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Abstract— Synthetic biology, through genetic circuit engineer-
ing in biological cells, is paving the way toward the realization of
programmable man-made living devices, able to naturally operate
within normally less accessible domains, i.e., the biological
and the nanoscale. The control of the information processing
and exchange between these engineered-cell devices, based on
molecules and biochemical reactions, i.e., molecular communi-
cation (MC), will be enabling technologies for the emerging
paradigm of the Internet of Bio-Nano Things, with applications
ranging from tissue engineering to bioremediation. In this paper,
the design of genetic circuits to enable MC links between
engineered cells is proposed by stemming from techniques for
information coding and inspired by recent studies favoring
the efficiency of analog computation over digital in biological
cells. In particular, the design of a joint encoder-modulator
for the transmission of binary-modulated molecule concentra-
tion is coupled with a decoder that computes the a-posteriori
log-likelihood ratio of the information bits from the propagated
concentration. These functionalities are implemented entirely in
the biochemical domain through activation and repression of
genes, and biochemical reactions, rather than classical electri-
cal circuits. Biochemical simulations are used to evaluate the
proposed design against a theoretical encoder/decoder implemen-
tation taking into account impairments introduced by diffusion
noise.

Index Terms— Molecular communication, synthetic biology,
genetic circuit, parity-check encoding, analog decoding, Internet
of Bio-Nano Things, Hill’s function, mass action kinetics, soft bit,
biochemical simulation.

I. INTRODUCTION

THE design and characterization of communication sys-
tems based on the exchange of molecules, directly
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inspired by biological processes, is a fast growing field within
the communications and computer network engineering com-
munities, encouraged by the need to interconnect devices with
increasing miniaturization, ubiquity, and biocompatibility [1],
[5], [43]. In particular, the modeling of natural Molecular
Communication (MC) processes in cells with communication
engineering frameworks and tools is gaining growing interest
in recent years. Significant examples range from the modeling
of bacteria conjugation and electron transfer [32], to the
characterization of signal transduction pathways [22], [47]
and metabolic regulation [41]. The possibility of mimick-
ing or even directly exploiting and reengineering these bio-
chemical communication functionalities is opening the road
for the development of systems that will further expand the
Internet of Things concept to cover domains, the biological
and nanoscale, where classical communication solutions show
limitations [2], [14]. More precisely, MC-enabled communi-
cations are envisioned at the basis of the access, control, and
collaborative processing of devices with various capabilities,
such as bio-sensing, stimulation or actuation of biochemical
processes [10], [21], or even augmentation of the functionali-
ties of the human body [7].

Despite the current advancements in the communication the-
oretic studies, which also stimulated an ongoing standardiza-
tion effort [17], unified and coherent technologies to engineer
and optimize systems, devices, and components capable of
molecular communications are currently missing. Recent lit-
erature in MC systems is exploring the possibility of utilizing
engineered cells to realize MC functionalities, where cells can
be abstracted as transmitters and receivers [31]. The discipline
of synthetic biology is providing the engineering community
with novel tools and techniques to tap into cells and their func-
tionalities for the design, realization, and control of biological
processes [19]. In particular, the theory of genetic circuits,
based on networks of DNA genes linked together by activa-
tion and repression mechanisms that regulate their expression
into proteins, provides basic components and processes to
design functionalities and behaviors in cells, mostly bacteria,
by following a forward engineering approach [33], [53]. The
engineering of MC components and systems in cells through
synthetic biology has gained particular interest in the last
couple of years [37], mostly through the manipulation of
natural MC processes such as bacterial quorum sensing. While
complete experimental characterization and standardization of
these components are still open challenges, it is today possible
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to theoretically study and predict in-silico the behavior of engi-
neered genetic circuits of great complexity [33]. In this direc-
tion, in [38] the minimal subset of genetic circuit elements
necessary to emit and receive an analog-modulated MC signal,
which propagates between cells through diffusion, is modeled
and analytically characterized. General guidelines and model-
ing strategies to design an MC transceiver with genetic circuits
able to receive, process, and retransmit binary information by
utilizing bacteria are included in [49], based on digital-like
genetic circuit functionalities and M -ary molecule concentra-
tion modulation coupled with hard threshold detection.

In this paper, we propose the design, simulation, and char-
acterization of genetic circuits for MC to realize the encoding
of molecular information in a cell, its modulation through the
emission of information-bearing molecules, and subsequent
decoding of the transmitted information, motivated as a natural
extension of the aforementioned studies of genetic circuits to
realize MC components to improve the communication perfor-
mance of engineered cells. In [24], classical channel coding
schemes have been considered within the MC realm, and
characterized on the basis of their feasibility and performance.
Inspired by this work, we detail here an implementation of
the a simple block code scheme, by utilizing the compo-
nents and rules of genetic circuit theory. From a practical
application standpoint, a circuit to encode information, such
as that proposed in this paper, would enhance the reliability
of MC channels in scenarios where these are harnessed to
control the propagation of information messages in biological
environments, for applications ranging from controlled cell
patterning for tissue engineering, to amorphous computing [9],
[36], [37], [46], [52], [54]. Moreover, our design is general
enough to find application into engineered cell-to-cell commu-
nications that have been demonstrated with cells from various
kingdoms [45].

Despite a trend towards the development of genetic circuits
with digital-like logics [51], recent research suggests that
functions based on analog computation in cells are signifi-
cantly more efficient [42]. Inspired by this recent research, and
based on the seminal work in [15] on soft decoding of block
and convolutional codes with non-linear electrical networks,
we propose to exploit the analog computing functionalities
of genetic circuits to obtain as output the a-posteriori log-
likelihood ratio values (L-values), which provide the relia-
bility of each decoded bit. Soft decoding, implementing the
computation of the logarithm of the a-posteriori probabilities
of the information bits, is realized by analog processing of
a modulated molecule concentration i.e., molecules utilized
in nature for intercellular information exchange, such as in
bacterial quorum sensing. It is worth observing that L-value
computation based on analog filtering in MC literature has
been previously considered in [8] and [13]. However, our
work is the first to consider a detailed design of transmitter
and receiver based on genetic circuits components, and is
based on modulating information on molecule concentrations
rather than in a deterministic molecule number, which is more
realistic in a biological scenario. In addition, our computation
extends the use of L-values to the calculus of the reliability of
information bits for a block code, while only uncoded trans-

mission is considered in [8] and [13]. In our work, to provide
a first proof-of-concept demonstration, we make use of the
simplest block code, namely, a Single Parity-Check (SPC)
code and provide a specific design for block length K = 3 bits,
where the computation of the L-value is implemented through
genetic circuit components, designed and tuned according
to the desired output. Biochemical simulation data of the
resulting genetic circuit demonstrate very close performance
to an electrical network implementation [15] in terms of
Mean Squared Error (MSE) and Bit Error Rate (BER). While
partial results of this work were presented in our previous
conference publications [28], [29], this paper contains a com-
prehensive end-to-end analysis of this system, which includes
both encoding and decoding genetic circuits [26], [27]. In this
journal paper, we provide the complete design of the cell-to-
cell communication system and obtain ideal constraints on the
genetic circuit parameters to ensure the validity of a Gaussian
approximation of the noise in the diffusion-based channel,
as well as the steady-state approximation of gene expression.
It is worth observing that, in comparison to the existing models
for MC based on the use of biological circuits such as, for
example, [12], [49], the proposed end-to-end system shares the
same white Gaussian noise assumption, i.e., independent noise
affecting the received signal samples, while its main novelty
is in the introduction of memory among bits transmitted in
different intervals and the implementation of soft decision
decoding at the receiver.

The rest of the paper is organized as follows. In Sec. II we
introduce the model of the considered MC system, which is
composed of the modulated parity-check encoder, the diffusive
channel that transports the information and adds the noise, and
the biological analog decoder circuit based on the a-posteriori
log-likelihood computation of the first bit of the code block.
In Sec. III we give a brief introduction to genetic circuits,
their main components, and mathematical models. In Sec. IV
we detail the encoder design by describing the necessary
genetic circuit components and the tuning of their parameters.
We detail the design of the required L-value, delay line, and
box-plus operations in Sec. V, Sec. VI, and Sec. VII, respec-
tively. In Sec. VIII we finalize the a-posteriori log-likelihood
computation from the contributions of the previous elements.
The implementation of the genetic circuits in a simulation
environment along with the corresponding numerical results
are presented in Sec. IX. Finally, in Sec. X we conclude
the paper.

II. A MOLECULAR COMMUNICATION SYSTEM BETWEEN

BIOLOGICAL CELLS WITH PARITY-CHECK CODING

In this paper, we define a biological cell, i.e., cell, as a finite
environment that contains n chemical species {S1, . . . , SN}
linked together by chemical reactions [33]. From this defini-
tion, it is possible to characterize a cell according to its state
s(t) = {sn(t)}N

n=1 as a function of the time t, where the
single element si(t) represents the molecular concentration
of the species Si at time t. The chemical communication
of information about this state, either complete or partial,
to a recipient outside of the cell, e.g., another cell or man-
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Fig. 1. Pictorial representation of the considered MC scenario.

made device present in the external environment, is a valid
abstraction of an MC system.

