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ABSTRACT

Signal transduction pathways are chemical communication chan-

nels embedded in biological cells, and they propagate information

from the environment to regulate cell growth and proliferation,

among other cell’s behaviors. Disruptions in the normal function-

alities of these channels, mostly resulting from mutations in the

underlying genetic code, can be leading causes of diseases, such as

cancer. Motivated by the increasing availability of public data on ge-

netic code expression in cell tissue samples, i.e., transcriptomics, and

the emerging field of molecular communication, a novel data-driven

approach based on experimental data mining and communication

theory is proposed in this paper. This approach is an alternative to

existing computational models of these pathways in the context of

cancer, which often appear to oversimplify the complexity of the un-

derlying mechanisms. In contrast, a computational methodology is

here derived to estimate the difference in information propagation

performance of signal transduction pathways in healthy and dis-

eased cells, solely based on transcriptomic data. This methodology

is built upon a molecular communication abstraction of information

flow through the pathway and its correlation with the expression

of the underlying DNA genes. Numerical results are presented for

a case study based on the JAK-STAT pathway in kidney cancer, and

correlated with the occurrence of pathway gene mutations in the

available data.
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1 INTRODUCTION

Biological cells have the natural ability to sense information from

the environment through the reception, propagation, and process-

ing of molecular signals. This ability is at the basis of major cellular

functionalities, such as the regulation of the cell growth rate and
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proliferation [22]. Dysregulations in normal functionalities of these

cellular information systems, i.e., signaling pathways, are consid-

ered at the basis of complex diseases such as cancer [30], which is

nowadays one of the leading causes of death worldwide. One of the

obstacles to effective strategies for early diagnosis and cure of these

diseases is that the molecular mechanisms leading to signaling

pathway dysregulation, which have their roots in alterations of the

underlying genetic code (mutations), are largely ambiguous [29].

While mainstream high-throughput analysis techniques, such as

Next Generation Sequencing (NGS) [21], are providing an increas-

ingly massive amount of data on multi-level molecular profiles of

healthy and diseased tissues [28], advanced integrative and interdis-

ciplinary strategies are required to abstract meaningful information

on the molecular bases of these diseases.

Molecular communication theory is an emerging transdisciplinary

research field devoted to the modeling, characterization, and engi-

neering of communication systems where information propagates

through molecules and chemical reactions [1]. This field is experi-

encing an increasing interest in the study of biological cells [26],

and their communication functionalities [11], with the overarching

goal of realizing future programmable biological devices, enabled

by the latest advances in synthetic biology [19], pervasively inter-

connecting biological systems with the Internet, i.e., the Internet of

Bio-Nano Things [2].

In this paper, we propose the idea that the aforementioned dis-

eases originating from altered cellular information processing can

be successfully studied through a transformative data-driven ap-

proach that draws tools from molecular communication theory.

Existing cancer signaling pathway models, mostly based on either

boolean logic or Ordinary Differential Equations (ODEs) [4, 8, 20],

tend to mechanistically capture in different levels of complexity the

chemical processes at the basis of the propagation of the signal from

the extracellular signaling molecules, e.g., growth factors, to the

downstream gene regulation, while the effect of genetic mutations

on the disruption of these mechanisms is mostly reduced to very

simplistic assumptions [10, 17]. As an alternative to the complexity

of realistic computational models of these processes, this paper

introduces a novel perspective where information and communica-

tion theory, already proven effective for cancer classification and

analysis [13], are integrated with cancer high-throughput data for

the quantitative study and characterization of the disruption in the

flow of molecular information through signaling pathways caused

by genetic changes.



p p p

p p p

p

Figure 1: Pictorial sketch of the biochemical processes in cell

signal transduction pathways and pathway genes.

Our approach is based on a molecular-communication-theoretic

abstraction of the genetic processes underlying signal transduction

pathways, in particular centered around the transcription of ge-

netic information, which ultimately controls the performance of

the pathway in the propagation of information. This approach is

motivated by the increasing wealth of public data based on tran-

scriptomics technologies [28], which provide measurements on the

transcription of the cell’s genes from experimental samples. The

latter are in fact characterized by high efficiency and low cost with

respect to other technologies that directly measure the interacting

molecules (proteins) that propagate information through a pathway,

i.e., proteomics. Based on the aforementioned abstraction, we derive

a computational methodology to estimate the difference in informa-

tion propagation performance of signal transduction pathways in

healthy and diseased cells solely based on transcriptomic data, and

we correlate these results with the most common pathway gene

mutations underlying diseases.

