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Abstract

The uplift and final connection of the Central American land bridge is considered the major

event that allowed biotic exchange between vertebrate lineages of northern and southern ori-

gin in the New World. However, given the complex tectonics that shaped Middle America,

there is still substantial controversy over details of this geographical reconnection, and its

role in determining biogeographic patterns in the region. Here, we examine the phylogeogra-

phy of Bothrops asper, a widely distributed pitviper in Middle America and northwestern

South America, in an attempt to evaluate how the final Isthmian uplift and other biogeographi-

cal boundaries in the region influenced genealogical lineage divergence in this species. We

examined sequence data from two mitochondrial genes (MT-CYB and MT-ND4) from 111

specimens of B. asper, representing 70 localities throughout the species’ distribution. We

reconstructed phylogeographic patterns using maximum likelihood and Bayesian methods

and estimated divergence time using the Bayesian relaxed clock method. Within the nominal

species, an early split led to two divergent lineages of B. asper: one includes five phylogroups

distributed in Caribbean Middle America and southwestern Ecuador, and the other comprises

five other groups scattered in the Pacific slope of Isthmian Central America and northwestern

South America. Our results provide evidence of a complex transition that involves at least

two dispersal events into Middle America during the final closure of the Isthmus.

Introduction

Tropical Middle America, the region that extends from the Isthmus of Tehuantepec to the

northwestern tip of South America, accounts for less than 0.7% of the Earth’s total land area,
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and yet, is one of the most biologically diverse territories on the planet [1–3]. The origin and

maintenance of its tremendous diversity is attributed not only to Mesoamerica’s geographical

location between two major continental masses but also to the intricate geological and climato-

logical history that shaped the region since the late Cretaceous [4–6].

Among the myriad of events that resulted from these dynamics, perhaps the most signifi-

cant was the rise and final connection of the Lower Central American Isthmus (LCA, but also

known as the Isthmus of Panama). The uplift did not occur as a single incident but instead

resulted from a series of geological and climatological events that started in the Oligocene and

continued until the mid-Pliocene when the unbroken connection finally emerged [5–10, but

see 11 for a different view]. This process allowed not only the evolution and redistribution of

organisms in Mesoamerica [12, 13] but also was crucial in the exchange of species between the

Northern and Southern continents, often referred as the Great American Biotic Exchange

[14–18]. Despite its importance, there is still considerable debate about the timing of the final

LCA connection, and whether pre-closure dispersal or vicariant events mediated the cladogen-

esis and biological diversification observed in the region [19, 20].

Several studies have shown the effectiveness of molecular phylogeographic approaches com-

bined with robust estimations of divergence time to assess the role of putative geological events

in the cladogenesis of species inhabiting Middle America [20–22]. This has allowed scientists to

address questions about how historical divergence occurred across landscapes, especially in

regions where there is little consensus on historical processes, as is the case of Middle America.

Pitvipers have been used to elucidate fine-scale historical biogeographical patterns, [19, 23–

25] because most species have lower vagility than other vertebrates, which make them more

prone to genetic isolation via vicariance. Moreover, the intrageneric relationships of pitvipers

in Middle America are well known [26–30], and it seems that Mesoamerican pitviper lineages

exhibit coincident temporal patterns of divergence that match major geological events that

shaped the region. For instance, the tropical rattlesnake Crotalus durissus (sensu lato) has a

northern origin [31], but its phylogeographic pattern is consistent with a gradual range expan-

sion south that corresponded to the final uplift of the LCA isthmus, followed by a rapid dis-

persal into South America [32].

The effect of the LCA uplift and final closure on tropical snake lineages of South American

origin is far less understood, although it is believed that most dispersed north only after the

uplift of the Isthmus [29]. To assess the effect of the LCA uplift on South American taxa, we

focus on the Central American lancehead pitviper, Bothrops asper. This species has close affini-

ties with members of the B. atrox complex [sensu 27] a group mainly distributed east of the

Andes [33], and is thus nested deeply within the genus Bothrops that is otherwise confined to

South America [26, 27, 34]. However, B. asper extends its distribution from Colombia and

northwestern Peru in South America to lowland Mexico and Central America. Given these

affinities and its current distribution well into Middle America, it appears that Bothrops asper
expanded its range rapidly northward once the LCA isthmus was finalized [34]. Thus, we pre-

dict that B. asper populations in Middle America will be more recent and exhibit lower diver-

gence than those in South America.

To test this, we assess the phylogeographic pattern of B. asper using mtDNA markers across

the species range and evaluate the time and mode in which the species colonized Mesoamerica.

Materials and methods

Specimens and laboratory methods

Bothrops asper individuals were collected from 70 localities throughout the species distribution

(Fig 1 and S1 Table). Genomic DNA was extracted mostly from blood or shed skin following
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the procedure described in [35]. The use of biological material for this study was approved by

the Research Committee of Instituto Clodomiro Picado (session No 06–2013) and by the Insti-

tutional Committee for Care and Use of Animals (CICUA) from Universidad de Costa Rica.

