 8", and used a release in July 2017 as the target
subject for architecture analysis of the “before” state. The
refactoring was completed by March 15¢, 2018. We analyzed
the version released on that date, and 6 months of project
history after that date, to assess the impacts of the refactoring.

For each of these snapshots, we used DV8 to analyze the
architecture from the three aspects elaborated in the previous
section, collecting: 1) DL and PC scores, 2) the number of
instances of architecture flaws and their scopes, and 3) the in-
stances of architecture roots and their scopes. In particular, we
were keen to know if the architecture problems we identified
in the “before” state had been resolved during the refactoring
process and if new problems emerged after refactoring. The
output of this analysis allow us to answer RQ1.

For these two periods of history, in addition to counting the
total numbers of issues opened and fixed and the numbers of
bug issues opened and fixed, we also calculated the changed
lines of code (LOC) to fix each bug. We further counted the
average numbers of days required for bugs to be fixed in the
before and after versions. Our rationale for these measures
is that if the architecture refactoring was successful it would
become easier for developers to find and fix bugs and to
develop new features. In this case the time and LOC spent
should be significantly shortened after refactoring. The output
of this analysis will allow us to answer RQ2.

V. ANSWERS TO THE RESEARCH QUESTIONS

Now we present our results, organized according to the
research questions stated in Section I. RQ1 aims to quan-
titatively measure changes in architecture debt as reflected
in BrightSquid’s source code; RQ2 aims to quantitatively
measure changes in maintainability and productivity outcomes
as reflected in the revision history; and RQ3 explores the
development team’s experiences and assesses if the objective
numbers match their experiences and intuitions.

RQ1: Do quantitative measures of architecture debt change
significantly before/after refactoring?

We summarize the architecture measures and debts in Tables
I and II. After refactoring, the number of code files shrunk

3http://www.archdia.net

175

by 58.5%. We found just three architecture roots (containing
296 Files) that collectively account for 80% of bug fixes. By
contrast there were five roots (containing 295 files) before
refactoring. In total, 37% of the files covered 80% of the
bugs after refactoring while the number was 17% before the
refactoring. After comparing these roots, we realize that some
of the roots remain in the after version, meaning that the focal
points of the system are centered around these 296 files, which
could be determined by the nature of the application. Here we
observe that the Pareto rule applies for architecture debt: the
top few architecture roots always count for about 80% of the
bugs, either before or after refactoring.

Analysis of the decoupling level showed that the modularity
of the system decreased slightly, as the DL score reduced
by 3%, and the PC score remained the same, at 6%. The
small difference of DL could be caused by the fact that
many redundant components (which may be independent,
and contributed to a higher DL) were removed during the
refactoring. But a difference of 3% is essentially noise.

These system-wide measures—the DL/PC scores, as well
as the root analysis—do not reflect the changes in architecture
directly. These are overall average health measures. But in ar-
chitectural health the architecture flaws, which provide a more
fine-grained analysis of the architecture, changed drastically.
To make an analogy, a human might be mostly healthy—
having good blood pressure, low cholesterol, proper kidney
function, etc.—but a brain tumor can undermine and render
irrelevant all of those other measures.

Concretely, the number of cliques was reduced by 41.1%
and the # of files impacted by them was reduced by 63.3%.
Both the number of unhealthy inheritances as well as the
number of files affected by them reduced by almost 50%. The
number of unstable interfaces was reduced from 12 to 8, and
the number of files influenced by these interfaces reduced by
54%. The 79.3% reduction in the number of crossings was
accompanied by a 87.8% reduction in the number of files

TABLE I: Architecture analysis before and after refactoring.

General information Before After
of files 1713 711
of roots covering 80% of bugs 5 3
of files in roots covering 80% of bugs 296 295
of files covering 80% of bugs 17% 37%
Architecture Metrics Before After
Decoupling level 86% 83%
Propagation cost 6% 6%
Architecture flaws Before After
of cliques 17 10
of files influenced by cliques 71 26
of unhealthy inheritance 60 30
of files influenced by unhealthy inheritance 222 102
of unstable interface 12 8
of files influenced by unstable interface 471 59
of crossings 29 6
of files influenced by crossings 387 47
of package cycles 34 19
of files influenced by package cycles 242 94

TABLE II: Maintainability measures of BrightSquid’s projects
before and after refactoring.