The rest of the paper is organized as follows. In Sec. 2, we review

the biochemistry underlying signal transduction pathways and

their genetic underpinnings, and propose our abstraction, in Sec. 3

we review the types of data handled in our work, and propose

a methodology to estimate the communication performance of a

pathway from transcriptomic data. In Sec. 4 we present a case study

based on the well-known JAK-STAT pathway and its relevance in

kidney cancer. Finally, in Sec. 5 we conclude the paper.

2 MOLECULAR COMMUNICATION
ABSTRACTION OF INFORMATION LOSS IN
CELL SIGNAL TRANSDUCTION

2.1 The Biochemistry of Signal Transduction
Pathways and Pathway Genes

In this paper, we focus on the biochemical processes that enable

the propagation of information from the external environment

through biological cells, i.e., signal transduction pathways, where

it ultimately controls numerous cell behaviors, and the role played

by their genetic underpinnings, i.e., the pathway genes [22].

As shown in Fig. 1, these processes are based on chemical inter-

actions between specific biological macromolecules, or proteins,

which form cascades of information-propagating mutual activa-

tion reactions called phosphorylations. In each phosphorylation

reaction, a specific protein, the kinase, acquires a phosphate group

through a reaction with another activated kinase, therefore becom-

ing activated, and, possibly after binding to other proteins into

complexes, can subsequently activate another protein, e.g., another

kinase, downstream of the cascade. The activated kinases are then

“reset” into a non-activated state by removal of the phosphate group

(dephosphorylation), operated by other specific proteins, the phos-

phatases. These chained reactions are initiated by special proteins,

the receptors, usually located across the cell membrane, which

modulate the phosphorylation of other proteins in the intracellular

environment downstream of the cascade according to extracellu-

lar signals, i.e., values of physical or chemical parameters, such as

hormones. This modulation propagates the information contained

in the extracellular signals through the cascaded phosphorylations,

until controlling the activation of other special proteins, the tran-

scription factors, which in turn regulate the expression of one or

more downstream DNA genes inside the cell nucleus [9]. This

downstream DNA gene regulation usually results in the activation

(amplification) or repression (attenuation) of a specific cell behav-

ior, such as its growth rate/division, i.e., proliferation, a specific

cell characteristic, i.e., differentiation, the probability of inducing

death, i.e., apoptosis, anti-apoptosis, and physiological stability,

i.e., homeostasis, among others.

The aforementioned proteins involved in the signal transduc-

tion pathway are present in the cell at determinate concentrations,

which ensure a “healthy” propagation of information through the

cell that maintains the adaptability of the organism to the extracellu-

lar environment [22]. These proteinmolecules are inevitably subject

to degradation, or simply digested by the cell (proteolysis), as at

the same time new ones are continuously synthesized from DNA

genes, i.e., pathway genes, as depicted in Fig. 1. A pathway gene

is a stretch of DNA that codes for the sequence of amino acids that

composes a specific pathway protein, which is synthesized from the

gene through the fundamental processes of transcription and trans-

lation. Transcription is initiated by the enzyme (a specific type of

protein) RNA polymerase (RNAP) that binds to the promoter region

of the gene, starting the production of the messenger RNA (mRNA)

molecules. These latter molecules carry the genetic information

of the protein encoded in the gene to the ribosome, the protein

assembly machinery. Subsequently, ribosomes, which are able to

recognize and bind to the mRNA molecules, complete the synthesis

of the corresponding protein through the process of translation, by

assembling together the component amino acids as instructed by

the mRNA. As with the aforementioned downstream DNA genes,

also the pathway genes may be subject to regulation as a result of

the information propagated by the pathway, therefore increasing or

decreasing their transcription rate through activation or repression,

respectively. As a result, the concentrations of mRNAs present in

the cell, which are measured through transcriptomics [28], such

as those at the basis of the TCGA database considered in this pa-

per, may be correlated to the information propagated through the

pathway from the extracellular signals.
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Figure 2: Proposed molecular communication abstraction

of information loss caused by pathway gene mutations and

based on transcriptomics.