With reference to Fig. 1, where different molecular species
are indicated with different shapes, we consider for simplicity
a cell, i.e., Transmitter, that contains only two species,
namely, S1 and S2, whose concentrations define the cell state
at time t, s(t) = (s1(t), s2(t)). The concentration sn(t) can be
approximated as a continuous-time binary variable with value
1 if the nth species is present, and 0 if absent. These variables
contain a portion of information, in bits, on the aforementioned
cell state at time t. If we reasonably assume that the cell is
immersed in a fluidic environment, the simplest MC system
between cells would be based on modulating the release of sig-
naling molecules to the external environment, and would rely
on their diffusion, i.e., Channel, to propagate this information
to one or more recipients at remote locations within the same
fluid [52]. To reduce the complexity, a general trend in nature
is to rely on a limited subset of signaling molecule species
compared to the state-defining species, such as the N-acyl
homoserine lactones (AHL) in Gram-negative bacteria [34].
A single signaling molecule species is considered for simplic-
ity in this paper, but this can be easily generalizable to multiple
non-interacting species. Finally, the recipients are other cells,
i.e., Receivers, able to modulate their own state according
to the information about the transmitted cell state carried by
the modulated concentration y(t) of signaling molecules at
different time instants, present at their locations. The rest of
the paper is based on the following assumption:
• The concentrations of the molecular species are considered

homogeneous at any time instant inside and around the cell.
This approximates the behavior of the system when we sam-
ple these molecule concentrations at steady state. Although
this does not hold true for the concentration of the diffusing
molecules from the transmitter to the receiver, we assume
a distance between the transmitter cell and the receiver cell
much larger than the size of the receiver cell itself. Given the
received molecule concentration after diffusion, the longer
the distance, and therefore the propagation time, the more
homogeneous the impulse response is with respect to the
space [23].

In this paper, we propose the design of a system to
be deployed on board of cells where an Encoder module
at the transmitter, and subsequently a Decoder module

at the receiver/s, convert the aforementioned transmitter
cell states, abstracted by information bits, into a-posteriori
L-values, or soft bits at the receiver/s, after their Propagation
through the diffusion channel. In the following, we provide
the functional descriptions of these modules along with their
main assumptions.

A. Modulated Parity-Check Encoder

The aforementioned signaling species is generally released
by natural cells according to a continuous-time molecule
release rate signal, usually abstracted in MC through the com-
mon On-Off-Keying (OOK) modulation scheme [24]. More
precisely, our modulation scheme is based on the following:

• The transmitter encodes, modulates and emits molecules
according to the aforementioned concentrations s(t). Each
molecule emission happens instantaneously at the beginning
of a bit time interval Tb and emits a concentration of
Q1 or Q0 [molecules/unit volume] if a bit 1 or 0 is to be
transmitted, respectively. Since in nature cells do not usually
utilize a zero release rate of signaling molecules [37], which
is also in agreement with the evidence of basal expres-
sion rate that characterizes many DNA genes in genetic
circuits [4], including those responsible for the release of the
aforementioned AHL molecules [34], we consider positive
values for Q1 and Q0.

The Brownian motion underlying the diffusion-based prop-
agation of these molecules could lead to noise at reception that
is theoretically modeled by a Poisson distribution [35], which
is prone to consequent errors in understanding the transmitter
cell state. To alleviate this issue, we propose to design a Parity-
Check Encoder that takes as input the concentrations s(t) and
gives as output the encoded bits xi, which are then modulated
into molecule emission symbols xi(t) according to the afore-
mentioned two-level scheme. The proposed parity check code
allows just for error detection. Nevertheless, it could be used
as basic building block to construct more complex codes, i.e.,
Low-Density Parity-Check (LDPC) or Hamming codes [24],
that allow the recipient not only to detect but also correct
errors.

B. Diffusion

As shown in Fig. 1, information is transmitted through
modulated molecule concentrations that reach the destination
through a molecular diffusion process. The motion of each
molecule is described by Brownian random walk where,
assuming independent movement of each molecule, molecular
diffusion can be modeled by the Fick’s laws characterized
by a homogeneous diffusion coefficient D both in space and
time [23]. We make the following assumption:

• The extracellular space is an unbounded fluid medium where
molecules freely diffuse. The distance between the transmit-
ter and the receiver is much longer than the diameter of the
cells, therefore resulting in an approximation of the cells
as points at their respective locations. As a consequence,
the presence of the cells does not interfere with the diffusion
of AHL molecules.
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• The received modulated molecule concentrations yi are the
samples of the molecule concentration y(t) at the location
of the engineered cell, considered homogeneous around and
inside the cell. The sampling time t̄i is equal to the expected
time of maximum of each modulated concentration after
propagation.

As a consequence of these assumptions, taking into account
the diffusion channel model [40], the received molecule con-
centration yi has an average that is expressed as follows:

E [yi] =
Q1/0e

−r2/(4D(t̄i−iTb))

(4πD(t̄i − iTb))3/2
= a1/0, (1)

which can be equal to one of two values, namely, a1 or a0.
In this paper, we assume that these values account for not
only the average contribution of the ith transmitted bit to the
received concentration, but also the average contribution of
all the possible combinations of previous bits, i.e., the Inter-
Symbol Interference (ISI). D is the diffusion coefficient, and
the time instant t̄i has to result into sampling the propagated
concentration at the so-called Pulse Delay td [23], the time
when the Green’s function of the diffusion equation [25] is at
its maximum, expressed as follows:

t̄i = td + iTb =
r2
rx

6D
+ iTb. (2)

The ith sample yi of the concentration at the receiving cell
can be mathematically written as

yi = a0/1 + ni, (3)

where ni is an additive noise with variance σ2. In what
follows, we assume that the stochastic process ni is described
as an Additive White Gaussian Noise (AWGN). This assump-
tion is justified by the fact that the noise contribution from
the genetic circuits, including those that might be present at
the transmitter, can be modeled according to the steady state
approximation of the Langevin equation (see Appendix A
in [40]), resulting in white Gaussian contributions to each
circuit output [48]. Moreover, for a sufficient number of
emitted molecules and for a sufficiently long time interval
between the samples, the diffusion process is independent
and has a Gaussian noise contribution to the input molecule
concentration [20]. From a quantitative analysis point of view,
a check of the AWGN assumption can be found in [27]
where, starting from the analysis of diffusion processes and
biochemical reactions, the Poisson model and the Gaussian
approximation are compared in the evaluation of BER when
optimal soft-decision decoding is implemented. By means of
computer simulations, it is shown in [27] that similar BER
performance are obtained for both the two cases of noise by
the proposed biologic decoding circuits, thus validating the
commonly adopted white Gaussian assumption for the noise
affecting the received signal in diffusion-based MC systems.
Moreover, it is worth observing that the AWGN assumption
also holds in other nano-scale MC systems, as demonstrated
in [11] for a flow-induced MC system where molecular trans-
mitter and receiver are placed in chambers and communicate
over a microfluidic channel containing fluid flow.

C. Soft-Bit Analog Decoder

One of the main contributions of this paper is the design of a
genetic circuit that implements a soft-bit analog decoder, able
to compute the a-posteriori log-likelihood ratio L(x̂k) from
a received noisy input signal yi, yi+1, . . . , yi+K modulated
according to block-encoded bits xi, xi+1, . . . , xi+K , where
K is the block size. The sign of this log-likelihood ratio
corresponds to the optimal decision on the transmitted bit,
while its magnitude measures the reliability of this decision.
This is defined as follows [15]:

L(x̂k) = log
P (xk = 1|yi, yi+1, . . . , yi+K)
P (xk = 0|yi, yi+1, . . . , yi+K)

, (4)

In Fig. 1 it is shown that the kth receiver cell, which contains
the soft-bit analog decoder detailed in the following, provides
a concentration of output molecules equal to the a-posteriori
log-likelihood ratio L(x̂k) for the kth bit of the transmitted
codeword that gives rise to the modulated concentrations
yi, yi+1, . . . , yi+K of input molecules around the receiving cell
at specific time instants. The proof-of-concept design of the
soft-bit analog decoder presented in this paper is based on the
following assumptions:

• The input molecules of the biological decoding circuit can
be either the same incoming signaling molecules emitted
by the transmitter cell, and able to cross the receiver cell
membrane, therefore resulting in a concentration inside the
cell that is the same as around the cell, or they can be
molecules resulting from a chemical reception process at
the receiver cell [38]. The latter process would be activated
by ligand-receptor binding reception either at the mem-
brane or inside the cell [38], and result in a concentration of
input molecules of the biological decoder that is proportional
to the concentration of signaling molecules around the cell.

• In the rest of the paper, for the purpose of presenting a
proof-of-concept biological analog decoding circuit, we ref-
erence to the simplest block code scenario that supports
analog decoding [15], namely, the SPC code with block
length K = 3. Moreover, given the complexity of the
resulting genetic circuit, the preliminary design in this
paper realizes only the computation of the a-posteriori log-
likelihood ratio of the first bit of the block. The contribution
in this paper can be extended to more complex block codes
by stemming from our methodology. In fact, parity check
is the fundamental decoding operation at the basis of more
complex coding schemes, such as LDPC.

As a consequence of the aforementioned assumptions,
the formula in (4) to compute the L-value of the first trans-
mitted bit L(x̂1) becomes [15]:

L(x̂1) = L(y1|x1) + (L(y2|x2) � L(y3|x3)) , (5)

where x2 and x3 represent the remaining channel bits of that
same codeword. L(yi|xi), i ∈ {1, 2, 3}, gives the conditioned
L-value, which is the L-value of the received concentration
yi conditioned to the transmitted bit xi, and � indicates the
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Fig. 2. Functional diagram of the biological decoding circuit.

box-plus operation, which is defined as follows:

L(y2|x2) � L(y3|x3)

= 2atanh
(

tanh
(

L(y2|x2)
2

)
· tanh

(
L(y3|x3)

2

))
. (6)

The expression of L(yi|xi) is derived by considering the
mean concentration values a0 and a1 given in (1), which
correspond to bit 0 and 1, respectively. In contrast to [15],
where a binary antipodal pulse-amplitude modulation scheme
is employed, the resulting detection threshold in our case
is equal to a1+a0

2 . As a consequence, conditional L-value
expression is

L(yi|xi)=log
exp

(
− (yi−a1)

2

2σ2

)

exp
(
− (yi−a0)2

2σ2

) =
(a1−a0)

σ2

[
yi− (a1+a0)

2

]
,

(7)

where σ2 is the variance of the aforementioned AWGN given
in (3).