Measure Before After
of files 1713 711
of issues opened 680 843
of issues fixed 583 653
of bugs opened 157 310
of bugs fixed 137 267
of bugs that changed code in platform files 24 78
Amount of churn per bug 102 339
Average bug fixing time 10.74 7.31

impacted by the crossings. Finally, the number of package cy-
cles reduced by 44.1% which shrunk the number of impacted
files by 61.1%. Since the file names changed drastically before
and after refactoring, it is impossible to compare the changes
in terms of modularity violation instances. The before/after
results are shown in Table I.

Why should we care about reducing flaws? Let us consider
a specific example: the crossing shown in Figure 2. This
crossing is centered around the file “User. java”. In the
before state of the system User. java was the center of a
crossing containing 107 files. That is, in the before state, 106
other files either depended on User. java, or User. java
depended on them. If User. java changed frequently—and
it did—then many other files were potentially affected. In the
after state, just 35 other files are coupled with User. java.
This kind of reduction in complexity that we get by paying
down the debt associated with architecture flaws means that, in
general, changes are less likely to “ripple” to other files which
in turn reduces the cost and complexity of those changes.

The refactoring activities were recorded as 106 change
requests, which consumed 563.8 person hours of effort. We
linked these refactoring issues to the commits that were related
to 7 cliques, 23 crossings, and 4 unstable interfaces that we
detected from architecture debt analysis before refactoring. We
found that about 34% of the commits, 28% of the time, and
37% of lines of code during the refactoring period were related
to the removal of architecture debt.

We looked into the time to fix issues in the files related
to the refactored cliques, crossings, and unstable interfaces.
We could find 13 issues after refactoring and compared them
with the 51 issues related to these files before refactoring. Our
comparison showed that the average time to close the issues
relate to these critical files dropped by 72%.

The average time needed to close issues before and after
refactoring was reduced by 72%.

RQ2: Do quantitative measures of project quality change
significantly before/after refactoring?

If the refactoring was successful, it should become easier
for developers to add features or fix bugs. Here we use two
proxies to quantify the ease of maintenance activities:

(1) churn (lines of code changed) per issue. The rationale
here is that the easier it is to fix a bug or to add new features,
the fewer LOC will be needed to close a change request. If

176

we only consider bug issues: the average bug-fixing churn
after refactoring is about 34 LOC per issue, compared to
102 LOC before refactoring. It appears, and the development
team believed, that the improved architecture made bug-fixing
substantially more efficient. If we consider all issue types, and
not just bugs, the averages are still improved: 208 LOC before
refactoring and 156 after refactoring.

(2) # days needed per issue. The rationale here is that the
easier it is to fix a bug or to add new features, the less time
needed to close a change request. The data shows that the
average bug-fixing duration reduced 30%, dropping from 10
days before to 7 days after. The productivity of the team
improved due to both reduced build time and reduced bug-
fixing duration. The box plot distribution of the time spent to
close a change request before and after refactoring and the
churn are shown in Figure 4.

We also observed that before refactoring, 71 change requests
(including 24 bug reports), involving code changes in the
platform were resolved in five months, compared to 150
change requests (including 78 bug issues) after refactoring in
a similar five month period. These numbers indicate that—
with the same team size—after refactoring more issues are
addressed and less code is “spent” to address each issue.

The time and lines of code needed to close change requests
are significantly lower than the required time and lines
of code before refactoring (p-value 0.001 and 0.002).
Considering these measures as proxies for productivity,
the analysis of architecture debt correctly motivated the
architecture refactoring to increase developer productivity.

So far these quantitative analyses indicate a very successful
refactoring activity, both reflected in the record of revision
history and in the significant reduction of architecture flaws.
Next we assess if these numbers match developer intuitions.

RQ3: Do qualitative perceptions of architectural quality
change before/after and does this match the quantitative
changes?

