
A Longitudinal Study of Identifying and Paying
Down architecture debt

Maleknaz Nayebi
Ecole Polytechnique de Montreal

Email: mnayebi@polymtl.ca

Yuanfang Cai XXXX
Drexel University XXXX

Email: yfcai@cs.drexel.edu XXXX

Rick Kazman XXX
University of Hawaii XXX

Email: kazman@hawaii.eduXXX

Guenther Ruhe
University of Calgary

Email: ruhe@ucalgary.ca

Qiong Feng
Drexel University

Email: qf28@cs.drexel.edu

Chris Carlson
BrightSquid

chris.carlson@BrightSquid.com

Francis Chew
BrightSquid

francis@BrightSquid.com

Abstract—Architecture debt is a form of technical debt that
derives from the gap between the intended and the actual
architecture design. In this study we measured architecture debt
in two ways: 1) in terms of system-wide coupling measures,
and 2) in terms of the number and severity of architecture
flaws. In recent research it was shown that the amount of
architecture debt has a huge impact on software maintainability
and evolution. Consequently, reducing debt is expected to make
software less costly and more amenable to change. This paper
reports on a longitudinal study of a healthcare communications
product created by BrightSquid Secure Communications Corp.
This young company is facing the typical trade-off problem of
desiring responsiveness to change requests, but wanting to avoid
the ever-increasing effort that the accumulation of quick-and-
dirty changes eventually incurs. In the first stage of the study,
we analyzed the status of the “before” system, which showed
the impacts of change requests. This initial study motivated a
more in-depth analysis of architecture debt. The results of this
debt analysis were used in the second stage of the work to
motivate a comprehensive refactoring of the software system.
The third stage was a follow-on architecture debt analysis which
quantified the improvements realized. Using this quantitative
evidence, augmented by qualitative evidence gathered from in-
depth interviews with BrightSquid’s architects, we present lessons
learned about the costs and benefits of paying down architecture
debt in practice.

Index Terms—Architecture debt, Cost-benefit analysis, Longi-
tudinal study, Refactoring

I. INTRODUCTION

Recent research [9], [24] has shown that architecture design

flaws accumulate in software projects over time, and that the

accumulation of these flaws creates a specific kind of technical

debt [2] that we call architecture debt. architecture debt

exists and grows because design flaws are easy to introduce

unnoticed; they are introduced by the maintenance activities

of programmers as they go about their “main” business of

adding features and fixing bugs. These design flaws erode

the quality of a software system and propagate bugginess

among the system’s source files. These flawed structures have

been shown to incur high maintenance penalties [6], [15]—

increased numbers of bugs, increased numbers of changes, and

consequently more lines of code committed and more effort.

This additional effort is the interest that a project pays on

the incurred debt. Removing these flaws requires effort, in

the form of refactoring, and the benefits of refactoring have

historically been difficult for architects and project managers

to quantify or justify; they simply do not have the data and

analytic tools available to quantify the costs and benefits of a

proposed refactoring. For this reason large-scale refactorings

to remove debt are exceedingly rare.

In this paper we report on the results of a longitudinal

study at a company that produces secure communication

software for health information. BrightSquid1 is a global

provider of HIPAA-compliant2 communication solutions, pro-

viding messaging and large file transfer for medical and dental

professionals since 2009. Secure-Mail is BrightSquid’s core

communication and collaboration platform. It offers role-based

API access to a catalog of services and automated workflows.

Their platform supports aggregating, generating, and sharing

protected health information across communities of health care

patients, practitioners, and organizations. BrightSquid has been

working on a number of projects to achieve these business

goals, and this study is focused on analyzing their core

software platform. The company is facing the typical problem

of young software companies: they need to quickly enter a

competitive market with innovative product ideas to produce

revenue in the near-term; they need to satisfy current users and

their expectations. At the same time, the company is facing

the demands of growing their customer base and satisfying

their requirements [8]. As BrightSquid’s product manager puts

it: “The job of the start-up is to find a sustainable business

model—in other words, to discover an important and urgent

problem, that a defined and accessible segment of customers

will pay for to have solved. The likelihood of finding the

right problem and customer segment, let alone building the

right and enduring technology solution on the first try is about

0%. This means that if ignored, the likelihood of architecture

debt in a start-up is conversely 100%. Many start-ups embrace

1https://BrightSquid.com/
2HIPAA: Health Insurance Portability and Accountability Act of 1996

171

2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-
SEIP)

978-1-7281-1760-7/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE-SEIP.2019.00026

agile software development methodologies, where the typical

attitude is that solution architecture evolves organically. Evo-

lution is at the mercy a continually changing environment,

so key start-up characteristics comprise survival, flexibility,

speed, and a revolving door of opportunities, stakeholders and

employees.”

The paper reports on the results of a longitudinal study

of BrightSquid’s main software platform. In this study we

performed an architecture analysis of the module structure

of the platform before and after refactoring, with the goal of

identifying and quantifying the architecture debt in the before

and after states. To the best of our knowledge, this is the first

real-world empirical study of architecture debt over a long

period of time with the goal of demonstrating the benefit of

improving a product’s software architecture by paying down

architecture debt (through refactoring).

Specifically this study is focused on answering three main

research questions:

RQ1: Do quantitative measures of architecture complexity

change significantly before/after refactoring?

RQ2: Do quantitative project measures of quality change

significantly before/after refactoring?

RQ3: Do qualitative perceptions of architectural quality

change before/after and does this match the quantitative

changes?

The results of this longitudinal study are, we believe, quite

dramatic. BrightSquid, by paying down its architecture debt,

improved the maintainability of their code based significantly.

Velocity went up significantly: the average time to resolve

new issues in the after version went down by 72% and build

time was reduced by over 83%, as compared with the before

version. In addition, the number of bugs resolved per month

nearly doubled and the lines of code required to make these

fixes were reduced by 2/3.

