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ABSTRACT

Signal transduction pathways are chemical communication chan-
nels embedded in biological cells, and they propagate information
from the environment to regulate cell growth and proliferation,
among other cell’s behaviors. Disruptions in the normal function-
alities of these channels, mostly resulting from mutations in the
underlying genetic code, can be leading causes of diseases, such as
cancer. Motivated by the increasing availability of public data on ge-
netic code expression in cell tissue samples, i.e., transcriptomics, and
the emerging field of molecular communication, a novel data-driven
approach based on experimental data mining and communication
theory is proposed in this paper. This approach is an alternative to
existing computational models of these pathways in the context of
cancer, which often appear to oversimplify the complexity of the un-
derlying mechanisms. In contrast, a computational methodology is
here derived to estimate the difference in information propagation
performance of signal transduction pathways in healthy and dis-
eased cells, solely based on transcriptomic data. This methodology
is built upon a molecular communication abstraction of information
flow through the pathway and its correlation with the expression
of the underlying DNA genes. Numerical results are presented for
a case study based on the JAK-STAT pathway in kidney cancer, and
correlated with the occurrence of pathway gene mutations in the
available data.
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1 INTRODUCTION

Biological cells have the natural ability to sense information from
the environment through the reception, propagation, and process-
ing of molecular signals. This ability is at the basis of major cellular
functionalities, such as the regulation of the cell growth rate and
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proliferation [22]. Dysregulations in normal functionalities of these
cellular information systems, i.e., signaling pathways, are consid-
ered at the basis of complex diseases such as cancer [30], which is
nowadays one of the leading causes of death worldwide. One of the
obstacles to effective strategies for early diagnosis and cure of these
diseases is that the molecular mechanisms leading to signaling
pathway dysregulation, which have their roots in alterations of the
underlying genetic code (mutations), are largely ambiguous [29].
While mainstream high-throughput analysis techniques, such as
Next Generation Sequencing (NGS) [21], are providing an increas-
ingly massive amount of data on multi-level molecular profiles of
healthy and diseased tissues [28], advanced integrative and interdis-
ciplinary strategies are required to abstract meaningful information
on the molecular bases of these diseases.

Molecular communication theory is an emerging transdisciplinary
research field devoted to the modeling, characterization, and engi-
neering of communication systems where information propagates
through molecules and chemical reactions [1]. This field is experi-
encing an increasing interest in the study of biological cells [26],
and their communication functionalities [11], with the overarching
goal of realizing future programmable biological devices, enabled
by the latest advances in synthetic biology [19], pervasively inter-
connecting biological systems with the Internet, i.e., the Internet of
Bio-Nano Things [2].

In this paper, we propose the idea that the aforementioned dis-
eases originating from altered cellular information processing can
be successfully studied through a transformative data-driven ap-
proach that draws tools from molecular communication theory.
Existing cancer signaling pathway models, mostly based on either
boolean logic or Ordinary Differential Equations (ODEs) [4, 8, 20],
tend to mechanistically capture in different levels of complexity the
chemical processes at the basis of the propagation of the signal from
the extracellular signaling molecules, e.g., growth factors, to the
downstream gene regulation, while the effect of genetic mutations
on the disruption of these mechanisms is mostly reduced to very
simplistic assumptions [10, 17]. As an alternative to the complexity
of realistic computational models of these processes, this paper
introduces a novel perspective where information and communica-
tion theory, already proven effective for cancer classification and
analysis [13], are integrated with cancer high-throughput data for
the quantitative study and characterization of the disruption in the
flow of molecular information through signaling pathways caused
by genetic changes.
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Figure 1: Pictorial sketch of the biochemical processes in cell
signal transduction pathways and pathway genes.

Our approach is based on a molecular-communication-theoretic
abstraction of the genetic processes underlying signal transduction
pathways, in particular centered around the transcription of ge-
netic information, which ultimately controls the performance of
the pathway in the propagation of information. This approach is
motivated by the increasing wealth of public data based on tran-
scriptomics technologies [28], which provide measurements on the
transcription of the cell’s genes from experimental samples. The
latter are in fact characterized by high efficiency and low cost with
respect to other technologies that directly measure the interacting
molecules (proteins) that propagate information through a pathway,
i.e., proteomics. Based on the aforementioned abstraction, we derive
a computational methodology to estimate the difference in informa-
tion propagation performance of signal transduction pathways in
healthy and diseased cells solely based on transcriptomic data, and
we correlate these results with the most common pathway gene
mutations underlying diseases.