The MT-ND4 and MT-CYB regions were amplified using the primer pairs described in [36,

37] respectively. For both genes, PCR reactions were set up to a final volume of 25 μl, using

Fig 1. Distribution of Bothrops asper (red contour) in Middle and South America adapted from [33]. Question marks in northwestern Venezuela

and Peru indicate that part of the distribution which needs confirmation. Symbols represent localities of specimens included in analyses, showing their

phylogeographical affinities: MY (Mexico-Yucatan), NCA (Caribbean Nuclear Central America), CICA (Caribbean Isthmian Central America), PICA (Pacific

Isthmian Central America), WE (West Ecuador), TR (Tumbes region), CHOCO 1 (Darien-Colombian Chocó), CHOCO 2 (Ecuadorian Chocó), CCO

(Caribbean Colombia), MV (Magdalena Valley). See text for elaboration.

https://doi.org/10.1371/journal.pone.0187969.g001
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2.0 μl genomic DNA, 0.4 μl of each primer (0.16 μM), 2.5 μl of 10 X PCR buffer (1X), 0.25 μl

total dNTPs (100 μM), 1.0 μl of MgCl2 (2 mM), 0.2 μl of Taq polymerase (1 U), and 18.6 μl

H2O). Typical amplification conditions involved initial denaturation at 94˚C for 5 min, fol-

lowed by 38 cycles of 94˚C for 40 s, 54˚C of annealing for 40 s, then 72˚C for 1 min, followed

by a final extension step of 72˚C for 5 min. The amplified product was sequenced using the

same primers by Macrogen (Seoul, S. Korea– http://dna.macrogen.com).

Alignment and data exploration

DNA sequences were edited using BioEdit version 7.0 [38], and then the alignment was veri-

fied by eye in GeneDoc [39]. Since we use coding genes in our analyses, all nucleotide

sequences were translated into amino acids to evaluate the reading frame and ensure the

absence of premature stop codons or other nonsense mutation [40]. We deposited novel

sequences were deposited in GenBank, and the final nucleotide alignment matrix is available

upon request. We calculated genetic distances (p-distance) from aligned sequences using

Mega version 7 [41].

Phylogenetic analysis and divergence time estimation

For phylogenetic analyses we incorporate representatives of the following genera (# species) as

outgroups: Lachesis (2), Ophryacus (2), Agkistrodon (2), Sistrurus (1), Crotalus (2), Bothrioco-
phias (3), Rhinocerophis (4), Bothropoides (11), Bothriopsis (3), and Bothrops (12) (S1 Table).

We treated gaps in the alignment as missing data. We concatenated the different gene

sequences (MT-ND4 and MT-CYB) for each specimen and analyzed the data jointly. Data for

each gene was partitioned following [29], and Mega version 7 [41] was used to estimate the

best-fitting models of nucleotide evolution for each partition independently. We select the

best-fitting models according to Bayesian Information Criterion (BIC) [42].

We performed phylogenetic analyses of concatenated genes using maximum likelihood

(ML), and Metropolis-Hastings coupled Markov chain Monte Carlo Bayesian methods

(BMCMC). ML analyses were performed under different models of nucleotide evolution [43].

Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join

and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Com-

posite Likelihood (MCL) approach and then selecting the topology with superior log-likeli-

hood value. We used a discrete Gamma distribution to model evolutionary rate differences

among sites. These analyses were conducted in MEGA7 [41]. We use non-parametric boot-

strap (10,000 replicates) to evaluate branch support in the phylogenetic reconstruction [44].

The BMCMC estimate of the phylogeny was inferred using MrBayes version 3.0B4 [45].

We executed three parallel MCMC runs simultaneously, each run for 20 x 106 generations

with four Markov chains (one cold and three heated chains). Model parameters and the rate of

evolution differ among each partition. We used Tracer 1.6 [46] for visualizing output parame-

ters to ascertain stationarity and whether or not the duplicated runs had converged on the

same mean likelihood. Runs appeared stationary before 106 generations, and we conservatively

excluded the first 2.0 x 106 generations of each run as burn-in. All post-burn-in estimates

(sampled every 1000 generations) were combined, and we summarized phylogeny and param-

eter estimates from this combined posterior distribution. Nodes were considered well sup-

ported if posterior probabilities > 0.95.

To evaluate phylogroup boundaries on our preferred phylogenetic tree, we performed

Bayesian Poisson Tree Process (bPTP) implemented in http://www.exelixis-lab.org/software.

html [47]. This method considers the number of substitutions between branching (speciation

events) and assumes that each substitution has a small probability of generating speciation.

B. asper phylogeography
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Thus, if the number of changes is sufficiently large, the process follows a Poisson distribution.

bPTP adds Bayesian support (BS) values to delimited species on the input tree, with higher

node support indicates that all descendants of this node are more likely to be from one species

[47].