In the remainder of this paper we will describe Bright-

Squid’s business context, the details of the longitudinal anal-

yses that we conducted, and the results that we obtained.

II. CONTEXT AND BASELINE ANALYSIS

This study has been done as part of a three year collabora-

tive program designed to analyze the impact of code changes

at BrightSquid. The project had multiple phases and was

kicked off in the Summer of 2016. As part of this project, we

studied the status of architecture debt and its impact on code

maintainability at BrightSquid. The timeline of this project in

regards to the scope of the paper is presented in Figure 3.
Inspired by the work of Begel and Zimmermann [1], in

the initial phase of this project we performed a survey that

included all of BrightSquid’s developers, project and product

managers (a total of nine employees) to pinpoint the most

interesting questions in the domain of the project. Among the

21 stated questions the most frequently asked questions were:
“How extensible is BrightSquid’s software in comparison to

some type of recognized standard?”
“What is the general cost of change on this software in

comparison with some type of accepted standard?”
“What areas of code / services are non-performant?”
“What areas of the code-base are not utilized?”
To answer these questions, we performed a preliminary

analysis of the code for the “Platform” project which includes

the main shared functionality of the project. We analyzed the

code changes maintained in GitHub and traced them to the

change requests maintained on the project’s Jira issue tracking

system, looking into all the (Java and Javascript) files. An

overview of the results is shown in Figure 1. We found that

the 10% of the commits with the highest churn (changed lines

of code) were applied to just 270 files (2.5% of all files).

The 25% of the commits with the highest churn were applied

to 26.1% of the files (2,870 files). Our results also showed

that 27.1% of the files (2,977 files) were never changed after

creation. And we found that 0.4% of all the files have changed

with all the change requests. The distribution of churn for

all the files is shown in Figure 3 - (a). As we will show in

Section V, these are all symptoms of architecture debt. For

example, these 0.4% of files that are constantly changing are

all members of architecture roots [22].

Extent of change for all files # of mutually changed files between two releases Ranking of issues in terms of churn created and their nature

Code Files

0
e
+
0
0

1
e
+
0
5

2
e
+
0
5

3
e
+
0
5

C
h
u
rn

#of files

85% 2%

Releases

R
e
le
a
se

s

R
1

R
3

R
5

R
7

R
9

R
1
1

R
1
3

R
1
5

R
1
7

R
1
9

R
2
1

R
2
3

R
2
5

R
2
7

R
2
9

R
3
1

R
3
3

R1

R3

R5

R7

R9

R11

R13

R15

R17

R19

R21

R23

R25

R27

R29

R31

R33

C
h
u
rn

Issue ID

0

200

400

600

800

1000

1200

1400

1600

1800

2000

M
A
IL
-4

M
A
IL
-3
77

M
A
IL
-5
9

M
A
IL
-2
53

M
A
IL
-1
33

M
A
IL
-1
44

M
A
IL
-4
68

M
A
IL
-2
50

M
A
IL
-1
19

M
A
IL
-1
08

M
A
IL
-2
97

M
A
IL
-6
5

M
A
IL
-1
15

M
A
IL
-3
04

M
A
IL
-1
86

M
A
IL
-1
83

M
A
IL
-1
80

M
A
IL
-3
50

M
A
IL
-2
93

M
A
IL
-2
22

(a) (b) (c)

Fig. 1: Results of preliminary study at BrightSquid (a) churn distribution of all the files (b) Heatmap of co-changed files

between releases (c) Type of change requests for top 10% of file with highest churn.

172

Among the files in the Platform project, 49.1% of them

had only a single contributor—the creator—and were never

touched by any other person. Looking across all releases

and all the files that have been changed by each pair of

non-consecutive releases showed that there is a 34% overlap

between changed files on average. If we include consecutive

releases, this number goes up to 41%. In addition, we present

a heatmap for the mutual file changes in Figure 1 - (b). Figure

1 - (c) shows the types of issues with respect to code churn

for the 10th percentile of the churn.

These initial analyses led us to believe that BrightSquid’s

code base had serious structural problems, which motivated us

to perform an architecture analysis.

III. ARCHITECTURE DEBT ANALYSIS

In our architecture analysis, we attempted to detect, mea-

sure, and assess the consequences of architecture debt in

two ways: 1) by calculating architecture-based maintainability

metrics on the before- and after-refactoring versions of Bright-

Squid’s software, and 2) by identifying the architecture flaws

and architecture roots in their software.

A. Maintainability metrics suite

We employed two state-of-the-art architecture maintainabil-

ity metrics to measure and compare the platform’s maintain-

ability before and after refactoring:

Decoupling Level (DL), introduced by Mo et al. [16].

Decoupling Level measures how well a software system is de-

coupled into independent modules, using Baldwin and Clark’s

design rule theory as the underlying theoretical foundation:

the more active, independent, and small modules there are, the

higher option values can be produced. Based on this rationale,

Mo et al.’s algorithm first clusters source files into a design rule

hierarchy (DRH), a hierarchical structure in which (1) files in

lower layers can only depend on files in higher layers; (2) files

within the same layer are clustered into mutually independent

modules. Based on DRH, DL is calculated based on the design

rule theory: the larger a module is, the lower its DL; the more

independent modules there are, the higher the DL; the more

dependents a module has, the lower its DL.

Propagation Cost (PC), proposed by MacCormack et al.

[13] to measure how tightly coupled a system is. The calcu-

lation of PC is based on a matrix model of the dependencies

among files. The rows and columns of the matrix are labeled

with the files in the same order, and each nonempty cell in

the matrix indicates an indirect or direct dependency between

the file on the row and the file on the column. MacCormack

et al.’s algorithm starts from the direct dependency relations

among files in a system, and calculates the transitive closure of

the matrix by adding indirect dependencies to it until no more

dependencies can be added. The final matrix thus contains

all direct and indirect dependencies, PC is calculated as the

number of nonempty cells divided by the total number of

cells in the final matrix. PC has been used by researchers and

practitioners to analyze large projects with similar domains

and sizes [12].