The rest of the paper is organized as follows. In Sec. 2, we review
the biochemistry underlying signal transduction pathways and
their genetic underpinnings, and propose our abstraction, in Sec. 3
we review the types of data handled in our work, and propose
a methodology to estimate the communication performance of a
pathway from transcriptomic data. In Sec. 4 we present a case study
based on the well-known JAK-STAT pathway and its relevance in
kidney cancer. Finally, in Sec. 5 we conclude the paper.

2 MOLECULAR COMMUNICATION
ABSTRACTION OF INFORMATION LOSS IN
CELL SIGNAL TRANSDUCTION

2.1 The Biochemistry of Signal Transduction
Pathways and Pathway Genes

In this paper, we focus on the biochemical processes that enable
the propagation of information from the external environment
through biological cells, i.e., signal transduction pathways, where
it ultimately controls numerous cell behaviors, and the role played
by their genetic underpinnings, i.e., the pathway genes [22].

As shown in Fig. 1, these processes are based on chemical inter-
actions between specific biological macromolecules, or proteins,
which form cascades of information-propagating mutual activa-
tion reactions called phosphorylations. In each phosphorylation
reaction, a specific protein, the kinase, acquires a phosphate group
through a reaction with another activated kinase, therefore becom-
ing activated, and, possibly after binding to other proteins into
complexes, can subsequently activate another protein, e.g., another
kinase, downstream of the cascade. The activated kinases are then
“reset” into a non-activated state by removal of the phosphate group
(dephosphorylation), operated by other specific proteins, the phos-
phatases. These chained reactions are initiated by special proteins,
the receptors, usually located across the cell membrane, which
modulate the phosphorylation of other proteins in the intracellular
environment downstream of the cascade according to extracellu-
lar signals, i.e., values of physical or chemical parameters, such as
hormones. This modulation propagates the information contained
in the extracellular signals through the cascaded phosphorylations,
until controlling the activation of other special proteins, the tran-
scription factors, which in turn regulate the expression of one or
more downstream DNA genes inside the cell nucleus [9]. This
downstream DNA gene regulation usually results in the activation
(amplification) or repression (attenuation) of a specific cell behav-
ior, such as its growth rate/division, i.e., proliferation, a specific
cell characteristic, i.e., differentiation, the probability of inducing
death, i.e., apoptosis, anti-apoptosis, and physiological stability,
i.e., homeostasis, among others.

The aforementioned proteins involved in the signal transduc-
tion pathway are present in the cell at determinate concentrations,
which ensure a “healthy” propagation of information through the
cell that maintains the adaptability of the organism to the extracellu-
lar environment [22]. These protein molecules are inevitably subject
to degradation, or simply digested by the cell (proteolysis), as at
the same time new ones are continuously synthesized from DNA
genes, i.e., pathway genes, as depicted in Fig. 1. A pathway gene
is a stretch of DNA that codes for the sequence of amino acids that
composes a specific pathway protein, which is synthesized from the
gene through the fundamental processes of transcription and trans-
lation. Transcription is initiated by the enzyme (a specific type of
protein) RNA polymerase (RNAP) that binds to the promoter region
of the gene, starting the production of the messenger RNA (mRNA)
molecules. These latter molecules carry the genetic information
of the protein encoded in the gene to the ribosome, the protein
assembly machinery. Subsequently, ribosomes, which are able to
recognize and bind to the mRNA molecules, complete the synthesis
of the corresponding protein through the process of translation, by
assembling together the component amino acids as instructed by
the mRNA. As with the aforementioned downstream DNA genes,
also the pathway genes may be subject to regulation as a result of
the information propagated by the pathway, therefore increasing or
decreasing their transcription rate through activation or repression,
respectively. As a result, the concentrations of mRNAs present in
the cell, which are measured through transcriptomics [28], such
as those at the basis of the TCGA database considered in this pa-
per, may be correlated to the information propagated through the
pathway from the extracellular signals.
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Figure 2: Proposed molecular communication abstraction
of information loss caused by pathway gene mutations and
based on transcriptomics.