To collect feedback from the development team, we con-
ducted a structured interview. The goal of this interview was
to qualitatively assess the perceived impact of refactoring. We
wanted to understand if maintaining the system became no-

B
o 500
.
150
g
E o 400
o
8 : -g o
100 8 3004
P
z 3
=] 8 2001
50 4 g
3 o
1004 —
0 - = — 0 3
: : T T
Before After Before After

Time spent on closing change requests Lines of code per change request

Fig. 4: Analysis of change requests before and after refactor-
ing: Time spent (left) and size of change (right)

ticeably better, in terms of bug-fixing and productivity. And we
wanted to understand how much the developers thought that
these improvements were triggered by the results of the Phase
2 analysis. To do this we interviewed key project stakeholders.
Below, we first discuss the structured interview results, along
with the descriptions provided by the participants, and then
summarize the results of the follow up unstructured interview.

All participants were asked seven yes-no questions, where
they were also given the opportunity to add some elaborations
for the answers given. The product manager, software archi-
tect, and two back-end developers attended this interview. We
asked them to consider all the questions in terms of the system
state six months before and six months after refactoring.

While our quantitative results showed that “the # of change
request opened before refactoring is less than the # of change
requests opened after refactoring” in BrightSquid, the prod-
uct manager and a developer considered this a misleading
characterization. The product manager argued that intuitively
this seemed wrong as after refactoring the architecture and
business. rules were simplified and having less code, tables,
and tests should result in fewer issues. However, the architect
attributed the main cause of this increase to the introduction of
new features. When comparing the status of change requests
before and after refactoring, all the participants agreed with
our finding that “the portion of fixed change requests is higher
after refactoring.” The implication is that a desirable outcome
had been achieved: more features were able to be added (with
the same team size) after refactoring.

One of the surprising results was that “the number of
bugs opened after refactoring is significantly more than the
number of bugs before.” The software architect considered
this to be consistent with his own perception. He stated that
adding a large amount of new functionality caused a lot of
new bugs in the short term, while the old functionality was
fairly stable. This finding is also consistent with other studies
of refactoring: bugs often go up in the short term as the new,
refactored functionality is being integrated and debugged, but
this is not a long-term phenomenon [10]. All the participants
confirmed our finding that the ratio of fixed bugs to open bugs
was higher after refactoring (in comparison to before). This
effect was caused by two related factors: the refactoring both
reduced code dependencies and increased productivity. The
participants also confirmed our finding that “the time needed
to fix a bug after refactoring is less than the time needed before
refactoring”. This was again believed to be the case because
the refactoring reduced dependencies, and so bugs were more
localized. However, the increase in bug-fixing velocity was
also aided by the fact that creating the builds became 83.3%
faster after refactoring.

When it comes to validating our findings regarding the
amount of changes, all participants agreed that “the number
of files changed per bug is significantly less after refactoring”
and “the number of lines of code to change (churn) per bug is
significantly less after refactoring.” As shown by our results,
these values were significantly higher before the refactoring
and, once again, this was attributed to the higher code com-

177

plexity and higher inter-file dependencies in the before version.
We wrap up our qualitative analysis with a quotation from
the BrightSquid’s senior architect:

“Having an architecture debt analysis report that goes
through coupling, circular relationships, and dependencies
confirmed our hypotheses and we were able to convey to the
top management that we need to do the refactoring as quick
as possible.”

In addition to comparing our results with the perception
of developers in previous subsection, we performed semi-
structured interviews with two key actors in the company: the
product manager and the chief architect. Below we present
each of the questions accompanied by the consolidated results
of the interview discussions we had with these BrightSquid
managers.

Q1: How did you use the report from Phase 2 to decide
iff'when/how/where to re-factor?

“We used the report to confirm our own hypotheses on
technical debt issues, including circular relationships in our
code base.

We did not use specific report findings to determine where we
should focus our attention. Instead, there were product and
feature changes that drove our decisions regarding code, files
and tables to deprecate and/or re-factor.”

Q2: To what extend did the report guide you to scrutinize
parts or aspects of the architecture that you might not have
otherwise focused on?

The team had a general understanding of the architectural
issues inherent in the code base. Business decisions regarding
product and feature deprecation drove decisions more than the
report.

Qs: Did the results of architecture debt analysis affect your
priorities?

Confirmation and quantification of technical debt through the
report made a stronger business case to focus more of the
technical team’s time on overtly addressing technical debt.

Q4: Did the results of architecture debt analysis affect your
refactoring strategies?