DNA genes in the cell can be subject to mutations, i.e., perma-

nent changes in their code sequence resulting from error during

DNA duplication in cell division, or from direct damages of its

structure by external causes [22]. Some of these changes in the

aforementioned pathway genes can result into changes in pathway

protein structure and function, with consequent alteration of the

protein behavior in terms of propagation of information within

the cell signaling pathway, thus leading to characteristic features

of tumor cells, such as uncontrolled proliferation, anti-apoptosis

(cell uncontrolled survival), or unbalance in cell differentiation sig-

nals leading to metastases [27]. DNA mutations might appear in

different forms, but in the preliminary work described in this paper

we will consider for simplicity only gene mutations, i.e., where

there is a change in nucleotide sequence within a gene, as follows:

insertion of additional nucleotides into the sequence, deletion of

existing nucleotides, substitution of a nucleotide with a different

nucleotide (Single Nucleotide Polymorphism - SNP), at specific

positions of the DNA sequence of the gene, as graphically depicted

in Fig. 1. Gene mutations are generally more frequent in cancer

than other types of mutations, i.e., chromosome mutations [14],

although the relevance of this latter type to gene expression in

cancer has been recently studied [3]. In this paper, we abstract

and characterize the correlation between pathway gene mutations

and the loss in information as it propagates through cell signal

transduction pathways by utilizing tools from communication and

information theory applied to genomic and transcriptomic data.

2.2 Molecular Communication Abstraction
Based on Transcriptomics

According to the reference molecular communication abstraction

proposed in this paper, a cell signaling pathway is modeled as a

network of molecular communication channels, which propagate

input information carried by the extracellular signals through the

pathway, where information lossmay occur due to the aforemen-

tioned possible gene mutations, until being relayed as output

information to the transcription factors that regulate the down-

stream genes. Our goal is to estimate the amount of input and

output information, as well as the information loss associated to

gene mutations leading to diseases, from the knowledge of the

pathway reaction map [15] and publicly available transcriptomic

data [28]. With reference to Fig. 2, we base our estimations on the

following assumptions:

• We estimate the information that propagates through the path-

way by taking into account the concentrations of mRNA molecules

transcribed from specific protein-encoding DNA genes, instead of

the proteins themselves. These concentrations, called transcripts,

are the data obtained by transcriptomic technologies applied

to experimental cell samples [21]. Although information is in

fact propagated in the pathway by their corresponding synthe-

sized proteins through their interactions and mutual activation,

as described in Sec. 2.1, and our assumption is supported by

recent studies on the correlation between transcripts and the

corresponding proteins [6]. The latter work demonstrated ex-

perimentally that, for each specific gene, the relation between

the steady-state concentration of transcripts, obtained through

transcriptomics, and the corresponding number of synthesized

proteins can be approximated in human cells by a constant gene-

specific mRNA-protein ratio.

• Although cell signaling pathways are dynamic, and their input-

output behavior is in general function of the time, we restrict our

analysis to the observed average output of the pathway that corre-

sponds to each possible observed input. This is motivated by the

fact that the aforementioned transcriptomic data are obtained as

average samples from an ensemble of non-synchronized signal-

ing pathways, i.e., an average of the states of all the cells included

in each experimental tissue sample [28].

• For the signal transduction pathway under analysis, we rely on

the knowledge of the pathway reaction map [15], namely, the set

of all the chemical reactions in the pathway, to understand the

relationship between the pathway genes. Each pathway reaction

expressed in general as A + B −−−⇀↽−−− C + D, where A,B are the

reactant molecule species, C,D are the product molecule species,

respectively (for irreversible reactions the backward arrow is

omitted, and B and/or D can be omitted depending on the reac-

tion), is translated into edges as shown in Fig. 2. In particular, the

red edges abstract the regulation of pathway gene expressions oper-

ated by the aforementioned transcription factors, whose activity is

controlled by the information that propagates in the pathway.

• We consider the presence of the aforementioned types of mutations

at each gene if they appear in the genomic data of diseased samples

but not in healthy samples. These will enable the study of how

specific gene mutations correlate to changes in the information

that propagates through the signal transduction pathway in case

of disease. The classification of each cell sample into healthy or

having a specific diseased, i.e., cancer, is given a priori by the

aforementioned public databases.