DNA genes in the cell can be subject to mutations, i.e., perma-
nent changes in their code sequence resulting from error during
DNA duplication in cell division, or from direct damages of its
structure by external causes [22]. Some of these changes in the
aforementioned pathway genes can result into changes in pathway
protein structure and function, with consequent alteration of the
protein behavior in terms of propagation of information within
the cell signaling pathway, thus leading to characteristic features
of tumor cells, such as uncontrolled proliferation, anti-apoptosis
(cell uncontrolled survival), or unbalance in cell differentiation sig-
nals leading to metastases [27]. DNA mutations might appear in
different forms, but in the preliminary work described in this paper
we will consider for simplicity only gene mutations, i.e., where
there is a change in nucleotide sequence within a gene, as follows:
insertion of additional nucleotides into the sequence, deletion of
existing nucleotides, substitution of a nucleotide with a different
nucleotide (Single Nucleotide Polymorphism - SNP), at specific
positions of the DNA sequence of the gene, as graphically depicted
in Fig. 1. Gene mutations are generally more frequent in cancer
than other types of mutations, i.e., chromosome mutations [14],
although the relevance of this latter type to gene expression in
cancer has been recently studied [3]. In this paper, we abstract
and characterize the correlation between pathway gene mutations
and the loss in information as it propagates through cell signal
transduction pathways by utilizing tools from communication and
information theory applied to genomic and transcriptomic data.

2.2 Molecular Communication Abstraction
Based on Transcriptomics

According to the reference molecular communication abstraction
proposed in this paper, a cell signaling pathway is modeled as a
network of molecular communication channels, which propagate
input information carried by the extracellular signals through the
pathway, where information loss may occur due to the aforemen-
tioned possible gene mutations, until being relayed as output
information to the transcription factors that regulate the down-
stream genes. Our goal is to estimate the amount of input and

output information, as well as the information loss associated to
gene mutations leading to diseases, from the knowledge of the
pathway reaction map [15] and publicly available transcriptomic
data [28]. With reference to Fig. 2, we base our estimations on the
following assumptions:

e We estimate the information that propagates through the path-
way by taking into account the concentrations of mRNA molecules
transcribed from specific protein-encoding DNA genes, instead of
the proteins themselves. These concentrations, called transcripts,
are the data obtained by transcriptomic technologies applied
to experimental cell samples [21]. Although information is in
fact propagated in the pathway by their corresponding synthe-
sized proteins through their interactions and mutual activation,
as described in Sec. 2.1, and our assumption is supported by
recent studies on the correlation between transcripts and the
corresponding proteins [6]. The latter work demonstrated ex-
perimentally that, for each specific gene, the relation between
the steady-state concentration of transcripts, obtained through
transcriptomics, and the corresponding number of synthesized
proteins can be approximated in human cells by a constant gene-
specific mRNA-protein ratio.

o Although cell signaling pathways are dynamic, and their input-
output behavior is in general function of the time, we restrict our
analysis to the observed average output of the pathway that corre-
sponds to each possible observed input. This is motivated by the
fact that the aforementioned transcriptomic data are obtained as
average samples from an ensemble of non-synchronized signal-
ing pathways, i.e., an average of the states of all the cells included
in each experimental tissue sample [28].

e For the signal transduction pathway under analysis, we rely on
the knowledge of the pathway reaction map [15], namely, the set
of all the chemical reactions in the pathway, to understand the
relationship between the pathway genes. Each pathway reaction
expressed in general as A + B == C + D, where A, B are the
reactant molecule species, C, D are the product molecule species,
respectively (for irreversible reactions the backward arrow is
omitted, and B and/or D can be omitted depending on the reac-
tion), is translated into edges as shown in Fig. 2. In particular, the
red edges abstract the regulation of pathway gene expressions oper-
ated by the aforementioned transcription factors, whose activity is
controlled by the information that propagates in the pathway.

o We consider the presence of the aforementioned types of mutations
at each gene if they appear in the genomic data of diseased samples
but not in healthy samples. These will enable the study of how
specific gene mutations correlate to changes in the information
that propagates through the signal transduction pathway in case
of disease. The classification of each cell sample into healthy or
having a specific diseased, i.e., cancer, is given a priori by the
aforementioned public databases.