We also implemented the Bayesian phylogeography approach (BPA, [48–49]) to evaluate

the putative area of origin of B. asper-B. atrox lineages. BPA takes into account space-time

domains when analyzing the evolutionary process, and uses localities as discrete states to allow

inferences about the location of ancestral lineages. In order to reconstruct the ancestral state,

we re-ran our Bayesian analysis without outgroups, using BEAST v.2.4.7 [50]. Three individual

runs were performed for 10 x 106 generations with a sampling frequency of 10,000; under the

same nucleotide substitution models used in our ML phylogenetic analysis (see Results). We

apply the following parameters as priors: coalescence: constant size speciation process; clock

rate: set at 0.005; and strict molecular clock. For each individual included in the analysis, we

designate their country of origin as the state of locality. We are aware that this designation is

broad and artificial, but we consider that it allows us to locate in present-day geography the

spaces occupied by the ancestral lineages.

For all analyses performed on BEAST, each run was analyzed in Tracer [46] to confirm that

effective sample sizes (ESS) were sufficient for all parameters (posterior ESS values > 300).

LogCombiner1 and TreeAnnotator1 (both available in the BEAST package) were used to

infer the ultrametric tree after discarding 10% of the samples from each run.

We estimated divergence times using the Bayesian relaxed clock method with uncorrelated

lognormal rates among branches across the B. asper phylogeny, assuming a birth-death process

for the speciation model implemented in BEAST v.2 [50]. This method incorporates heteroge-

neity rates based on Bayesian inference and allows the simultaneous use of different evolution-

ary parameters for each dataset [51, 52].

Posterior distributions of parameters were approximated using three independent MCMC

analyses of 20 x 106 generations each, with samples retained every 1,000 generations. Samples

from the two runs, which yielded similar results, were combined and convergence of the

chains was checked using the program Tracer 1.6 [46].

We used three calibration points: (1) the minimum age of Sistrurus estimated from the fos-

sil evidence of the most recent ancestor (TMRCA) of Sistrurus + Crotalus [53]. Using a log-

normal prior with zero offset (hard upper bound) of 8 million years ago (Mya), a mean of 0.01,

and standard deviation (SD) of 0.76, this estimation produced a median age centered at 9 Mya

and a 95% prior credible interval (PCI) extending to 11.5 Mya [54] (2) The basal divergence

within the crown Agkistrodon clade (A. piscivorous-A. contortrix divergence) in the Late Mio-

cene [54]. Using a log-normal prior with zero offset of 6 Mya, a mean of 0.01, and SD of 0.42,

this estimation produced a median age of 7 Mya and a 95% PCI extending to 8 Mya [54].

Although these are very narrow constraints based on a patchy fossil record, true divergence

dates will probably be older than the oldest known fossil, thus making these lognormal distri-

butions with hard lower bounds a conservative assumption [25, 55]. (3) The estimated age of

divergence between C. ruber and C. atrox according to [56] due to the Pliocene marine incur-

sion of the Sea of Cortés [57], using a lognormal mean of 1.1 and SD of 0.37, no zero offset.

This produced a median age centered at 3 Mya and a 95% PCI extending to 5.5 Mya that coin-

cides with time estimations for the development of Sea of Cortés [57]. There is still some

debate on the time and level of isolation of the California peninsula during those marine incur-

sions [58], so we perform our analyses including and excluding this calibration point. No dif-

ferences in the estimation of divergence time retrieved by both approaches were noticed.

B. asper phylogeography
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Testing for range expansion

We analyze the distribution of pairwise nucleotide differences (mismatch distribution) to infer

the existence of demographic growth, following [59] method implemented in ARLEQUIN 3.5

[60]. Distribution curves were analyzed assuming constant and non-constant sizes for the

observed empirical distribution. We use rg as a measure of "statistical raggedness" [61] and R2

statistic [62] to determine the correspondence between the observed and theoretical curves.

Also, we employed Fu and Li [63], and Tajima ɵ statistics to detect possible changes in popula-

tion sizes [62, 64].

Results

Sequence analysis

We generated new sequences for B. asper (MT-CYB: 101; MT-ND4: 90), B. atrox (MT-CYB: 5;

MT-ND4: 1), B. colombiensis (MT-CYB: 9; MT-ND4: 9), B. isabelae (MT-CYB: 5; MT-ND4: 5)

and B. venezuelensis (MT-CYB: 2; MT-ND4: 1). From 174 specimens, including 111 in the

ingroup, we obtained a concatenated matrix of 1442 bp for the two genes (758bp for MT-CYB
and 684bp for MT-ND4).

The alignment was unambiguous, and the inferred amino acid sequence contained no stop

codons, which suggest a mitochondrial origin sequence rather than nuclear insertion. Includ-

ing outgroups, we recover 545 polymorphic sites from all sequences, 387 of them are informa-

tive. For B. asper, we recover 296 polymorphic sites, 237 informative.