As a consequence of these assumptions, we can estimate the Input

Information from the values of the transcripts Xs for each Input

Signal Gene s = 1, . . . ,S , which are the genes that encode the ex-

tracellular signals. We can consider these as the average transcripts

of all the cells in each tissue sample, and therefore proportional to

the average extracellular signals that are input of the pathway Ins
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from the neighboring cells in the tissue. We quantify this informa-

tion through the entropy expression H
(
{Xs }

S
s=1

)
(which we call

Transcriptional Entropy), which is related to the information

carried by the extracellular signals Ins as follows:

H
(
{Xs }

S
s=1

)
= H

(
{Ins }

S
s=1

)
+

S∑
s=1

log2 Kin,s , (1)

where Kin,s is the aforementioned gene-specific mRNA-protein

ratio for each input signal gene s , and the formula corresponds

to the information entropy of an ensemble of scaled continuous

random variables [5]. The information H
(
{Ins }

S
s=1

)
carried by the

extracellular signals propagates through the pathway by modulat-

ing the interactions between the pathway proteins, until affecting

the activity of the transcription factors downstream of the pathway,

as described in Sec. 2.1. In turn, these transcription factors regulate

the expression of a set of pathway genes (gene j and gene k in red

in Fig. 2). Biological noise and other effects [16] tend to decrease

the information content in the protein interaction modulation by

randomization or equivocation [5] during its propagation in the

signaling pathway, resulting in a residual Output Information

at each pathway gene j that can be quantified through the Tran-

scriptional Mutual Information I = I
(
{Xs }

S
s=1 ;Yj

)
, where Yj

represents the transcripts of pathway gene j. For the latter, we can
express the following:

I
(
{Xs }

S
s=1 ;Yj

)
= H

(
{Xs }

S
s=1

)
−H

(
{Xs }

S
s=1 |Yj

)
= I

(
{Ins }

S
s=1 ;Yj

)
,

(2)

since the conditional transcriptional entropyH
(
{Xs }

S
s=1 |Yj

)
, which

is computed over values of the transcripts Xs , is equal to the con-

ditional entropy H
(
{Ins }

S
s=1 |Yj

)
plus the same factor as in (1).

When the mutual information is computed, the two factors cancel

out, leading to (2). The Information Loss due to Mutations at

the pathway gene j is computed as the difference between the

transcriptional mutual information Ij = I
(
{Xs }

S
s=1 ;Yj

)
computed

from transcriptomic samples classified as healthy, and the same but

computed from transcriptomic samples classified as diseased, which

includes the effect of mutations on the propagation of information,

denoted as Imut
j = I

(
{Xs }

S
s=1 ;Y

mut
j

)
. Finally, the occurrence, or

frequency, of mutations in diseased samples with respect to healthy

samples can be considered and classified on the basis of the infor-

mation loss results. In this paper, we will limit the latter to a visual

comparison of the information losses at specific genes and the ob-

served mutation frequencies, while more structured approaches

will be tackled in future work.

3 ESTIMATING TRANSCRIPTIONAL
MUTUAL INFORMATION

3.1 Data

We obtain the data necessary to estimate the aforementioned tran-

scriptional information parameters according to the following steps:

• We select a specific cell signal transduction pathway (or a

set of cross-communicating pathways) and retrieve the corre-

sponding pathway reaction map. For this, we interrogate the

Figure 3: Transcripts of EGFR and c-Fos genes from TCGA

obtained from healthy and tumor tissue samples in subjects

affected by colorectal cancer.

Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway

Database, which is an integrated database resource for biological

interpretation of gene sequences and high throughput genomic

data [12, 15]. Along with the pathway maps, the KEGG Path-

way Database provides the list of the corresponding pathway

genes, together with other information on their exact sequence,

other specific molecular interactions, regulation reactions, and

crosstalk with other signal transduction pathways.

• We select a specific disease, i.e., a cancer type, and retrieve the

transcriptomic data corresponding to the pathway genes listed by

the KEGG Pathway Database. For this, we interrogate The Cancer

Genome Atlas (TCGA) [28], a publicly available high-throughput

genomic database. In particular, the provided transcripts have

been obtained from different tissue specimens of healthy and

diseased patients through the RNA-Seq-based transcriptome se-

quencing technique, and their corresponding concentration val-

ues are expressed in units of Fragments Per Kilobase of transcript

per Million mapped reads (FPKM). Proteins within the same func-

tional family are represented in the network map with the same

node, but they expressed by different genes. In the scope of this

paper, we sum all the transcripts related to these proteins before

utilizing them in to estimate transcriptional mutual informations.