As a consequence of these assumptions, we can estimate the Input
Information from the values of the transcripts X for each Input
Signal Gene s = 1, ..., S, which are the genes that encode the ex-
tracellular signals. We can consider these as the average transcripts
of all the cells in each tissue sample, and therefore proportional to
the average extracellular signals that are input of the pathway Ing



from the neighboring cells in the tissue. We quantify this informa-
tion through the entropy expression H ({X s }le) (which we call

Transcriptional Entropy), which is related to the information
carried by the extracellular signals In; as follows:

H ()5, ) = H (Uns)Sy) + ilog2 Kinss ()
s=1

where K, s is the aforementioned gene-specific mRNA-protein
ratio for each input signal gene s, and the formula corresponds
to the information entropy of an ensemble of scaled continuous
random variables [5]. The information H ({I ns }le) carried by the
extracellular signals propagates through the pathway by modulat-
ing the interactions between the pathway proteins, until affecting
the activity of the transcription factors downstream of the pathway,
as described in Sec. 2.1. In turn, these transcription factors regulate
the expression of a set of pathway genes (gene j and gene k in red
in Fig. 2). Biological noise and other effects [16] tend to decrease
the information content in the protein interaction modulation by
randomization or equivocation [5] during its propagation in the
signaling pathway, resulting in a residual Output Information
at each pathway gene j that can be quantified through the Tran-

scriptional Mutual Information I = I ({Xs}f:1 ; YJ) where Y;
represents the transcripts of pathway gene j. For the latter, we can
express the following:

T(0635205%) = H (06350 )-H (0612, 1) = T (1ns}5.5%5)

@
since the conditional transcriptional entropy H ({X s }le |YJ) which
is computed over values of the transcripts X, is equal to the con-
ditional entropy H ({Ins}f:1 |YJ) plus the same factor as in (1).

When the mutual information is computed, the two factors cancel
out, leading to (2). The Information Loss due to Mutations at
the pathway gene j is computed as the difference between the
transcriptional mutual information I; = I ({XS }le ; Y]) computed
from transcriptomic samples classified as healthy, and the same but
computed from transcriptomic samples classified as diseased, which
includes the effect of mutations on the propagation of information,
denoted as IJT’”” =1 ({Xs}fz1 ; Yj"””). Finally, the occurrence, or
frequency, of mutations in diseased samples with respect to healthy
samples can be considered and classified on the basis of the infor-
mation loss results. In this paper, we will limit the latter to a visual
comparison of the information losses at specific genes and the ob-
served mutation frequencies, while more structured approaches
will be tackled in future work.

3 ESTIMATING TRANSCRIPTIONAL
MUTUAL INFORMATION

3.1 Data

We obtain the data necessary to estimate the aforementioned tran-

scriptional information parameters according to the following steps:

e We select a specific cell signal transduction pathway (or a
set of cross-communicating pathways) and retrieve the corre-
sponding pathway reaction map. For this, we interrogate the
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Figure 3: Transcripts of EGFR and c-Fos genes from TCGA
obtained from healthy and tumor tissue samples in subjects
affected by colorectal cancer.

Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway
Database, which is an integrated database resource for biological
interpretation of gene sequences and high throughput genomic
data [12, 15]. Along with the pathway maps, the KEGG Path-
way Database provides the list of the corresponding pathway
genes, together with other information on their exact sequence,
other specific molecular interactions, regulation reactions, and
crosstalk with other signal transduction pathways.

o We select a specific disease, i.e., a cancer type, and retrieve the
transcriptomic data corresponding to the pathway genes listed by
the KEGG Pathway Database. For this, we interrogate The Cancer
Genome Atlas (TCGA) [28], a publicly available high-throughput
genomic database. In particular, the provided transcripts have
been obtained from different tissue specimens of healthy and
diseased patients through the RNA-Seq-based transcriptome se-
quencing technique, and their corresponding concentration val-
ues are expressed in units of Fragments Per Kilobase of transcript
per Million mapped reads (FPKM). Proteins within the same func-
tional family are represented in the network map with the same
node, but they expressed by different genes. In the scope of this
paper, we sum all the transcripts related to these proteins before
utilizing them in to estimate transcriptional mutual informations.

As an example, in Fig. 3 we show data points extracted from TCGA
colorectal cancer data for the EGF/EGFR pathway in Homo sapiens.
For each sample, we extracted the transcripts of the EGFR input
signal gene and the corresponding transcripts of the pathway gene
c-Fos [23], that is regulated by the pathway transcription factors, as
explained in Sec. 2.2. By observing the polynomial trend lines [7] of
the healthy samples Vs the tumor sample, it is clear that in healthy
cells the expression of c-Fos can be controlled more precisely and
over alarger range than in tumor cells, where c-Fos is mostly around
a stable (and low, as also confirmed in [18]) value for almost all
range of observed EGFR expression.



3.2 Computational Methodology

The final goal of our computational methodology is the estimation
of the transcriptional mutual information I; at each pathway gene
J, expressed as

b= A (X ) - A (0615 15)), 3

where H(.) and H(.|.) denote the estimated joint entropy and con-
ditional entropy, respectively, X; is the value of the transcripts for
input signal gene s and Y; is the value of the transcripts for pathway
gene j (or functional family j).

The estimated input entropy H ({Xs}le) is computed through
the histogram approach [24] as

Nb1 Nbs’ S

Z Z HPXS Xs,is)

is=1i=
Zlogz (P—Xs i iS)) , (4
im1 WX

where p (X1, ({xs, i }f:l) is the probability for the value of X

A ((x5) =

corresponding to the is-th histogram bin x;,;;, and Nj,_ and wx are
the number and size of histogram bins considered to approximate
the probability density function of X, according to the available
transcriptomic data for the input signal gene s, respectively. The
formulation of the expression in (4) is based on the simplifying
assumption of having input signals with independent probability
distributions.

The estimated conditional entropy H ({Xs}f:1 |YJ) of the input

signal gene transcripts {Xs }‘::1 given the transcripts of the pathway
gene j (or functional family j) is computed as

Noy,
Z pY (y] h)

Nj n.b, Njnbs s

Z - [ exay, (Xs i, 1Y), h)

is=1 i=1

A (0615, 1Y) =

PX,|Y; (xs isly; h)

S sl¥j > Ls B
Zogz—, )

WXS |yj,h

where Nij is the number of bins considered to approximate the
probability density function of Y; according to the available tran-
scriptomic data for the pathway gene j, px, 1Y; (xs, i |y, h), Nj b,
and wx_| y;.p AT€ the probability for the value of X corresponding
to the is-th histogram bin xs_ ;_, the number and size of histogram
bins, respectively, considered to approximate the probability den-
sity function of X according to the available transcriptomic data
for the input signal gene s that is at the input when the gene j
histogram bin value y; , is considered as the signal transduction
pathway output.
The numbers of histogram bins Nj, , Nij’ and N; , , for s =
., S and the h-th transcript value for the pathway gene j his-
togram are computed from the gene transcriptomic data according

to the Doane’s formula [24] as follows:

Np = 1+logy(C) + log, (1 + g—A) : ©)

Oga
where C is the total number of available transcriptomic data sam-
ples, i.e., number of healthy or diseased tissue samples, g4 is the
estimated 3rd-moment-skewness of the transcript distribution p4,

and Ogs = 1/%. To obtain the values for Ny, _, Npy and
s J
Nj h, b, the parameter Ais substituted with X, Yj, and Xs|Y; = y; p,

respectively. Finally, the histogram bin sizes wx_ and wx_ ly;., Ar€
computed by dividing the difference between the maximum and
minimum values of the transcripts X5 or X;|y; . respectively, by
the corresponding number of histogram bins computed through (6).