”The architectural debt analysis initiated the refactoring, and
the report was used to convince management to allocate
resources for refactoring. However, the analysis results were
not taken one by one as defining tasks for developers. Instead,
BrightSquid was considering the total results reported by
architectural debt analysis” (Product manager).

Qs5: Did the report highlight any problems that were not
already known/obvious to team members?

The team was generally aware of the technical debt issues
in our code base. The report was very helpful in overtly
quantifying the amount and extent of actual technical debt.

Qe Do you think there is a positive return-on-investment from
running architecture debt analysis and the return you received
out of it?

Very much so. Return-on-Investment includes (i) Faster builds:

over 50% reduction in building code and (ii) Reduction in
files, schemes and tables resulted in simplified architecture.
Consequently less time is required to design, write code, test,
build and maintain product and features.

Q7: What do you think had the biggest impact from running
the debt analysis?

By confirming both the level and extent of technical debt,
it was easier to acquire business commitment to address
technical debt through a more cohesive rather than piecemeal
approach.

Qs: What would have happened without it?

In the absence of the report, we would have been more likely
to address technical debt in a piecemeal fashion, and dragged
this out over a longer period of time.

As a typical software project that has evolved for years,
most maintenance costs in the BrightSquid Platform have been
focused on just a few file groups, as shown in the Architecture
Root analysis. These Roots are typically the root causes of
much of the project’s technical debt. All after all, as the
BrightSquid manager said:

“Our code base was a historical record of our quest to find
the right market, problem and solution. architecture debt
analysis quantitatively exposed how and where this inflated
our cost of change.”

VI. DISCUSSION

Studying a software organization’s improvement efforts over
time allows us to better understand its impact on success [7]. In
our longitudinal study, we covered a period of two years. Any
real-world organization does not provide a controlled setting,
and this was true for our study. As part of an academic-
industry partnership project, we were unable to control all the
confounding factors such as adding or deleting new functional-
ity. A multitude of changes related to resources, development,
and business goals occurred concurrently. The impact of such
changes is even more substantial for smaller companies such
as BrightSquid. Consequently, no strict causality statements
can be made. Nevertheless, by triangulating all of the evidence
that we collected, a coherent picture emerges.

We argue that the architecture debt analysis had an impact
on company’s decision-makers and this caused them to decide
to refactor and guided them in how to focus their refactoring
efforts. This refactoring, in turn, helped give the company
the ability to mature their technology and better adjust to the
competitive health care market.

Refactoring and removing technical debt are a priority and
an ongoing effort for BrightSquid, but these needed to be
balanced against the business’s other priorities—delivering
customer-facing features. BrightSquid’s stakeholders have
seen, however, significant benefits to the business and the
development team in reducing complexity, removing archi-
tecture flaws, and simplifying or removing obsolete business
rules. The refactoring efforts helped to increase the Bright-
Squid team’s productivity and ability to adapt quickly to new
business requirements.

178

We argue that the overall message presented in this paper—
that architecture debt was weighing BrightSquid down and that
the refactoring removed substantial portions of this debt—
is the result of combining various independent streams of
reasoning and evidence:

1) Quantitative analysis: This analysis revealed improve-
ments to both the architecture and the maintainability of the
platform software. This analysis was based on measuring
key attributes of the system’s software architecture—its
decoupling level, roots, and architecture flaws—and key
outcome measures, such as lines of code, bugs, and velocity.
Our study was limited to BrightSquid’s platform project
and focused on its Java code, but this was justifiable as
the platform is the most critical software component for
the company. We observed that the refactoring reduced
the number of blocker and critical bugs by 11.3%. Still,
a more comprehensive analysis including other parts of the
system is needed to increase the validity of our findings. In
particular, the substantial reduction in size of the platform
is a confounding factor that could directly impact the
quantitative measures we reported in our paper.

2

~

Qualitative analysis: This evidence was based on perform-
ing a series of interviews with key members of the project,
asking for their perceptions surrounding the relevance,
utility, and accuracy of the architecture debt analysis. This
allowed us to assess the perceived value of the analyses that
we performed. Even though we had just four participants,
the clear trend was that the architecture analysis confirmed
our hypotheses and gave BrightSquid the evidence that they
needed for their decision making. In addition, the analysis
allowed the team to argue for the urgency of performing
a substantial refactoring and guided them in parts of their
refactoring. While these forms of interviews are subject to
validity threats, when combined with the quantitative results
a consistent picture emerges.