Hagenauer et al. [15] implemented (5) with analog Very-
Large-Scale Integration (VLSI) circuits, by exploiting the
non-linearities of a modified Gilbert cell. In the following,
we present an implementation of the same expression by using
genetic circuit elements. As shown in Fig. 2, our biological
analog decoding circuit is composed of three main elements,
namely, the L-value computation, which implements (7),
the box-plus operation, which realizes the expression in (6),
and a delay line (active only when t = lKTb, where Tb is the
bit interval, K is the block size, equal to 3, l = 0, 1, 2, . . .),
which is needed to isolate the result of the first term of the
sum in (5) from the second term, computed at a later time.
In the following, after a brief overview of the main genetic
circuit components, we detail our genetic circuit design.

III. COMPONENTS OF A GENETIC CIRCUIT

A genetic circuit is a network of chemical reactions involv-
ing genes and other molecular species that work together to
implement a specific biological function [33].

A. Gene Expression

As shown in Fig. 3, a gene is composed of an operator
region (OR), a promoter region (PR), and a coding sequence.
Most genes are a stretch of DNA that codes for a protein
molecule, a sequence of amino acids, expressed from the

Fig. 3. Gene expression scheme: (a) Activation (↓), (b) Repression (⊥).

gene through the fundamental processes of transcription and
translation. Protein expression can be up or down-regulated by
a transcription factor protein In, activator (a) or repressor (b),
respectively. When the gene expresses proteins independently
from transcription factors, it is said to have a constitutive
promoter. Protein expression is based on [33]:
• Transcription is triggered by the enzyme, a specific type of

protein, RNA polymerase (RNAP) that binds to the promoter
region of the considered gene, starting the production of the
messenger RNA (mRNA) molecule. This latter molecule is
used to carry the genetic information encoded in the coding
sequence of the gene to the ribosome, the protein assembly
machinery. The ability of RNAP to bind to a promoter site
can be either enhanced or lowered by other proteins called
transcription factors (activators/repressors).

• Activation happens if activators bind to the operator region
near the promoter site up-regulating the transcription of
the subsequent coding sequence by increasing the RNAP
binding rate. Inducers are small molecules that bind and
activate activators. There are, in fact, activators and repres-
sors that, without the respective inducers and corepressors,
bind poorly to the operator region causing no actual change
in the transcription rate.

• Repression is present when repressors obstruct the binding
sites of the promoter region and down-regulate the tran-
scription of the subsequent coding sequence by reducing
RNAP binding rate. Corepressors in prokaryotes, like the E.
coli, are small molecules that bind and activate a repressor
transcription factor [34].

• Translation is performed through the ribosomes, which are
able to recognize and bind to the mRNA molecules by
means of Ribosome Binding Sites (RBSs), special sequences
of nucleotides in the mRNA strand. Once a ribosome binds
to the RBS of an mRNA molecule, it completes the synthesis
of the corresponding protein by assembling together the
component amino acids.
The aforementioned processes of transcription, activation,

repression, and translation for protein synthesis are gener-
ally modeled as a single event by using the so-called Hill
function [4], [6]. This widely accepted approximation in
biological circuit modeling is based on the assumption that
these processes are in a steady state (equilibrium), and that
this steady state is reached in a shorter time interval with
respect to the time scale of the other processes underlying the
biological circuit. For an E. coli bacterium, this time interval
is in the order of seconds [4], which is compatible with our bit
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time interval of Tb = 5 s (the reference time for sampling all
the concentrations in the system) in our numerical examples.
In addition, our numerical results found a good agreement
between the performance of our biological circuit design based
on the Hill function, and simulated according to chemical
kinetics on Matlab Simbiology, and an ideal computation of
the L-value using analytical formulas, as detailed in Sec. IX.
According to the Hill function, the rate d[Out]

dt of output
protein, in case of activation, is expressed as

d[Out]
dt

= k′ + MAX

(
([In]/K)n

1 + ([In]/K)n

)
− kdeg[Out], (8)

where [Out] is the concentration of the output protein Out,
k′ is the basal rate of production, i.e., gene expression in the
absence of input transcription factors, MAX is a constant
defining the maximum rate value at the output, K is the input
concentration for which the output expression rate is half of
the maximum value, n is the Hill coefficient, and the bracketed
term is the Hill function, which we define also as the output
production rate. kdeg is the degradation rate of the output
proteins, defined in the following. In this paper, we assume to
have non-leaky promoters, i.e. k′ = 0, which means that there
is gene expression only when external activating signals are
present [6]. In (8) and hereafter, the square brackets notation
stands for molecule concentration. According to [6], in case
of repression, the rate d[Out]

dt of output protein is

d[Out]
dt

= MAX

(
1

1 + ([In]/K)n

)
− kdeg[Out]. (9)

In general, genes can be regulated by more than one
transcription factor. In such a case, gene expression can be
described by a multi-dimensional Hill function [4] as follows

d[Out]
dt

=
∑

i MAXi([Ini]/Ki)ni

1 +
∑

i([Ini]/Ki)mi
− kdeg[Out], (10)

where Ini refers to the ith transcription factor, and ni = mi

if the ith transcription factor is an activator, while ni = 0
and mi > 0 if it is a repressor.

It is possible to convert the differential equations in (8), (9),
and (10) to more practical non-differential expressions by
simply considering the steady state condition. In the steady
state, the degradation rate equals the production rate, yield-
ing no more temporal variation of the output concentration.
By equating (10) (general case) to zero, the steady state output
concentration [Out]SS is found with the following expression:

[Out]SS =
1

kdeg

∑
i MAXi([Ini]/Ki)ni

1 +
∑

i([Ini]/Ki)mi
, (11)

which corresponds exactly to the production rate
if kdeg = 1 s−1.

B. Mass Action Chemical Reaction

A mass action chemical reaction is a process that converts
one or more input molecules (reactants) into one or more
output molecules (products). Reactions may proceed in
forward or reverse directions, which are characterized by
forward (kf ) and reverse (kr) reaction rates, respectively.

Fig. 4. Mass action chemical reaction between two generic molecular species

R1 + R2

kf−−⇀↽−−
kr

P .

Within the scope of this paper, we assume unbalanced reac-
tions where the forward reaction rate is much greater than the
reverse rate, as in [35]. An example of a reaction with two
reactant species and one product species is shown in Fig. 4.
In this work, we will consider the following mass action
chemical reactions:

• Transcription Factor Activation Reaction: We consider
two reactant species, a repressor (activator) transcription
factor and its corresponding corepressor (inducer). The core-
pressors (inducers) bind to specific sites on the particular
transcription factor proteins and produce a steady state
concentration of complexes (activated transcription factors)
equal to the concentration of transcription factors if the
initial corepressors (inducers) concentration is sufficiently
high. It is generally assumed that a single transcription factor
molecule can bind only one corepressor or inducer.

• Degradation Reaction: We consider complexes and
enzymes as reactants, and at least two product species. The
reactant complexes are bound by the enzymes and split into
simpler molecular species (the products). The mathematical
model for the example of Fig. 4 is expressed through a
reaction rate equation [33] as

d[P ]
dt

= kf [R1][R2] − kr[P ]. (12)

• Subtraction Operation: We consider two reactants and
one product. The product molecule concentration is the
minimum among the initial reactant concentrations. There-
fore, for the mass conservation law, the concentration of
the remaining reactant (“survivor molecule”) is just the
difference between the two initial concentrations.

• Storage Operation: We consider two reactant species,
one is the ligand, the molecule whose concentration value
needs to be stored, and the other is the receptor protein,
synthesized by a specific gene. The two species react by
binding and producing a concentration of complexes propor-
tional to the concentration of ligands if the initial receptor
concentration is set sufficiently high.

IV. MODULATED ENCODER DESIGN

BASED ON GENETIC CIRCUITS

The proposed modulated encoder design encodes two bits
representing the state of the cell at time t, i.e. s(t) = (s1(t),
s2(t)), with an SPC code characterized by codeword length
K = 3 bits, and modulates the transmission of the codeword
bits xi with two levels, namely, a0 and a1, for the bit 0 and 1.
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Fig. 5. Functional diagram of the modulated parity check encoder.

Fig. 6. Functional diagram of the first and second channel bit production
with i = 1 and i = 2, respectively.

The proposed design is realized through three main branch-
ing genetic circuits as shown in Fig. 5. Each branch encodes
and modulates a codeword symbol, among which xp(t) is the
parity check symbol. All the symbols are transmitted using
the same molecular species AHL to reduce the complexity of
communications and the energy expenditures [44]. In order to
gain insight into these processes, in the following we consider
the ith branch, i = 1, 2, that produces xi(t) as reported
in Fig. 6. There are two main types of components in our
circuit:
• Gene Expression (rectangular blocks in Fig. 6), where,

as detailed in Sec. III-A, a gene repressed/activated by
some transcription factor species (input) synthesizes proteins
(output) which may subsequently be transcription factors for
other rectangular blocks.