Phylogenetic analysis and genetic distances

Selected models of nucleotide evolution differ among all partitions, the model chosen was

GTR+Г for the first and third codon position of MT-CYB and all MT-ND4 partitions, and

HKY+ I for the second MT-CYB position. Under ML, the tree with the highest log likelihood

(-9078.04) is congruent with the phylogenetic relationships recovered under the BMCMC

method, with only minor differences among the outgroups. Thus, we only show the results of

the Bayesian analysis here (Fig 2).

Our analysis recovered a partial phylogeny of Bothrops that is consistent with previous

reconstructions of lancehead phylogenies based on morphology and/or mtDNA [30, 34, 65–

68].

We recovered a deep split of B. asper into two well-supported lineages (clades A and B, Fig

2), differing by average p-distances of 5.7% (MT-CYB) and 4.3% (MT-ND4), and paraphyly of

B. asper concerning the B. atrox group. However, the node placing the atrox group as sister to

B. asper clade B (Fig 2) is weakly supported, and our analyses using BEAST recovered B. asper
as monophyletic (see Figs 3 and 4).

Clade A includes B. asper specimens from the Caribbean coast of Middle America and

southwestern Ecuador. In this clade, five well supported (PP > 0.9) groups were retrieved in

our bPTP analysis (Fig 2): (1) specimens from localities along the Gulf of Mexico coast and

Yucatán Peninsula, including Petén (MY); (2) Nuclear Central America (NCA), including

specimens from the Caribbean slopes of Honduras, Guatemala, and Belize; (3) Caribbean Isth-

mian Central America (CICA), from the Caribbean lowlands of Nicaragua and Costa Rica; (4)

Western Ecuador (WE), from Guayas, Manabı́, Los Rı́os and Chimborazo provinces in Ecua-

dor; (5) Tumbes biogeographic region (TR, that includes specimens from Loja in southern

Ecuador). MY and NCA form a well-supported clade that is distributed within the same bio-

geographical unit (Veracruzan Province sensu Morrone [69]).

B. asper phylogeography
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Clade B also includes five distinct B. asper groups (Fig 2): (1) Pacific Isthmian Central

America (PICA) from Pacific localities of Costa Rica and Panama; (2) Northern Choco

(CHOCO 1) from central and eastern Panama, and Pacific coast of Colombia; (3) Chocoan

Ecuador (CHOCO 2), from Esmeralda and Pichincha, Ecuador; (4) Caribbean Colombia

(CCO) localities from the Caribbean lowlands of Colombia; and (5) Rio Magdalena valley

(MV), from localities along the upper Magdalena basin. CHOCO 1 and CHOCO 2 form a

well-supported clade that is distributed within the same biogeographical unit (Choco-Darien

Province [69]). The groups spread west of the Cordillera Occidental (CCO and MV) also form

a supported clade (Fig 2) and are included in Morrone’s Magdalena Province [69].

Average uncorrected p-distances for MT-ND4 were lower than those for MT-CYB in most

groups (Table 1). The pairwise divergence between the B. atrox group and B. asper lineages

ranged between 3.1% and 6.1% for MT-CYB, and 4.3% and 5.9% for MT-ND4. The separation

between B. asper clades A and B ranged between 3.6% and 8.2% for MT-CYB and 3.3% and

5.1% for MT-ND4: the greatest pairwise divergence observed between individuals from MY

and those from CCO in Colombia for (MT-CYB p distance = 8.2%, Table 1). Even in Costa

Fig 2. Bayesian phylogeny of relationships among members of B. asper from different physiographic

regions (names as in Fig 1). Two distinct B. asper lineages are depicted in red (clade A) and green (clade B)

branches. Red bars indicate phylogroups supported by the bPTP analysis. Support for each node is shown as

posterior probability (PP, Bayesian inference) or Bootstrap value (BS, Maximum likelihood).

https://doi.org/10.1371/journal.pone.0187969.g002
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Rica, the mean pairwise divergence between snakes from the Caribbean region (CICA) and

those in the Pacific lowlands (PICA) was relatively high, 6.5% (MT-CYB) and 4.6% (MT-ND4),

despite that these populations occur only a few kilometers apart. The lowest mean divergence

was noticed between snakes distributed in the Magdalena Valley and those in the Caribbean

region of Colombia (Table 1).

Within B. asper groups, we observed the highest divergence among individuals in PICA (mean

p-distances = 0.4% and 0.6%, for MT-CYB and MT-ND4 gene, respectively); whereas we recorded

the lowest value within the MV group (mean p-distances = 0.1 and 0.3%, for both genes).

We observed valuable sample sizes for all parameters in all BEAST analyses and our estima-

tion of convergence statistics in Tracer indicated that all analyses had converged (ESS > 384).

The root state posterior probabilities for all locations range between <0.01 and 0.78, with

Colombia receiving the highest probability (Fig 3). Thus, the ancestral branch that led to the B.