These metrics measure software from two complementary

aspects: the level of decoupling vs. the level of coupling. In

all systems the higher the DL, and lower the PC, and vice

versa. These metrics are architectural because they measure

the module view formed by the project’s source files.

B. architecture flaws

Following the work of Mo et al. [15], we detected the fol-

lowing 6 types of architecture design flaws from Brighsquid’s

software base:

Clique: A group of files that are interconnected, forming a

strongly connected component.

Package cycle: typically the package structure of a software

system should form a hierarchical structure. A cycle among

packages is therefore considered to be harmful.

Improper inheritance: we consider an inheritance hierarchy

to be problematic if it falls into one of the following cases:

(1) a parent class depends on one or more of its children;

(2) the client of the class hierarchy uses/calls both a parent

and one or more of its children, thus violating the Liskov

Substitution Principle.

Modularity violation: Modules designed properly with in-

formation hiding in mind should be able to change inde-

pendently from each other. If two structurally independent

modules in a DRSpace are shown to change together fre-

quently in the revision history, it means that they are not

truly independent from each other. Often, these modules

have harmful implicit dependencies that should be removed.

We call this flaw modularity violation. In this project, since

the number of changes and co-changes are few, due to the

relatively short revision history, we consider two files to have

modularity violations if they have changed together at least

2 times but have no structural dependency on each other.

Crossing: if a file has many dependents and depends on many

other files, that is, having high fan-in and high fan-out, then

this file will appear to be at the center of a cross in its

DSM. If the file at the center also changes frequently with

it dependents and the files it depends on, we call these files

form a Crossing. An example crossing from BrightSquid’s

platform is shown in Figure 2.

Unstable interface: if a highly influential file is changed

frequently with other files that directly or indirectly depend

on it, then we call it an Unstable Interface. In this project,

we consider a file to be an unstable interface if it changes

together with at least 5 other files two times or more.

C. Architecture Roots

Xiao et al. [22] proposed a new software architecture model,

design rule space (DRSpace), which contain a set of related

files. These DRSpaces can model various aspects of a software

system, such as a feature, a pattern, etc. A software architec-

ture can thus be viewed as multiple overlapping DRSpaces.

They also define a new concept called architecture roots (or

roots for short), to capture the architectural relations between

the project’s most error-prone files. An architecture root is a

DRSpace that captures a set of error-prone/change-prone files.

173

Fig. 2: A Design Structure Matrix with a Crossing Flaw (highlighted)

Several studies (e.g. [22], [9]) have shown that five roots

can typically cover 50% to 90% of the most error-prone files

in a system. This result implies that most error-prone files in

a system are usually architecturally connected. And the more

error-prone the files are, the more likely that these files are

architecturally connected, so that bugs propagate through the

connections. Following recent research [17], [9], we detected

the set of roots in the BrightSquid platform that cover at least

80% of all the error-prone files, before and after refactoring.

By comparing these before and after roots, and by interviewing

the practitioners, we could determine if these roots do indeed

reveal the problematic areas of the system.

IV. ORGANIZATION OF THE STUDY

A. Main Phases

The research study commenced in June 2016. Its main ob-

jective was to provide a methodology that we called Intelligent
Change Management that would aid BrightSquid in respond-

ing more quickly to requested changes. The cornerstone of this

strategy was to identify and pay down architecture debt so that

the company could increase its feature-delivery and bug-fixing

velocity.

From the perspective of identifying and paying down archi-

tecture debt, the study was structured into three phases (see

Figure 3).

1) Baseline analysis (June 2016 to May 2017.) During this

time the data and key findings from Phase 1, as described

Time
Start

June
2016

Initial
analysis

June
2017

July
2017

Observ.
#1 Refactoring

Jan.
2018

Observ.
#2

July
2018

Six months Six months

Fig. 3: Time line of the collaborative project

in Section II, were collected and analyzed. These findings

served as a strong motivation for the company to look more

deeply into technical debt and its root causes and a decision

was made to analyze the root causes of architecture debt.

2) architecture analysis before refactoring. (July 2017.) At

this time an in-depth architecture analysis was performed.

The key attributes studied in this architecture debt analy-

sis were those described in Section III: we captured the

project’s DL and PC scores, we calculated the architecture

roots, and we calculated the architecture flaws.

3) Refactoring and repeated architecture debt analysis.
(January to August 2018.) During this period, given the

results from Phase 2, an extensive architecture refactoring

was undertaken by BrightSquid. The refactoring done in

Phase 3 served multiple purposes: (i) reducing the technical

(architectural) debt that had accumulated over time, (ii)

adding new functionality in response to major emergent

customer requirements, and (iii) fixing bugs. This process

included purging of packages, consolidating tightly coupled

functionality together, cleaning up inheritance structures,

and purging complex and obsolete business logic that had

accumulated over the years.

B. The Process of architecture debt Analysis

To assess if and how the refactoring activity had affected the

architecture, and, most importantly, the maintainability of the

architecture, we conducted both quantitative and qualitative

analyses. For the qualitative analysis, which is independent

of the architecture debt analysis, we conducted a survey and

multiple interviews to collect the opinions and experiences

of the Brighsquid team, so that we could better understand

the implications and outcomes of the refactoring activity. For

example, we wanted to learn if the BrightSquid developers

felt that it had become easier to maintain the system after

174

refactoring, and if they thought that the 3 months of refactoring

was worthwhile.

For quantitative analysis, we analyzed two versions of the

system—before and after refactoring—as well as 6 months

of revision history after each of these versions. In both

analyses, we employed DV83—a commercial version of the

Titan architecture analysis tool suite [22], [23]—to analyze

the architecture of each system version to assess architecture

debt. To support this analysis we collected project history

data, including issue records and git logs, so that we could

quantitatively assess how maintenance activities have changed

before and after refactoring. Since the refactoring began on

January 8th, 2018, for the before-refactoring analysis we

analyzed the evolution history of the system 6 months prior to

January 8th, and used a release in July 2017 as the target

subject for architecture analysis of the “before” state. The

refactoring was completed by March 1st, 2018. We analyzed

the version released on that date, and 6 months of project

history after that date, to assess the impacts of the refactoring.