• Mass Action Chemical Reaction (oval blocks in Fig. 6),
which corresponds to either a Degradation Reaction or a
Transcription Factor Activation Reaction, as in Sec. III-B.

A. The Sampling of the Information Signal

The concentrations s1(t) and s2(t) are continuous time
binary variables that carry the information on the state of the
cell over time. In order to send this information to neighboring
cells at time t = t, we must consider s(t = t) which means
we have to freeze the state of the cell at that given instant.
As in digital communication systems, we achieve that by
sampling. At t = t we just inject a sufficiently high number
of corepressors Rxi that, through the Transcription Factor
Activation Reaction, activate the molecular concentration of
input (repressive) transcription factors si(t = t). As a result
we drop the time dependency notation in Fig. 6 after the
sampling operation, with s∗i being the sample of si(t) at time t̄.
The value s∗i is the concentration of the activated species S∗

i

obtained from the Transcription Factor Activation Reaction

Fig. 7. Sampling time t close to a raising edge of the variable si(t). In the
simulation, the variable si(t) has been assumed to be a square wave with high
level 50 molecule/μm3 and the injection of the corepressors RSi

has been
considered as an instantaneous event. The case where t = t = 5 s shows the
problem of being too close to the raising edge of si(t).

Si + RSi → S∗
i , where we have the particular case in which

R1 ≡ Si, R2 ≡ RSi , and P ≡ S∗
i . The subscript i is hereafter

considered to assume either the value 1 (First Channel bit) or 2
(Second Channel bit).

Unlike digital communications with electrical circuits, in the
context of genetic circuits we cannot approximate sampling
operations as instantaneous processes. Even if we consider
the injection of molecules as instantaneous, the degradation
time generally happens at a time scale comparable to the
rest of the biological processes, such as gene expression.
This phenomenon, in the context of digital communication,
is known as the “aperture effect” [16]. For this reason, and
also for the stochasticity of the state of the cell, an issue can
arise if the sampling instant t coincides (or is very close to)
a raising or falling edge of the variable si(t), as illustrated
in Fig. 7. In the first interval (for t ≥ 5 s but before si goes
up), RSi molecules degrade just because of natural degradation
since there are no Si molecules around (xi(t = t) = 0).
During the sampling process, si changes its state causing
the residual corepressors RSi to bind (notice the increased
consumption speed since the corepressors are both sequestered
by the reaction with si and naturally degraded) and produce
some complexes S∗

i with concentration s∗i . In the end, s∗i will
be different from what it was supposed to be, as shown by
the purple curve in Fig. 7. When sampling, in fact, we aim
to have s∗i = si(t = t), achieved when t is not close to any
edge. This issue is taken into account in the simulation of
the modulated encoder, and it results in a random contribution
to the concentration s∗i at the input of the Gene Expression
Circuit as a consequence of the random parameters φ1 and φ2,
as explained in Sec. IX.

B. Production of the Signaling Molecules AHL
for the First and Second Channel Bits

1) Gene Expression Circuit: Once produced, the complexes
S∗

i repress the promoter of the gene in the Gene Expression
Circuit block in Fig. 3b. This gene contains two different
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Fig. 8. Scheme of the operon at the Gene Expression Circuit block.

coding sequences (operon), therefore encoding for two dif-
ferent output protein species, li and ri. An operon is a
group of coding sequences controlled by the same promoter
and expressing the same protein concentration if their RBSs
have similar binding affinity with the ribosome. A simple
representation is shown in Fig. 8 for the Gene Expression
Circuit block.

The species li is a transcription factor used to activate
the subsequent LuxI Expression block, and its steady state
concentration [li]SS value ranges between a minimum and
a maximum value (depending on s∗i ) without ever being
zero. A zero [li]SS means, in fact, no activation of the
LuxI Expression, hence no production of signaling molecules
AHL yielding an unwanted OOK modulation. For this reason,
when s∗i is high, the Gene Expression Circuit activity is not
completely repressed but is downscaled with respect to the
maximum value, obtained when s∗i is low. Therefore [li]SS

reports the information on the value of s∗i . The species ri

works as an autoregulator of the gene expression, as detailed
next.

2) Gene Expression Circuit Autoregulation and Activation
of the LuxI Expression: The species li is not directly used
as input of the LuxI Expression block because otherwise we
would not be able to control the transmission time, since AHL
molecules would be continuously expressed. Proteins li start
activating LuxI Expression only when they are activated by
some inducers Rli through the Transcription Factor Activation
Reaction. These molecules will be injected only when the
first symbol has to be transmitted on the channel. However,
since [li]SS is a crucial quantity carrying information about
s∗i , we have to maintain this value throughout the activation
process even if it is not known a priori since it depends on
the state of the cell at time t̄. It follows that we are forced to
inject a quite high amount of molecules Rli in order to be sure
that we will not lose the concentration information even when
the Gene Expression Circuit output is maximum (s∗i low).
High Rli concentration, however, leads to errors if during the
binding process the li proteins keep being produced because
the residual Rli molecules will bind to the newly produced li
proteins. As a consequence, the transcription factors r∗i are in
place to completely repress the production of new li.

3) LuxI Expression and Signal Generation: The last block,
LuxI Expression, is a simple gene activated by l∗i and with
LuxI as coding sequence. The parameters of the related
promoter are engineered to give a steady state output concen-
tration ([LuxI]SS = ISS) equal to the value a0 (transmitted
signal for the bit 0) when [l∗i ]SS assumes its maximum value

Fig. 9. Functional diagram of the parity check bit production.

(s∗i low), and a1 (transmitted signal for the bit 1) when [l∗i ]SS

is at its minimum (s∗i high).
Finally, the LuxI enzymes activate the production of the

signaling molecules AHL whose temporal variation is our
transmitted signal xi(t). As in [18], if A is the concentration of
AHL, I(t) the concentration of LuxI as a function of the time t
and ISS its steady-state concentration, we get the following
differential equation:

xi(t) =
dA

dt
= k0I(t) = k0I

SS = k0Q0/1, (13)

where k0 = 1 s−1.
4) Induced Degradation of Molecular Species: After trans-

mission of the signal xi(t), enzymes with a degradation rate
(Enzyme-li in Fig.6) are injected to react with and degrade l∗i .
This operation is needed for two reasons. Firstly, LuxI produc-
tion by that particular LuxI Expression block has to be stopped
when the following symbol has to be sent on the channel, since
AHL molecules are used for transmission of all the channel
symbols. That way, ISI (at least in transmission) is mitigated.
Additionally, if l∗i complexes are not degraded before trans-
mission of the ith channel bit of the successive codeword,
InterBlock Interference (IBI) (in transmission) might occur.
IBI occurs also if the enzymes do not degrade. In both
cases ISS would be impaired and a wrong signal xi(t) would
be produced. For the same reason, S∗

i complexes have to be
degraded. This is achieved with the EnzymeSi molecules that
are injected only after the parity bit has been encoded and
modulated.

C. Production of the Signaling Molecules
AHL for the Parity Check Bit

The realization of the parity check modulated emission
xp(t) has some differences worth being analyzed separately.
Details on the Parity Check bit are reported in Fig. 9. Here,
the samples s∗1 and s∗2 do not act directly on the Gene
Expression Circuit block but, instead, are processed by the
Biological XOR block to produce the parity check bit xp. The
Biological XOR block realizes the XOR summation between
the information bits s∗1 and s∗2 and it is here designed and
modeled as suggested by Myers in [33]. Once p is produced,
it goes through the same processing as for the first and second
bits, this time to obtain xp(t). Here, the injection times have
to be tuned in order to transmit the parity check symbol only
after the modulated symbols x1(t) and x2(t).
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Fig. 10. Functional diagram of the L-value computation.

Fig. 11. Scheme of the fixed gain biological amplifier.

V. GENETIC CIRCUIT FOR L-VALUE COMPUTATION

Fig. 10 reports the sequence of biological operations needed
to compute the L-value L(yi|xi) given the received noisy
modulated concentration yi.

A. Mass-Action Reaction

The first element in Fig. 10 represents a mass-action reac-
tion [33] for Subtraction Operation between the input mole-
cules having concentration yi and the molecules of species B.
The molecule species B has a fixed concentration equal
to a1+a0

2 , which is the quantity to be subtracted from yi to
get L(yi|xi) according to (7). Once the reaction has occurred,
the remaining concentration of any of the two molecule species
is equal to the value

∣∣∣yi − (a1+a0)
2

∣∣∣, with the following two
possibilities:

• If the input molecules survive, it means that yi− (a1+a0)
2 > 0

and, therefore, the received noisy concentration yi is above
the threshold. In this case, the “survivor molecule” concen-
tration value should be interpreted as positive.

• If the molecules of species B survive, it means that
yi− (a1+a0)

2 < 0, and the received noisy concentration yi is
below the threshold. In this case, the “survivor molecule”
concentration value should be interpreted as negative.

In order to distinguish between the two cases, and there-
fore propagate the sign through the genetic circuit, two
branches have been introduced in the block diagram, as shown
in Fig. 10. The upper branch is for the positive concentration
and the lower branch is for the negative concentration.

Fig. 12. Scheme of the operon at the output of each amplifier shown
in Fig. 11.

Fig. 13. Storage Operation for molecules P1 and N1.