For example, if we apply this computational method to estimate
the transcriptional mutual information for the data shown in Fig. 3,
where we consider only one input signal gene (S = 1), i.e., EGFR, and
the pathway gene c-Fos, we obtain I._pos = [ (XEGFR; Ye—Fos) &

. . t_ . ) o
0.73 bits (41 tissue samples) and Iémlf: s =1 (XEGFR, chil;’os) =

0.27 bits (470 tissue samples) considering in each case only the
data from the healthy samples and tumor samples, respectively.
This corresponds to Io_pos — Ic”i';tos = 0.46bits, which quantifies
the information loss suffered by the EGF/EGFR pathway for tumor
tissue cells in colorectal cancer on the mechanism of regulation of
the c-Fos gene by the EGF signal.

4 CASE STUDY AND NUMERICAL RESULTS

In this section, we present numerical results obtained with the com-
putational method presented in this paper to estimate transcrip-
tional mutual information, and information loss due to pathway
gene mutations leading to disease. In this case study, we focus on a
specific signaling pathway, i.e., the JAK-STAT pathway. This path-
way is a crucial signaling cascade for several extracellular signals,
within the functional families of cytokines, hormones and growth
factors. When JAK is activated, it stimulates cell growth, differenti-
ation, migration and apoptosis [22]. These factors are crucial for
the normal functioning of biological processes, such as immune
system, hematopoiesis, lactation, and development of adipocytes.
Any mutation that affects the activity of JAK regulation signaling
can cause diseases, such as inflammation, leukemia, erythrocyto-
sis [25]. In particular, in our study, we seek to understand how the
normal regulation and dysregulation of JAK-STAT is associated to
cancer (kidney cancer, as detailed in the folloting), hence this study
could be provide novel insights to the cancer research community.
Moreover, the JAK-STAT pathway is known for its simplicity with
respect to other signaling pathways in eukaryotic cell.

By following the methodology described in Sec. 3, we retrieved
the standard Homo sapiens JAK-STAT signaling pathway reaction
map from the KEGG Pathway Database, and used this model to ex-
tract all the genes associated with each process along the pathway.
As a result, we have a total of 161 genes involved in the JAK-STAT
pathway, which can be grouped into 32 functional families, as de-
fined in Sec. 3.1, including the aforementioned 3 functional families
of input signal genes, including 46 cytokines, 10 hormones and, 3
growth factors. Next, we extracted the transcripts for all the 161
genes from the TCGA to apply our computational method and ob-
tain the transcriptional mutual information of the pathway. Within



the TCGA, we chose to sample kidney tissues cells as our case study
because we were able to find a greater amount of gene expression
data associated to the pathway under analysis. Finally, we retrieved
transcriptomic data for the healthy (128 healthy tissue samples)
and diseased (893 tumor tissue samples) cases.

Similarly, we extracted mutation data for all 161 genes consider-
ing three different commonly known mutation types as follows: 1)
insertion, which involves the addition of one or more nucleotide
base pairs into a DNA sequence, ii) deletion, which is when a part
of a DNA sequence is lost during DNA replication, and iii) SNP,
which comprises a variation that occurs in a single nucleotide (T,
C, G, or A).
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Figure 4: Transcriptional mutual information for JAK-STAT
pathway genes in healthy kidney cells.

For the estimation of the input entropy, the transcriptomic data
of healthy and diseased tissues are combined to utilize the entire
range of transcript values that the input signal genes can take. The
transcriptional mutual information values for each gene (which
includes the corresponding funcitonal family) in the KEGG JAK-
STAT pathway is estimated as described in Sec. 3.2. When utilizing
the healthy 128 tissue samples, transcriptional mutual information
values are reported in Fig. 4, and graphically shown in a correspond-
ing proportional size of each pathway map node. As expected, the
transcriptional mutual information values are decreasing as the in-
formation propagates through the pathway, accumulating chemical
noise at each reaction (data processing inequality), from an esti-
mated input joint entropy H(X) = 17.63 bits to estimated multiple
outputs of MI SOCS I; = 5.91 bits, CIS I; = 7.3 bits, MIC I; = 6.65
bits, Bel [; = 6.14 bits, PIM1 [; = 5.72 bits, BcI-XL I; = 5.96 bits,
¢-Mye Ij = 5.36 bits, CycD I; = 5.78 bits, p21 I; = 5.07 bits, AOX
I; = 6.19 bits, GFPA I; = 5.77 bits, Raf I; = 6.44 bits, and mTOR I; =
6.59 bits.