For each of these snapshots, we used DV8 to analyze the

architecture from the three aspects elaborated in the previous

section, collecting: 1) DL and PC scores, 2) the number of

instances of architecture flaws and their scopes, and 3) the in-

stances of architecture roots and their scopes. In particular, we

were keen to know if the architecture problems we identified

in the “before” state had been resolved during the refactoring

process and if new problems emerged after refactoring. The

output of this analysis allow us to answer RQ1.

For these two periods of history, in addition to counting the

total numbers of issues opened and fixed and the numbers of

bug issues opened and fixed, we also calculated the changed

lines of code (LOC) to fix each bug. We further counted the

average numbers of days required for bugs to be fixed in the

before and after versions. Our rationale for these measures

is that if the architecture refactoring was successful it would

become easier for developers to find and fix bugs and to

develop new features. In this case the time and LOC spent

should be significantly shortened after refactoring. The output

of this analysis will allow us to answer RQ2.

V. ANSWERS TO THE RESEARCH QUESTIONS

Now we present our results, organized according to the

research questions stated in Section I. RQ1 aims to quan-

titatively measure changes in architecture debt as reflected

in BrightSquid’s source code; RQ2 aims to quantitatively

measure changes in maintainability and productivity outcomes

as reflected in the revision history; and RQ3 explores the

development team’s experiences and assesses if the objective

numbers match their experiences and intuitions.

RQ1: Do quantitative measures of architecture debt change
significantly before/after refactoring?

We summarize the architecture measures and debts in Tables

I and II. After refactoring, the number of code files shrunk

3http://www.archdia.net

by 58.5%. We found just three architecture roots (containing

296 Files) that collectively account for 80% of bug fixes. By

contrast there were five roots (containing 295 files) before

refactoring. In total, 37% of the files covered 80% of the

bugs after refactoring while the number was 17% before the

refactoring. After comparing these roots, we realize that some

of the roots remain in the after version, meaning that the focal

points of the system are centered around these 296 files, which

could be determined by the nature of the application. Here we

observe that the Pareto rule applies for architecture debt: the

top few architecture roots always count for about 80% of the

bugs, either before or after refactoring.

Analysis of the decoupling level showed that the modularity

of the system decreased slightly, as the DL score reduced

by 3%, and the PC score remained the same, at 6%. The

small difference of DL could be caused by the fact that

many redundant components (which may be independent,

and contributed to a higher DL) were removed during the

refactoring. But a difference of 3% is essentially noise.

These system-wide measures—the DL/PC scores, as well

as the root analysis—do not reflect the changes in architecture

directly. These are overall average health measures. But in ar-

chitectural health the architecture flaws, which provide a more

fine-grained analysis of the architecture, changed drastically.

To make an analogy, a human might be mostly healthy—

having good blood pressure, low cholesterol, proper kidney

function, etc.—but a brain tumor can undermine and render

irrelevant all of those other measures.

Concretely, the number of cliques was reduced by 41.1%

and the # of files impacted by them was reduced by 63.3%.

Both the number of unhealthy inheritances as well as the

number of files affected by them reduced by almost 50%. The

number of unstable interfaces was reduced from 12 to 8, and

the number of files influenced by these interfaces reduced by

54%. The 79.3% reduction in the number of crossings was

accompanied by a 87.8% reduction in the number of files

TABLE I: Architecture analysis before and after refactoring.

General information Before After
of files 1713 711
of roots covering 80% of bugs 5 3
of files in roots covering 80% of bugs 296 295
of files covering 80% of bugs 17% 37%

Architecture Metrics Before After
Decoupling level 86% 83%
Propagation cost 6% 6%

Architecture flaws Before After
of cliques 17 10
of files influenced by cliques 71 26
of unhealthy inheritance 60 30
of files influenced by unhealthy inheritance 222 102
of unstable interface 12 8
of files influenced by unstable interface 471 59
of crossings 29 6
of files influenced by crossings 387 47
of package cycles 34 19
of files influenced by package cycles 242 94

175

TABLE II: Maintainability measures of BrightSquid’s projects

before and after refactoring.

Measure Before After
of files 1713 711
of issues opened 680 843
of issues fixed 583 653
of bugs opened 157 310
of bugs fixed 137 267
of bugs that changed code in platform files 24 78
Amount of churn per bug 102 33.9
Average bug fixing time 10.74 7.31

impacted by the crossings. Finally, the number of package cy-

cles reduced by 44.1% which shrunk the number of impacted

files by 61.1%. Since the file names changed drastically before

and after refactoring, it is impossible to compare the changes

in terms of modularity violation instances. The before/after

results are shown in Table I.

Why should we care about reducing flaws? Let us consider

a specific example: the crossing shown in Figure 2. This

crossing is centered around the file “User.java”. In the

before state of the system User.java was the center of a

crossing containing 107 files. That is, in the before state, 106

other files either depended on User.java, or User.java
depended on them. If User.java changed frequently—and

it did—then many other files were potentially affected. In the

after state, just 35 other files are coupled with User.java.

This kind of reduction in complexity that we get by paying

down the debt associated with architecture flaws means that, in

general, changes are less likely to “ripple” to other files which

in turn reduces the cost and complexity of those changes.

The refactoring activities were recorded as 106 change

requests, which consumed 563.8 person hours of effort. We

linked these refactoring issues to the commits that were related

to 7 cliques, 23 crossings, and 4 unstable interfaces that we

detected from architecture debt analysis before refactoring. We

found that about 34% of the commits, 28% of the time, and

37% of lines of code during the refactoring period were related

to the removal of architecture debt.