As an example, in Fig. 3 we show data points extracted from TCGA

colorectal cancer data for the EGF/EGFR pathway in Homo sapiens.

For each sample, we extracted the transcripts of the EGFR input

signal gene and the corresponding transcripts of the pathway gene

c-Fos [23], that is regulated by the pathway transcription factors, as

explained in Sec. 2.2. By observing the polynomial trend lines [7] of

the healthy samples Vs the tumor sample, it is clear that in healthy

cells the expression of c-Fos can be controlled more precisely and

over a larger range than in tumor cells, where c-Fos is mostly around

a stable (and low, as also confirmed in [18]) value for almost all

range of observed EGFR expression.
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3.2 Computational Methodology

The final goal of our computational methodology is the estimation

of the transcriptional mutual information Ĩj at each pathway gene

j, expressed as

Ĩj = H̃
(
{Xs }

S
s=1

)
− H̃

(
{Xs }

S
s=1 |Yj

)
) , (3)

where H̃ (.) and H̃ (.|.) denote the estimated joint entropy and con-

ditional entropy, respectively, Xs is the value of the transcripts for
input signal gene s andYj is the value of the transcripts for pathway
gene j (or functional family j).

The estimated input entropy H̃
(
{Xs }

S
s=1

)
is computed through

the histogram approach [24] as

H̃
(
{Xs }

S
s=1

)
= −

Nb1∑
i1=1

· · ·

NbS∑
iS=1

S∏
i=1

pXs

(
xs,is

)
·

S∑
i=1

log2

(
pXs

(
xs,is

)
wXs

)
, (4)

where p
{Xs }

S
s=1

({
xs,is

}S
s=1

)
is the probability for the value of Xs

corresponding to the is -th histogram bin xs,is , andNbs andwXs
are

the number and size of histogram bins considered to approximate

the probability density function of Xs according to the available

transcriptomic data for the input signal gene s , respectively. The
formulation of the expression in (4) is based on the simplifying

assumption of having input signals with independent probability

distributions.

The estimated conditional entropy H̃
(
{Xs }

S
s=1 |Yj

)
of the input

signal gene transcripts {Xs }
S
s=1 given the transcripts of the pathway

gene j (or functional family j) is computed as

H̃
(
{Xs }

S
s=1 |Yj

)
= −

NbYj∑
h=1

pYj (yj,h )·

Nj,h,b1∑
i1=1

· · ·

Nj,h,bS∑
iS=1

S∏
i=1

pXs |Yj

(
xs,is |yj,h

)
·

S∑
i=1

log2
�

�
pXs |Yj

(
xs,is |yj,h

)
wXs |yj,h

���� , (5)

where NbYj
is the number of bins considered to approximate the

probability density function of Yj according to the available tran-

scriptomic data for the pathway gene j, pXs |Yj

(
xs,is |yj,h

)
, Nj,bs

andwXs |yj,h are the probability for the value of Xs corresponding

to the is -th histogram bin xs,is , the number and size of histogram

bins, respectively, considered to approximate the probability den-

sity function of Xs according to the available transcriptomic data

for the input signal gene s that is at the input when the gene j
histogram bin value yj,h is considered as the signal transduction

pathway output.

The numbers of histogram bins Nbs , NbYj
, and Nj,h,bs , for s =

1, . . . ,S and the h-th transcript value for the pathway gene j his-
togram are computed from the gene transcriptomic data according

to the Doane’s formula [24] as follows:

Nb = 1 + log2(C) + log2

(
1 +

дA
σдA

)
. (6)

where C is the total number of available transcriptomic data sam-

ples, i.e., number of healthy or diseased tissue samples, дA is the

estimated 3rd-moment-skewness of the transcript distribution pA,

and σдA =
√

6(C−2)
(C+1)(C+3)

. To obtain the values for Nbs , NbYj
, and

Nj,h,bs , the parameterA is substitutedwithXs ,Yj , andXs |Yj = yj,h ,
respectively. Finally, the histogram bin sizeswXs

andwXs |yj,h are

computed by dividing the difference between the maximum and

minimum values of the transcripts Xs or Xs |yj,h , respectively, by
the corresponding number of histogram bins computed through (6).