3) Preponderance of evidence: Finally, we argue that the
results achieved here, in terms of the reduction in ar-
chitecture flaws and the subsequent gains in productivity,
are consistent with a large and growing body of research
evidence—that technical and architecture debt matters and
paying it down can catalyze substantial productivity im-
provements (e.g. [2], [3], [5], [15], [20]). The value and
insight gained from running architecture debt analyses has
been shown in other studies. In particular it has been shown
that the number of architecture flaws per file is very strongly
correlated with bugs, changes, and churn/effort [6], [15]. In
this study, for the first time, we performed multiple analyses
of a single system over time. In particular, we measured the
architecture debt and productivity measures before and after
refactoring.

Clearly we can not argue for strict causality—that the
refactoring caused the productivity improvements—because
our analysis did not define and control every step of the
experimental setting. However, there are several pieces of
qualitative and quantitative evidence, along with our prior

corpus of research results, that point to the impact of refac-
toring on team productivity in BrightSquid. This gives us
confidence in arguing that reducing architecture debt has had
a positive influence on productivity and quality measures for
the company.

Having seen the value of this analysis, BrightSquid is
now considering embarking on a program of continuous
architecture measurement and benchmarking. Measurement,
particularly if it is fully automated and connected with project
triggers (for example, a nightly build), can quickly notify
project stakeholders if there has been a degradation in the
architecture—perhaps the introduction of a new architecture
flaw. Benchmarking can help a company understand how it is
situated in terms of its competitive landscape. So, for example,
a company can track its DL score over time and use this to
determine if any mitigations are required. This is no different
from what you do when you go to the doctor. The doctor
analyzes your health via a spectrum of analyses and tests
and notes differences from your last checkup (for example,
a dramatic increase in blood pressure or cholesterol levels)
and uses broad benchmarks to decide if an intervention is
necessary (for example, a total cholesterol level of 220 is
slightly high but within the normal range for adults). All
of the architecture analyses presented in this paper are fully
automated and so they can provide exactly the data needed for
such measurement and benchmarking (e.g. [16]).

VII. RELATED WORK

Architectural Debt Analysis. In the past decade, a number
of methods have been proposed to analyze technical debt
within software systems [4], [24], [25]. DV8 and Titan have
been used to analyze and detect architectural debt in both
open source and (closed source) industrial projects. Kazman
et al. [9] presented the experiences of detecting and quan-
tifying architectural debts in Softserve, as well as a return
on investment estimation of the benefit that would accrue
to potential refactoring activities. The recent work of Mo et
al. [17] reported the experience of applying the DV8 tool suite
to eight projects of various sizes and domains within ABB
Corporation, and showed that the architecture analysis helped
practitioners to make decisions on if and where to refactor.

Carriere et al. [3] also proposed and applied a cost-benefit
model to estimate benefits of reducing the level of coupling
in an e-commerce architecture. Their work focused on cou-
pling only, rather than on identifying architecture flaws and
pinpointing the locations to refactor.

Curtis et al. [5] proposed a model to estimate the amount
of technical debt in terms of cost calculated from source code
static relations. Nord et al. [20] created a formula to estimate
the impact of technical debt on architecture, which could be
used to optimize long-term product evolution. Similarly to
Curtis et al. [5], their work does not detect the location and
specific problems that need to be treated.

Martini and Bosch [14] proposed and validated AnaCon-
Debt, a method that has been applied to 12 case systems within

179

six companies. Their experience showed that it can help prac-
titioners to decide if and when to refactor architectural debt
items. In comparison with Titan and DVS, the architectural
debt in their work had to be manually identified by architects.

Of all these previous cases studies, none of them pre-
sented the experiences before and after the actual refactoring
activities, although many of them demonstrated that their
approaches can help the team to make refactoring decisions.
The work we are presenting here is, to our knowledge, the
first report of analyzing a system before and after refactoring,
in terms of architecture debt variations and maintenance effort
variations, both quantitatively and qualitatively.