Fig 3. Maximum clade credibility phylogeny for Bothrops asper, retrieved from mtDNA sequences. Branches are colored

according to the most probable “location state” of their descendant nodes. Values in branches indicate the location set probability of

the ancestral state, in this case, the probability that the origin of the branch occurred in the region that is now Colombia. Bayesian

support for clades as in Fig 2.

https://doi.org/10.1371/journal.pone.0187969.g003

B. asper phylogeography

PLOS ONE | https://doi.org/10.1371/journal.pone.0187969 November 27, 2017 8 / 20

https://doi.org/10.1371/journal.pone.0187969.g003
https://doi.org/10.1371/journal.pone.0187969


Fig 4. Bayesian estimates of divergence time (Mya) for the lancehead phylogeny. Left: Overall tree showing the calibration points

(black dots) for time divergence estimations. Right: B. asper phylogeny showing the mean and 95% confidence intervals (in parenthesis)

for divergence time estimates at each node. Clades A and B are depicted as in Fig 2. Grey bar indicates the extension of the Pliocene.

Well supported nodes (PP > 0.95) for divergence estimations are shown in light blue, whereas weakly supported nodes are shown in

white. B. asper phylogroup names as in Fig 1.

https://doi.org/10.1371/journal.pone.0187969.g004

Table 1. Net divergences (uncorrected p-distances) for MT-CYB (below diagonal) and MT-ND4 (above diagonal) within B. asper groups, and

among them and related clades. For group names see text.

Groups WGMD 1 2 3 4 5 6 7 8 9 10 11 12

1 Antillean Bothrops 3.9\4.5 5.0 4.9 4.0 3.7 4.8 4.9 5.2 4.6 4.5 4.4 4.3

2 B. atrox group 2.6\2.9 4.1 5.0 4.5 4.3 4.4 5.2 5.9 5.0 5.0 4.5 5.1

3 MY 0.1\0.2 5.3 6.0 3.4 2.0 4.4 4.8 5.1 4.5 4.6 4.7 4.7

4 NCA 0.0\01 4.5 5.7 2.7 1.3 3.7 3.6 4.9 3.5 3.7 3.7 3.8

5 CICA 0.1\0.2 4.6 4.6 4.0 3.9 3.4 3.8 4.6 3.3 3.3 3.4 3.4

6 TR 0.0\0.0 3.7 3.1 4.9 4.3 3.1 3.1 4.8 4.4 4.3 4.3 4.8

7 WE 0.0\0.1 4.5 5.0 6.0 4.3 3.9 2.6 4.8 4.4 4.8 4.3 4.4

8 PICA 0.4\0.6 5.4 5.4 7.5 7.5 6.5 5.9 6.1 4.0 4.3 3.8 3.9

9 CHOCO1 0.2\0.4 4.5 3.4 5.3 6.0 4.9 3.6 5.1 4.1 1.5 2.5 3.0

10 CHOCO2 0.3\0.2 4.7 3.9 6.7 6.6 5.1 4.0 4.9 3.0 2.4 2.9 3.4

11 CCO 0.6\0.3 6.3 6.1 8.2 7.4 6.2 5.7 5.7 4.8 4.8 5.4 2.4

12 MV 0.1\0.3 5.2 5.2 6.5 6.5 5.3 5.6 5.7 3.9 3.0 4.5 1.8

WGMD, Within Group Mean Distance.

https://doi.org/10.1371/journal.pone.0187969.t001
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atrox complex exhibited high probability for that locality (P > 0.78), although it is somewhat

lower in the branch leading to B. asper (P > 0.5, Fig 3). Similarly, the probability that Colombia

was the state at the root of Clade B is high (P = 0.63), despite the low probability observed in

the branch leading to PICA. On the other hand, neither Colombia nor any other locality domi-

nates the probabilities associated with the root of Clade A, and therefore the location state of

its ancestor remains unclear.

Divergence times

According to our Bayesian estimations of divergence time (Fig 4) the origin of the B. asper-B.

atrox group occurred approximately 3.91 Mya (CI95% = 2.53 to 5.26 Mya) when this clade

diverged from the Antillean lanceheads (B. caribbaeus and B. lanceolatus). The divergence

between the B. atrox species group and the B. asper lineages is estimated to have occurred soon

after, about 3.34 (CI95% = 2.44 to 4.48 Mya). The separation between B. asper clades A and B is

dated at mid-Pliocene, approximately 3.20 Mya (CI95% = 2.32 to 4.31 Mya). Within clade A,

the Caribbean Middle American groups diverged from those in Southwestern Ecuador almost

simultaneously, as the estimation time is 2.80 Mya (CI95% = 1.97 to 3.88 Mya).

The divergence between sister groups (MY-NCA/CICA) and (WE/TR) occurred more

recently approximately 1.74 Mya (CI95% = 1.10 to 2.51 Mya), at the Pliocene-Pleistocene

boundary (Fig 4).