For example, if we apply this computational method to estimate

the transcriptional mutual information for the data shown in Fig. 3,

where we consider only one input signal gene (S = 1), i.e., EGFR, and

the pathway gene c-Fos, we obtain Ic−Fos = I (XEGFR ;Yc−Fos ) ≈

0.73 bits (41 tissue samples) and Imut
c−Fos

= I
(
XEGFR ;Y

mut
c−Fos

)
≈

0.27 bits (470 tissue samples) considering in each case only the

data from the healthy samples and tumor samples, respectively.

This corresponds to Ic−Fos − Imut
c−Fos

= 0.46bits , which quantifies

the information loss suffered by the EGF/EGFR pathway for tumor

tissue cells in colorectal cancer on the mechanism of regulation of

the c-Fos gene by the EGF signal.

4 CASE STUDY AND NUMERICAL RESULTS

In this section, we present numerical results obtained with the com-

putational method presented in this paper to estimate transcrip-

tional mutual information, and information loss due to pathway

gene mutations leading to disease. In this case study, we focus on a

specific signaling pathway, i.e., the JAK-STAT pathway. This path-

way is a crucial signaling cascade for several extracellular signals,

within the functional families of cytokines, hormones and growth

factors. When JAK is activated, it stimulates cell growth, differenti-

ation, migration and apoptosis [22]. These factors are crucial for

the normal functioning of biological processes, such as immune

system, hematopoiesis, lactation, and development of adipocytes.

Any mutation that affects the activity of JAK regulation signaling

can cause diseases, such as inflammation, leukemia, erythrocyto-

sis [25]. In particular, in our study, we seek to understand how the

normal regulation and dysregulation of JAK-STAT is associated to

cancer (kidney cancer, as detailed in the folloting), hence this study

could be provide novel insights to the cancer research community.

Moreover, the JAK-STAT pathway is known for its simplicity with

respect to other signaling pathways in eukaryotic cell.

By following the methodology described in Sec. 3, we retrieved

the standard Homo sapiens JAK-STAT signaling pathway reaction

map from the KEGG Pathway Database, and used this model to ex-

tract all the genes associated with each process along the pathway.

As a result, we have a total of 161 genes involved in the JAK-STAT

pathway, which can be grouped into 32 functional families, as de-

fined in Sec. 3.1, including the aforementioned 3 functional families

of input signal genes, including 46 cytokines, 10 hormones and, 3

growth factors. Next, we extracted the transcripts for all the 161

genes from the TCGA to apply our computational method and ob-

tain the transcriptional mutual information of the pathway. Within

5



the TCGA, we chose to sample kidney tissues cells as our case study

because we were able to find a greater amount of gene expression

data associated to the pathway under analysis. Finally, we retrieved

transcriptomic data for the healthy (128 healthy tissue samples)

and diseased (893 tumor tissue samples) cases.

Similarly, we extracted mutation data for all 161 genes consider-

ing three different commonly known mutation types as follows: i)

insertion, which involves the addition of one or more nucleotide

base pairs into a DNA sequence, ii) deletion, which is when a part

of a DNA sequence is lost during DNA replication, and iii) SNP,

which comprises a variation that occurs in a single nucleotide (T,

C, G, or A).
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Figure 4: Transcriptional mutual information for JAK-STAT

pathway genes in healthy kidney cells.