We looked into the time to fix issues in the files related

to the refactored cliques, crossings, and unstable interfaces.

We could find 13 issues after refactoring and compared them

with the 51 issues related to these files before refactoring. Our

comparison showed that the average time to close the issues

relate to these critical files dropped by 72%.

The average time needed to close issues before and after
refactoring was reduced by 72%.

RQ2: Do quantitative measures of project quality change
significantly before/after refactoring?

If the refactoring was successful, it should become easier
for developers to add features or fix bugs. Here we use two

proxies to quantify the ease of maintenance activities:

(1) churn (lines of code changed) per issue. The rationale

here is that the easier it is to fix a bug or to add new features,

the fewer LOC will be needed to close a change request. If

we only consider bug issues: the average bug-fixing churn

after refactoring is about 34 LOC per issue, compared to

102 LOC before refactoring. It appears, and the development

team believed, that the improved architecture made bug-fixing

substantially more efficient. If we consider all issue types, and

not just bugs, the averages are still improved: 208 LOC before

refactoring and 156 after refactoring.

(2) # days needed per issue. The rationale here is that the

easier it is to fix a bug or to add new features, the less time

needed to close a change request. The data shows that the

average bug-fixing duration reduced 30%, dropping from 10

days before to 7 days after. The productivity of the team

improved due to both reduced build time and reduced bug-

fixing duration. The box plot distribution of the time spent to

close a change request before and after refactoring and the

churn are shown in Figure 4.

We also observed that before refactoring, 71 change requests

(including 24 bug reports), involving code changes in the

platform were resolved in five months, compared to 150

change requests (including 78 bug issues) after refactoring in

a similar five month period. These numbers indicate that—

with the same team size—after refactoring more issues are

addressed and less code is “spent” to address each issue.

The time and lines of code needed to close change requests
are significantly lower than the required time and lines
of code before refactoring (p-value = 0.001 and 0.002).
Considering these measures as proxies for productivity,
the analysis of architecture debt correctly motivated the
architecture refactoring to increase developer productivity.

So far these quantitative analyses indicate a very successful

refactoring activity, both reflected in the record of revision

history and in the significant reduction of architecture flaws.

Next we assess if these numbers match developer intuitions.

RQ3: Do qualitative perceptions of architectural quality
change before/after and does this match the quantitative
changes?

To collect feedback from the development team, we con-

ducted a structured interview. The goal of this interview was

to qualitatively assess the perceived impact of refactoring. We

wanted to understand if maintaining the system became no-

Time spent on closing change requests

Before After

0

50

100

150

Lines of code per change request

Before After

D
a
y
s

L
in
e
s
o
f
c
o
d
e

0

100

200

300

400

500

Fig. 4: Analysis of change requests before and after refactor-

ing: Time spent (left) and size of change (right)

176

ticeably better, in terms of bug-fixing and productivity. And we

wanted to understand how much the developers thought that

these improvements were triggered by the results of the Phase

2 analysis. To do this we interviewed key project stakeholders.

Below, we first discuss the structured interview results, along

with the descriptions provided by the participants, and then

summarize the results of the follow up unstructured interview.

All participants were asked seven yes-no questions, where

they were also given the opportunity to add some elaborations

for the answers given. The product manager, software archi-

tect, and two back-end developers attended this interview. We

asked them to consider all the questions in terms of the system

state six months before and six months after refactoring.

While our quantitative results showed that “the # of change
request opened before refactoring is less than the # of change
requests opened after refactoring” in BrightSquid, the prod-

uct manager and a developer considered this a misleading

characterization. The product manager argued that intuitively

this seemed wrong as after refactoring the architecture and

business. rules were simplified and having less code, tables,

and tests should result in fewer issues. However, the architect

attributed the main cause of this increase to the introduction of

new features. When comparing the status of change requests

before and after refactoring, all the participants agreed with

our finding that “the portion of fixed change requests is higher
after refactoring.” The implication is that a desirable outcome

had been achieved: more features were able to be added (with

the same team size) after refactoring.

One of the surprising results was that “the number of
bugs opened after refactoring is significantly more than the
number of bugs before.” The software architect considered

this to be consistent with his own perception. He stated that

adding a large amount of new functionality caused a lot of

new bugs in the short term, while the old functionality was

fairly stable. This finding is also consistent with other studies

of refactoring: bugs often go up in the short term as the new,

refactored functionality is being integrated and debugged, but

this is not a long-term phenomenon [10]. All the participants

confirmed our finding that the ratio of fixed bugs to open bugs

was higher after refactoring (in comparison to before). This

effect was caused by two related factors: the refactoring both

reduced code dependencies and increased productivity. The

participants also confirmed our finding that “the time needed
to fix a bug after refactoring is less than the time needed before
refactoring”. This was again believed to be the case because

the refactoring reduced dependencies, and so bugs were more

localized. However, the increase in bug-fixing velocity was

also aided by the fact that creating the builds became 83.3%

faster after refactoring.

When it comes to validating our findings regarding the

amount of changes, all participants agreed that “the number
of files changed per bug is significantly less after refactoring”

and “the number of lines of code to change (churn) per bug is
significantly less after refactoring.” As shown by our results,

these values were significantly higher before the refactoring

and, once again, this was attributed to the higher code com-

plexity and higher inter-file dependencies in the before version.

We wrap up our qualitative analysis with a quotation from

the BrightSquid’s senior architect:

“Having an architecture debt analysis report that goes
through coupling, circular relationships, and dependencies
confirmed our hypotheses and we were able to convey to the
top management that we need to do the refactoring as quick
as possible.”

In addition to comparing our results with the perception

of developers in previous subsection, we performed semi-

structured interviews with two key actors in the company: the

product manager and the chief architect. Below we present

each of the questions accompanied by the consolidated results

of the interview discussions we had with these BrightSquid

managers.