B. Amplifiers With Gain (a1−a0)
σ2

From (7), to complete the calculation of L(yi|xi), we need
to multiply the difference yi − [B] by the quantity (a1−a0)

σ2 .
For this, we use fixed gain amplifiers with gain (a1−a0)

σ2 .
The amplifier can be realized as proposed in [50], where it
is shown that the transcriptional-output/transcriptional-input
relationship, i.e., the amplifier transfer function, is a linear
amplification whose magnitude depends on the translational
strength of the RBSs sequence in front of a coding sequence
of a protein called hrpS, as in Fig. 11. As shown in the figure,
the genetic amplifier is designed by using the orthogonal
genetic components (hrpR, hrpS and PhrpL), from the hrp
(hypersensitive response and pathogenicity) gene regulatory
module from plant pathogen.

At the output of each amplifier we have an operon in
place of a single gene, which is needed for the subsequent
processing. These operons, shown in Fig. 10, encode for the
proteins {t2, z3, u2, u3}, while they differ for the last two,
namely, m0, p1 in the upper branch amplifier, and n0, n1 in the
lower branch amplifier. All protein species expressed within
the ith bit time interval will reach the same concentration,
equal to L(yi|xi). The specific role of each protein will be
detailed in the following.

VI. GENETIC CIRCUIT FOR THE DELAY LINE

By analogy with electrical circuits, a delay line,
i.e., the lower branch with the Delay block in Fig. 2, aids in
the computation of (5), where the conditional L-value of the
first bit of the block L(y1|x1) needs to be isolated and stored
for the subsequent sum operation once the box-plus operation
on the second and third bits is complete.

By using genetic circuits, delay lines can be realized by
means of receptors as illustrated in Fig. 13, through the
Storage Operation, described in Sec. III.B, at the first bit
interval, where n1 and p1 generated by the amplifiers are the
ligands, and create very stable complexes, i.e., N1 and P1,
with receptors, keeping their concentration values for 2Tb,
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Fig. 14. Functional diagram of the Box-plus operation.

until the box-plus result is ready. For this, we assume that P1

and N1 degrade with very small degradation rate kdeg . This
implements a delay line where the storage function is realized
by the cell itself and the delay is provided by the stability
of the created complexes. On the contrary, the second and the
third bits will be processed by the Box Plus Operation element.

VII. GENETIC CIRCUIT FOR THE

BOX-PLUS OPERATION

A description of the genetic circuit blocks and their oper-
ations inside the Box Plus Operation element, whose genetic
circuit is reported in Fig. 14, is given in the following.

A. Gene Expression Circuit

To implement the calculation of the expression in (6), it is
necessary to compute the hyperbolic tangent and its inverse,
which are basic functions for the box-plus operation. For this,
by stemming from the multi-dimensional Hill function model
defined in (10), having (8) as one-dimensional special case, our
design consists of an upper gene regulated by repression and
two lower genes regulated by activation, as shown in Fig. 14.
In particular, for the one-dimensional case we optimize the
parameters n and K in (8) to provide the relation between the
rate of output protein Out and the input transcription factor
In as close as possible to a hyperbolic tangent. If we optimize
in the mean-squared error (MSE) sense by setting MAX = 1
and varying both n and Kp values by 0.1 steps, we find that
the minimum MSE is achieved for n = 2 and K = 1 in (8),
expressed as follows:

d[Out]
dt

=
[In]2

1 + [In]2
∼= tanh

(
[In]
2

)
. (14)

Since the expression in (8) contains also the term
−kdeg[Out], based on the aforementioned assumption of
steady state in the sampling of the molecule concentration
values in the designed genetic circuit, we obtain the following:

d[Out]
dt

=
[In]2

1 + [In]2
− kdeg[Out] = 0 ⇒

⇒ [Out] =
1

kdeg

[In]2

1 + [In]2
∼= 1

kdeg
tanh

(
[In]
2

)
,

which results in [Out] = d[Out]
dt in the case when kdeg = 1.

Fig. 15. Comparisons showing good agreements between (a) the logarithmic
and Hill functions with n = 1, K = 2 and MAX = 2, and (b) a logarithmic
function and a complementary Hill Function with n = 1, Kp = 0.05 and
MAX = | log(10−3)|, respectively.

B. The Logarithmic Function

The expression in (6) includes also the inverse hyperbolic
tangent function, which we realize by stemming from the
following trigonometric identity:

2 atanh(d)=log
(

1+d

1−d

)
=log(|1+d|)−log(|1−d|). (15)

By applying (15), we rewrite the inverse hyperbolic tangent in
terms of logarithms. This operation is made by the two log(·)
blocks in Fig. 14, where the parameter d in (15) becomes
d = tanh

(
L(y2|x2)

2

)
tanh

(
L(y3|x3)

2

)
, thus resulting in

the same expression as in (6).
While the implementation of the arguments 1+d and 1−d

is detailed in Sec. VII-C, here we focus on the realization of
the logarithmic function. As shown in Fig. 14, since molecule
concentrations cannot assume negative values, two different
genetic circuit blocks are used to approximate the logarithmic
function for either input > 1 or input < 1, detailed next.

1) Logarithm Approximation for Input Greater Than 1:
From (15), since d > 0, which is exactly our case since
concentrations are positive, the argument (1 + d) of the first
log is always greater than 1. In Fig. 14, the block that
realizes this operation is the upper log(·) block that takes A0

molecules as input and gives P molecules as output, where,
as detailed in the following, the concentration [A0] = 1 + d.
For this, we use an activated gene as modeled by the Hill
function in (8), where [In] = [A0] and [Out] = [P ].
In order to approximate the logarithmic function with the
Hill function, first, we realize a horizontal shift of our Hill
function by means of a mass action reaction for Subtraction
Operation between the input protein A0 and the protein M ,
which is set to a concentration equal to 1. This gives the
difference [A0]out = [A0]in − 1, as explained in Sec. III.
The concentration [A0]out is then fed into the log(·) block.
Second, after an MSE optimization to match the designed
genetic circuit block with the positive logarithmic function,
we identify the following parameter values: n = 1, K = 2 and
MAX = 2. In this minimization, we took into account that
1 < [In] = [A0] = |1 + d| < 2, without considering the shift,

since d = tanh
(

L(y2|x2)
2

)
tanh

(
L(y3|x3)

2

)
. A comparison

between the two functions is shown in Fig. 15(a), where we
observe that a very good approximation of the logarithmic
function is achieved for input values [In] ∈ [1, 2].
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Fig. 16. Scheme of the gene that realizes the logarithmic function.

2) Logarithm Approximation for Input Smaller Than 1:
The argument (1 − d) of the second log in (15) is always
smaller than 1. Hence, the second log(·) block in Fig. 14
has to approximate the absolute value of the negative part
of the logarithm. We realize this through the complementary
Hill function of a repressed gene. An MSE optimization
to match the gene expression with the negative logarithmic
function is realized by setting n = 1, Kp = 0.05 and
MAX = | log(10−3)|, where 10−3 represents the supposed
minimum value that the argument [In] can assume, as shown
in Fig. 15(b). However, for values close to 1, there is a small
but non negligible error. In order to alleviate this problem
we design a control in the expression of the output protein P
(see Fig. 14) with two, in place of just one, different repressive
transcription factors, MT and MD. This approach results in
a bivariate Hill function [4] that describes the rate of output
protein production as a function of [MT ] and [MD] as follows:

d[P ]
dt

=H([MT ], [MD])=
β1+β2

1+
(

[MT ]
k1

)n1

+
(

[MD ]
k2

)n2 , (16)

where βi, i = 1, 2, are the maximum expressions in absence
of the repressors, while ni and ki are the Hill coefficient and
Hill constant related to the corresponding operator region,
respectively, as sketched in Fig. 16. Although the bivariate
Hill function in (16) is valid for any combination of the
inputs [MT ] and [MD], as explained in Sec. VII-C, in our
genetic circuit design these will always have the same value,
resulting in the final behavior of the gene expression [P ] versus
[MT ] = [MD] shown in Fig. 17(a), where it is compared
to the desired curve of the logarithmic function. The MSE
optimal parameters to achieve this behavior are n1 = n = 1,
β1 + β2 = MAX = | log(10−3)|, k1 = K = 0.05, n2 = 20
and k2 = 0.7.

C. Details on the Box-Plus Operation

The design in Fig. 14 realized with the components
described above, and leading to the box-plus operation
described in (6), is detailed next. The upper Gene Expres-
sion Circuit takes as input two repressive transcription fac-
tors, namely, the molecules T2, whose concentration value
is L(y2|x2), stored at the second bit interval Tb according
to the Storage Operation process described in Sec. III, and
the molecules Z3, whose concentration value is L(y3|x3),
similarly stored at the third bit interval Tb. T2 and Z3 are the
complexes resulting from the proteins t2 and z3, respectively.
Since this gene is an operon containing the coding sequences
of the proteins A0, T0, and D0, the output concentrations will
result from (16) by setting β1 + β2 = 1, n1 = n2 = ng

Fig. 17. Comparison showing good agreement between (a) a logarithmic
function and a complementary bi-variate Hill Function with n1 = n = 1,
β1 + β2 = MAX = | log(10−3)|, k1 = K = 0.05, n2 = 20 and
k2 = 0.7, and (b) a linear function and a Hill function with MAX = 100,
K = 92 and n = 1 for [In] ε [0, 10], respectively.

and k1 = k2 = kg , meaning that the operator regions for
the two transcription factors have the same characteristics,
expressed as

d[A0]
dt

= H([T2], [Z3]) =
1

1 +
(

[T2]
kg

)ng

+
(

[Z3]
kg

)ng
. (17)

By analyzing the expression in (17), we observe that it
resembles the following product:

H̃([T2], [Z3]) =
1

1 +
(

[T2]
kg

)ng
· 1

1 +
(

[Z3]
kg

)ng

=
1

1 +
(

[T2]
kg

)ng

+
(

[Z3]
kg

)ng

+
(

[T2][Z3]
k2

g

)ng
,

(18)

except for the cross term at the denominator
(

[T2][Z3]
k2

g

)ng

.
At the same time, the considerations made for the Hill function
in Section VII-A can be extended to the complementary Hill
function. Again, using the same notation as in (14), for K = 1
and n = 2, we obtain

d[Out]
dt

=
1

1 + [In]2
∼= 1 − tanh

(
[In]
2

)
. (19)

This means that 1
1+[T2]2

∼= 1−tanh
(

[T2]
2

)
and 1

1+[Z3]2
∼= 1−

tanh
(

[Z3]
2

)
, therefore H̃([T2], [Z3]) ∼= (1−tanh

(
[T2]
2

)
)(1−

tanh
(

[Z3]
2

)
) when kg = 1 and ng = 2. If then we consider

the error between H and H̃ negligible, our gene controlled by
two different repressors gives as output something very similar

to (1 − tanh
(

[T2]
2

)
)(1 − tanh

(
[Z3]
2

)
).