Within clade B, lineages from the Choco biogeographic region diverged from all other

groups about 2.38 Mya (CI95% = 1.66 to 3.30 Mya) coinciding with the separation between

PICA and the groups located east of the Colombian Andes (CCO and MV, Fig 3). Finally, the

divergence estimates between MV and CCO and between the Choco-Ecuador and Choco

Colombia-Panama groups occurred well into the Pleistocene (Fig 4).

Testing for demographic expansion

A total of 41 and 47 unique haplotypes were recovered from MT-CYB and MT-ND4 sequences

respectively. MY, CICA, and CHOCO exhibit a relatively higher number of distinct haplotypes

(5, 7, and 9, respectively), whereas we noticed only four in MV, despite this last group has the

most extensive sample size (Table 2).

Table 2. Mistmatch distribution statistics (MT-CYB and MT-ND4) for B. asper phylogroups. Group names as in Fig 1. No data available for TR and

CHOCO 2 due to small sample sizes.

Groups N

CYB/ND4

Mismatch

distribution

Rg R2 D* Tajima’s D (θT)

MY 7/4 Unimodal 0.33/0.25 0.14/0.27 0.23/0.59 -0.88/0.59

NCA 9/9 Unimodal 0.07/0.18 0.18/0.22 0.23/-1.68 0.20/-1.51

CICA 8/6 Unimodal 0.14/0.06* 0.12/0.25* -0.72/-1.26 -0.70/-1.23

WE 5/5 Bimodal 0.68/0.05 0.40/0.27 0.23/-1.05 -0.97/-1.05

PICA 13/11 Bimodal 0.14/0.06 0.11/0.15 -0.55/0.49 -0.56/0.01

CHOCO1 16/11 Unimodal 0.02/0.04 0.13/0.09* -0.59 /-1.71 -0.56/-1.44

CCO 12/11 Unimodal 0.04/0.09 0.11/0.14 -0.79/-0.44 -0.64/-0.80

MV 5/30 Unimodal 0.50/0.07 0.13/0.08 -3.32*/-3.46* -2.09*/-2.07*

*significant values (P < 0.001).

N, sample size

Rg, Raggedness statistic [61]

R2, correlation between observed and expected curves [62]

D*, statistic to detect changes in population sizes [63].

https://doi.org/10.1371/journal.pone.0187969.t002
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Except for WE and PICA, all other studied groups showed unimodal patterns of mismatch

distribution curves (Table 2). Also, most groups exhibited low values for the neutrality test sta-

tistics applied here (Table 2). These combined results are often interpreted as an indication of

selective sweep or population expansion [63–64]. However, in our analysis only MV show sig-

nificant values for the Fu and Li’s D� and Tajima’s , therefore supporting signs of recent demo-

graphic growth in that group (Table 2).

Discussion

Bothrops asper exhibits robust genetic partitioning that accounts for at least ten distinct mito-

chondrial phylogroups, included in two separate lineages. The groups occupy different geo-

graphic regions and show private haplotypes, indicating a clear division among them. We

found evidence of transition zones only in Peten (Guatemala) and in central Panama, but in

both cases, contact occurs between sibling groups within a single B. asper lineage (MY/NCA

and PICA/CHOCO1, respectively). Conversely, we did no observe mitochondrial admixture

between B. asper lineages, nor even in Isthmian Central America where they converge. Addi-

tional sampling in this region, especially in western Panama, could help to establish the extent

to which these lineages are introgressing and the precise geographical boundaries in this

apparent admixture zone.

Phylogeographic history

The observed molecular variation might, in part, result from the complicated geological and

climatic history that shaped the distribution of the species during the Pliocene-Pleistocene, in

addition to the species own ability to spread into the new empty niches that arose during that

period.

As stated before, the sister relationship between B. asper and the B. atrox group has been

established previously [27, 34, 65]; and a monophyletic B. asper was recovered in our BEAST

estimations of divergence time and the putative ancestral distributions of our clades. Our esti-

mates of divergence time suggest that the B. asper-B. atrox group ancestor was distributed in

South America no older than 4.48 Mya (Fig 4). Also, BPA analysis resulted in Colombia as that

the most probable ’state of locality’ for the deep branches in the phylogeny of B. asper (Fig 3).

We interpret these combined results as evidence that the diversification of B. asper occurred in

the northwestern region of South America by the early Pliocene.

The allopatric distribution of B. atrox group and B. asper lineages on each side of the East-

ern Andes Cordillera, suggests that the final uplift of this mountain range played a significant

role in the cladogenesis of these lanceheads. Thus, this Andean Cordillera reached no more

than 40% of its present elevation during much of the Neogene, but intense mountain building

followed in the late Miocene and, especially in the Pliocene when elevations increased rapidly

[70–71]. As a result, we hypothesize that a B. asper stock diverged to the west of the Eastern

Andes, likely within the foothills along the Pacific coast of northern South America, as sup-

ported by the relatively high number of haplotypes observed in that region.