Q1: How did you use the report from Phase 2 to decide
if/when/how/where to re-factor?
“We used the report to confirm our own hypotheses on

technical debt issues, including circular relationships in our

code base.

We did not use specific report findings to determine where we

should focus our attention. Instead, there were product and

feature changes that drove our decisions regarding code, files

and tables to deprecate and/or re-factor.”

Q2: To what extend did the report guide you to scrutinize
parts or aspects of the architecture that you might not have
otherwise focused on?
The team had a general understanding of the architectural

issues inherent in the code base. Business decisions regarding

product and feature deprecation drove decisions more than the

report.

Q3: Did the results of architecture debt analysis affect your
priorities?
Confirmation and quantification of technical debt through the

report made a stronger business case to focus more of the

technical team’s time on overtly addressing technical debt.

Q4: Did the results of architecture debt analysis affect your
refactoring strategies?
”The architectural debt analysis initiated the refactoring, and

the report was used to convince management to allocate

resources for refactoring. However, the analysis results were

not taken one by one as defining tasks for developers. Instead,

BrightSquid was considering the total results reported by

architectural debt analysis” (Product manager).

Q5: Did the report highlight any problems that were not
already known/obvious to team members?
The team was generally aware of the technical debt issues

in our code base. The report was very helpful in overtly

quantifying the amount and extent of actual technical debt.

Q6: Do you think there is a positive return-on-investment from
running architecture debt analysis and the return you received
out of it?
Very much so. Return-on-Investment includes (i) Faster builds:

177

over 50% reduction in building code and (ii) Reduction in

files, schemes and tables resulted in simplified architecture.

Consequently less time is required to design, write code, test,

build and maintain product and features.

Q7: What do you think had the biggest impact from running
the debt analysis?
By confirming both the level and extent of technical debt,

it was easier to acquire business commitment to address

technical debt through a more cohesive rather than piecemeal

approach.

Q8: What would have happened without it?
In the absence of the report, we would have been more likely

to address technical debt in a piecemeal fashion, and dragged

this out over a longer period of time.
As a typical software project that has evolved for years,

most maintenance costs in the BrightSquid Platform have been

focused on just a few file groups, as shown in the Architecture

Root analysis. These Roots are typically the root causes of

much of the project’s technical debt. All after all, as the

BrightSquid manager said:

“Our code base was a historical record of our quest to find
the right market, problem and solution. architecture debt
analysis quantitatively exposed how and where this inflated
our cost of change.”

VI. DISCUSSION

Studying a software organization’s improvement efforts over

time allows us to better understand its impact on success [7]. In

our longitudinal study, we covered a period of two years. Any

real-world organization does not provide a controlled setting,

and this was true for our study. As part of an academic-

industry partnership project, we were unable to control all the

confounding factors such as adding or deleting new functional-

ity. A multitude of changes related to resources, development,

and business goals occurred concurrently. The impact of such

changes is even more substantial for smaller companies such

as BrightSquid. Consequently, no strict causality statements

can be made. Nevertheless, by triangulating all of the evidence

that we collected, a coherent picture emerges.
We argue that the architecture debt analysis had an impact

on company’s decision-makers and this caused them to decide

to refactor and guided them in how to focus their refactoring

efforts. This refactoring, in turn, helped give the company

the ability to mature their technology and better adjust to the

competitive health care market.
Refactoring and removing technical debt are a priority and

an ongoing effort for BrightSquid, but these needed to be

balanced against the business’s other priorities—delivering

customer-facing features. BrightSquid’s stakeholders have

seen, however, significant benefits to the business and the

development team in reducing complexity, removing archi-

tecture flaws, and simplifying or removing obsolete business

rules. The refactoring efforts helped to increase the Bright-

Squid team’s productivity and ability to adapt quickly to new

business requirements.

We argue that the overall message presented in this paper—

that architecture debt was weighing BrightSquid down and that

the refactoring removed substantial portions of this debt—

is the result of combining various independent streams of

reasoning and evidence:

1) Quantitative analysis: This analysis revealed improve-

ments to both the architecture and the maintainability of the

platform software. This analysis was based on measuring

key attributes of the system’s software architecture—its

decoupling level, roots, and architecture flaws—and key

outcome measures, such as lines of code, bugs, and velocity.

Our study was limited to BrightSquid’s platform project

and focused on its Java code, but this was justifiable as

the platform is the most critical software component for

the company. We observed that the refactoring reduced

the number of blocker and critical bugs by 11.3%. Still,

a more comprehensive analysis including other parts of the

system is needed to increase the validity of our findings. In

particular, the substantial reduction in size of the platform

is a confounding factor that could directly impact the

quantitative measures we reported in our paper.

2) Qualitative analysis: This evidence was based on perform-

ing a series of interviews with key members of the project,

asking for their perceptions surrounding the relevance,

utility, and accuracy of the architecture debt analysis. This

allowed us to assess the perceived value of the analyses that

we performed. Even though we had just four participants,

the clear trend was that the architecture analysis confirmed

our hypotheses and gave BrightSquid the evidence that they

needed for their decision making. In addition, the analysis

allowed the team to argue for the urgency of performing

a substantial refactoring and guided them in parts of their

refactoring. While these forms of interviews are subject to

validity threats, when combined with the quantitative results

a consistent picture emerges.

3) Preponderance of evidence: Finally, we argue that the

results achieved here, in terms of the reduction in ar-

chitecture flaws and the subsequent gains in productivity,

are consistent with a large and growing body of research

evidence—that technical and architecture debt matters and

paying it down can catalyze substantial productivity im-

provements (e.g. [2], [3], [5], [15], [20]). The value and

insight gained from running architecture debt analyses has

been shown in other studies. In particular it has been shown

that the number of architecture flaws per file is very strongly

correlated with bugs, changes, and churn/effort [6], [15]. In

this study, for the first time, we performed multiple analyses

of a single system over time. In particular, we measured the

architecture debt and productivity measures before and after

refactoring.