By expanding the presented product d[A0]
dt =

H([T2], [Z3]) = 1 − tanh
(

[T2]
2

)
− tanh

(
[Z3]
2

)
+

tanh
(

[T2]
2

)
tanh

(
[Z3]
2

)
, we realize that, in steady state, [A0]

contains the desired quantity. In conclusion, for retrieving

tanh
(

[T2]
2

)
tanh

(
[Z3]
2

)
, we just need to subtract the quantity

1− tanh
(

[T2]
2

)
− tanh

(
[Z3]
2

)
to [A0]. To do that, we exploit

the other two Gene Expression Circuits, as shown in Fig. 14,
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which have both a promoter regulated by an activator.
These circuits take as input the molecules U2 and U3,
output complexes of a Storage Operation on u2 and u3 at
the second and third bit interval, respectively. U2 and U3 have
concentration values L(y2|x2) and L(y3|x3), respectively.
Both these Gene Expression Circuits give as output (operons)
the molecules A0, T0, D0 whose concentrations are related to
the input through the Hill function in (14).

From Section V-B, [u2] = [t2] and [u3] = [z3], and
consequently [U2] = [T2] and [U3] = [Z3]. The output con-

centrations of the two genes will be [U2]
n

Kn+[U2]n
= [T2]

n

Kn+[T2]n
∼=

tanh
(

[T2]
2

)
and [U3]n

Kn+[U3]n = [Z3]
n

Kn+[Z3]n
∼= tanh

(
[Z3]
2

)
for

Kp = 1 and n = 2. Since the output species are the same for
all genes, their concentrations sum up leading to

[A0] = [T0] = [D0] = 1 − tanh
(

[T2]
2

)
− tanh

(
[Z3]
2

)

+ tanh
(

[T2]
2

)
tanh

(
[Z3]
2

)

+ tanh
(

[T2]
2

)
+ tanh

(
[Z3]
2

)

= 1 + tanh
(

[T2]
2

)
tanh

(
[Z3]
2

)
, (20)

which is exactly the argument of the first log in (15). Note
that the expression on the left hand side should be a temporal
derivative that has the same value of the concentration itself,
according to our steady state assumption.

To obtain the argument of the second log in (15), we use
the molecules T0 and D0, which end up producing two tran-
scription factors with identical concentrations as input to the
log(·). This results in the better fit of the Hill function to the
logarithmic function detailed in (16) and shown in Fig. 17(a).
From now on, we focus on protein T0 since D0 goes through
the same processing.

At the output of the Gene Expression Circuits, T0 reacts
with the molecule MT having concentration 2. In this
way, at the end of the reaction we obtain the desired
value [MT ] = 2 − (1 + tanh

(
[T2]
2

)
tanh

(
[Z3]
2

)
) = 1 −

tanh
(

[T2]
2

)
tanh

(
[Z3]
2

)
. In the end, we are going to use A0

as the input to the upper log(·) block, and MT , MD as the
inputs to the lower log(·) block.

The two log(·) blocks should have as output the same
molecules P , since from (15) the second log is preceded by
a minus sign that reverses its actual sign (negative because
1 − d < 1). Ideally, i.e., by neglecting the approximations,
at the output of the log(·) blocks we have

[P ] = log
(

1 + tanh
(

[T2]
2

)
tanh

(
[Z3]
2

))

− log
(

1 − tanh
(

[T2]
2

)
tanh

(
[Z3]
2

))

= 2 atanh
(

tanh
(

[T2]
2

)
tanh

(
[Z3]
2

))

= 2 atanh
(∣∣∣∣tanh

(
L(y2|x2)

2

)
tanh

(
L(y3|x3)

2

)∣∣∣∣
)

, (21)

Fig. 18. Scheme of the chemical reactions and gene that compute the sign
of the box-plus expression.

Fig. 19. Arithmetic sum to compute the a-posteriori L-value.

which is exactly the magnitude, or absolute value | · |, of the
desired box-plus operation expressed in (6).

D. Sign of the Box-Plus

The Sign of the Box-plus block in Fig. 14 has the specific
purpose of computing the sign of the box-plus operation
expressed in (6). The sign of the box-plus is negative only
when L(y2|x2) and L(y3|x3) have opposite signs, which
means that both n0 and m0 proteins are expressed. These
proteins bind into the complex Sb, leading to production of
the sign protein S through the Threshold Circuit. The latter
is a simple gene circuit with a very steep response that
gives a high output whenever there is input. If the protein S
is present, it reacts with the log(·) block output protein P
through a ligand-receptor binding, creating a complex that
binds to a Linearized Gene Circuit, detailed next, with n1

as output (negative protein). If the protein S is not present,
the protein P alone binds to another Linearized Gene Circuit
that expresses the protein p1 (positive protein). In Fig. 14,
at the output of the Linearized Gene Circuits, the complexes
N1 and P1 are shown. They result from a Storage Operation
on n1 and p1, respectively, at the third bit interval Tb.

The aforementioned Linearized Gene Circuits, whose bio-
logical schematic is shown in Fig. 18, are obtained through
promoters with a linear response in a given interval [0, δ]. For
this, we need to set MAX � δ, K � δ and n = 1, where
MAX , K and n are defined in Sec. III. For example, if we
set δ = 10, MAX = 100 and K = 92, we obtain a good
approximation, see Fig. 17(b).

VIII. GENETIC CIRCUIT FOR THE SUM

OPERATION TO COMPUTE L(x̂1)
To obtain the complete expression of a-posteriori log-

likelihood ratio (L-value) L(x̂1) in (6), as shown in Fig. 19 we
sum the output of the biological L-value computation from the
first received modulated concentration, i.e., L(y1|x1), which
is stored in the concentration of the Biological Delay Line
complexes containing N1 or P1 as described in Sec. VI, with
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Fig. 20. Simbiology model of the molecular communication system between
biological cells with parity-check coding presented in this paper.

the result of the box-plus operation after the Sign Inversion
Block, as described in Sec. VII-D, in terms of N1 or P1,
whose concentration is equal to the expression in (6). For this,
we assume that the output molecules N1 or P1 from the Sign
Inversion Block react with the same receptors utilized in the
Biological Delay Line, thus forming N1 or P1 complexes.

In the following, N1 is the negative complex and P1 is
the positive complex. We assume that N1 complexes and P1

complexes react with each other. If L(y1|x1) and L(y2|x2) �
L(y3|x3) are of different species, at the end of the reaction,
we are left with the positive P1 or negative N1 complex,
whose concentration is the a-posteriori L-value L(x̂1) (Sub-
traction Operation). On the contrary, in the case L(y1|x1) and
L(y2|x2) � L(y3|x3) are of the same species, we assume that
they will not react, and their concentrations will sum, leading
to the desired result.

IX. SIMBIOLOGY IMPLEMENTATION

AND NUMERICAL RESULTS

The scheme in Fig. 5 has been replicated in Simbiology,
a Matlab package for simulation of biological networks, with
the result reported in Fig. 20. All the concentration values
expressed in the following are intended as normalized with
respect to the average number of intracellular signaling mole-
cules, typically equal to 1000 molecules per cell [3]. In the
case of an E. coli bacterium, a usual chassis in synthetic
biology, this corresponds to a concentration of 1 molecule/μm3

in a volume V ∼= 10μm3 [34]. From Fig. 20 it is possible to
distinguish three main blocks [30]:

• The Rectangular Blocks represent the species involved in
the reaction network and their concentrations. The only
exception are the green blocks phi1 and phi2 that are
constant parameters with random value, as explained in the
following.

• The Circular Blocks represent generic chemical reactions
stemming from the simple Degradation and Transcription
Factor Activation Reactions to the more complex Repression
and Activation of Gene Expression.

• The Square Blocks represent events, value assign-
ments or mathematical rules.

The rectangular blue blocks S1 and S2 on the left side of
Fig. 20 have concentrations x1 and x2 defined by continuous
time Square Waves with high level xi = 50, i = 1, 2, in order to

TABLE I

(A) PARAMETERS OF THE GENE EXPRESSION CIRCUIT BLOCK,
(B) PARAMETERS OF THE LUXI EXPRESSION BLOCK

simulate the binary nature of the concentrations s1(t) and s2(t)
that continuously define the state of the cell. The Square Wave
is characterized by a random initial phase (φ1 and φ2 for
s1 and s2, respectively) so as to model the random state of
the cell when the coding process begins.