During that time, this ancient stock was further isolated by several marine incursions in

northern South America, especially at the Magdalena Valley and the Maracaibo basin to the

west, and the presence of three sea corridors in lower Central America to the north: the Atrato

seaway, the Panama Portal, and the San Carlos Basin [72]. These marine transgressions

resulted from changes in sea level that occurred during the warm climate periods of the Plio-

cene [73–75], but also during the Quaternary interglacial periods when warmer and wetter cli-

mates dominated again. Isolation during the cycles of sea incursions allowed rapid species
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evolution in the trans-Andean region, as has been recognized for several organisms by Nores

[76], and is feasible that similar forces managed the divergence within B. asper.
Considering its South American origin, and given the low posterior probabilities for the

ancestral locality that we retrieved for the root of Clade A (Fig 3), we postulated that the early

separation between lineages in B. asper was driven by a dispersal event north into Caribbean

Mesoamerica. In addition, the divergence between lineages in mid-Pliocene coincides with

estimations of the final closure of Isthmian Central America, a dynamic event that, as previ-

ously mentioned, has shaped the region’s biogeography.

There is still considerable debate regarding the dynamics and timing of the final closure of

Isthmian Central America. Some authors argue that the Isthmus arose as a series of islands in a

shallow sea with a concluding land connection established in the late Pliocene [9, 10]; whereas

others suggest that it emerged as a continuous land bridge since the Miocene [11, 72, 77], only

broken by the three previously mentioned sea gates that eventually followed a north-to-south

closure at the end of the Neogene [78]. Regardless of the paleogeographic model of emergence,

colonization of Caribbean Mesoamerica by B. asper may have entailed crossing water corri-

dors, a challenge that lancehead pitvipers seem suitable to carry out [65]. In support of this

view, present-day surface currents in the southern Caribbean are mostly directed toward the

northwest [79], and passive transportation from the north Caribbean coast of South America

to northern Mesoamerica has been demonstrated experimentally [80].

According to our divergence time estimations, the separation within the South American

clade B started in late Pliocene, when a group reached the Pacific coast of Isthmian Central

America (PICA). The route involved in this expansion to Mesoamerica is unclear, but most

likely it also involved passive transportation through the Atrato seaway when global climate

was warm [81]. By then, the Talamanca mountain range in Isthmian Central America isolated

this population from the Caribbean lowlands [82, 83]. This hypothesis explains why Caribbean

and Pacific B. asper populations in Mesoamerica are not sister taxa. Close affinities between

lineages along the Pacific slope of Isthmian Central America and those in the Choco region in

Colombia have also been reported in other taxa: frogs [84, 85], birds [86] and snakes [23, 87],

suggesting a comparable history of colonization.

Hence, we postulate that B. asper invaded Mesoamerica in at least two, chronologically sep-

arated independent events. This trend coincides with the two-step dispersal-pulse hypothesis

proposed by Savage [88] to explain the unequal distribution of amphibians and reptiles of

South American origin inhabiting Middle America. According to this author, the first and ear-

lier episode took place some 3.4 MYA when the sea level lowered [89], and a handful of South

American taxa were able to invade Mesoamerica before the final closure of the isthmus. Conse-

quently, few South American taxa have distributions that extend as far north as Mexico. Sav-

age’s [88] second dispersion episode presumably occurred almost a million years later, after

the final closure of the Isthmian bridge. As an outcome of this late invasion, the majority of

genera of South American origin have distributions that do not reach beyond southern Nicara-

gua or Costa Rica. Chronologically, Savage’s first pulse corresponds to the split of B. asper line-

ages, whereas his second pulse matches the invasion of B. asper from South America to PICA.

Alternatively, a single dispersal event into Middle America is also possible, especially if

incomplete lineage sorting [90] or secondary (interspecific) gene flow is contemplated. Both

are distinct phenomena but produce very similar patterns of shared genetic diversity that in

turn could affect species integrity.

During range expansion, some alleles could increase their frequencies due to gene drift,

thus, “surfing” into fixed spatial sectors at the expanding front. Lineages that arise as a conse-

quence of demographic expansion are temporary but tend to last longer in species with limited

dispersal abilities [91]. Genetic surfing has been shown to explain patterns of spatial assorting
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of gene variation in loci with weak effective dispersal, such as mitochondrial DNA. Thus,

genetic surfing should be more frequent in species that exhibit male-biased dispersal, and that

have relatively low vagility, as it has been recently reported in the coral snake Micrurus tener
[92]. Although the dispersal patterns of B. asper are unknown, male-biased dispersal is

expected in this species, as it has been described in several other species of vipers, comprising

both crotalines [93] and viperines [94].