VIII. SUMMARY AND CONCLUSIONS

As described in [21], case studies in software engineering
often just examine small-scale systems with relatively low
research effort. There are few longitudinal case studies (with
some notable exceptions such as [11]) that address larger scale,
complex phenomena where there is a need to collect both
quantitative and qualitative data. As mentioned by [21], the
“software engineering research community both recognizes the
demands of longitudinal case study research and also that the
community can only rarely allocate sufficient resources toward
such studies”.

Our current study covers a period of two years and reports
on the process and major findings from identifying and paying
down the architecture debt in the module structure of Bright-
Squid’s platform. In this study we have observed substantial
quality and productivity improvements made over the period of
intervention and analysis. Understanding the architecture flaws
and initiating refactoring helped the company to reduce their
build time by about 83%, reduced the average time to resolve
issues by 72%, and reduce bug-fixing effort from an average
of 102 LOC per bug to just 34. How do we know that these
improvements all accrued to the architecture debt repayment?
Again, we can not claim causality based on a single case study.
However, we believe that we can make an argument based on a
preponderance of evidence all pointing in the same direction.
The number and size of the architecture flaws went down,
productivity measures went up, the key stakeholders felt that
the refactoring benefited their ability to manage the code base.

And finally, all of this is consistent with the evidence
collected over the analyses of hundreds of open source and
industrial projects in our prior work which shows a very
strong correlation between architecture flaws and productivity
measures [6], [15]. Thus, although this is just a single case
study, it presents a consistent picture—that architecture debt
matters and that it is possible to pay it down, via refactoring,
and achieve significant benefits.

Many young companies embrace agile software develop-
ment methodologies, where the typical attitude is that so-
lution architecture evolves organically. This organic evolu-
tion is a key characteristic of start-ups and is needed for
survival, flexibility, speed, and a revolving door of opportu-
nities, stakeholders and employees. The research presented
here is part of a longer term project with a young software

company—BrightSquid—to improve their software processes.
For example we developed ESSMATIT for automatic escalation
and summarization of user requests [18] and implemented a
tagging method for better estimation of effort needed to close
a change request [19]. The research reported here is a step
towards our overall goal of Intelligent Change Management.

The job of the young software company is to find a
sustainable business model—in other words, to discover an
important and urgent problem—that a defined and accessible
segment of customers will pay for. But this often seems to
be inherently in conflict with a disciplined approach towards
software engineering in general and with the management of
technical debt in particular. Here we showed that, with the
right tooling, it is possible to have both discipline and agility.
The final outcome of this study is that it made believers out
of BrightSquid’s management. Thus we will conclude with a
quotation from the product owner.

“The approach expressed in the paper to analyze architec-
ture debt provides immutable guide-stones to navigate through
the mutable destinations on the road to discovering the actual
sustainable business model. If we declare the components
of your analysis to be essential non-functional requirements
(clique, package cycle, improper inheritance, modularity viola-
tion, crossing, unstable interface) with overtly declared targets,
then regardless of the markets, problems or solutions visited
on the journey, the disciplined start-up that regularly manages
these non-functional requirements is much better equipped to
avoid architecture debt accumulation in the first place. As long
as acceptable thresholds are maintained, the start-up can be
confident that the architecture supports, rather than thwarts
success. Quick and dirty fixes can consequently be exposed
as what they truly are - incremental, short-sighted steps down
a slippery slope that inflates the costs of change. In short, An
ounce of prevention is worth a pound of cure.”

ACKNOWLEDGMENT

This research was supported by the Natural Sciences and
Engineering Research Council of Canada, Discovery Grant
RGPIN-2017-03948, the Collaborative Research and Develop-
ment project NSERC-CRD-486636-2015, and by the United
States National Sciences Foundation grants 1514561, 1514315
and 1816594.

REFERENCES

[1] A. Begel and T. Zimmermann. Analyze this! 145 questions for data
scientists in software engineering. In 36th International Conference on
Software Engineering, pages 12-23, 2014.

N. Brown, Y. Cai, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. Mac-
Cormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, and
N. Zazworka. Managing technical debt in software-reliant systems. In
FSE/SDP Workshop on the Future of Software Engineering Research at
ACM SIGSOFT FSE-18, pages 47-52, 2010.