Clearly we can not argue for strict causality—that the

refactoring caused the productivity improvements—because

our analysis did not define and control every step of the

experimental setting. However, there are several pieces of

qualitative and quantitative evidence, along with our prior

178

corpus of research results, that point to the impact of refac-

toring on team productivity in BrightSquid. This gives us

confidence in arguing that reducing architecture debt has had

a positive influence on productivity and quality measures for

the company.

Having seen the value of this analysis, BrightSquid is

now considering embarking on a program of continuous
architecture measurement and benchmarking. Measurement,

particularly if it is fully automated and connected with project

triggers (for example, a nightly build), can quickly notify

project stakeholders if there has been a degradation in the

architecture—perhaps the introduction of a new architecture

flaw. Benchmarking can help a company understand how it is

situated in terms of its competitive landscape. So, for example,

a company can track its DL score over time and use this to

determine if any mitigations are required. This is no different

from what you do when you go to the doctor. The doctor

analyzes your health via a spectrum of analyses and tests

and notes differences from your last checkup (for example,

a dramatic increase in blood pressure or cholesterol levels)

and uses broad benchmarks to decide if an intervention is

necessary (for example, a total cholesterol level of 220 is

slightly high but within the normal range for adults). All

of the architecture analyses presented in this paper are fully

automated and so they can provide exactly the data needed for

such measurement and benchmarking (e.g. [16]).

VII. RELATED WORK

Architectural Debt Analysis. In the past decade, a number

of methods have been proposed to analyze technical debt

within software systems [4], [24], [25]. DV8 and Titan have

been used to analyze and detect architectural debt in both

open source and (closed source) industrial projects. Kazman

et al. [9] presented the experiences of detecting and quan-

tifying architectural debts in Softserve, as well as a return

on investment estimation of the benefit that would accrue

to potential refactoring activities. The recent work of Mo et

al. [17] reported the experience of applying the DV8 tool suite

to eight projects of various sizes and domains within ABB

Corporation, and showed that the architecture analysis helped

practitioners to make decisions on if and where to refactor.

Carriere et al. [3] also proposed and applied a cost-benefit

model to estimate benefits of reducing the level of coupling

in an e-commerce architecture. Their work focused on cou-

pling only, rather than on identifying architecture flaws and

pinpointing the locations to refactor.

Curtis et al. [5] proposed a model to estimate the amount

of technical debt in terms of cost calculated from source code

static relations. Nord et al. [20] created a formula to estimate

the impact of technical debt on architecture, which could be

used to optimize long-term product evolution. Similarly to

Curtis et al. [5], their work does not detect the location and

specific problems that need to be treated.

Martini and Bosch [14] proposed and validated AnaCon-

Debt, a method that has been applied to 12 case systems within

six companies. Their experience showed that it can help prac-

titioners to decide if and when to refactor architectural debt

items. In comparison with Titan and DV8, the architectural

debt in their work had to be manually identified by architects.

Of all these previous cases studies, none of them pre-

sented the experiences before and after the actual refactoring

activities, although many of them demonstrated that their

approaches can help the team to make refactoring decisions.

The work we are presenting here is, to our knowledge, the

first report of analyzing a system before and after refactoring,

in terms of architecture debt variations and maintenance effort

variations, both quantitatively and qualitatively.

VIII. SUMMARY AND CONCLUSIONS

As described in [21], case studies in software engineering

often just examine small-scale systems with relatively low

research effort. There are few longitudinal case studies (with

some notable exceptions such as [11]) that address larger scale,

complex phenomena where there is a need to collect both

quantitative and qualitative data. As mentioned by [21], the

“software engineering research community both recognizes the

demands of longitudinal case study research and also that the

community can only rarely allocate sufficient resources toward

such studies”.

Our current study covers a period of two years and reports

on the process and major findings from identifying and paying

down the architecture debt in the module structure of Bright-

Squid’s platform. In this study we have observed substantial

quality and productivity improvements made over the period of

intervention and analysis. Understanding the architecture flaws

and initiating refactoring helped the company to reduce their

build time by about 83%, reduced the average time to resolve

issues by 72%, and reduce bug-fixing effort from an average

of 102 LOC per bug to just 34. How do we know that these

improvements all accrued to the architecture debt repayment?

Again, we can not claim causality based on a single case study.

However, we believe that we can make an argument based on a

preponderance of evidence all pointing in the same direction.

The number and size of the architecture flaws went down,

productivity measures went up, the key stakeholders felt that

the refactoring benefited their ability to manage the code base.

And finally, all of this is consistent with the evidence

collected over the analyses of hundreds of open source and

industrial projects in our prior work which shows a very

strong correlation between architecture flaws and productivity

measures [6], [15]. Thus, although this is just a single case

study, it presents a consistent picture—that architecture debt

matters and that it is possible to pay it down, via refactoring,

and achieve significant benefits.

Many young companies embrace agile software develop-

ment methodologies, where the typical attitude is that so-

lution architecture evolves organically. This organic evolu-

tion is a key characteristic of start-ups and is needed for

survival, flexibility, speed, and a revolving door of opportu-

nities, stakeholders and employees. The research presented

here is part of a longer term project with a young software

179

company—BrightSquid—to improve their software processes.

For example we developed ESSMArT for automatic escalation

and summarization of user requests [18] and implemented a

tagging method for better estimation of effort needed to close

a change request [19]. The research reported here is a step

towards our overall goal of Intelligent Change Management.
The job of the young software company is to find a

sustainable business model—in other words, to discover an

important and urgent problem—that a defined and accessible

segment of customers will pay for. But this often seems to

be inherently in conflict with a disciplined approach towards

software engineering in general and with the management of

technical debt in particular. Here we showed that, with the

right tooling, it is possible to have both discipline and agility.

The final outcome of this study is that it made believers out

of BrightSquid’s management. Thus we will conclude with a

quotation from the product owner.