The main Circular Blocks are highlighted inside dashed
boxes. The Circular Block inside the dashed box Gene
Expression Circuit simulates a repressed gene expression,
where the transcription and translation processes are seen
as one step process mathematically described by the Hill
function, as detailed in Sec. III-A. The main parameters that
characterize this Circular Block in First Channel Bit are
reported in Table I.A. The Circular Block inside the dashed
box LuxI Expression models the activated LuxI Expression
in Figs. 6 and 9 and the related parameters are shown in
Table I.B. Notation is the same as in Sec. III-A except for the
subscripts G and L used to distinguish the Gene Expression
Circuit and LuxI Expression parameters, respectively. Since
the promoter of the Gene Expression Circuit is repressed by
two different transcription factors, S∗

1 and r∗1 , it is modeled by
a multi-dimensional Hill function, as in (10). The promoter of
the LuxI Expression is instead activated by just one transcrip-
tion factor species l∗1 , hence the Reaction Rate is defined by
the one-dimensional Hill function as in (8).

The parameters of the Gene Expression Circuit have been
chosen considering s1(t) = 50 when the species S1 is present.
As in Fig. 22(a), even if s1(t) = 50 at the sampling time
(s∗1 = 50), assuming [r∗1 ]SS = 0, the gene is not completely
repressed hence, in steady state, [l1]SS (and likewise [l∗1 ]

SS for
the Transcription Factor Activation Reaction) will be different
from zero and able to activate the subsequent LuxI Expression.

The parameters of the LuxI Expression have been
engineered to give a steady state output k0I

SS = a0 =
MAXL = 22 when [l∗1]

SS = 6 = MAXG (which, in turn,
means s∗1 = 0) and k0I

SS = Q1
∼= 20 when [l∗1]

SS ∼= 2
(obtained when s∗1 = 50), as in Fig. 22(b). While a thorough
discussion is left to future work, these values allow for an
optimal Gaussian approximation of the molecule counting
noise in a diffusion-based channel [39].

Finally, as explained in Sec. IV-B.2, r∗1 has to strongly
repress the promoter of the Gene Expression Circuit. Since
[r∗1 ]SS ≡ [l∗1]

SS , a small value for k1G has to be chosen in
order to get an efficient repression even when [r∗1 ]SS is small
(s∗1 high). The result for k1G = 1 is observable in Fig. 22(a).
In order to have a quite strong repression, whatever the value
of s∗1, we need [r∗1 ]SS ≥ 2 and this is guaranteed since, even
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Fig. 21. Simulation of the value of LuxI concentration at the transmitter
given the input concentrations of the molecular species S1 S2 over time.

Fig. 22. Steady state concentration (a) [l1]SS for the Gene Expression Circuit
and (b) ISS for the LuxI Expression.

Fig. 23. BER results for a signal-to-noise ratio Es
N0

ε [−20, 7] dB, which

show a good agreement between the performance of the simulated biological
circuit and an exact L-value computation using analytical formulas.

in the case of maximum gene expression input s∗1 = 50,
the output of the operon (Fig. 8) would be [r∗1 ]SS ≡
[l∗1 ]

SS ∼= 2.
Simulation curves as function of time are reported

in Fig. 21. For a better visual result, only the main species S1,
S2 and LuxI with concentrations s1(t), s2(t) and I(t), respec-
tively, are shown. Notice that, from Eq. (13), I(t) and xi(t)
are directly related, hence I(t) behavior over time gives us
information about the transmitted symbols.

The sampling of s1(t) and s2(t) occurs at t = t = 5 s.
In that instant, the state of the cell (s1(t = t), s2(t = t)) =
(50, 50) so the parity check bit should be 0. Looking at the
variable LuxI in Fig. 21, we realize the information has been
encoded and modulated correctly. The encoding process begins

Fig. 24. MSE of the performance of the simulated biological circuit
with respect to an exact L-value computation using analytical formu-
las for Gaussian noise with variance σ2 = {0.1, 0.5, 1, 1.5, 2, . . . , 5}
[(particles/m3)2].

at t = 10 s, using the 5 s time gap to degrade any possible
residual LuxI molecules from the previous codeword. The bit
time interval is set to Tb = 5 s in order to get the steady state
expression of the LuxI Expression block, i.e. Q0 = 22 when
s∗i = 0 and Q1

∼= 20 when s∗i = 50 (i = 1, 2). Observing the
LuxI concentration in t = 15 s, t = 20 s and t = 25 s, we get
the modulated channel symbols (Q1, Q1, Q0) corresponding
to the encoded bits (110), consistently with what we desired
to transmit.

To test the performance of the proposed genetic circuit
design, we implemented the block diagram in Fig. 2 in the
Matlab SimBiology environment, generalized to compute the
L-value for each of the three bits. The value of the bit interval
has been tuned such that all the genetic circuits achieve the
steady state condition, approximated by the condition that
all the output concentrations should be above 99 % of their
ideal steady state value. The AWGN is generated by randn
and summed to the transmitted channel bits according to
the assumptions in Sec. II-C to get the received modulated
concentrations yi. The sequence of yi is then passed as input
to our code, which computes an estimate of L(x̂k), k = 1, 2, 3,
after the third bit time interval of each codeword.

To have a comparison between the theoretical performance
achieved by the ideal L-value computation and that given by
our circuit, we run Monte Carlo simulations to measure the
BER versus signal-to-noise ratio Es

N0
= 1

2σ2 . These results,
shown in Fig. 23, are obtained by deciding on the received
bit according to the L-value sign, i.e., Maximum A-Posteriori
detection. The number of transmitted codewords N used to test
the performance is variable and depends on the Es/N0 value.
It has been chosen as a trade-off between computational time
and reliability of the estimate. The number of codewords for
BER calculation varies from N = 100 codewords at Es/N0 =
−20 dB to N = 3 · 106 at Es/N0 = 7 dB.

It is also of interest to analyze the error of our genetic circuit
in terms of L-values. We calculated L(x̂k) for 90 transmitted
channel bits, belonging to N = 30 different codewords,
impaired by Gaussian noise with variance σ2, and we mea-
sured the MSE with respect to the L-values provided by
our genetic circuit for σ2 ε [10−1, 5], as reported in Fig. 24.
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A higher error for smaller noise values can be observed, since
high values of log-likelihood ratios are obtained leading to
tanh(L(yi|xi)) ∼= 1. From (21), this results into very large
output values of the logarithmic function which are not well
approximated by our genetic circuit elements. In any case,
even when the MSE for the L-values is large, the performance
of our circuit in terms of BER are very close to those resulting
from an electrical circuit implementation [15].

Finally, it is important to notice that the ideal time bit
interval Tb = 5 s, chosen to ensure the steady state expression
of the LuxI Expression block according to the parameters
in Table I, results in an overall bit-rate of the communication
system of 0.2 bps (or 2/3*0.2 = 0.13 bps, if we exclude parity
bits). While outside of the scope of this paper, the low-level
design of our biological circuits would proceed by choosing
the biological circuit components that are in agreement with
the constraints given in our theoretical analysis. We anticipate
that this will mainly depend on the time for the Hill function
of each gene to reach the needed steady state of protein
concentration starting from the state at the previous time
interval (bit time interval or sampling interval depending on
its location in the circuit), as expressed in (11). This can
range from seconds to minutes or even hours, depending on
the particular gene, and the slowest gene to reach the needed
steady state could constitute the rate limiting step of the overall
communication system, and have most of the influence in the
choice of the optimal Tb.

X. CONCLUSION

In this paper, inspired by recent studies favoring the effi-
ciency of analog computation over digital one in biological
cells, we proposed the design and simulation of a biological
modulated parity-check encoder and of the associated analog
decoder for molecular communication in a biological cell.
The design is based on the genetic engineering of genetic
circuits, realized entirely in the biochemical domain by using
activation and repression of gene expression, and reactions of
molecular species. Genetic circuits have been first designed
by using concepts provided by synthetic biology and then
simulated using SimBiology, which provides programmatic
tools to model, simulate, and analyze dynamic systems. The
modulated parity-check encoder is able to read and encode
the molecular information through serialization of a naturally
parallel information. Encoder and decoder presented in this
paper are intended as a proof-of-concept design methodology
for utilizing genetic circuit components to design functionali-
ties in the MC domain, with potential use in the engineering
of future devices for the Internet of Things in biological
environments. For this reason, the main focus has been devoted
to the analysis of the analog decoder by considering only
a single transmitter-receiver system, leaving a more realistic
study with multiple transmitter and receiver cells to future
work. Biochemical simulation data of the resulting genetic
circuit demonstrate very close performance to an electrical
network implementation in terms of BER, and low MSE with
respect to the L-values computed with electrical circuits for
channels in conditions of relatively high noise.

REFERENCES

[1] I. F. Akyildiz, F. Brunetti, and C. Blázquez, “Nanonetworks: A new com-
munication paradigm,” Comput. Netw., vol. 52, no. 12, pp. 2260–2279,
Aug. 2008.

[2] I. F. Akyildiz, M. Pierobon, S. Balasubramaniam, and Y. Koucheryavy,
“The Internet of bio-nano things,” IEEE Commun. Mag., vol. 53, no. 3,
pp. 32–40, Mar. 2015.

[3] B. Alberts, A. Johnson, and L. J. Lewis, M. Raff, K. Roberts, and
P. Walter, Molecular Biology of the Cell, 4th ed. New York, NY, USA:
Garland, 2002.

[4] U. Alon, An Introduction To Systems Biology: Design Principles of
Biological Circuits. London, U.K.: Chapman & Hall, 2006.