[2]

[3] J. Carriere, R. Kazman, and I. Ozkaya. A cost-benefit framework for
making architectural decisions in a business context. pages 149-157,
2010.

[4] W. Cunningham. The WyCash portfolio management system. In
Addendum to Proc. 7th, pages 29-30, Oct. 1992.

[5] B. Curtis, J. Sappidi, and A. Szynkarski. Estimating the principal of an

application’s technical debt. volume 29, pages 34-42, 2012.

180

[6]
[71
[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Q. Feng, R. Kazman, Y. Cai, R. Mo, and L. Xiao. An architecture-centric
approach to security analysis. pages 221-230, 2016.

B. Fitzgerald and T. O’Kane. A longitudinal study of software process
improvement. volume 16, pages 37-45, 1999.

S. J. Kabeer, M. Nayebi, G. Ruhe, C. Carlson, and F. Chew. Predicting
the vector impact of change-an industrial case study at brightsquid.
In International Symposium on Empirical Software Engineering and
Measurement (ESEM), pages 131-140, 2017.

R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak,
and A. Shapochka. A case study in locating the architectural roots
of technical debt. In 37th International Conference on Software
Engineering, volume 2, pages 179-188, 2015.

M. Kim, D. Cai, and S. Kim. An empirical investigation into the role of
API-level refactorings during software evolution. pages 151-160, 2011.
J. Li, N. B. Moe, and T. Dyba. Transition from a plan-driven process
to scrum: a longitudinal case study on software quality. In Interna-
tional symposium on Empirical Software Engineering and Measurement,
page 13, 2010.

A. MacCormack, J. Rusnak, and C. Baldwin. Exploring the duality
between product and organizational architecture: A test of the mirroring
hypothesis. Working Paper 08-039, Harvard Business School, 2008.
http://www.hbs.edu/research/pdf/08-039.pdf.

A. MacCormack, J. Rusnak, and C. Y. Baldwin. Exploring the structure
of complex software designs: An empirical study of open source and
proprietary code. volume 52, pages 1015-1030. INFORMS, 2006.

A. Martini and J. Bosch. An empirically developed method to aid
decisions on architectural technical debt refactoring: Anacondebt. In
International Conference on Software Engineering Companion, pages
31-40, 2016.

R. Mo, Y. Cai, R. Kazman, and L. Xiao. Hotspot patterns: The
formal definition and automatic detection of architecture smells. In
12th Working IEEE/IFIP Conference on Software Architecture (WICSA),
pages 51-60, 2015.

R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng. Decoupling
level: a new metric for architectural maintenance complexity. In 38th
International Conference on Software Engineering, pages 499-510,
2016.

R. Mo, W. Snipes, Y. Cai, S. Ramaswamy, R. Kazman, and M. Naedele.
Experiences applying automated architecture analysis tool suites. In 33rd
International Conference on Automated Software Engineering, pages
779-789, 2018.

M. Nayebi, L. Dicke, R. Ittyipe, C. Carlson, and G. Ruhe. ESSMArT
way to manage user requests. arXiv preprint arXiv:1808.03796, 2018.
M. Nayebi, S. J. Kabeer, G. Ruhe, C. Carlson, and F. Chew. Hybrid
labels are the new measure! volume 35, pages 54-57, 2018.

R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas. In search
of a metric for managing architectural technical debt. In SConference
on Software Architecture and European Conference on Software Archi-
tecture, pages 91-100, 2012.

P. Runeson, M. Host, A. Rainer, and B. Regnell. Case study research
in software engineering: Guidelines and examples. John Wiley & Sons,
2012.

L. Xiao, Y. Cai, and R. Kazman. Design rule spaces: A new form
of architecture insight. In 36th International Conference on Software
Engineering, pages 967-977, 2014.

L. Xiao, Y. Cai, and R. Kazman. Titan: A toolset that connects
software architecture with quality analysis. In International Symposium
on Foundations of Software Engineering, pages 763-766, 2014.

L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng. Identifying and
quantifying architectural debt. In 38th International Conference on
Software Engineering, pages 488—498, 2016.

N. Zazworka, A. Vetro, C. Izurieta, S. Wong, Y. Cai, C. Seaman, and
F. Shull. Comparing four approaches for technical debt identification.
pages 1-24, 2013.