Our mismatch distribution analyses for demographic expansion provide evidence that MV

and CCO groups represent recent populations that diverged in the early Pleistocene. Thus, it is

possible that the sorting of these haplotype groups resulted from gene surfing and not due to

divergence in allopatry. However, no further evidence for demographic expansion was recov-

ered in other populations, not even in those located at the northern extreme of the species dis-

tribution. Furthermore, we did not observe divergent mitochondrial haplotypes in sympatry

in the putative ancestral populations, which is a crucial component to evidence of gene surfing,

therefore limiting our interpretation. Further sampling of these populations and the inclusion

of genome-wide markers in the analyses could resolve the question of whether the spatial sort-

ing of haplotype groups in B. asper resulted from allopatric divergence or genetic surfing dur-

ing demographic expansion.

Another possible scenario is that mtDNA introgression from B. atrox into B. asper occurred

in the past, as this could explain the paraphyletic relation of this last species retrieved in our

analyses (Fig 2). Introgression between sibling species is more widespread than previously

thought and is reported in a great variety of plant and animal taxa [95, 96] including snakes

[97, 98]. Ancient introgression could occur even if no evidence of shared haplotypes is avail-

able, as has been recently reported by Ruane et al. [98] for milk snakes genus Lampropeltis.

For species that exhibit male-biased dispersal, as expected in B. asper, rates of introgression in

mtDNA markers are often higher compared with those from biparentally inhered nuclear

DNA markers [95]. Unfortunately, we did not include nuclear markers in our analysis, and

none of our mitochondrial haplotypes were shared among our phylogroups, thus precluding

further comparisons to evaluate introgression.

Relation between Caribbean Middle American and Ecuadorian groups

The observed sister relationship between MNCA/CICA and the WE/TS groups depicted in

clade A (Fig 2) seems incongruous, as no biogeographical connection has ever been suggested

between the mesic forests of Caribbean Middle American and the seasonally dry environments

of southwestern Ecuador [99]. Biogeographically, the northern portion of Caribbean Middle

America is dominated by Mesoamerican influences whereas southwestern Ecuador has influ-

ences from the Pacific dominion [100]. Therefore, biotic similarities of this last region are

expected to be mainly with the geographically proximal Chocoan biogeographic region, as has

been described for bats [101] and woody plants [102]. It is possible that observed affinities

resulted from retention of ancestral polymorphisms followed by lineage sorting, but the sam-

ple size of our Ecuadorian populations prevent further analysis at this point.

Phenotypic variation in B. asper

Across Mesoamerica, B. asper populations show remarkable differences in natural history

traits [103], morphological variation [104, 105], venom composition [106, 107], and biological

effects of venoms [108–110]. The extent of intraspecific variation in B. asper venoms could

affect the capacity of antivenoms to neutralize toxins from snakes of geographically separated

populations [111]; thus in Costa Rica polyvalent antivenom is produced from a mixture that

includes B. asper venoms from the Caribbean and Pacific regions of that country [112, 113].
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All these features suggest independence in the evolutionary history of at least the two B. asper
lineages revealed in this study. In fact, Aragón and Gubensek [114] have suggested that given

that the differences in morphology, toxin composition, and biological effect of venoms are so

notable, populations in the Central American Isthmus warrant taxonomic recognition. Fur-

ther, sequence divergences observed among B. asper Caribbean Mesoamerican populations

and those in Pacific/South American (5.8 ± 0.2%) are on par to those reported among different

species in other snake groups: Lachesis stenophrys and L. melanocephala with a 5.3% [115] the

Naja nigricollis species complex between 4.7% to 8.3% [116], and the genus Agkistrodon

between 4.0% to 6.4% [28].

Nevertheless, we refrain from proposing any taxonomic changes for these B. asper lineages

at present, as their phylogenetic relationships with the B. atrox group remains unclear. Further

phylogenetic resolution of our tree could be attained using other sequence markers, such as

nuclear genes, as studies in birds [117], mammals [118, 119] and reptiles [120] suggest. These

characters exhibit low homoplasy levels and are known to be useful in recovering phylogenetic

information from taxonomic groups that have experienced adaptive radiation in a short period

[119], therefore resulting in more robust phylogenies. Also, a more thorough sampling that

includes other localities from Panama and especially from Venezuela and Ecuador might be

necessary to further resolve the phylogenetic affinities within the group.

Concluding remarks

Divergence within B. asper lineages appears to result from the tectonic events and sea trans-

gressions that have shaped Mesoamerica and northern South America since the early Pliocene.

Our findings support the view that B. asper invaded Mesoamerica multiple times during the

complex history of the final closure of Isthmian portal, and that Savage’s [88] view of two inva-

sion pulses to explain differential distribution of taxa of South American origin in Mesoamer-

ica might hold for this species. However, our data suggest that Bothrops asper, as currently

understood, probably consists of a complex of related lineages that follow their evolutionary

trajectories. A more robust revision of these lineages and their taxonomic status is presently

underway.
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34. Wüster W, Salomão MG, Quijada-Mascareñas JA, Thorpe RS, R.S.BBBSP. Origin and evolution of

the South American pitviper fauna: evidence from mitochondrial DNA sequence data. In: Schuett GW,
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