“The approach expressed in the paper to analyze architec-

ture debt provides immutable guide-stones to navigate through

the mutable destinations on the road to discovering the actual

sustainable business model. If we declare the components

of your analysis to be essential non-functional requirements

(clique, package cycle, improper inheritance, modularity viola-

tion, crossing, unstable interface) with overtly declared targets,

then regardless of the markets, problems or solutions visited

on the journey, the disciplined start-up that regularly manages

these non-functional requirements is much better equipped to

avoid architecture debt accumulation in the first place. As long

as acceptable thresholds are maintained, the start-up can be

confident that the architecture supports, rather than thwarts

success. Quick and dirty fixes can consequently be exposed

as what they truly are - incremental, short-sighted steps down

a slippery slope that inflates the costs of change. In short, An
ounce of prevention is worth a pound of cure.”

ACKNOWLEDGMENT

This research was supported by the Natural Sciences and

Engineering Research Council of Canada, Discovery Grant

RGPIN-2017-03948, the Collaborative Research and Develop-

ment project NSERC-CRD-486636-2015, and by the United

States National Sciences Foundation grants 1514561, 1514315

and 1816594.

REFERENCES

[1] A. Begel and T. Zimmermann. Analyze this! 145 questions for data
scientists in software engineering. In 36th International Conference on
Software Engineering, pages 12–23, 2014.

[2] N. Brown, Y. Cai, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. Mac-
Cormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, and
N. Zazworka. Managing technical debt in software-reliant systems. In
FSE/SDP Workshop on the Future of Software Engineering Research at
ACM SIGSOFT FSE-18, pages 47–52, 2010.

[3] J. Carriere, R. Kazman, and I. Ozkaya. A cost-benefit framework for
making architectural decisions in a business context. pages 149–157,
2010.

[4] W. Cunningham. The WyCash portfolio management system. In
Addendum to Proc. 7th, pages 29–30, Oct. 1992.

[5] B. Curtis, J. Sappidi, and A. Szynkarski. Estimating the principal of an
application’s technical debt. volume 29, pages 34–42, 2012.

[6] Q. Feng, R. Kazman, Y. Cai, R. Mo, and L. Xiao. An architecture-centric
approach to security analysis. pages 221–230, 2016.

[7] B. Fitzgerald and T. O’Kane. A longitudinal study of software process
improvement. volume 16, pages 37–45, 1999.

[8] S. J. Kabeer, M. Nayebi, G. Ruhe, C. Carlson, and F. Chew. Predicting
the vector impact of change-an industrial case study at brightsquid.
In International Symposium on Empirical Software Engineering and
Measurement (ESEM), pages 131–140, 2017.

[9] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak,
and A. Shapochka. A case study in locating the architectural roots
of technical debt. In 37th International Conference on Software
Engineering, volume 2, pages 179–188, 2015.

[10] M. Kim, D. Cai, and S. Kim. An empirical investigation into the role of
API-level refactorings during software evolution. pages 151–160, 2011.

[11] J. Li, N. B. Moe, and T. Dybå. Transition from a plan-driven process
to scrum: a longitudinal case study on software quality. In Interna-
tional symposium on Empirical Software Engineering and Measurement,
page 13, 2010.

[12] A. MacCormack, J. Rusnak, and C. Baldwin. Exploring the duality
between product and organizational architecture: A test of the mirroring
hypothesis. Working Paper 08-039, Harvard Business School, 2008.
http://www.hbs.edu/research/pdf/08-039.pdf.

[13] A. MacCormack, J. Rusnak, and C. Y. Baldwin. Exploring the structure
of complex software designs: An empirical study of open source and
proprietary code. volume 52, pages 1015–1030. INFORMS, 2006.

[14] A. Martini and J. Bosch. An empirically developed method to aid
decisions on architectural technical debt refactoring: Anacondebt. In
International Conference on Software Engineering Companion, pages
31–40, 2016.

[15] R. Mo, Y. Cai, R. Kazman, and L. Xiao. Hotspot patterns: The
formal definition and automatic detection of architecture smells. In
12th Working IEEE/IFIP Conference on Software Architecture (WICSA),
pages 51–60, 2015.

[16] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng. Decoupling
level: a new metric for architectural maintenance complexity. In 38th
International Conference on Software Engineering, pages 499–510,
2016.

[17] R. Mo, W. Snipes, Y. Cai, S. Ramaswamy, R. Kazman, and M. Naedele.
Experiences applying automated architecture analysis tool suites. In 33rd
International Conference on Automated Software Engineering, pages
779–789, 2018.

[18] M. Nayebi, L. Dicke, R. Ittyipe, C. Carlson, and G. Ruhe. ESSMArT
way to manage user requests. arXiv preprint arXiv:1808.03796, 2018.

[19] M. Nayebi, S. J. Kabeer, G. Ruhe, C. Carlson, and F. Chew. Hybrid
labels are the new measure! volume 35, pages 54–57, 2018.

[20] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas. In search
of a metric for managing architectural technical debt. In SConference
on Software Architecture and European Conference on Software Archi-
tecture, pages 91–100, 2012.

[21] P. Runeson, M. Host, A. Rainer, and B. Regnell. Case study research
in software engineering: Guidelines and examples. John Wiley & Sons,
2012.

[22] L. Xiao, Y. Cai, and R. Kazman. Design rule spaces: A new form
of architecture insight. In 36th International Conference on Software
Engineering, pages 967–977, 2014.

[23] L. Xiao, Y. Cai, and R. Kazman. Titan: A toolset that connects
software architecture with quality analysis. In International Symposium
on Foundations of Software Engineering, pages 763–766, 2014.

[24] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng. Identifying and
quantifying architectural debt. In 38th International Conference on
Software Engineering, pages 488–498, 2016.

[25] N. Zazworka, A. Vetro, C. Izurieta, S. Wong, Y. Cai, C. Seaman, and
F. Shull. Comparing four approaches for technical debt identification.
pages 1–24, 2013.

180