Similarly, in Fig. 5 we report transcriptional mutual information
values of each gene of the pathway when considering the diseased
893 tissue samples. We observe the same behavior in the trend
of the mutual information values along the pathway, albeit these
values are overall lower than those observed in the healthy case,
thus confirming the impairments in the propagation of information
along the pathway caused by disease-leading gene mutations.

In Fig. 6 we show the difference in the transcriptional mutual
information values between the healthy and diseased cases, which
correspond to quantifying the information loss that affects the
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Figure 5: Transcriptional mutual information for JAK-STAT
pathway genes affected by mutations in diseased (tumor)
kidney cells.

JAK-STAT pathway in the presence of gene mutations. Here, we
computed the information loss in percentage for each gene in the
pathway by considering the fraction of mutual information loss
between the healthy and disease cases with respect to the mutual
information of the healthy case. Here we notice that the largest
loss of information occurs at the STAT gene. This is expected since
this pathway gene is (negatively) regulated by the largest number
of transcription factors (red edges), and, as a consequence, its tran-
scripts will carry most of the information propagating through the
pathway, as explained in Sec. 2.2. When the information propagat-
ing in the pathway is affected by greater impairments caused by
gene mutations, the transcriptional information of this particular
pathway gene will suffer from larger losses.
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Figure 6: Transcriptional mutual information loss between
healthy and mutated JAK-STAT pathway genes in healthy
and tumor kidney cells, respectively.

Finally, we looked at the mutation data to correlate the aforemen-
tioned information losses with the frequency of insertion, deletion,
and SNP mutations. By considering a total of 291 tissue samples
from the TCGA and 161 genes listed the JAK-STAT pathway model
from the KEGG Pathway Database, we filtered out a total of 1203
variant type mutations, which correspond to 28 insertions, 68 dele-
tions and 1107 SNPs. In Fig. 7, we show a stacked bar chart to
compare the occurrence of the three types of mutations in each of
the gene functional families. The Receptor family of genes in the
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Figure 7: Comparison of mutation frequencies for insertion,
deletion and SNP for JAK-STAT pathway genes in diseased
(tumor) kidney cells.

JAK-STAT pathway shows the highest likelihood of mutation with
11 insertions, 16 deletions and 289 SNP mutations over the entire
data set. As mentioned above, the effect of this high frequency of
mutation is seen in the downstream regulated gene STAT, which
experiences the highest loss of information.

5 CONCLUSIONS

In this paper, we proposed the idea that diseases originating from
altered cellular information processing can be successfully studied
through a transformative data-driven approach that draws tools
from molecular communication theory and is grounded on available
experimental data, rather than computational models. In this direc-
tion, we defined a molecular-communication-theoretic abstraction
of the genetic processes underlying signal transduction pathways
in biological cells, in particular centered around the transcription
of genetic information, which ultimately controls the performance
of the pathway in the propagation of information. Based on this
abstraction, we derived a computational methodology to estimate
the difference in information propagation performance of signal
transduction pathways in healthy and diseased cells solely based
on publicly available transcriptomic data, and we correlated these
results with the most common pathway gene mutations underlying
diseases. We finally provided proof-of-concept numerical results for
a case study based on the JAK-STAT pathway in kidney cancer, and
correlated with the occurrence of pathway gene mutations in the
available data. We believe that this approach will set the basis for
further research in a novel direction for communication theory, and
yet provide a novel tool for cancer research to characterize diseases
through a standard methodology and information-theoretic metrics.
Further research is envisioned in the integration of this methodol-
ogy with ad hoc design of experimental platforms to obtain further
data, e.g., through proteomics.
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