For the estimation of the input entropy, the transcriptomic data

of healthy and diseased tissues are combined to utilize the entire

range of transcript values that the input signal genes can take. The

transcriptional mutual information values for each gene (which

includes the corresponding funcitonal family) in the KEGG JAK-

STAT pathway is estimated as described in Sec. 3.2. When utilizing

the healthy 128 tissue samples, transcriptional mutual information

values are reported in Fig. 4, and graphically shown in a correspond-

ing proportional size of each pathway map node. As expected, the

transcriptional mutual information values are decreasing as the in-

formation propagates through the pathway, accumulating chemical

noise at each reaction (data processing inequality), from an esti-

mated input joint entropy H̃ (X ) = 17.63 bits to estimated multiple

outputs of MI SOCS Ĩj = 5.91 bits, CIS Ĩj = 7.3 bits, MIC Ĩj = 6.65

bits, BcI Ĩj = 6.14 bits, PIM1 Ĩj = 5.72 bits, BcI-XL Ĩj = 5.96 bits,

c-Myc Ĩj = 5.36 bits, CycD Ĩj = 5.78 bits, p21 Ĩj = 5.07 bits, AOX

Ĩj = 6.19 bits, GFPA Ĩj = 5.77 bits, Raf Ĩj = 6.44 bits, and mTOR Ĩj =
6.59 bits.

Similarly, in Fig. 5 we report transcriptional mutual information

values of each gene of the pathway when considering the diseased

893 tissue samples. We observe the same behavior in the trend

of the mutual information values along the pathway, albeit these

values are overall lower than those observed in the healthy case,

thus confirming the impairments in the propagation of information

along the pathway caused by disease-leading gene mutations.

In Fig. 6 we show the difference in the transcriptional mutual

information values between the healthy and diseased cases, which

correspond to quantifying the information loss that affects the
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Figure 5: Transcriptional mutual information for JAK-STAT

pathway genes affected by mutations in diseased (tumor)

kidney cells.

JAK-STAT pathway in the presence of gene mutations. Here, we

computed the information loss in percentage for each gene in the

pathway by considering the fraction of mutual information loss

between the healthy and disease cases with respect to the mutual

information of the healthy case. Here we notice that the largest

loss of information occurs at the STAT gene. This is expected since

this pathway gene is (negatively) regulated by the largest number

of transcription factors (red edges), and, as a consequence, its tran-

scripts will carry most of the information propagating through the

pathway, as explained in Sec. 2.2. When the information propagat-

ing in the pathway is affected by greater impairments caused by

gene mutations, the transcriptional information of this particular

pathway gene will suffer from larger losses.
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Figure 6: Transcriptional mutual information loss between

healthy and mutated JAK-STAT pathway genes in healthy

and tumor kidney cells, respectively.

Finally, we looked at the mutation data to correlate the aforemen-

tioned information losses with the frequency of insertion, deletion,

and SNP mutations. By considering a total of 291 tissue samples

from the TCGA and 161 genes listed the JAK-STAT pathway model

from the KEGG Pathway Database, we filtered out a total of 1203

variant type mutations, which correspond to 28 insertions, 68 dele-

tions and 1107 SNPs. In Fig. 7, we show a stacked bar chart to

compare the occurrence of the three types of mutations in each of

the gene functional families. The Receptor family of genes in the
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Figure 7: Comparison of mutation frequencies for insertion,

deletion and SNP for JAK-STAT pathway genes in diseased

(tumor) kidney cells.

JAK-STAT pathway shows the highest likelihood of mutation with

11 insertions, 16 deletions and 289 SNP mutations over the entire

data set. As mentioned above, the effect of this high frequency of

mutation is seen in the downstream regulated gene STAT, which

experiences the highest loss of information.

5 CONCLUSIONS

In this paper, we proposed the idea that diseases originating from

altered cellular information processing can be successfully studied

through a transformative data-driven approach that draws tools

frommolecular communication theory and is grounded on available

experimental data, rather than computational models. In this direc-

tion, we defined a molecular-communication-theoretic abstraction

of the genetic processes underlying signal transduction pathways

in biological cells, in particular centered around the transcription

of genetic information, which ultimately controls the performance

of the pathway in the propagation of information. Based on this

abstraction, we derived a computational methodology to estimate

the difference in information propagation performance of signal

transduction pathways in healthy and diseased cells solely based

on publicly available transcriptomic data, and we correlated these

results with the most common pathway gene mutations underlying

diseases. We finally provided proof-of-concept numerical results for

a case study based on the JAK-STAT pathway in kidney cancer, and

correlated with the occurrence of pathway gene mutations in the

available data. We believe that this approach will set the basis for

further research in a novel direction for communication theory, and

yet provide a novel tool for cancer research to characterize diseases

through a standard methodology and information-theoretic metrics.

Further research is envisioned in the integration of this methodol-

ogy with ad hoc design of experimental platforms to obtain further

data, e.g., through proteomics.
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