[5] S. Andreescu and O. A. Sadik, “Trends and challenges in biochemical
sensors for clinical and environmental monitoring,” Pure Appl. Chem.,
vol. 76, no. 4, pp. 861–878, 2004.

[6] J. Ang, E. Harris, B. J. Hussey, R. Kil, and D. R. McMillen, “Tuning
response curves for synthetic biology,” ACS Synth. Biol., vol. 2, no. 10,
pp. 547–567, Aug. 2013.

[7] B. Atakan, O. B. Akan, and S. Balasubramaniam, “Body area nanonet-
works with molecular communications in nanomedicine,” IEEE Com-
mun. Mag., vol. 50, no. 1, pp. 28–34, Jan. 2012.

[8] H. Awan and C. T. Chou, “Generalized solution for the demodulation
of reaction shift keying signals in molecular communication networks,”
IEEE Trans. Commun., vol. 65, no. 2, pp. 715–727, Feb. 2017.

[9] S. Basu, Y. Gerchman, C. H. Collins, F. H. Arnold, and R. Weiss,
“A synthetic multicellular system for programmed pattern formation,”
Nature, vol. 434, pp. 1130–1134, Apr. 2005.

[10] L. T. Bereza-Malcolm, G. Mann, and A. E. Franks, “Environmen-
tal sensing of heavy metals through whole cell microbial biosen-
sors: A synthetic biology approach,” ACS Synth. Biol., vol. 4, no. 5,
pp. 535–546, May 2015.

[11] A. O. Bicen and I. F. Akyildiz, “End-to-end propagation noise and mem-
ory analysis for molecular communication over microfluidic channels,”
IEEE Trans. Commun., vol. 62, no. 7, pp. 2432–2443, Jul. 2014.

[12] A. O. Bicen, C. M. Austin, I. F. Akyildiz, and C. R. Forest, “Effi-
cient sampling of bacterial signal transduction for detection of pulse-
amplitude modulated molecular signals,” IEEE Trans. Biomed. Circuits
Syst., vol. 9, no. 4, pp. 505–517, Aug. 2015.

[13] C. T. Chou, “Maximum a-posteriori decoding for diffusion-based mole-
cular communication using analog filters,” IEEE Trans. Nanotechnol.,
vol. 14, no. 6, pp. 1054–1067, Nov. 2015.

[14] N. Farsad, H. B. Yilmaz, A. Eckford, C.-B. Chae, and W. Guo,
“A comprehensive survey of recent advancements in molecular commu-
nication,” IEEE Commun. Surveys Tut., vol. 18, no. 3, pp. 1887–1919,
3rd Quart., 2016.

[15] J. Hagenauer, E. Offer, C. Mèasson, and M. Mörz, “Decoding and
equalization with analog non-linear networks,” Eur. Trans. Telecommun.,
vol. 10, no. 6, pp. 659–680, 1999.

[16] S. Haykin and M. Moher, Introduction to Analog & Digital Communi-
cations. Hoboken, NJ, USA: Wiley, 2007.

[17] IEEE Draft Recommended Practice for Nanoscale and Molecular Com-
munication Framework, IEEE Standard IEEE P1906.1/D2.0, 2015.

[18] B. Ingalls, Mathematical Modelling in Systems Biology: An Introduction.
Cambridge, MA, USA: MIT Press, 2012.

[19] L. J. Kahl and D. Endy, “A survey of enabling technologies in synthetic
biology,” J. Biol. Eng., vol. 7, no. 1, p. 13, May 2013.

[20] D. Kilinc and O. B. Akan, “Receiver design for molecular communi-
cation,” IEEE J. Sel. Areas Commun., vol. 31, no. 12, pp. 705–714,
Dec. 2013.

[21] J. R. Kirby, “Synthetic biology: Designer bacteria degrades toxin,”
Nature Chem. Biol., vol. 6, pp. 398–399, Jun. 2010.

[22] M. Laddomada and M. Pierobon, “A crosstalk-based linear filter in
biochemical signal transduction pathways for the Internet of bio-things,”
in Proc. IEEE ICASSP, Apr. 2015, pp. 5520–5524.

[23] I. Llatser, A. Cabellos-Aparicio, M. Pierobon, and E. Alarcón, “Detec-
tion techniques for diffusion-based molecular communication,” IEEE J.
Sel. Areas Commun., vol. 31, no. 12, pp. 726–734, Dec. 2013.

[24] Y. Lu, M. D. Higgins, and M. S. Leeson, “Comparison of channel
coding schemes for molecular communications systems,” IEEE Trans.
Commun., vol. 63, no. 11, pp. 3991–4001, Nov. 2015.

[25] A. Mandelis, Diffusion-Wave Fields: Mathematical Methods and Green
Functions. New York, NY, USA: Springer-Verlag, 2001.

[26] A. Marcone, “Encoding and soft decoding in molecular communication
based on biological circuits,” M.S. thesis, Dept. Elettron., Inf. Bioing.,
Politecnico Milano, Milan, Italy, 2016.



6236 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 12, DECEMBER 2018

[27] A. Marcone, M. Pierobon, and M. Magarini, “The Gaussian approx-
imation in soft detection for molecular communication via biological
circuits,” in Proc. IEEE 18th Int. Workshop Signal Process. Adv. Wireless
Commun. (SPAWC), Jul. 2017, pp. 1–6.

[28] A. Marcone, M. Pierobon, and M. Magarini, “A biological circuit design
for modulated parity-check encoding in molecular communication,” in
Proc. IEEE Int. Conf. Commun. (ICC), May 2017, pp. 1–7.

[29] A. Marcone, M. Pierobon, and M. Magarini, “A parity check analog
decoder for molecular communication based on biological circuits,” in
Proc. IEEE Conf. Comput. Commun. (INFOCOM), May 2017, pp. 1–9.

[30] Mathworks. (2016). SimBiology Release 2016b Documentation.
[Online]. Available: https://www.mathworks.com/help/simbio/index.html

[31] D. B. Menendez, V. R. Senthivel, and M. Isalan, “Sender–receiver
systems and applying information theory for quantitative synthetic
biology,” Current Opinion Biotechnol., vol. 31, pp. 101–107, Feb. 2015.

[32] N. Michelusi, S. Pirbadian, M. Y. El-Naggar, and U. Mitra, “A stochastic
model for electron transfer in bacterial cables,” IEEE J. Sel. Areas
Commun., vol. 32, no. 12, pp. 2402–2416, Dec. 2014.

[33] C. J. Myers, Engineering Genetic Circuits. London, U.K.: Chapman &
Hall, 2009.

[34] D. L. Nelson, A. L. Lehninger, and M. M. Cox, Lehninger Principles
of Biochemistry. New York, NY, USA: Macmillan, 2008.

[35] A. Noel, K. C. Cheung, and R. Schober, “Improving receiver per-
formance of diffusive molecular communication with enzymes,” IEEE
Trans. Nanobiosci., vol. 13, no. 1, pp. 31–43, Mar. 2014.

[36] M. E. Ortiz and D. Endy, “Engineered cell-cell communication via DNA
messaging,” J. Biol. Eng., vol. 6, p. 16, Dec. 2012.

[37] S. Payne and L. You, “Engineered cell–cell communication and its
applications,” in Productive Biofilms (Advances in Biochemical Engi-
neering/Biotechnology), vol. 146. Cham, Switzerland: Springer, 2014,
pp. 97–121.

[38] M. Pierobon, “A systems-theoretic model of a biological circuit for
molecular communication in nanonetworks,” Nano Commun. Netw.,
vol. 5, nos. 1–2, pp. 25–34, Mar./Jun. 2014.

[39] M. Pierobon and I. F. Akyildiz, “Diffusion-based noise analysis
for molecular communication in nanonetworks,” IEEE Trans. Signal
Process., vol. 59, no. 6, pp. 2532–2547, Jun. 2011.

[40] M. Pierobon and I. F. Akyildiz, “A statistical–physical model of
interference in diffusion-based molecular nanonetworks,” IEEE Trans.
Commun., vol. 62, no. 6, pp. 2085–2095, Jun. 2014.

[41] M. Pierobon, Z. Sakkaff, J. L. Catlett, and N. R. Buan, “Mutual
information upper bound of molecular communication based on cell
metabolism,” in Proc. IEEE SPAWC, Jul. 2016, pp. 1–6.

[42] R. Sarpeshkar, “Analog synthetic biology,” Philos. Trans. Roy. Soc. A,
Math. Phys. Eng. Sci., vol. 372, no. 2012, p. 20130110, 2014.

[43] E. Sazonov and M. R. Neuman, Eds., Wearable Sensors: Fundamen-
tals, Implementation and Applications. Amsterdam, The Netherlands:
Elsevier, 2014.

[44] J. T. Sexton and J. J. Tabor, “Multiplexed bacterial cell-cell communica-
tion via a genetically encoded CRISPRI-based multiplexer-demultiplexer
circuit,” in Proc. 3rd ACM NanoCom, 2016, Art. no. 12.

[45] S. Hennig, G. Rödel, and K. Ostermann, “Artificial cell-cell communi-
cation as an emerging tool in synthetic biology applications,” J. Biol.
Eng., vol. 9, p. 13, Aug. 2015.

[46] A. Tasmir, J. Tabor, and C. A. Voigt, “Robust multicellular computing
using genetically encoded NOR gates and chemical ‘wires,”’ Nature,
vol. 469, pp. 212–215, Jan. 2011.

[47] P. J. Thomas and A. W. Eckford, “Capacity of a simple intercellular
signal transduction channel,” IEEE Trans. Inf. Theory, vol. 62, no. 12,
pp. 7358–7382, Dec. 2016.
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